1
|
Hao S, Yao C, Meng P, Jia Y, Li L, Zhang C. The spinal consequences of HT-2 toxin and selenium deficiency during bone maturation in mice. Mycotoxin Res 2025; 41:77-91. [PMID: 39414753 DOI: 10.1007/s12550-024-00554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024]
Abstract
In our investigation, we probed the ramifications of low selenium diets and HT-2 mycotoxin exposure on spinal development and structural fidelity in murine models. A cohort of 48 male mice was segregated into six groups: a control set, a singular low selenium diet group, two cohorts exposed to distinct concentrations of HT-2 toxin (1.6 and 3.2 mg/kg·bw·d), and two assemblies subjected to a confluence of low selenium intake and each designated HT-2 dosage. Across an 8-week investigative period, parameters such as body mass, markers of bone metabolism, and cellular vigor were assiduously monitored. Analytical techniques encompassed biomechanical assessments, X-ray scrutiny, and micro-computed tomography (micro-CT) evaluations. Our results unveiled a dose-dependent diminution in the body mass of mice exclusively exposed to HT-2 toxin, whereas concurrent exposure to both low selenium and HT-2 toxins elicited a synergistic effect. Pertinent shifts were observed in calcium, phosphorus, and vitamin D concentrations, as well as in the operational dynamics of osteoblasts and osteoclasts, aligning with toxin dosage and combined exposure. Variations in biomechanical attributes were also discerned, mirroring the levels of toxin exposure. Micro-CT and X-ray examinations further corroborated the extensive detrimental impact on the cortical and trabecular architecture of the mice's spinal columns. This inquiry elucidates the complex synergistic interactions between low selenium and HT-2 mycotoxin on murine spinal development and integrity under co-exposure conditions. These findings accentuate the exigency of comprehensively understanding the solitary and joint effects of these toxins on osseous health, providing pivotal insights for future toxicological research and public health strategies.
Collapse
Affiliation(s)
- Shuichu Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cong Yao
- Nursing Department, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Peilin Meng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yumen Jia
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Liu Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Lu PS, Sun SC. Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility. J Adv Res 2025:S2090-1232(25)00041-4. [PMID: 39814223 DOI: 10.1016/j.jare.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causes multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health and progeny by its ability to cross placental barriers. AIM OF REVIEW Due to its wide occurrence and potential toxicity on reproductive health, it is essential to understand the mechanisms of mycotoxin-related reproductive toxicity. This review summarizes the toxicities and mechanisms of mycotoxin on maternal and offspring reproduction among mammalian species. Approaches for effective mycotoxin alleviation are also discussed, providing strategies against mycotoxin contamination. KEY SCIENTIFIC CONCEPTS OF REVIEW The profound mycotoxin toxicities in female mammalian reproduction affect follicle assembly, embryo development, and fetus growth, thereby decreasing offspring fertility. Factors from endocrine system such as hypothalamic-pituitary-gonadal axis and gut-ovarian axis, placenta ABC transporters, organelle and cytoskeleton dynamics, cell cycle control, genomic stability, and redox homeostasis are found to be closely related to mycotoxin toxicities. Approaches from physical, chemical, biological, and supplementation of natural antioxidants are discussed for the mycotoxin elimination, while their applications are not widespread. Available ways for mycotoxin and its toxicities alleviation need further study. Since a species-, time-, and dose-specific response might exist in mycotoxin toxicities, more consideration should be given to the protocols for mycotoxin toxicity studies, such as experimental animal models, exposure duration, and dosage. Specific mechanism for mycotoxin, especially form a molecular biology perspective, could be investigated with multi-omics technologies and advanced imaging techniques. Mass spectrometry with algorithms may provide more accurate exposure assessments, and it may be further helpful to identify the high-risk individuals in the future.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
3
|
Szentirmay A, Molnár Z, Plank P, Mézes M, Sajgó A, Martonos A, Buzder T, Sipos M, Hruby L, Szőke Z, Sára L. The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes. Toxins (Basel) 2024; 16:509. [PMID: 39728767 PMCID: PMC11728479 DOI: 10.3390/toxins16120509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1. Mycotoxin presence: All examined mycotoxins were detected in follicular fluid. Follicular fluid (ff) levels: Deoxynivalenol (DON), alfa-Zearalenol (α-ZOL), Zearalenone (ZEN), and total aflatoxin (AFs) were significantly higher in follicular fluid than in serum. 2. Follicular fluid and reproductive outcomes: A positive correlation was observed between the ratio of oocytes to total follicles and the follicular Fumonisin B1 (FB1) levels. Multiple linear regression analysis revealed a significant relationship between DON and T-2/HT-2 toxins (T2/HT2) levels in the follicular fluid. 3. Hormone levels: Follicular 17-beta estradiol (E2) and progesterone (P4) levels were higher than the serum levels. Follicular P4 correlated with serum P4 and Anti-Müllerian hormone (AMH) levels. In contrast, follicular E2 did not correlate with plasma E2 levels. 4. Mycotoxin-hormone interactions: A positive correlation was observed between follicular P4 and T2/HT2 toxin levels, whereas a negative correlation was found between ffE2 and ffT2/HT2, and a positive correlation was found between ZEN and E2. Conclusion: This study elucidated the presence of various mycotoxins in the follicular fluid and their potential influence on reproductive outcomes. Further research is warranted to clarify the specific mechanisms underlying these effects and develop strategies for detecting mycotoxin exposure in women undergoing IVF.
Collapse
Affiliation(s)
- Apolka Szentirmay
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zsófia Molnár
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Patrik Plank
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Attila Sajgó
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Attila Martonos
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Tímea Buzder
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Miklós Sipos
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Lili Hruby
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany;
| | - Zsuzsanna Szőke
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Levente Sára
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary;
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| |
Collapse
|
4
|
Guo H, Wan H, Lou W, Khan RU, You J, Huang B, Hao S, Li G, Dai S. Deoxynivalenol and T-2 toxin cause liver damage and egg quality degradation through endoplasmic reticulum stress in summer laying hens. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1387-1396. [PMID: 38607562 DOI: 10.1007/s00484-024-02674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/08/2023] [Accepted: 03/01/2024] [Indexed: 04/13/2024]
Abstract
The present study aimed to find whether low doses of mixed mycotoxins would affect egg quality in laying hens, and to explore the oxidative stress induced liver damage through endoplasmic reticulum during summer stress. A total of 96 Jinghong laying hens, 36 wks of age, were divided into four treatments, with eight repetitions per treatment and three hens per repetition. All the hens were raised in summer (average temperature: 31.3 ± 0.5℃; average humidity: 85.5 ± 0.2%) for 28d. One treatment was fed a basal diet as control (CON), and the other three treatments were fed the same diets containing 3.0 mg/kg deoxynivalenol (DON), 0.5 mg/kg T-2 toxin (T-2), and 1.5 mg/kg DON + 0.25 mg/kg T-2 toxin (Mix). Albumen height and Haugh unit were decreased (P < 0.05) in the Mix group on day 14 and 28. The activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase were decreased (P < 0.05) in the DON, T-2, and Mix groups. The alkaline phosphatase level in DON, T-2, and Mix groups was significantly increased (P < 0.05). The level of interleukin-1β, interferon-γ, and tumor necrosis factor-α in the Mix group were higher (P < 0.05) than CON, DON, and T-2 groups. Mix group upregulated the mRNA expressions of protein kinase RNA-like ER kinase, activating transcription factor4, IL-1β, nuclear factor-κ-gene binding, and nuclear respiratory factor 2 in the liver (P < 0.05). The results showed that low doses of DON and T-2 toxin could cause oxidative stress in the liver, but DON and T-2 toxin have a cumulative effect on virulence, which can reduce egg quality and cause endoplasmic reticulum stress in the liver.
Collapse
Affiliation(s)
- Haoneng Guo
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Hongyan Wan
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
| | - Wenfang Lou
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Jinming You
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Bo Huang
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, People's Republic of China
| | - Shu Hao
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, People's Republic of China
| | - Guanhong Li
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China.
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, People's Republic of China.
| |
Collapse
|
5
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Synowiec E, Sliwinski T, Stela M, Bijak M. DNA Damage Induced by T-2 Mycotoxin in Human Skin Fibroblast Cell Line-Hs68. Int J Mol Sci 2023; 24:14458. [PMID: 37833905 PMCID: PMC10572149 DOI: 10.3390/ijms241914458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin's unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast-Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 μM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes-LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| |
Collapse
|
6
|
González-Alvarez ME, Roach CM, Keating AF. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol Reprod Dev 2023; 90:503-516. [PMID: 36652419 DOI: 10.1002/mrd.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Crystal M Roach
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
Ma J, Wei Z, Yang H, Liu L, Han Y, Wan Y. Melatonin protects Leydig cells from HT-2 toxin-induced ferroptosis and apoptosis via glucose-6-phosphate dehydrogenase/glutathione -dependent pathway. Int J Biochem Cell Biol 2023; 159:106410. [PMID: 37023974 DOI: 10.1016/j.biocel.2023.106410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
HT-2 toxin is a mycotoxin commonly found in food and water that can have adverse effects on male reproductive systems, including testosterone secretion. Ferroptosis and apoptosis are two types of programmed cell death that have been implicated in the regulation of cellular functions. Melatonin, a powerful antioxidant with various physiological functions, has been shown to regulate testosterone secretion. However, the mechanisms underlying the protective effects of melatonin against HT-2 toxin-induced damage in testosterone secretion are not fully understood. In this study, we investigated the effects of HT-2 toxin on sheep Leydig cells and the potential protective role of melatonin. We found that HT-2 toxin inhibited cell proliferation and testosterone secretion of Leydig cells in a dose-dependent manner and induced ferroptosis and apoptosis through intracellular reactive oxygen species accumulation, leading to lipid peroxidation. Exposure of Leydig cells to melatonin in vitro reversed the defective phenotypes caused by HT-2 toxin via a glucose-6-phosphate dehydrogenase/glutathione-dependent mechanism. Interference of glucose-6-phosphate dehydrogenase disrupted the beneficial effect of melatonin on ferroptosis and apoptosis in HT-2 toxin-treated Leydig cells. Furthermore, similar results were observed in vivo in the testes of male mice injected with HT-2 toxin with or without melatonin treatment for 30 days. Our findings suggest that melatonin inhibits ferroptosis and apoptosis by elevating the expression of glucose-6-phosphate dehydrogenase to eliminate reactive oxygen species accumulation in HT-2 toxin-treated Leydig cells. These results provide fundamental evidence for eliminating the adverse effects of HT-2 toxin on male reproduction.
Collapse
Affiliation(s)
- Jianyu Ma
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Zongyou Wei
- Taicang Agricultural and rural science & technology Service Center, Suzhou, China
| | - Hua Yang
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Liang Liu
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Yuquan Han
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
8
|
Qin Z, Wang W, Weng Y, Bao Z, Yang G, Jin Y. Bromuconazole exposure induces cardiotoxicity and lipid transport disorder in larval zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109451. [PMID: 36064135 DOI: 10.1016/j.cbpc.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Bromuconazole (BRO), as one of the typical triazole fungicides, has not been reported on its effects on aquatic organisms. In this study, zebrafish embryos were used as experimental objects to evaluate the toxicity of BRO. In the acute embryo toxicity test, it was observed that the heart rate and growing development were affected by BRO in a concentration-dependent manner, and the half-lethal concentration (LC50) of BRO at 96 h post-fertilization (hpf) was about 11.83 mg/L. Then, low concentrations of BRO (50 ng/L, 0.075 mg/L, 0.3 mg/L, 1.2 mg/L), which were set according to the LC50 and environmental related concentrations, were used to analyze the toxic effects on the different endpoints in larval zebrafish. Interestingly, the transcriptomic analysis found that most different expressed genes (DEGs) could be focused on the pathways of lipid metabolism, myocardial function, glycometabolism, indicating that heart function and lipid metabolism in larval zebrafish were disrupted by BRO. For supporting this idea, we re-exposed the transgenic zebrafish and WT zebrafish embryos, proved that BRO caused damage to heart development and lipid transport on morphological and genetic level, which was consistent with transcriptomic results. In addition, BRO exposure caused oxidative damage in the larvae. Taken together, BRO exposure could affect the myocardial contraction function and lipid transport in larval zebrafish, accompanied by disturbances in the level of oxidative stress, which was of great significance for improving the biotoxicological information of BRO.
Collapse
Affiliation(s)
- Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
9
|
Malvandi AM, Shahba S, Mehrzad J, Lombardi G. Metabolic Disruption by Naturally Occurring Mycotoxins in Circulation: A Focus on Vascular and Bone Homeostasis Dysfunction. Front Nutr 2022; 9:915681. [PMID: 35811967 PMCID: PMC9263741 DOI: 10.3389/fnut.2022.915681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring food/feed contaminants have become a significant global issue due to animal and human health implications. Despite risk assessments and legislation setpoints on the mycotoxins' levels, exposure to lower amounts occurs, and it might affect cell homeostasis. However, the inflammatory consequences of this possible everyday exposure to toxins on the vascular microenvironment and arterial dysfunction are unexplored in detail. Circulation is the most accessible path for food-borne toxins, and the consequent metabolic and immune shifts affect systemic health, both on vascular apparatus and bone homeostasis. Their oxidative nature makes mycotoxins a plausible underlying source of low-level toxicity in the bone marrow microenvironment and arterial dysfunction. Mycotoxins could also influence the function of cardiomyocytes with possible injury to the heart. Co-occurrence of mycotoxins can modulate the metabolic pathways favoring osteoblast dysfunction and bone health losses. This review provides a novel insight into understanding the complex events of coexposure to mixed (low levels) mycotoxicosis and subsequent metabolic/immune disruptions contributing to chronic alterations in circulation.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Amir Mohammad Malvandi ; orcid.org/0000-0003-1243-2372
| | - Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
10
|
Haddadi A, Kessabi K, Boughammoura S, Rhouma MB, Mlouka R, Banni M, Messaoudi I. Exposure to microplastics leads to a defective ovarian function and change in cytoskeleton protein expression in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34594-34606. [PMID: 35040070 DOI: 10.1007/s11356-021-18218-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants; through their physicochemical properties, they can have potentially negative effects on the environment as well as on animal and human health. Studies addressing the toxicity of MPs on mammalian female reproduction are almost absent. Thus, the main objective of the present study was to assess the impact of oral exposure, during four estrous cycles, of 5 µm polystyrene-type microplastics (PS-MPs) on ovarian function in rats. Particles of PS-MPs were detected in the duodenum and, for the first time, in the different compartments of the ovarian tissue. The toxicity of accumulated PS-MPs was manifested by the reduced relative ovarian weights, by the alteration in the folliculogenesis and in the estrous cycle duration, and by the reduced serum concentration of estradiol. The defective ovarian function following PS-MP treatment might be due to the induction of oxidative stress, which has been proved by an increased malondialdehyde (MDA) concentration and an increased superoxide dismutase (SOD) and catalase (CAT) activities as well as a decreased protein sulfhydryl (PSH) level in the rat ovary. Importantly, by immunofluorescence and RT-PCR, we demonstrated a significant decrease in the expression of cytoskeletal proteins: α-tubulin and disheveled-associated activator of morphogenesis (DAAM-1) in the ovary of rats exposed to PS-MPs at proteomic and transcriptomic levels. Our results uncovered, for the first time, the distribution and accumulation of PS-MPs across rat ovary, revealed a significant alteration in some biomarkers of the ovarian function, and highlighted the possible involvement of MP-induced disturbance of cytoskeleton in these adverse effects.
Collapse
Affiliation(s)
- Asma Haddadi
- LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia
| | - Kaouthar Kessabi
- LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia
| | - Sana Boughammoura
- LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia
| | - Mariem Ben Rhouma
- LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia
| | - Rania Mlouka
- UR13AGR08: Biochimie Et Ecotoxicologie, ISA Chott-Mariem, Université de Sousse, Sousse, Tunisia
| | - Mohamed Banni
- UR13AGR08: Biochimie Et Ecotoxicologie, ISA Chott-Mariem, Université de Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia.
| |
Collapse
|
11
|
He Y, Peng L, Li J, Li Q, Chu Y, Lin Q, Rui R, Ju S. TPX2 deficiency leads to spindle abnormity and meiotic impairment in porcine oocytes. Theriogenology 2022; 187:164-172. [DOI: 10.1016/j.theriogenology.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
12
|
Jiang WJ, Liu W, Li YH, Jiang H, Xu YN, Kim NH. Citrinin impairs pig oocyte maturation by inducing oxidative stress and apoptosis. Toxicon 2022; 205:84-90. [PMID: 34871670 DOI: 10.1016/j.toxicon.2021.11.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Citrinin (CTN) is a polyketide mycotoxin produced by several strains of Penicillium, Monascus, and Aspergillus. While CTN poses various toxic effects on the female reproductive system in animals, its direct effects on germ cell development are unclear. This study aimed to evaluate the effects of increasing concentrations of CTN (0,20,40,80,100 μM) on porcine oocyte in vitro maturation. Our results indicate that CTN supplementation inhibited polar body extrusion in a dose-dependent manner. Actin and spindle assembly were also disrupted after treatment, indicating that CTN affects the cytoskeleton of porcine oocytes. Oxidative stress and apoptosis were observed under CTN treatment to explore the cause of meiotic maturation failure in porcine oocytes. The results showed that reactive oxygen species levels, cathepsin B activity, and caspase-3 activity were increased in the treated group, indicating that CTN induced oxidative stress and apoptosis. In conclusion, CTN exposure could reduce porcine oocyte maturation by affecting cytoskeletal dynamics, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Wen Liu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong, China.
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong, China.
| |
Collapse
|
13
|
Toxic effects of methomyl on mouse oocytes and its possible mechanisms. ZYGOTE 2021; 30:358-364. [PMID: 34676817 DOI: 10.1017/s0967199421000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Methomyl is a broad-spectrum carbamate insecticide that has a variety of toxic effects on humans and animals. However, there have been no studies on the toxicity of methomyl in female mammalian oocytes. This study investigated the toxic effects of environmental oestrogen methomyl exposure on mouse oocyte maturation and its possible mechanisms. Our results indicated that methomyl exposure inhibited polar body extrusion in mouse oocytes. Compared with that in the control group, in the methomyl treatment group, superoxide anion free radicals in oocytes were significantly increased. In addition, the mitochondrial membrane potential of metaphase II stage oocytes in the methomyl treatment group was significantly decreased, resulting in reduced mouse oocyte quality. After 8.5 h of exposure to methomyl, metaphase I stage mouse oocytes displayed an abnormal spindle morphology. mRNA expression of the pro-apoptotic genes Bax and Caspase-3 in methomyl-treated oocytes increased, which confirmed the apoptosis. Collectively, our results indicated that mouse oocyte maturation is defective after methomyl treatment at least through disruption of spindle morphology, mitochondrial function and by induction of oxidative stress.
Collapse
|
14
|
Ariafar S, Oftadeh Harsin A, Fadaiie A, Mahboobian MM, Mohammadi M. Toxicity effects of mycotoxins and autophagy: a mechanistic view. TOXIN REV 2021. [DOI: 10.1080/15569543.2019.1711416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Saba Ariafar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Oftadeh Harsin
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Fadaiie
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Xu Y, Sun MH, Li XH, Ju JQ, Chen LY, Sun YR, Sun SC. Modified hydrated sodium calcium aluminosilicate-supplemented diet protects porcine oocyte quality from zearalenone toxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:124-132. [PMID: 32683748 DOI: 10.1002/em.22399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Zearalenone (ZEN) is one of the most common mycotoxins produced by fungus in contaminated feed. ZEN has multiple toxicities, including reproductive toxicity of domestic animals, particularly pigs. However, studies on the effects of ZEN on ovary/oocytes have been primarily based on in vitro experiments, and there is still no evidence from porcine in vivo models due to multiple limitations. Moreover, no report has investigated the effect of hydrated sodium calcium aluminosilicate (HSCAS) as a supplement on pig oocyte quality. In the present study, we fed pigs a 1.0 mg/kg ZEN-contaminated diet for 10 days. The results showed that pigs fed ZEN presented reduced oocyte-cumulus cell interactions, an increase in the number of denuded oocytes in ovaries, a decrease in the number of oocytes in each ovary, and an increase in the oocyte death rate. Oocytes from ZEN-exposed pigs exhibited a delayed cell cycle and abnormal cytoskeletal dynamics during meiotic maturation, which could be due to oxidative stress-induced autophagy. Moreover, we also show that supplementing the ZEN-contaminated diet with modified HSCAS effectively protected porcine oocyte quality. Taken together, our study provides in vivo data demonstrating the protective effects of HSCAS against ZEN toxicity in porcine oocytes.
Collapse
Affiliation(s)
- Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Yu-Rong Sun
- Jiangsu Aomai Bio-tech Company, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Hu LL, Liao BY, Wei JX, Ling YL, Wei YX, Liu ZL, Luo XQ, Wang JL. Podophyllotoxin Exposure Causes Spindle Defects and DNA Damage-Induced Apoptosis in Mouse Fertilized Oocytes and Early Embryos. Front Cell Dev Biol 2020; 8:600521. [PMID: 33330491 PMCID: PMC7710938 DOI: 10.3389/fcell.2020.600521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Podophyllotoxin (PPT) is a kind of lignans extracted from the roots and stems of the genus Podophyllum from the tiller family, and it has been widely used in the treatment of condyloma acuminatum, multiple superficial epithelioma in the clinics. However, PPT has been reported to be toxic and can cause liver defects and other organ poisoning. In addition, emerging evidences also indicate that PPT has reproductive toxicity and causes female reproduction disorders. In this study, we used fertilized oocytes and tried to explore the effects of PPT on the early embryonic development with the mouse model. The results showed that exposure to PPT had negative effects on the cleavage of zygotes. Further analysis indicated that PPT could disrupt the organization of spindle and chromosome arrangement at the metaphase of first cleavage. We also found that PPT exposure to the zygotes induced excessive reactive oxygen species (ROS), suggesting the occurrence of oxidative stress. Moreover, in the PPT-exposed embryos, there was positive γH2A.X and Annexin-V signals, indicating that PPT induced embryonic DNA damage and early apoptosis. In conclusion, our results suggested that PPT could affect spindle formation and chromosome alignment during the first cleavage of mouse embryos, and its exposure induced DNA damage-mediated oxidative stress which eventually led to embryonic apoptosis, indicating the toxic effects of PPT on the early embryo development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Qiong Luo
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun-Li Wang
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
17
|
Shi F, Li W, Zhao H, He Y, Jiang Y, Ni J, Abbasi B, Rui R, Ju S. Microcystin-LR exposure results in aberrant spindles and induces apoptosis in porcine oocytes. Theriogenology 2020; 158:358-367. [PMID: 33038821 DOI: 10.1016/j.theriogenology.2020.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Microcystin-LR (MC-LR), as a well-known hepatotoxin, was recently found to accumulate in gonads and induce a variety of reproductive damages in zebrafish, mice and other model organisms, however, little information is available on whether MC-LR has toxic effects on the mammalian oocytes, especially in livestock species. In this study, the effects of MC-LR on meiotic maturation of porcine oocytes were investigated, and the potential mechanism of MC-LR toxicity was explored. Germinal vesicle (GV)-stage oocytes were exposed to 0, 20, 40 and 60 μM MC-LR, respectively, during the in vitro maturation for 44 h, and the results showed that the first polar body (PbI) extrusion rate of the oocytes decreased significantly when the MC-LR concentration reached 40 (P < 0.01) or 60 μM (P < 0.001). After treated with 60 μM MC-LR for 44 h, a significant higher percentage of the oocytes arrested at anaphase-telophase I (ATI) stage (P < 0.01). Laser scanning confocal results further confirmed that a significantly larger proportion of the 60 μM MC-LR-treated oocytes exhibited aberrant spindles and misaligned chromosomes, suggesting a failure of spindle assembly and homologous chromosome segregation during the ATI stage. Furthermore, the ROS levels in the 60 μM MC-LR-exposed oocytes were significantly higher than the control group (P < 0.01), while the expression of antioxidant related genes (SOD1, CAT and GPX) were much lower compared with control group, indicating that oxidative stress was induced and the antioxidant capacity of oocytes was depleted by 60 μM MC-LR treatment. Additionally, markedly decreased mitochondrial membrane potential (MMP) (P < 0.01) and significantly higher incidence of early apoptosis (P < 0.01) were observed in the 60 μM MC-LR-treated oocytes, suggesting that MC-LR exposure induced apoptosis in porcine oocytes. Moreover, the protein expression of PP2A was remarkably inhibited, whereas the expression of p53, BAX, Caspase3 and Cleaved-caspase3 were prominently increased in the 60 μM MC-LR-exposed oocytes. Together, these results suggested that 60 μM of MC-LR exposure can induce oxidative stress, and lead to aberrant spindles, impaired MMP, and trigger apoptosis, which eventually result in failure of porcine oocyte maturation.
Collapse
Affiliation(s)
- Fengyao Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Hongyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jun Ni
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Benazir Abbasi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
18
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
19
|
Zhu L, Yi X, Ma C, Luo C, Kong L, Lin X, Gao X, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway. Toxins (Basel) 2020; 12:toxins12090540. [PMID: 32842569 PMCID: PMC7551141 DOI: 10.3390/toxins12090540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
T-2 toxin, the most toxic of the trichothecenes, is widely found in grains and feeds, and its intake poses serious risks to the health of humans and animals. An important cytotoxicity mechanism of T-2 toxin is the production of excess free radicals, which in turn leads to oxidative stress. Betulinic acid (BA) has many biological activities, including antioxidant activity, which is a plant-derived pentacyclic triterpenoid. The protective effects and mechanisms of BA in blocking oxidative stress caused by acute exposure to T-2 toxin in the thymus of mice was studied. BA pretreatment reduced ROS production, decreased the MDA content, and increased the content of IgG in serum and the levels of SOD and GSH in the thymus. BA pretreatment also reduced the degree of congestion observed in histopathological tissue sections of the thymus induced by T-2 toxin. Besides, BA downregulated the phosphorylation of the p38, JNK, and ERK proteins, while it upregulated the expression of the Nrf2 and HO-1 proteins in thymus tissues. The results indicated that BA could protect the thymus against the oxidative damage challenged by T-2 toxin by activating Nrf2 and suppressing the MAPK signaling pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xianglian Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chaoyang Ma
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chenxi Luo
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xing Lin
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xinyu Gao
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
20
|
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. ROS: Trichothecenes’ handy weapon? Food Chem Toxicol 2020; 142:111438. [DOI: 10.1016/j.fct.2020.111438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
|
21
|
Hussar P, Popovska-Percinic F, Blagoevska K, Järveots T, Dūrītis I. Immunohistochemical Study of Glucose Transporter GLUT-5 in Duodenal Epithelium in Norm and in T-2 Mycotoxicosis. Foods 2020; 9:E849. [PMID: 32610537 PMCID: PMC7404732 DOI: 10.3390/foods9070849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Although patterns of glucose transporter expression and notes about diseases leading to adaptive changes in intestinal fructose transport have been well-characterized, the connection between infection and fructose transportation has been lightly investigated. Up to now only few studies on GLUT-5 expression and function under pathological conditions in bird intestines have been carried out. The aim of our current research was to immunolocalize GLUT-5 in chicken duodenal epithelium in norm and during T-2 mycotoxicosis. Material from chicken (Gallus gallus domesticus) duodenum was collected from twelve seven-day-old female broilers, divided into control group and broilers with T-2 mycotoxicosis. The material was fixed with 10% formalin and thereafter embedded into paraffin; slices 7 μm in thickness were cut, followed by immunohistochemical staining, according to the manufacturers guidelines (IHC kit, Abcam, UK) using polyclonal primary antibody Rabbit anti-GLUT-5. Our study revealed the strong expression of GLUT-5 in the apical parts of the duodenal epithelial cells in the control group chickens and weak staining for GLUT-5 in the intestinal epithelium in the T-2 mycotoxicosis group. Our results confirmed decreased the expression of GLUT-5 in the duodenal epithelium during T-2 mycotoxicosis.
Collapse
Affiliation(s)
- Piret Hussar
- Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Florina Popovska-Percinic
- Faculty of Veterinary Medicine, Ss.Cyril & Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Katerina Blagoevska
- Laboratory for Molecular Food Analyses and Genetically Modified Organism, Food Institute, Faculty of Veterinary Medicine, 1000 Skopje, North Macedonia;
| | - Tõnu Järveots
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | - Ilmārs Dūrītis
- Faculty of Veterinary Medicine, Latvian University of Agriculture, LV 3004 Jelgava, Latvia;
| |
Collapse
|
22
|
Ling A, Sun L, Guo W, Sun S, Yang J, Zhao Z. Individual and combined cytotoxic effects of T-2 toxin and its four metabolites on porcine Leydig cells. Food Chem Toxicol 2020; 139:111277. [DOI: 10.1016/j.fct.2020.111277] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 03/15/2020] [Indexed: 01/29/2023]
|
23
|
Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland JM. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging. Antioxid Redox Signal 2020; 32:550-568. [PMID: 31892284 DOI: 10.1089/ars.2019.7986] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The precipitous age-related decline in female fertility is intimately associated with a reduction in both the quantity and quality of the germline (oocytes). Although complex etiologies undoubtedly contribute to the deterioration of oocyte quality, increasing attention has focused on the pervasive impact of oxidative stress. Indeed, the prolonged lifespan of the meiotically arrested oocyte places this cell at heightened risk of oxidative lesions, which commonly manifest in dysregulation of protein homeostasis (proteostasis). Although oocytes are able to mitigate this threat via the mobilization of a sophisticated network of surveillance, repair, and proteolytic pathways, these defenses are themselves prone to age-related defects, reducing their capacity to eliminate oxidatively damaged proteins. Recent Advances: Here, we give consideration to the quality control mechanisms identified within the ovary that afford protection to the female germline. Our primary focus is to review recent advances in our understanding of the autophagy pathway and its contribution to promoting oocyte longevity and modulating pathophysiological responses to oxidative stress. In addition, we explore the therapeutic potential of emerging strategies to fortify autophagic activity. Critical Issues: The complex interplay of oxidative stress and autophagy has yet to be fully elucidated within the context of the aging oocyte and surrounding ovarian environment. Future Directions: Emerging evidence provides a strong impetus to resolve the causal link between autophagy and oxidative stress-driven pathologies in the aging oocyte. Such research may ultimately inform novel therapeutic strategies to combat the age-related loss of female fertility via fortification of intrinsic autophagic activity.
Collapse
Affiliation(s)
- Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Bettina P Mihalas
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
24
|
Al-Jaal B, Latiff A, Salama S, Barcaru A, Horvatovich P, Jaganjac M. Determination of multiple mycotoxins in Qatari population serum samples by LC-MS/MS. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human exposure to mycotoxins is almost inevitable as mycotoxins are naturally occurring contaminants of large portion of food and feed. Depending on the type of mycotoxins, inter-individual mycotoxin adsorption, bioaccumulation, distribution, metabolism and excretion, can cause serious adverse health effects. Therefore, continuous biomonitoring studies of population exposure to mycotoxins are needed. Here we describe a multi-analyte approach for the detection and quantification of 20 mycotoxins in human serum using ultra-performance liquid chromatography-electrospray/tandem mass spectrometry operated in targeted multiple reaction monitoring mode. The validated method was used to assess occurrence of mycotoxins in serum samples of 46 residents of Qatar. Mycotoxins that were detected with high incidence were HT-2 toxin (13.0%), sterigmatocystin (10.9%) and 3-acetyldeoxynivalenol (6.5%). Also, co-exposure to several mycotoxins was noticed in the analysed samples. Our results show that strict food quality control is needed to remove mycotoxin contaminated food from the market in order to minimise human exposure to mycotoxins.
Collapse
Affiliation(s)
- B.A. Al-Jaal
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| | - A. Latiff
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| | - S. Salama
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| | - A. Barcaru
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
- Departments of Laboratory Medicine, University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| | - P. Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - M. Jaganjac
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| |
Collapse
|
25
|
Yang X, Liu P, Cui Y, Xiao B, Liu M, Song M, Huang W, Li Y. Review of the Reproductive Toxicity of T-2 Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:727-734. [PMID: 31895560 DOI: 10.1021/acs.jafc.9b07880] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T-2 toxin, an inevitable environmental pollutant, is the most toxic type A trichothecene mycotoxin. Reproductive disruption is a key adverse effect of T-2 toxin. Herein, this paper reviews the reproductive toxicity of T-2 toxin and its mechanisms in male and female members of different species. The reproductive toxicity of T-2 toxin is evidenced by decreased fertility, disrupted structures and functions of reproductive organs, and loss of gametogenesis in males and females. T-2 toxin disrupts the reproductive endocrine axis and inhibits reproductive hormone synthesis. Furthermore, exposure to T-2 toxin during pregnancy results in embryotoxicity and the abnormal development of offspring. We also summarize the research progress in counteracting the reproductive toxicity of T-2 toxin. This review provides information toward a comprehensive understanding of the reproductive toxicity mechanisms of T-2 toxin.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Menglin Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|
26
|
Li L, Yang M, Li C, Yang F, Wang G. Understanding the Toxin Effects of β-Zearalenol and HT-2 on Bovine Granulosa Cells Using iTRAQ-Based Proteomics. Animals (Basel) 2020; 10:ani10010130. [PMID: 31941148 PMCID: PMC7022321 DOI: 10.3390/ani10010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Zearalenone (ZEA) and T-2 are two important mycotoxins, which have deleterious effects on the health of humans and livestock. ZEA and its derivatives, α-zearalenol and β-zearalenol, disturb the hormonal homeostasis and lead to numerous problems in the reproductive system. The HT-2 toxin, as the primary metabolite of the T-2 toxin, exerts a series of toxic effects on humans and livestock. The T-2 toxin and its metabolite HT-2 toxin induce damages in multiple tissues, which include the reproductive system. However, toxic response profiles of these mycotoxins on bovine ovarian granulosa cells (bGCs) are unclear. In this study, we determined the importance of heat shock proteins, clarified oxidative stress, and the caspase-3 signaling cascade involved in the mycotoxin-treated toxic response. These results could provide new insights for future studies on prevention and treatment of reproductive problems caused by mycotoxins in bovines. Abstract Zearalenone (ZEA) and T-2 are the most common mycotoxins in grains and can enter the animal and human food-chain and cause many health disorders. To elucidate the toxic response profile, we stimulated bovine granulosa cells (GCs) with β-zearalenol or HT-2. Using isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic, 178 and 291 differentially expressed proteins (DEPs, fold change ≥ 1.3 and p-value < 0.05) in β-zearalenol and HT-2 groups were identified, respectively. Among these DEPs, there were 66 common DEPs between β-zearalenol and HT-2 groups. These 66 DEPs were associated with 23 biological processes terms, 14 molecular functions terms, and 19 cellular components terms. Most heat shock proteins (HSPs) were involved in the toxic response. Reactive oxygen species accumulation, the endoplasmic reticulum (ER)-stress related marker molecule (GRP78), and apoptosis were activated. β-zearalenol and HT-2 inhibited oestradiol (E2) production. These results emphasized the important function of HSPs, clarified oxidative stress, and demonstrated the caspase-3 signaling cascade involved in mycotoxin-treated toxic response, along with decreased E2 production. This study offers new insights into the toxicity of β-zearalenol and HT-2 on ovarian granulosa cells.
Collapse
Affiliation(s)
- Lian Li
- Correspondence: ; Tel.: +86-25-8439-5045; Fax: +86-25-8439-5314
| | | | | | | | | |
Collapse
|
27
|
Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice. Theriogenology 2019; 148:236-248. [PMID: 31735432 DOI: 10.1016/j.theriogenology.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi and occurs naturally in various foodstuffs and some animal-derived products. This mycotoxin can cause deleterious effects on kidney, liver, central nervous, and immune system. However, potential mechanisms regarding how OTA disrupts the mammalian oocyte quality have not been clearly defined. In this study, we proved that OTA weakened oocyte quality by impairing oocyte meiotic maturation. We found that female mice treated with 1 mg/kg body weight OTA by intraperitoneal (IP) injection for 7 days displayed ovarian dysfunction and decreased offspring number. We also found that OTA treatment at 7.5 μM for 16 h decreased the rate of first polar body extrusion by disrupting spindle and chromosome alignment. In addition, OTA caused oxidative stress by inducing the accumulation of reactive oxygen species and consumption of antioxidants during meiosis, consequently resulting in oocytes apoptosis. Mitochondrial damage and insufficient energy supply were also observed in OTA-pretreated oocytes, which led to the meiotic failure of oocyte. Moreover, the epigenetic modifications were also affected, showing with altered 5 mC, 5hmC, H3K9ac, and H3K9me3 levels in mice oocytes. In summary, these results showed that OTA could decrease oocyte maturation and fertility by inducing oxidative stress and epigenetic changes.
Collapse
|
28
|
Yang X, Zhang X, Yao Q, Song M, Han Y, Shao B, Li Y. T-2 toxin impairs male fertility by disrupting hypothalamic-pituitary-testis axis and declining testicular function in mice. CHEMOSPHERE 2019; 234:909-916. [PMID: 31519099 DOI: 10.1016/j.chemosphere.2019.06.145] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
T-2 toxin could impair male reproductive function. But, the toxicity mechanism is still unclear. In this study, male Kunming mice were orally administrated with T-2 toxin at the doses of 0, 0.5, 1 or 2 mg/kg body weight for 28 days. The fertility, body weight, reproductive organs volume, daily sperm production (DSP), and sperm malformation rate were detected. The expressions of testosterone (T) biosynthetic enzymes, luteinizing hormone (LH)-receptor, follicle stimulating hormone (FSH)-receptor and androgen binding protein (ABP) in testis were detected. The serum hormone level of gonadotropin-releasing hormone (GnRH), FSH, LH, T and progesterone (P), and the mRNA expression of GnRH, GnRH-receptor, LH and FSH were measured. These results demonstrated that T-2 toxin decreased body weight, reproductive organs volume and DSP, increased sperm malformation rate. T-2 toxin impaired fertility by decreasing the mating index, fertility index, numbers of implantation sites and viable fetuses, and increasing the number of animal with resorptions. Meantime, T-2 suppressed testicular function by inhibiting T biosynthesis and decreasing FSHR, LHR and ABP expression. Furthermore, the serum reproductive hormone contents and key factors expression of hypothalamic-pituitary-testis (HPT) axis were decreased by T-2 toxin. In summary, T-2 toxin impaired the male fertility by disrupting HPT axis and impairing testicular function.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Qiucheng Yao
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
29
|
Jia Z, Wang H, Feng Z, Zhang S, Wang L, Zhang J, Liu Q, Zhao X, Feng D, Feng X. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:168-178. [PMID: 31082581 DOI: 10.1016/j.ecoenv.2019.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a substitute for bisphenol A, is a chemical component of plastics for industrial production. There is evidence that BHPF exerts an antioestrogenic effect on mice, induces endometrial atrophy and leads to adverse pregnancy outcomes. However, the effects of BHPF on oocyte maturation and ovary development as well as its possible mechanisms remain unclear. The objective of this study was to investigate the toxicity and mechanism of BHPF exposure in mouse oocytes in vitro and in vivo. Our results showed that BHPF could inhibit the maturation of oocytes in vitro by reducing the protein level of p-MAPK and destroying the meiotic spindle. We found that in vitro, BHPF-treated oocytes showed increased ROS levels, DNA damage, mitochondrial dysfunction, and expression of apoptosis- and autophagy-related genes, such as Bax, cleaved-caspase 3, LC 3 and Atg 12. In addition, in vivo experiments showed that BHPF exposure could induce the expression of oxidative stress genes (Cat, Gpx 3 and Sod 2) and apoptosis genes (Bax, Bcl-2 and Cleaved-caspase 3) and increase the number of atresia follicles in the ovaries. Our data showed that BHPF exposure affected the first polar body extrusion of oocytes, increased oxidative stress, destroyed spindle assembly, caused DNA damage, altered mitochondrial membrane potentials, induced apoptosis and autophagy, and affected ovarian development.
Collapse
Affiliation(s)
- Zhenzhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China; College of Life Science, Shandong Normal University, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, Jinan, 250014, China
| | - Hongyu Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Zeyang Feng
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300 071, China
| | - Shaozhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Lining Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Jingwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Qianqian Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300 071, China.
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China.
| |
Collapse
|
30
|
Yang X, Zhang X, Zhang J, Ji Q, Huang W, Zhang X, Li Y. Spermatogenesis disorder caused by T-2 toxin is associated with germ cell apoptosis mediated by oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:372-379. [PMID: 31091501 DOI: 10.1016/j.envpol.2019.05.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
T-2 toxin is an unavoidable contaminant in human food, animal feeds, and agricultural products. T-2 toxin has been found to impair male reproductive function. But, few data is available that reveals the reproductive toxicity mechanism. In the study, male Kunming mice were orally administrated with T-2 toxin at the doses of 0, 0.5, 1 or 2 mg/kg body weight for 28 days. The body and reproductive organs weight, the concentration, malformation rate and ultrastructure of sperm in cauda epididymis were detected. Oxidative stress biomarkers and apoptosis were also measured in testes. Histological change of testes was performed by H&E and TUNEL staining. T-2 toxin down-regulated body and reproductive organs (testis, epididymis and seminal vesicle) weight, sperm concentration, increased sperm malformation rate and damaged the ultrastructure of sperm and structure of testes. T-2 toxin treatment increased the reactive oxygen species (ROS) and malondialdehyde content, while, decreased the total anti-oxidation capacity (T-AOC) and the superoxide dismutase activity in testes. T-2 toxin exposure increased the TUNEL-positive germ cells, the activities and mRNA expressions of caspase-3, caspase-8 and caspase-9, the mRNA expression of Bax, and inhibited the Bcl-2 mRNA expression. Furthermore, the expressions of caspase-3, caspase-8 caspase-9 and Bax were positively correlated with ROS level, but negatively correlated with T-AOC in testis. In summary, T-2 toxin caused spermatogenesis disorder associated with the germ cell apoptosis medicated by oxidative stress, impairing the male reproductive function.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Ji
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Xueyan Zhang
- Northeast Agricultural University Hospital, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
31
|
Fipronil induces apoptosis and cell cycle arrest in porcine oocytes during in vitro maturation. Apoptosis 2019; 24:718-729. [DOI: 10.1007/s10495-019-01552-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Molina A, Chavarría G, Alfaro-Cascante M, Leiva A, Granados-Chinchilla F. Mycotoxins at the Start of the Food Chain in Costa Rica: Analysis of Six Fusarium Toxins and Ochratoxin A between 2013 and 2017 in Animal Feed and Aflatoxin M 1 in Dairy Products. Toxins (Basel) 2019; 11:E312. [PMID: 31159287 PMCID: PMC6628313 DOI: 10.3390/toxins11060312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are secondary metabolites, produced by fungi of genera Aspergillus, Penicillium and Fusarium (among others), which produce adverse health effects on humans and animals (carcinogenic, teratogenic and immunosuppressive). In addition, mycotoxins negatively affect the productive parameters of livestock (e.g., weight, food consumption, and food conversion). Epidemiological studies are considered necessary to assist stakeholders with the process of decision-making regarding the control of mycotoxins in processing environments. This study addressed the prevalence in feed ingredients and compound feed of eight different types of toxins, including metabolites produced by Fusarium spp. (Deoxynivalenol/3-acetyldeoxynivalenol, T-2/HT-2 toxins, zearalenone and fumonisins) and two additional toxins (i.e., ochratoxin A (OTA) and aflatoxin M1 (AFM1)) from different fungal species, for over a period of five years. On the subject of Fusarium toxins, higher prevalences were observed for fumonisins (n = 80/113, 70.8%) and DON (n = 212/363, 58.4%), whereas, for OTA, a prevalence of 40.56% was found (n = 146/360). In the case of raw material, mycotoxin contamination exceeding recommended values were observed in cornmeal for HT-2 toxin (n = 3/24, 12.5%), T-2 toxin (n = 3/61, 4.9%), and ZEA (n = 2/45, 4.4%). In contrast, many compound feed samples exceeded recommended values; in dairy cattle feed toxins such as DON (n = 5/147, 3.4%), ZEA (n = 6/150, 4.0%), T-2 toxin (n = 10/171, 5.9%), and HT-2 toxin (n = 13/132, 9.8%) were observed in high amounts. OTA was the most common compound accompanying Fusarium toxins (i.e., 16.67% of co-occurrence with ZEA). This study also provided epidemiological data for AFM1 in liquid milk. The outcomes unveiled a high prevalence of contamination (i.e., 29.6-71.1%) and several samples exceeding the regulatory threshold. Statistical analysis exposed no significant climate effect connected to the prevalence of diverse types of mycotoxins.
Collapse
Affiliation(s)
- Andrea Molina
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
- Escuela de Zootecnia, Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Guadalupe Chavarría
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Margarita Alfaro-Cascante
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Astrid Leiva
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| |
Collapse
|
33
|
Yu FF, Lin XL, Wang X, Ping ZG, Guo X. Comparison of Apoptosis and Autophagy in Human Chondrocytes Induced by the T-2 and HT-2 Toxins. Toxins (Basel) 2019; 11:toxins11050260. [PMID: 31072003 PMCID: PMC6562955 DOI: 10.3390/toxins11050260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023] Open
Abstract
In this report, we have investigated the apoptosis and autophagy of chondrocytes induced by the T-2 and HT-2 toxins. The viability of chondrocytes was measured by the MTT assay. Malondialdehyde (MDA) and superoxide dismutase (SOD) kits were used to measure the oxidative stress of chondrocytes. The apoptosis of chondrocytes was measured using flow cytometry. Hoechst 33258 and MDC staining agents were introduced to analyze apoptosis and autophagy induction in chondrocytes, respectively. Protein expression of Bax, caspase-9, caspase-3, and Beclin1 was examined by western blotting analysis. The T-2 and HT-2 toxins significantly decreased the viability of chondrocytes in a time-dependent manner. The level of oxidative stress in chondrocytes induced by the T-2 toxin was significantly higher when compared with that of the HT-2 toxin. The apoptosis rate of chondrocytes induced by the T-2 toxin increased from 3.26 ± 1.03%, 18.38 ± 1.28%, 34.5 ± 1.40% to 49.67 ± 5.31%, whereas apoptosis rate of chondrocytes induced by the HT-2 toxin increased from 3.82 ± 1.03%, 11.61 ± 1.27%, 25.72 ± 2.95% to 36.28 ± 2.81% in 48 h incubation time. Hoechst 33258 staining confirmed that apoptosis of chondrocytes induced by the T-2 toxin was significantly higher than that observed when the chondrocytes were incubated with the HT-2 toxin. MDC staining revealed that the autophagy rate of chondrocytes induced by the T-2 toxin increased from 6.38% to 63.02%, whereas this rate induced by the HT-2 toxin changed from 6.08% to 53.33%. The expression levels of apoptosis and autophagy related proteins, Bax, caspase-9, caspase-3, and Beclin1 in chondrocytes induced by the T-2 toxin were significantly higher when compared with those levels induced by the HT-2 toxin.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 45001, China.
| | - Xia-Lu Lin
- NHC Key Laboratory of Trace Elements and Endemic Diseases, Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xi Wang
- NHC Key Laboratory of Trace Elements and Endemic Diseases, Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zhi-Guang Ping
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 45001, China.
| | - Xiong Guo
- NHC Key Laboratory of Trace Elements and Endemic Diseases, Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
34
|
Jia ZZ, Zhang JW, Zhou D, Xu DQ, Feng XZ. Deltamethrin exposure induces oxidative stress and affects meiotic maturation in mouse oocyte. CHEMOSPHERE 2019; 223:704-713. [PMID: 30802836 DOI: 10.1016/j.chemosphere.2019.02.092] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Pyrethroid insecticides are commonly used as insecticides and considered to be less toxic to mammals, but may still impair the reproduction of animals and humans. The aim of this research was to evaluate the tendency of deltamethrin induced oxidative stress and its effects on meiosis, apoptosis and autophagy of mouse oocytes in vitro maturation after deltamethrin exposure. Especially, the maturation rate of oocytes decreased significantly after 14 h exposure of deltamethrin in concentration-dependent manners, which was manifested as abnormal spindle morphology and DNA double strand breaks. Oxidative stress was found in mouse oocytes exposed to deltamethrin, as shown by changes in the expression of CAT and SOD2. Our results also show that deltamethrin affects the quality of oocytes by causing abnormal mitochondrial distribution and by decreasing mitochondrial membrane potential. The apoptosis of oocyte regulated by the expression of Bax and Bcl-2 protein was obviously affected by deltamethrin. Compared with the control group, the expression of key regulatory factors in the autophagy pathway, LC3, Atg12, Atg14, and Beclin, increased in the experimental group. In summary, these results revealed that deltamethrin might inhibit the maturation of mouse oocytes and adversely affect the survival of oocytes.
Collapse
Affiliation(s)
- Zhen-Zhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Jing-Wen Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Di Zhou
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ding-Qi Xu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China.
| |
Collapse
|
35
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
36
|
ROS-Induced GATA4 and GATA6 Downregulation Inhibits StAR Expression in LPS-Treated Porcine Granulosa-Lutein Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5432792. [PMID: 31178965 PMCID: PMC6501234 DOI: 10.1155/2019/5432792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
LPS is a major endotoxin produced by gram-negative bacteria, and exposure to it commonly occurs in animal husbandry. Previous studies have shown that LPS infection disturbs steroidogenesis, including progesterone production, and subsequently decreases animal reproductive performance. However, little information about the underlying mechanisms is available thus far. In the present study, an in vitro-luteinized porcine granulosa cell model was used to study the underlying molecular mechanisms of LPS treatment. We found that LPS significantly inhibits progesterone production and downregulates the expressions of progesterone synthesis-associated genes (StAR, CYP11A1, and 3β-HSD). Furthermore, the levels of ROS were significantly increased in an LPS dose-dependent manner. Moreover, transcriptional factors GATA4 and GATA6, but not NR5A1, were significantly downregulated. Elimination of LPS-stimulated ROS by melatonin or vitamin C could restore the expressions of GATA4, GATA6, and StAR. In parallel, StAR expression was also inhibited by the knockdown of GATA4 and GATA6. Based on these data, we conclude that LPS impairs StAR expression via the ROS-induced downregulation of GATA4 and GATA6. Collectively, these findings provide new insights into the understanding of reproductive losses in animals suffering from bacterial infection and LPS exposure.
Collapse
|
37
|
Yang L, Gao Z, Lei L, Lv Q, Zhao Q, Li L, Cao X, Fu W. Lycium barbarum polysaccharide enhances development of previously-cryopreserved murine two-cell embryos via restoration of mitochondrial function and down-regulated generation of reactive oxygen species. J Reprod Dev 2019; 65:163-170. [PMID: 30700637 PMCID: PMC6473105 DOI: 10.1262/jrd.2018-104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Lycium barbarum polysaccharide (LBP) exhibits multiple pharmacological and biological effects, including displaying antioxidant and cytoprotective properties. The current study investigated the effects of LBP-supplemented culture medium on mitochondrial distribution, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) production, mitochondrial deoxyribonucleic acid (mtDNA) copy number, reactive oxygen species (ROS) accumulation, and development of previously-cryopreserved murine two-cell embryos. Results indicate that LBP enhances development of such embryos, and that potential mechanisms include: (1) mitochondrial function enhancement via altering mitochondrial distribution and increasing MMP, ATP production, mtDNA copy number, and expression of genes involved in mitochondrial biogenesis and energy metabolism (NAD-dependent deacetyltransferase sirtuin-1 (SIRT1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK)); (2) down-regulation of ROS generation and enhanced expression of the antioxidant genes glutathione peroxidase 4 (GPX4) and superoxide dismutase 1 (SOD1), thereby increasing embryo oxidative stress tolerance; and (3) increased expression of B-cell lymphoma-2 (BCL2), a critical gene for cell survival and embryo development. These results demonstrate that LBP improves development of previously-cryopreserved murine two-cell embryos via restoration of mitochondrial function and down-regulated generation of ROS.
Collapse
Affiliation(s)
- Lei Yang
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, China
| | - Zhen Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Shaanxi 712100, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiangxi 332000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Guangxi 53700, China
| | - Qihan Zhao
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, China
| | - Lixin Li
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, China
| | - Xiaoming Cao
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, China
| | - Wenxue Fu
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, China
| |
Collapse
|
38
|
HT-2 toxin exposure induces mitochondria dysfunction and DNA damage during mouse early embryo development. Reprod Toxicol 2019; 85:104-109. [DOI: 10.1016/j.reprotox.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/23/2022]
|
39
|
Pasquariello R, Ermisch AF, Silva E, McCormick S, Logsdon D, Barfield JP, Schoolcraft WB, Krisher RL. Alterations in oocyte mitochondrial number and function are related to spindle defects and occur with maternal aging in mice and humans†. Biol Reprod 2018; 100:971-981. [DOI: 10.1093/biolre/ioy248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Rolando Pasquariello
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Fort Collins, Colorado, USA
| | - Alison F Ermisch
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Elena Silva
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Sue McCormick
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Deirdre Logsdon
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Jennifer P Barfield
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Fort Collins, Colorado, USA
| | | | | |
Collapse
|
40
|
Kopp B, Vignard J, Mirey G, Fessard V, Zalko D, Le Hgarat L, Audebert M. Genotoxicity and mutagenicity assessment of food contaminant mixtures present in the French diet. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:742-754. [PMID: 30230031 DOI: 10.1002/em.22214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Through diet, people are exposed simultaneously to a variety of contaminants (e.g. heavy metals, mycotoxins, pesticides) that could have combined adverse effects on human health. A previous study identified six main mixtures of food contaminants to which French adult consumers are exposed. These complex mixtures are comprised of 11 to 19 chemicals that have numerous toxic properties. In the present study, we investigated the genotoxic effects of these food contaminants, as single molecules and in mixtures that reflect their occurrence in the French diet, using the γH2AX assay in two human cell lines (HepG2, LS-174 T). Results of detailed analysis of the 49 individual contaminants (including 21 tested in this study) demonstrated a positive genotoxic response to 14 contaminants in HepG2 and 12 in LS-174 T cells. Next, our results indicated that two mixtures out of six triggered significant γH2AX induction after 24 hr of treatment, at concentrations for which individual compounds did not induce any DNA damage, suggesting more than additive interactions between chemicals. γH2AX positive mixtures were then tested for mutagenicity with the innovative in vitro PIG-A assay in HepG2 cells coupled with the soft agar colony formation assay. The two γH2AX positive mixtures led to a significant increase in the frequency of PIG-A GPI-deficient cells and in the number of colonies formed in soft agar. In conclusion, our study demonstrates that two mixtures of contaminants present in the French diet induce genotoxicity and mutagenicity, and that the combined effects of single molecules present in these mixtures are likely not additive, highlighting potential problems for hazard assessment of mixtures. Environ. Mol. Mutagen. 59:742-754, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- B Kopp
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - J Vignard
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - G Mirey
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - V Fessard
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - D Zalko
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - L Le Hgarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - M Audebert
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
41
|
Qian G, Liu D, Hou L, Hamid M, Chen X, Gan F, Song S, Huang K. Ochratoxin A induces cytoprotective autophagy via blocking AKT/mTOR signaling pathway in PK-15 cells. Food Chem Toxicol 2018; 122:120-131. [PMID: 30287338 DOI: 10.1016/j.fct.2018.09.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) could cause a variety of toxicological effects especially nephrotoxicity in animals and humans. Autophagy is a highly conserved metabolic process that plays an important role in the maintenance of cellular homeostasis under stress. However, the role of autophagy in OTA-induced nephrotoxicity is unknown. In the present study, we demonstrated that OTA treatment at 2.0-8.0 μM could increase cytotoxicity of PK-15 cells by inducing apoptosis as shown by the increased Annexin V/PI staining, increased caspase-3 and PARP cleavage and increased apoptotic nuclei. Meantime, autophagy was triggered when OTA was administrated, as indicated by markedly increased expressions of LC3-II, ATG5 and Beclin-1, accumulation of GFP-LC3 dots and increased double- or single-membrane vesicles. OTA treatment decreased p-AKT and p-mTOR activities, and OTA-induced autophagy was inhibited when insulin was applied. Furthermore, OTA treatments with autophagy inhibitors (3-methyladenine or chloroquine) or knockdown of autophagy-related genes (ATG5 or Beclin-1) resulted in significantly reduced autophagy level and enhanced cytotoxicity. In conclusion, OTA induces cytoprotective autophagy against its cytotoxicity and inactivation of AKT/mTOR axis plays a critical role in autophagy induction.
Collapse
Affiliation(s)
- Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Department of Animal Science and Technology, Jinling Institution of Technology, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mohammed Hamid
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
42
|
Yang S, Zhang H, De Boevre M, Zhang J, Li Y, Zhang S, De Saeger S, Zhou J, Li Y, Sun F. Toxicokinetics of HT-2 Toxin in Rats and Its Metabolic Profile in Livestock and Human Liver Microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8160-8168. [PMID: 29996643 DOI: 10.1021/acs.jafc.8b02893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The lack of information on HT-2 toxin leads to inaccurate hazard evaluations. In the present study, toxicokinetic studies of HT-2 toxin were investigated following intravenous (iv) and oral administration to rats at dosages of 1.0 mg per kilogram of body weight. After oral administration, HT-2 toxin was not detected in plasma, whereas its hydroxylated metabolite, 3'-OH HT-2 was identified. Following iv administration, HT-2 toxin; its 3'-hydroxylated product; and its glucuronide derivative, 3-GlcA HT-2, were observed in plasma, and the glucuronide conjugate was the predominant metabolite. To explore the missing HT-2 toxin in plasma, metabolic studies of HT-2 toxin in liver microsomes were conducted. Consequently, eight phase I and three phase II metabolites were identified. Hydroxylation, hydrolysis, and glucuronidation were the main metabolic pathways, among which hydroxylation was the predominant one, mediated by 3A4, a cytochrome P450 enzyme. Additionally, significant interspecies metabolic differences were observed.
Collapse
Affiliation(s)
- Shupeng Yang
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Huiyan Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Jinzhen Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Yanshen Li
- College of Life Science , Yantai University , Yantai , Shandong 264005 , People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Jinhui Zhou
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
| | - Yi Li
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
| | - Feifei Sun
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| |
Collapse
|
43
|
Exposure to podophyllotoxin inhibits oocyte meiosis by disturbing meiotic spindle formation. Sci Rep 2018; 8:10145. [PMID: 29976965 PMCID: PMC6033908 DOI: 10.1038/s41598-018-28544-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Podophyllotoxin is used as medical cream which is widely applied to genital warts and molluscum contagiosum. Although previous study showed that podophyllotoxin had minimal toxicity, it was forbidden to use during pregnancy since it might be toxic to the embryos. In present study we used mouse as the model and tried to examine whether podophyllotoxin exposure was toxic to oocyte maturation, which further affected embryo development. Our results showed that podophyllotoxin exposure inhibited mouse oocyte maturation, showing with the failure of polar body extrusion, and the inhibitory effects of podophyllotoxin on oocytes was dose-depended. Further studies showed that the meiotic spindle formation was disturbed, the chromosomes were misaligned and the fluorescence signal of microtubule was decreased, indicating that podophyllotoxin may affect microtubule dynamics for spindle organization. Moreover, the oocytes which reached metaphase II under podophyllotoxin exposure also showed aberrant spindle morphology and chromosome misalignment, and the embryos generated from these oocytes showed low developmental competence. We also found that the localization of p44/42 MAPK and gamma-tubulin was disrupted, which further confirmed the effects of podophyllotoxin on meiotic spindle formation. In all, our results indicated that podophyllotoxin exposure could affect mouse oocyte maturation by disturbing microtubule dynamics and meiotic spindle formation.
Collapse
|
44
|
Gan F, Zhou Y, Qian G, Huang D, Hou L, Liu D, Chen X, Wang T, Jiang P, Lei X, Huang K. PCV2 infection aggravates ochratoxin A-induced nephrotoxicity via autophagy involving p38 signaling pathway in vivo and in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:656-662. [PMID: 29614475 DOI: 10.1016/j.envpol.2018.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity in animals and humans. Porcine circovirus type 2 (PCV2) could induce porcine dermatitis and nephropathy syndrome. To date, little is known whether virus infection aggravates mycotoxin-induced toxicity. This work aimed to study the effects of PCV2 infection on OTA-induced nephrotoxicity and its mechanism in vivo and vitro. The results in vivo showed that PCV2 infection aggravated OTA-induced poor growth performance, nephrotoxicity, p38 phosphorylation and autophagy as demonstrated by Atg5, LC3 II and p62 protein expressions in kidney of pigs. The results in vitro indicated that PCV2 infection significantly aggravated OTA-induced nephrotoxicity as demonstrated by cell viabilities, annexin V/PI binding and caspase 3 activities, and induced p38 phosphorylation and autophagy in PK15 cells. p38 inhibitor decreased Atg5 and LC3 protein expression induced by PCV2 infection and OTA combined treatment. Adding autophagy inhibitor 3-MA or CQ alleviated the aggravating effects of PCV2 infection on OTA-induced nephrotoxicity. Atg5-specific siRNA eliminated the aggravating effects of PCV2 infection on OTA-induced nephrotoxicity. Taken together, these data indicate that in vivo and in vitro PCV2 infection aggravated OTA-induced nephrotoxicity via p38-mediated autophagy.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
45
|
Lu Y, Zhang Y, Liu JQ, Zou P, Jia L, Su YT, Sun YR, Sun SC. Comparison of the toxic effects of different mycotoxins on porcine and mouse oocyte meiosis. PeerJ 2018; 6:e5111. [PMID: 29942714 PMCID: PMC6015490 DOI: 10.7717/peerj.5111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background Aflatoxin B1 (AFB1), deoxynivalenol (DON), HT-2, ochratoxin A (OTA), zearalenone (ZEA) are the most common mycotoxins that are found in corn-based animal feed which have multiple toxic effects on animals and humans. Previous studies reported that these mycotoxins impaired mammalian oocyte quality. However, the effective concentrations of mycotoxins to animal oocytes were different. Methods In this study we aimed to compare the sensitivity of mouse and porcine oocytes to AFB1, DON, HT-2, OTA, and ZEA for mycotoxin research. We adopted the polar body extrusion rate of mouse and porcine oocyte as the standard for the effects of mycotoxins on oocyte maturation. Results and Discussion Our results showed that 10 μM AFB1 and 1 μM DON significantly affected porcine oocyte maturation compared with 50 μM AFB1 and 2 μM DON on mouse oocytes. However, 10 nM HT-2 significantly affected mouse oocyte maturation compared with 50 nM HT-2 on porcine oocytes. Moreover, 5 μM OTA and 10 μM ZEA significantly affected porcine oocyte maturation compared with 300 μM OTA and 50 μM ZEA on mouse oocytes. In summary, our results showed that porcine oocytes were more sensitive to AFB1, DON, OTA, and ZEA than mouse oocytes except HT-2 toxin.
Collapse
Affiliation(s)
- Yujie Lu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Zou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Lu Jia
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Yu-Rong Sun
- Jiangsu Aomai Bio-Tech Company, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
46
|
Bertero A, Moretti A, Spicer LJ, Caloni F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins (Basel) 2018; 10:E244. [PMID: 29914090 PMCID: PMC6024576 DOI: 10.3390/toxins10060244] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that toxicokinetics, bioavailability and the mechanisms of action of these substances vary depending on the species involved, but additional studies are needed to better understand the specific responses. The aim of this review is to summarize the toxicological responses of the main species affected by Fusarium mycotoxins.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/O, 70126 Bari, Italy.
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
47
|
Citrinin exposure affects oocyte maturation and embryo development by inducing oxidative stress-mediated apoptosis. Oncotarget 2018; 8:34525-34533. [PMID: 28404941 PMCID: PMC5470988 DOI: 10.18632/oncotarget.15776] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Citrinin is one of the mycotoxins and has been shown to have various toxic effects in animals and humans. Although previous study showed the toxic effects of citrinin on the female reproductive system, especially on oocyte maturation, however, the causes or mechanism of citrinin on oocyte quality is unclear. In present study we deeply investigated this topic. We found thatcitrinin toxin exposure inhibited mouse oocyte maturation and early embryo development. Further investigation showed that the actin distribution in oocytes and embryos was disrupted, and the reduced expression of actin nucleator ARP2 expression in the oocyte cortex further confirmed this. We also found that meiotic spindle morphology was abnormal after citrinin treatment. These results indicated that citrinin toxin exposure could disrupt cytoskeleton dynamics to affect oocyte maturation and early embryo development. We also examined the ROS level and early apoptosis marker Annexin signals, and the results showed that both levels increased, indicating that citrinin induced oxidative stress and further resulted in oocyte early apoptosis. Taken together, our results indicated that citrinin toxin exposure could reduce mouse oocyte maturation and early embryo development capability by affecting cytoskeletal dynamics, which may be due to the oxidative stress induced early apoptosis.
Collapse
|
48
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|
49
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
50
|
Gan F, Hou L, Zhou Y, Liu Y, Huang D, Chen X, Huang K. Effects of ochratoxin A on ER stress, MAPK signaling pathway and autophagy of kidney and spleen in pigs. ENVIRONMENTAL TOXICOLOGY 2017; 32:2277-2286. [PMID: 28699257 DOI: 10.1002/tox.22443] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin and immunotoxin in animals and humans. This research was conducted to evaluate whether endoplasmic reticulum (ER) stress, MAPK signaling pathway and autophagy were induced by OTA in kidney and spleen of pigs. Twenty-seven crossbred pigs randomly allocated to 3 groups were fed for 42 days ad libitum a basal diet without (Con group, 0.00 μg OTA/kg) and with supplementation of OTA at 400 (OTA-L group) and 800 μg/kg (OTA-H group). From each group, 6 pigs were randomly selected for blood collection on days 0, 21, and 42 and 3 pigs were randomly selected for tissue collection on day 42. The results showed that OTA at 400 and 800 μg/kg diets significantly increased OTA concentrations in serum and kidney and spleen induced the histopathological lesions of kidney and spleen, decreased TCR-stimulated T lymphocyte viabilities and IL-2 concentration, increased TNF-α concentration, and decreased T-AOC levels. OTA increased glucose regulated protein 78, p38, and ERK1/2 phosphorylation, and LC3 II and Atg5 protein expression in kidney and spleen of pigs. These results provide new insights into the relationship between OTA and ER stress, p38 and ERK1/2 MAPK signaling pathway and autophagy in pigs.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| |
Collapse
|