1
|
Xu R, Molenaar AJ, Chen Z, Yuan Y. Mode and Mechanism of Action of Omega-3 and Omega-6 Unsaturated Fatty Acids in Chronic Diseases. Nutrients 2025; 17:1540. [PMID: 40362847 PMCID: PMC12073370 DOI: 10.3390/nu17091540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Unsaturated fatty acids, particularly omega-3 and omega-6 polyunsaturated fatty acids, have garnered increasing scientific interest due to their therapeutic potential in chronic disease management. Dietary sources such as milk provide essential unsaturated fatty acids, including linoleic acid and α-linolenic acid. Current evidence indicates that these compounds and their derivatives regulate critical physiological processes, such as neurodevelopment, visual function, immune modulation, and cardiovascular homeostasis. Their multifunctional roles encompass the structural maintenance of biological membranes, cardioprotective effects, anti-inflammatory and anti-tumor activities, and metabolic regulation. However, despite established associations between unsaturated fatty acids and chronic diseases, the mechanistic contributions of omega-3 and omega-6 polyunsaturated fatty acids to complex neuropsychiatric disorders remain poorly characterized. Furthermore, the controversial role of omega-6 polyunsaturated fatty acids in chronic disease pathogenesis necessitates urgent clarification. This review systematically examines the structural properties, molecular mechanisms, and therapeutic applications of omega-3 and omega-6 polyunsaturated fatty acids in cardiovascular diseases, diabetes, cancer, dermatological conditions, neurodegenerative disorders, and depression. By integrating recent advances in dietary science, this work aims to address knowledge gaps in their neuropsychiatric implications and refine evidence-based strategies for chronic disease intervention through optimized nutritional approaches.
Collapse
Affiliation(s)
- Runcen Xu
- Medical College, Yangzhou University, Yangzhou 225009, China;
| | - Adrian J. Molenaar
- Rumen Microbiology and Animal Nutrition and Physiology, Grasslands Research Centre, AgResearch, Fitzherbert, Palmerston North 4410, New Zealand;
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Bourboula A, Mantzourani C, Chalatsa I, Machalia C, Emmanouilidou E, Kokotou MG, Kokotos G. A Lipidomic Approach to Studying the Downregulation of Free Fatty Acids by Cytosolic Phospholipase A 2 Inhibitors. Biomolecules 2025; 15:626. [PMID: 40427519 PMCID: PMC12108850 DOI: 10.3390/biom15050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Inhibitors of cytosolic phospholipase A2 (GIVA cPLA2) have received great attention, since this enzyme is involved in a number of inflammatory diseases, including cancer and auto-immune and neurodegenerative diseases. Traditionally, the effects of GIVA cPLA2 inhibitors in cells have been studied by determining the inhibition of arachidonic acid release. However, although to a lesser extent, GIVA cPLA2 may also hydrolyze glycerophospholipids, releasing other free fatty acids (FFAs), such as linoleic acid or oleic acid. In the present work, we applied a liquid chromatography-high-resolution mass spectrometry method to study the levels of intracellular FFAs, after treating cells with selected GIVA cPLA2 inhibitors. Six inhibitors belonging to different chemical classes were studied, using SH-SY5Y neuroblastoma cells as a model. This lipidomic approach revealed that treatment with each inhibitor created a distinct intracellular FFA profile, suggesting not only inhibitory potency against GIVA cPLA2, but also other parameters affecting the outcome. Potent inhibitors were found to reduce not only arachidonic acid, but also other long-chain FAs, such as adrenic or linoleic acid, even medium-chain FAs, such as caproic or caprylic acid, suggesting that GIVA cPLA2 inhibitors may affect FA metabolic pathways in general. The downregulation of intracellular FFAs may have implications in reprogramming FA metabolism in neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Asimina Bourboula
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.B.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.B.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Chalatsa
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.C.); (C.M.); (E.E.)
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.C.); (C.M.); (E.E.)
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.C.); (C.M.); (E.E.)
| | - Maroula G. Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.B.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
3
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2025; 70:79-101. [PMID: 38710468 PMCID: PMC11976421 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
4
|
Zagare A, Kurlovics J, Almeida C, Ferrante D, Frangenberg D, Vitali A, Gomez-Giro G, Jäger C, Antony P, Halder R, Krüger R, Glaab E, Stalidzans E, Arena G, Schwamborn JC. Insulin resistance compromises midbrain organoid neuronal activity and metabolic efficiency predisposing to Parkinson's disease pathology. J Tissue Eng 2025; 16:20417314241295928. [PMID: 39882547 PMCID: PMC11775974 DOI: 10.1177/20417314241295928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 01/31/2025] Open
Abstract
Growing evidence indicates that type 2 diabetes (T2D) is associated with an increased risk of developing Parkinson's disease (PD) through shared disease mechanisms. Studies show that insulin resistance, which is the driving pathophysiological mechanism of T2D plays a major role in neurodegeneration by impairing neuronal functionality, metabolism and survival. To investigate insulin resistance caused pathological changes in the human midbrain, which could predispose a healthy midbrain to PD development, we exposed iPSC-derived human midbrain organoids from healthy individuals to either high insulin concentration, promoting insulin resistance, or to more physiological insulin concentration restoring insulin signalling function. We combined experimental methods with metabolic modelling to identify the most insulin resistance-dependent pathogenic processes. We demonstrate that insulin resistance compromises organoid metabolic efficiency, leading to increased levels of oxidative stress. Additionally, insulin-resistant midbrain organoids showed decreased neuronal activity and reduced amount of dopaminergic neurons, highlighting insulin resistance as a significant target in PD prevention.
Collapse
Affiliation(s)
- Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Catarina Almeida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Health Sciences Research Center, Faculty of Health Sciences Research, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Daniele Ferrante
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniela Frangenberg
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armelle Vitali
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christian Jäger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Sequencing Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Giuseppe Arena
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Bhattacharya S, Xu L, Arrué L, Bartels T, Thompson D. Conformational Selection of α-Synuclein Tetramers at Biological Interfaces. J Chem Inf Model 2024; 64:8010-8023. [PMID: 39377660 PMCID: PMC11523075 DOI: 10.1021/acs.jcim.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Controlling the polymorphic assemblies of α-synuclein (αS) oligomers is crucial to reroute toxic protein aggregation implicated in Parkinson's disease (PD). One potential mediator is the interaction of αS tetramers with cell membranes, which may regulate the dynamic balance between aggregation-prone disordered monomers and aggregation-resistant helical tetramers. Here, we model diverse tetramer-cell interactions and compare the structure-function relations at the supramolecular-biological interface with available experimental data. The models predict preferential interaction of compact αS tetramers with highly charged membrane surfaces, which may further stabilize this aggregation-resistant conformer. On moderately charged membranes, extended structures are preferred. In addition to surface charge, curvature influences tetramer thermodynamic stability and aggregation, with potential for selective isolation of tetramers via regio-specific interactions with strongly negatively charged micelles that screen further aggregation. Our modeling data set highlights diverse beneficial nano-bio interactions to redirect biomolecule assembly, supporting new therapeutic approaches for PD based on lipid-mediated conformational selection and inhibition.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Lily Arrué
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Tim Bartels
- UK
Dementia Research Institute, University
College London, London WC1E6BT, U.K.
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
6
|
Li B, Dettmer U. Interactions of alpha-synuclein with membranes in Parkinson's disease: Mechanisms and therapeutic strategies. Neurobiol Dis 2024; 201:106646. [PMID: 39181187 PMCID: PMC11760337 DOI: 10.1016/j.nbd.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, is marked by the presence of Lewy bodies and Lewy neurites, neuronal lesions containing large amounts of the synaptic protein alpha-synuclein (αS). While the underlying mechanisms of disease progression in PD remain unclear, increasing evidence supports the importance of interactions between αS and cellular membranes in PD pathology. Therefore, understanding the αS-membrane interplay in health and disease is crucial for the development of therapeutic strategies. In this review, we (1) discuss key scenarios of pathological αS-membrane interactions; (2) present in detail therapeutic strategies explicitly reported to modify αS-membrane interactions; and (3) introduce additional therapeutic strategies that may involve aspects of interfering with αS-membrane interaction. This way, we aim to provide a holistic perspective on this important aspect of disease-modifying strategies for PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- Baoyi Li
- Wycombe Abbey, Buckinghamshire HP11 1PE, UK
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Kamano S, Ozawa D, Ikenaka K, Nagai Y. Role of Lipids in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:8935. [PMID: 39201619 PMCID: PMC11354291 DOI: 10.3390/ijms25168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Aggregation of α-synuclein (αSyn) and its accumulation as Lewy bodies play a central role in the pathogenesis of Parkinson's disease (PD). However, the mechanism by which αSyn aggregates in the brain remains unclear. Biochemical studies have demonstrated that αSyn interacts with lipids, and these interactions affect the aggregation process of αSyn. Furthermore, genetic studies have identified mutations in lipid metabolism-associated genes such as glucocerebrosidase 1 (GBA1) and synaptojanin 1 (SYNJ1) in sporadic and familial forms of PD, respectively. In this review, we focus on the role of lipids in triggering αSyn aggregation in the pathogenesis of PD and propose the possibility of modulating the interaction of lipids with αSyn as a potential therapy for PD.
Collapse
Grants
- 24H00630 Ministry of Education, Culture, Sports, Science and Technology
- 21H02840 Ministry of Education, Culture, Sports, Science and Technology
- 17K19658 Ministry of Education, Culture, Sports, Science and Technology
- 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- JP16ek0109018 Japan Agency for Medical Research and Development
- JP19ek0109222 Japan Agency for Medical Research and Development
- 30-3 National Center of Neurology and Psychiatry
- 30-9 National Center of Neurology and Psychiatry
- 3-9 National Center of Neurology and Psychiatry
- 6-9 National Center of Neurology and Psychiatry
Collapse
Affiliation(s)
- Shumpei Kamano
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
- Life Science Research Institute, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
| |
Collapse
|
8
|
de Boni L, Wallis A, Hays Watson A, Ruiz-Riquelme A, Leyland LA, Bourinaris T, Hannaway N, Wüllner U, Peters O, Priller J, Falkenburger BH, Wiltfang J, Bähr M, Zerr I, Bürger K, Perneczky R, Teipel S, Löhle M, Hermann W, Schott BH, Brockmann K, Spottke A, Haustein K, Breuer P, Houlden H, Weil RS, Bartels T. Aggregation-resistant alpha-synuclein tetramers are reduced in the blood of Parkinson's patients. EMBO Mol Med 2024; 16:1657-1674. [PMID: 38839930 PMCID: PMC11250827 DOI: 10.1038/s44321-024-00083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.
Collapse
Affiliation(s)
- Laura de Boni
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Amber Wallis
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Aurelia Hays Watson
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | | | - Louise-Ann Leyland
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Thomas Bourinaris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Naomi Hannaway
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ullrich Wüllner
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- Departments of Neurology and Neurodegenerative Diseases, University Bonn, 53127, Bonn, Germany
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
- University of Edinburgh and UK DRI, Edinburgh, EH16 4SB, UK
- School of Medicine, Technical University of Munich, Department of Psychiatry and Psychotherapy, 81675, Munich, Germany
| | - Björn H Falkenburger
- German Center for Neurodegenerative Diseases (DZNE), 01307, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307, Dresden, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg August University, 37075, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mathias Bähr
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37075, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, 37075, Göttingen, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, 81377, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147, Rostock, Germany
| | - Matthias Löhle
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Neurology, University of Rostock, 18057, Rostock, Germany
| | - Wiebke Hermann
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, 17489, Rostock, Germany
- Department of Neurology, University of Rostock, 18057, Rostock, Germany
| | - Björn-Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Georg August University, 37075, Göttingen, Germany
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, 72076, Tübingen, Germany
| | - Annika Spottke
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Katrin Haustein
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Breuer
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rimona S Weil
- Dementia Research Center, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK.
| |
Collapse
|
9
|
Zhao C, Tu J, Wang C, Liu W, Gu J, Yin Y, Zhang S, Li D, Diao J, Zhu ZJ, Liu C. Lysophosphatidylcholine binds α-synuclein and prevents its pathological aggregation. Natl Sci Rev 2024; 11:nwae182. [PMID: 38962715 PMCID: PMC11221426 DOI: 10.1093/nsr/nwae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Accumulation of aggregated α-synuclein (α-syn) in Lewy bodies is the pathological hallmark of Parkinson's disease (PD). Genetic mutations in lipid metabolism are causative for a subset of patients with Parkinsonism. The role of α-syn's lipid interactions in its function and aggregation is recognized, yet the specific lipids involved and how lipid metabolism issues trigger α-syn aggregation and neurodegeneration remain unclear. Here, we found that α-syn shows a preference for binding to lysophospholipids (LPLs), particularly targeting lysophosphatidylcholine (LPC) without relying on electrostatic interactions. LPC is capable of maintaining α-syn in a compact conformation, significantly reducing its propensity to aggregate both in vitro and within cellular environments. Conversely, a reduction in the production of cellular LPLs is associated with an increase in α-syn accumulation. Our work underscores the critical role of LPLs in preserving the natural conformation of α-syn to inhibit improper aggregation, and establishes a potential connection between lipid metabolic dysfunction and α-syn aggregation in PD.
Collapse
Affiliation(s)
- Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Tu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
10
|
Agha MM, Aziziyan F, Uversky VN. Each big journey starts with a first step: Importance of oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:111-141. [PMID: 38811079 DOI: 10.1016/bs.pmbts.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United Staes.
| |
Collapse
|
11
|
Limanaqi F, Zecchini S, Saulle I, Strizzi S, Vanetti C, Garziano M, Cappelletti G, Parolin D, Caccia S, Trabattoni D, Fenizia C, Clerici M, Biasin M. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024; 57:2. [PMID: 38191441 PMCID: PMC10775536 DOI: 10.1186/s40659-023-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-β, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| |
Collapse
|
12
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
13
|
Cesur MF, Basile A, Patil KR, Çakır T. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease. Life Sci Alliance 2023; 6:e202201695. [PMID: 37236669 PMCID: PMC10215973 DOI: 10.26508/lsa.202201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tunahan Çakır
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
14
|
Brontesi L, Imberdis T, Ramalingam N, Dettmer U. The effects of KTKEGV repeat motif and intervening ATVA sequence on α-synuclein solubility and assembly. J Neurochem 2023; 165:246-258. [PMID: 36625497 PMCID: PMC10211470 DOI: 10.1111/jnc.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Alpha-synuclein (αS), the key protein in Parkinson's disease, is typically described as an intrinsically disordered protein. Consistent with this notion, several context-dependent folding states may coexist in neurons. Unfolded soluble monomers, helical monomers at membranes and helical multimers (soluble or at membranes) have all been reported and may be in an equilibrium with each other. We previously found that αS can be stabilized in its membrane-associated monomeric form by genetically increasing the hydrophobicity of the membrane-embedded half of the αS helix. αS amphipathic helix formation at membranes is governed by up to nine 11-amino acid repeats with the core motif KTKEGV. However, this repeat is only imperfectly conserved; for example, it consists of KAKEGV in repeat #1, KTKEQV in repeat #5, and AVVTGV in the poorly conserved repeat #6. Here we explored the effect of perfecting the αS core repeat to nine times KTKEGV ("9KV") and found by sequential protein extraction that this engineered mutant accumulates in the cytosolic phase of neural cells. Intact-cell cross-linking trapped a part of the cytosolic portion at multimeric positions (30, 60, 80, 100 kDa). Thus, compared to wild-type αS, αS 9KV seems less prone to populating the membrane-associated monomeric form. Removing the "ATVA" intervening amino-acid sequence between repeats 4 and 5 slightly increased cytosolic localization while adding "ATVA" in between all repeats 1-8 caused αS to be trapped as a monomer in membrane fractions. Our results contribute to an ongoing debate on the dynamic structure of αS, highlighting that wild-type αS is unlikely to be fully multimeric/monomeric or fully cytosolic/membrane-associated in cells, but protein engineering can create αS variants that preferentially adopt a certain state. Overall, the imperfect nature of the KTKEGV repeat motifs and the presence of ATVA in between repeats 4 and 5 seem to prevent a strong cytosolic localization of αS and thus play a major role in the protein's ability to dynamically populate cytosolic vs. membrane-associated and monomeric vs. multimeric states.
Collapse
Affiliation(s)
| | | | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
15
|
Virdi GS, Choi ML, Evans JR, Yao Z, Athauda D, Strohbuecker S, Nirujogi RS, Wernick AI, Pelegrina-Hidalgo N, Leighton C, Saleeb RS, Kopach O, Alrashidi H, Melandri D, Perez-Lloret J, Angelova PR, Sylantyev S, Eaton S, Heales S, Rusakov DA, Alessi DR, Kunath T, Horrocks MH, Abramov AY, Patani R, Gandhi S. Protein aggregation and calcium dysregulation are hallmarks of familial Parkinson's disease in midbrain dopaminergic neurons. NPJ Parkinsons Dis 2022; 8:162. [PMID: 36424392 PMCID: PMC9691718 DOI: 10.1038/s41531-022-00423-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small β-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.
Collapse
Affiliation(s)
- Gurvir S Virdi
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Minee L Choi
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - James R Evans
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zhi Yao
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Dilan Athauda
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Raja S Nirujogi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Anna I Wernick
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Noelia Pelegrina-Hidalgo
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Craig Leighton
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Rebecca S Saleeb
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Haya Alrashidi
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Daniela Melandri
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sergiy Sylantyev
- Rowett Institute, University of Aberdeen, Ashgrove Rd West, Aberdeen, AB25 2ZD, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Simon Heales
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Tilo Kunath
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Sonia Gandhi
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
16
|
Quantitative super-resolution imaging of pathological aggregates reveals distinct toxicity profiles in different synucleinopathies. Proc Natl Acad Sci U S A 2022; 119:e2205591119. [PMID: 36206368 PMCID: PMC9573094 DOI: 10.1073/pnas.2205591119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein aggregation is a hallmark of major neurodegenerative disorders. Increasing data suggest that smaller aggregates cause higher toxic response than filamentous aggregates (fibrils). However, the size of small aggregates has challenged their detection within biologically relevant environments. Here, we report approaches to quantitatively super-resolve aggregates in live cells and ex vivo brain tissues. We show that Amytracker 630 (AT630), a commercial aggregate-activated fluorophore, has outstanding photophysical properties that enable super-resolution imaging of α-synuclein, tau, and amyloid-β aggregates, achieving ∼4 nm precision. Applying AT630 to AppNL-G-F mouse brain tissues or aggregates extracted from a Parkinson's disease donor, we demonstrate excellent agreement with antibodies specific for amyloid-β or α-synuclein, respectively, confirming the specificity of AT630. Subsequently, we use AT630 to reveal a linear relationship between α-synuclein aggregate size and cellular toxicity and discovered that aggregates smaller than 450 ± 60 nm (aggregate450nm) readily penetrated the plasma membrane. We determine aggregate450nm concentrations in six Parkinson's disease and dementia with Lewy bodies donor samples and show that aggregates in different synucleinopathies demonstrate distinct potency in toxicity. We further show that cell-penetrating aggregates are surrounded by proteasomes, which assemble into foci to gradually process aggregates. Our results suggest that the plasma membrane effectively filters out fibrils but is vulnerable to penetration by aggregates of 450 ± 60 nm. Together, our findings present an exciting strategy to determine specificity of aggregate toxicity within heterogeneous samples. Our approach to quantitatively measure these toxic aggregates in biological environments opens possibilities to molecular examinations of disease mechanisms under physiological conditions.
Collapse
|
17
|
Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, Virdi GS, Zhang W, Evans JR, Wernick AI, Zanjani ZS, Angelova PR, Esteras N, Vinokurov AY, Morris K, Jeacock K, Tosatto L, Little D, Gissen P, Clarke DJ, Kunath T, Collinson L, Klenerman D, Abramov AY, Horrocks MH, Gandhi S. Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci 2022; 25:1134-1148. [PMID: 36042314 PMCID: PMC9448679 DOI: 10.1038/s41593-022-01140-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2022] [Indexed: 11/08/2022]
Abstract
Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.
Collapse
Affiliation(s)
- Minee L Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Bhanu P Singh
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- School of Physics, University of Edinburgh, Edinburgh, UK
| | | | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Alexey V Berezhnov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | | | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Gurvir S Virdi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Weijia Zhang
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - James R Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna I Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zeinab Shadman Zanjani
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Katie Morris
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Kiani Jeacock
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Laura Tosatto
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Istituto di Biofisica, National Council of Research, Trento, Italy
| | - Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia.
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- The Francis Crick Institute, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Mee Hayes E, Sirvio L, Ye Y. A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets. Front Aging Neurosci 2022; 14:854380. [PMID: 35517053 PMCID: PMC9062979 DOI: 10.3389/fnagi.2022.854380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Insoluble protein deposits are hallmarks of neurodegenerative disorders and common forms of dementia. The aberrant aggregation of misfolded proteins involves a complex cascade of events that occur over time, from the cellular to the clinical phase of neurodegeneration. Declining neuronal health through increased cell stress and loss of protein homeostasis (proteostasis) functions correlate with the accumulation of aggregates. On the cellular level, increasing evidence supports that misfolded proteins may undergo liquid-liquid phase separation (LLPS), which is emerging as an important process to drive protein aggregation. Studying, the reverse process of aggregate disassembly and degradation has only recently gained momentum, following reports of enzymes with distinct aggregate-disassembly activities. In this review, we will discuss how the ubiquitin-proteasome system and disaggregation machineries such as VCP/p97 and HSP70 system may disassemble and/or degrade protein aggregates. In addition to their canonically associated functions, these enzymes appear to share a common feature: reversibly assembling into liquid droplets in an LLPS-driven manner. We review the role of LLPS in enhancing the disassembly of aggregates through locally increasing the concentration of these enzymes and their co-proteins together within droplet structures. We propose that such activity may be achieved through the concerted actions of disaggregase machineries, the ubiquitin-proteasome system and their co-proteins, all of which are condensed within transient aggregate-associated droplets (TAADs), ultimately resulting in aggregate clearance. We further speculate that sustained engagement of these enzymatic activities within TAADs will be detrimental to normal cellular functions, where these activities are required. The possibility of facilitating endogenous disaggregation and degradation activities within TAADs potentially represents a novel target for therapeutic intervention to restore protein homeostasis at the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Emma Mee Hayes
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Liina Sirvio
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Yu Ye
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
- *Correspondence: Yu Ye,
| |
Collapse
|
19
|
Zhang J, Liu L, Zhang L, Chen S, Chen Y, Cai C. Targeted fatty acid metabolomics to discover Parkinson's disease associated metabolic alteration. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4781. [PMID: 34523199 DOI: 10.1002/jms.4781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) remains to be elucidated, and the metabolomics analysis has the potential to identify metabolic profiles that are involved in PD pathogenesis. Here we applied a target metabolomics approach to measure the plasma levels of 158 fatty acid metabolites in a discovery cohort including 42 PD patients and 54 health volunteers, and found two upregulated (arachidonic acid and 13-hydroxy-octadecatrienoic acid) and eleven down-regulated (docosahexaenoic acid, lyso-platelet-activating factor, 12-hydroxy-eicosatetraenoic acid, dihydroxy-eicosatrienoic acids, dihidroxy-octadecenoic acids, 17,18-dihydroxy-eicosatetraenoic acid, and hydroperoxy-octadecadienoic acids) metabolites as primary candidate marker of PD. A support vector machine algorithm with primary candidate marker was used in an independent validation cohort to identify PD. Arachidonic acid and 13-hydroxy-octadecatrienoic acid were evaluated as an effective tool in that area under the receiver operating characteristic curve reached 0.995 and 0.912 in the validation set for diagnosing PD from healthy volunteers. Besides, the sensitivity and specificity of arachidonic acid as diagnostic factor of PD in validation set were 100% and 94.10%. Similarly, the sensitivity and specificity of 13-hydroxy-octadecatrienoic acid were 100% and 82.40% for identifying PD. This target fatty acid metabolomics demonstrated a series of plasma fatty acid metabolite as PD candidate marker with high efficiency and provided insights into the understanding of PD metabolic regulation.
Collapse
Affiliation(s)
- Junjie Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lulu Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lijiang Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Simei Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Yusen Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Chun Cai
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
21
|
Kayed R, Dettmer U, Lesné SE. Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. JOURNAL OF PARKINSON'S DISEASE 2021; 10:791-818. [PMID: 32508330 PMCID: PMC7458533 DOI: 10.3233/jpd-201965] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition in the field of neurodegenerative diseases that mixed proteinopathies are occurring at greater frequency than originally thought. This is particularly true for three amyloid proteins defining most of these neurological disorders, amyloid-beta (Aβ), tau, and alpha-synuclein (αSyn). The co-existence and often co-localization of aggregated forms of these proteins has led to the emergence of concepts positing molecular interactions and cross-seeding between Aβ, tau, and αSyn aggregates. Amongst this trio, αSyn has received particular attention in this context during recent years due to its ability to modulate Aβ and tau aggregation in vivo, to interact at a molecular level with Aβ and tau in vivo and to cross-seed tau in mice. Here we provide a comprehensive, critical, and accessible review about the expression, role and nature of endogenous soluble αSyn oligomers because of recent developments in the understanding of αSyn multimerization, misfolding, aggregation, cross-talk, spreading and cross-seeding in neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, and Huntington's disease. We will also discuss our current understanding about the relative toxicity of endogenous αSyn oligomers in vivo and in vitro, and introduce potential opportunities to counter their deleterious effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Departments of Neurology & Neuroscience & Cell Biology & Anatomy, University of Texas Medical Branch Galveston, Galveston, TX, USA,George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Ulf Dettmer
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Ann Romney Center for Neurologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA,Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA,Correspondence to: Sylvain E. Lesné, PhD, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414, USA. Tel.: +1 612 626 8341; E-mail: ; Website: https://lesnelab.org
| |
Collapse
|
22
|
Unfolded and intermediate states of PrP play a key role in the mechanism of action of an antiprion chaperone. Proc Natl Acad Sci U S A 2021; 118:2010213118. [PMID: 33619087 DOI: 10.1073/pnas.2010213118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion and prion-like diseases involve the propagation of misfolded protein conformers. Small-molecule pharmacological chaperones can inhibit propagated misfolding, but how they interact with disease-related proteins to prevent misfolding is often unclear. We investigated how pentosan polysulfate (PPS), a polyanion with antiprion activity in vitro and in vivo, interacts with mammalian prion protein (PrP) to alter its folding. Calorimetry showed that PPS binds two sites on natively folded PrP, but one PPS molecule can bind multiple PrP molecules. Force spectroscopy measurements of single PrP molecules showed PPS stabilizes not only the native fold of PrP but also many different partially folded intermediates that are not observed in the absence of PPS. PPS also bound tightly to unfolded segments of PrP, delaying refolding. These observations imply that PPS can act through multiple possible modes, inhibiting misfolding not only by stabilizing the native fold or sequestering natively folded PrP into aggregates, as proposed previously, but also by binding to partially or fully unfolded states that play key roles in mediating misfolding. These results underline the likely importance of unfolded states as critical intermediates on the prion conversion pathway.
Collapse
|
23
|
Sankorrakul K, Qian L, Thangnipon W, Coulson EJ. Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 2021; 158:1292-1306. [PMID: 34109634 DOI: 10.1111/jnc.15451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Cholinergic basal forebrain (cBF) neurons are particularly vulnerable to degeneration following trauma and in neurodegenerative conditions. One reason for this is their characteristic expression of the p75 neurotrophin receptor (p75NTR ), which is up-regulated and mediates neuronal death in a range of neurological and neurodegenerative conditions, including dementia, stroke and ischaemia. The signalling pathway by which p75NTR signals cell death is incompletely characterised, but typically involves activation by neurotrophic ligands and signalling through c-Jun kinase, resulting in caspase activation via mitochondrial apoptotic signalling pathways. Less well appreciated is the link between conditions of oxidative stress and p75NTR death signalling. Here, we review the literature describing what is currently known regarding p75NTR death signalling in environments of oxidative stress and hypoxia to highlight the overlap in signalling pathways and the implications for p75NTR signalling in cBF neurons. We propose that there is a causal relationship and define key questions to test this assertion.
Collapse
Affiliation(s)
- Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Lei Qian
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| |
Collapse
|
24
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
25
|
Li B, Ponjavic A, Chen WH, Hopkins L, Hughes C, Ye Y, Bryant C, Klenerman D. Single-Molecule Light-Sheet Microscopy with Local Nanopipette Delivery. Anal Chem 2021; 93:4092-4099. [PMID: 33595281 DOI: 10.1021/acs.analchem.0c05296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detection of single molecules in biological systems has rapidly increased in resolution over the past decade. However, the delivery of single molecules remains to be a challenge. Currently, there is no effective method that can both introduce a precise amount of molecules onto or into a single cell at a defined position and then image the cellular response. Here, we have combined light-sheet microscopy with local delivery, using a nanopipette, to accurately deliver individual proteins to a defined position. We call this method local-delivery selective-plane illumination microscopy (ldSPIM). ldSPIM uses a nanopipette and ionic feedback current at the nanopipette tip to control the position from which the molecules are delivered. The number of proteins delivered can be controlled by varying the voltage applied. For single-molecule detection, we implemented single-objective SPIM using a reflective atomic force microscopy cantilever to create a 2 μm thin sheet. Using this setup, we demonstrate that ldSPIM can deliver single fluorescently labeled proteins onto the plasma membrane of HK293 cells or into the cytoplasm. Next, we deposited the aggregates of amyloid-β, which causes proteotoxicity relevant to Alzheimer's disease, onto a single macrophage stably expressing a MyDD88-eGFP fusion construct. Whole-cell imaging in the three-dimensional (3D) mode enables the live detection of MyDD88 accumulation and the formation of myddosome signaling complexes, as a result of the aggregate-induced triggering of toll-like receptor 4. Overall, we demonstrate a novel multifunctional imaging system capable of precise delivery of single proteins to a specific location on the cell surface or inside the cytoplasm and high-speed 3D detection at single-molecule resolution within live cells.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Wei-Hsin Chen
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Lee Hopkins
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Craig Hughes
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.,UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
26
|
Manna M, Murarka RK. Polyunsaturated Fatty Acid Modulates Membrane-Bound Monomeric α-Synuclein by Modulating Membrane Microenvironment through Preferential Interactions. ACS Chem Neurosci 2021; 12:675-688. [PMID: 33538574 DOI: 10.1021/acschemneuro.0c00694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is ample evidence that both native functions and pathogenic aggregation of α-synuclein are intimately dependent on lipid interactions and fatty acid type; the regulatory mechanism however remains unclear. In the present work, using extensive atomistic molecular dynamics simulations and enhanced-sampling, we have focused on exploring the mechanism of fatty acid dependent regulation of monomeric α-Syn100 in a native synaptic vesicle-like membrane. Our results show that α-Syn100 spontaneously binds to the membrane through its N-terminal region (residues 1-34), where the depth of membrane insertion, the structure, and orientation of the membrane-bound α-Syn100 and its impact on membrane structure are modulated by docosahexaenoic acid (DHA). DHA is a polyunsaturated fatty acid abundantly found in the brain and known to promote the oligomerization of α-synuclein. We found that DHA exhibits marked propensity to interact with monomeric α-Syn100 and modulates the microenvironment of the protein by preferentially sorting DHA-containing phospholipids, depleting other phospholipids and cholesterol as well as increasing the proportion of anionic to neutral lipids in the immediate vicinity of the protein. Owing to the unique conformational flexibility, DHA chains form more lipid-packing defects in the membrane and efficiently coat the membrane-embedded surface of the protein, compared to the saturated and monounsaturated fatty acids. DHA thus makes the bilayer more amiable to protein adsorption and less prone to α-synuclein-induced perturbation associated with cytotoxicity. Indeed, in the absence of DHA, we observed significant thinning of the local bilayer membrane induced by α-Syn100. Though α-Syn100 is predominantly α-helical in membranes studied here, in the presence of DHA we observe formation of β-sheet/β-strands in the C-terminal region (residues 35-100) of α-Syn100, which is extended out from the membrane surface. Notably, DHA induces β structure in the NAC domain of α-Syn100 and promotes extended conformations as well as large solvent exposure of this hydrophobic domain, properties that are known to facilitate self-assembly of α-synuclein. To the best of our knowledge, this study for the first time provides the atomistic insights into DHA-induced regulatory mechanism of monomeric α-synuclein, having implications in protein structure and its physiological/pathological functions.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
- Applied Phycology and Biotechnology Division, CSIR−Central Salt & Marine Chemicals Research Institute (CSIR−CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajesh K. Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
27
|
Gorica E, Calderone V. Arachidonic Acid Derivatives and Neuroinflammation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:118-129. [PMID: 33557740 DOI: 10.2174/1871527320666210208130412] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is characterized by dysregulated inflammatory responses localized within the brain and spinal cord. Neuroinflammation plays a pivotal role in the onset of several neurodegenerative disorders and is considered a typical feature of these disorders. Microglia perform primary immune surveillance and macrophage-like activities within the central nervous system. Activated microglia are predominant players in the central nervous system response to damage related to stroke, trauma, and infection. Moreover, microglial activation per se leads to a proinflammatory response and oxidative stress. During the release of cytokines and chemokines, cyclooxygenases and phospholipase A2 are stimulated. Elevated levels of these compounds play a significant role in immune cell recruitment into the brain. Cyclic phospholipase A2 plays a fundamental role in the production of prostaglandins by releasing arachidonic acid. In turn, arachidonic acid is biotransformed through different routes into several mediators that are endowed with pivotal roles in the regulation of inflammatory processes. Some experimental models of neuroinflammation exhibit an increase in cyclic phospholipase A2, leukotrienes, and prostaglandins such as prostaglandin E2, prostaglandin D2, or prostacyclin. However, findings on the role of the prostacyclin receptors have revealed that their signalling suppresses Th2-mediated inflammatory responses. In addition, other in vitro evidence suggests that prostaglandin E2 may inhibit the production of some inflammatory cytokines, attenuating inflammatory events such as mast cell degranulation or inflammatory leukotriene production. Based on these conflicting experimental data, the role of arachidonic acid derivatives in neuroinflammation remains a challenging issue.
Collapse
Affiliation(s)
- Era Gorica
- Department of Pharmacy, University of Pisa, Pisa. Italy
| | | |
Collapse
|
28
|
Bozelli JC, Kamski-Hennekam E, Melacini G, Epand RM. α-Synuclein and neuronal membranes: Conformational flexibilities in health and disease. Chem Phys Lipids 2021; 235:105034. [PMID: 33434528 DOI: 10.1016/j.chemphyslip.2020.105034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Currently, PD has no treatment. The neuronal protein α-synuclein (αS) plays an important role in PD. However, the molecular mechanisms governing its physiological and pathological roles are not fully understood. It is becoming widely acknowledged that the biological roles of αS involve interactions with biological membranes. In these biological processes there is a fine-tuned interplay between lipids affecting the properties of αS and αS affecting lipid metabolism, αS binding to membranes, and membrane damage. In this review, the intricate interactions between αS and membranes will be reviewed and a discussion of the relationship between αS and neuronal membrane structural plasticity in health and disease will be made. It is proposed that in healthy neurons the conformational flexibilities of αS and the neuronal membranes are coupled to assist the physiological roles of αS. However, in circumstances where their conformational flexibilities are decreased or uncoupled, there is a shift toward cell toxicity. Strategies to modulate toxic αS-membrane interactions are potential approaches for the development of new therapies for PD. Future work using specific αS molecular species as well as membranes with specific physicochemical properties should widen our understanding of the intricate biological roles of αS which, in turn, would propel the development of new strategies for the treatment of PD.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Evelyn Kamski-Hennekam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
29
|
Gilmozzi V, Gentile G, Castelo Rueda MP, Hicks AA, Pramstaller PP, Zanon A, Lévesque M, Pichler I. Interaction of Alpha-Synuclein With Lipids: Mitochondrial Cardiolipin as a Critical Player in the Pathogenesis of Parkinson's Disease. Front Neurosci 2020; 14:578993. [PMID: 33122994 PMCID: PMC7573567 DOI: 10.3389/fnins.2020.578993] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Alpha-Synuclein (α-Syn) is a central protein in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders including Parkinson’s disease (PD). Although its role in neurotransmission is well established, the precise role of this protein in disease pathogenesis is still not fully understood. It is, however, widely regarded to be associated with the misfolding and accumulation of toxic intracellular aggregates. In fact, α-Syn is the most abundant protein component of Lewy bodies and Lewy neurites, which are also characterized by a high lipid content. Lipids, the main constituents of cellular membranes, have been implicated in many aspects of PD-related processes. α-Syn interacts with membrane phospholipids and free fatty acids via its N-terminal domain, and altered lipid-protein complexes might enhance both its binding to synaptic and mitochondrial membranes and its oligomerization. Several studies have highlighted a specific interaction of α-Syn with the phospholipid cardiolipin (CL), a major constituent of mitochondrial membranes. By interacting with CL, α-Syn is able to disrupt mitochondrial membrane integrity, leading to mitochondrial dysfunction. Additionally, externalized CL is able to facilitate the refolding of toxic α-Syn species at the outer mitochondrial membrane. In this review, we discuss how α-Syn/lipid interactions, in particular the α-Syn/CL interaction at the mitochondrial membrane, may affect α-Syn aggregation and mitochondrial dysfunction and may thus represent an important mechanism in the pathogenesis of PD.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Cervo Brain Research Centre, Université Laval, Quebec, QC, Canada
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
30
|
Xylaki M, Boumpoureka I, Kokotou MG, Marras T, Papadimitriou G, Kloukina I, Magrioti V, Kokotos G, Vekrellis K, Emmanouilidou E. Changes in the cellular fatty acid profile drive the proteasomal degradation of α-synuclein and enhance neuronal survival. FASEB J 2020; 34:15123-15145. [PMID: 32931072 DOI: 10.1096/fj.202001344r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is biochemically characterized by the deposition of aberrant aggregated α-synuclein in the affected neurons. The aggregation properties of α-synuclein greatly depend on its affinity to bind cellular membranes via a dynamic interaction with specific lipid moieties. In particular, α-synuclein can interact with arachidonic acid (AA), a polyunsaturated fatty acid, in a manner that promotes the formation of α-helix enriched assemblies. In a cellular context, AA is released from membrane phospholipids by phospholipase A2 (PLA2 ). To investigate the impact of PLA2 activity on α-synuclein aggregation, we have applied selective PLA2 inhibitors to a SH-SY5Y cellular model where the expression of human wild-type α-synuclein is correlated with a gradual accumulation of soluble oligomers and subsequent cell death. We have found that pharmacological and genetic inhibition of GIVA cPLA2 resulted in a dramatic decrease of intracellular oligomeric and monomeric α-synuclein significantly promoting cell survival. Our data suggest that alterations in the levels of free fatty acids, and especially AA and adrenic acid, promote the formation of α-synuclein conformers which are more susceptible to proteasomal degradation. This mechanism is active only in living cells and is generic since it does not depend on the absolute quantity of α-synuclein, the presence of disease-linked point mutations, the expression system or the type of cells. Our findings indicate that the α-synuclein-fatty acid interaction can be a critical determinant of the conformation and fate of α-synuclein in the cell interior and, as such, cPLA2 inhibitors could serve to alleviate the intracellular, potentially pathological, α-synuclein burden.
Collapse
Affiliation(s)
- Mary Xylaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioanna Boumpoureka
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Papadimitriou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismini Kloukina
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Barracchia CG, Tira R, Parolini F, Munari F, Bubacco L, Spyroulias GA, D’Onofrio M, Assfalg M. Unsaturated Fatty Acid-Induced Conformational Transitions and Aggregation of the Repeat Domain of Tau. Molecules 2020; 25:molecules25112716. [PMID: 32545360 PMCID: PMC7321374 DOI: 10.3390/molecules25112716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The intrinsically disordered, amyloidogenic protein Tau associates with diverse classes of molecules, including proteins, nucleic acids, and lipids. Mounting evidence suggests that fatty acid molecules could play a role in the dysfunction of this protein, however, their interaction with Tau remains poorly characterized. Methods: In a bid to elucidate the association of Tau with unsaturated fatty acids at the sub-molecular level, we carried out a variety of solution NMR experiments in combination with circular dichroism and fluorescence measurements. Our study shows that Tau4RD, the highly basic four-repeat domain of Tau, associates strongly with arachidonic and oleic acid assemblies in a high lipid/protein ratio, perturbing their supramolecular states and itself undergoing time-dependent structural adaptation. The structural signatures of Tau4RD/fatty acid aggregates appear similar for arachidonic acid and oleic acid, however, they are distinct from those of another prototypical intrinsically disordered protein, α-synuclein, when bound to these lipids, revealing protein-specific conformational adaptations. Both fatty acid molecules are found to invariably promote the self-aggregation of Tau4RD and of α-synuclein. Conclusions: This study describes the reciprocal influence that Tau4RD and fatty acids exert on their conformational states, contributing to our understanding of fundamental aspects of Tau/lipid co-assembly.
Collapse
Affiliation(s)
- Carlo Giorgio Barracchia
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Roberto Tira
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Francesca Parolini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Luigi Bubacco
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | | | - Mariapina D’Onofrio
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.G.B.); (R.T.); (F.P.); (F.M.); (M.D.)
- Correspondence:
| |
Collapse
|
32
|
Cliffe R, Sang JC, Kundel F, Finley D, Klenerman D, Ye Y. Filamentous Aggregates Are Fragmented by the Proteasome Holoenzyme. Cell Rep 2020; 26:2140-2149.e3. [PMID: 30784595 PMCID: PMC6381791 DOI: 10.1016/j.celrep.2019.01.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/05/2018] [Accepted: 01/25/2019] [Indexed: 01/11/2023] Open
Abstract
Filamentous aggregates (fibrils) are regarded as the final stage in the assembly of amyloidogenic proteins and are formed in many neurodegenerative diseases. Accumulation of aggregates occurs as a result of an imbalance between their formation and removal. Here we use single-aggregate imaging to show that large fibrils assembled from full-length tau are substrates of the 26S proteasome holoenzyme, which fragments them into small aggregates. Interestingly, although degradation of monomeric tau is not inhibited by adenosine 5’-(3-thiotriphosphate) (ATPγS), fibril fragmentation is predominantly dependent on the ATPase activity of the proteasome. The proteasome holoenzyme also targets fibrils assembled from α-synuclein, suggesting that its fibril-fragmenting function may be a general mechanism. The fragmented species produced by the proteasome shows significant toxicity to human cell lines compared with intact fibrils. Together, our results indicate that the proteasome holoenzyme possesses a fragmentation function that disassembles large fibrils into smaller and more cytotoxic species. The proteasome fragments tau and α-synuclein fibrils into small aggregates Single-aggregate imaging was used to quantify changes in fibril and aggregate size Fibril fragmentation depends on proteasomal ATPase but not proteolytic activity Fragmented aggregate species induce cell death more potently than fibrils
Collapse
Affiliation(s)
- Rachel Cliffe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jason C Sang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Franziska Kundel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Longwood Avenue, Boston, MA 02115, USA.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0XY, UK.
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Cell Biology, Harvard Medical School, Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Parkinson's disease: proteinopathy or lipidopathy? NPJ PARKINSONS DISEASE 2020; 6:3. [PMID: 31909184 PMCID: PMC6941970 DOI: 10.1038/s41531-019-0103-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Lipids play a more significant role in Parkinson’s disease and its related brain disorders than is currently recognized, supporting a “lipid cascade”. The 14 kDa protein α-synuclein (αS) is strongly associated with Parkinson’s disease (PD), dementia with Lewy bodies (DLB), other synucleinopathies such as multiple system atrophy, and even certain forms of Alzheimer’s disease. Rigorously deciphering the biochemistry of αS in native systems is the key to developing treatments. αS is highly expressed in the brain, the second most lipid-rich organ, and has been proposed to be a lipid-binding protein that physiologically interacts with phospholipids and fatty acids (FAs). αS-rich cytoplasmic inclusions called Lewy bodies and Lewy neurites are the hallmark lesions of synucleinopathies. Excess αS–membrane interactions may trigger proteinaceous αS aggregation by stimulating its primary nucleation. However, αS may also exert its toxicity prior to or independent of its self-aggregation, e.g., via excessive membrane interactions, which may be promoted by certain lipids and FAs. A complex αS-lipid landscape exists, which comprises both physiological and pathological states of αS. As novel insights about the composition of Lewy lesions occur, new lipid-related PD drug candidates emerge, and genome-wide association studies (GWAS) increasingly validate new hits in lipid-associated pathways, it seems timely to review our current knowledge of lipids in PD and consider the roles for these pathways in synucleinopathies.αS ↔ lipid interplay: aspects of cellular αS homeostasis (blue oval), aspects of lipid homeostasis (green oval), and overlapping aspects. Pathological states are labeled in red. Simplified schematic of both select αS and select lipid species. Several existing publications suggest αS effects on lipids and vice versa, as indicated by arrows. DG diglyceride, ER endoplasmic reticulum, FA fatty acid, LD, lipid droplet, TG triglyceride. ![]()
Collapse
|
34
|
Ye Y, Klenerman D, Finley D. N-Terminal Ubiquitination of Amyloidogenic Proteins Triggers Removal of Their Oligomers by the Proteasome Holoenzyme. J Mol Biol 2019; 432:585-596. [PMID: 31518613 PMCID: PMC6990400 DOI: 10.1016/j.jmb.2019.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Aggregation of amyloidogenic proteins is an abnormal biological process implicated in neurodegenerative disorders. Whereas the aggregation process of amyloid-forming proteins has been studied extensively, the mechanism of aggregate removal is poorly understood. We recently demonstrated that proteasomes could fragment filamentous aggregates into smaller entities, restricting aggregate size [1]. Here, we show in vitro that UBE2W can modify the N-terminus of both α-synuclein and a tau tetra-repeat domain with a single ubiquitin. We demonstrate that an engineered N-terminal ubiquitin modification changes the aggregation process of both proteins, resulting in the formation of structurally distinct aggregates. Single-molecule approaches further reveal that the proteasome can target soluble oligomers assembled from ubiquitin-modified proteins independently of its peptidase activity, consistent with our recently reported fibril-fragmenting activity. Based on these results, we propose that proteasomes are able to target oligomers assembled from N-terminally ubiquitinated proteins. Our data suggest a possible disassembly mechanism by which N-terminal ubiquitination and the proteasome may together impede aggregate formation. Amyloid proteins α-synuclein and tauK18 can be ubiquitinated by UBE2W. N-terminal ubiquitin modification on amyloid proteins delays aggregation. Proteasomes can remove N-terminal ubiquitin-modified oligomers. Proteasomes remove oligomers primarily by enabling their dissociation.
Collapse
Affiliation(s)
- Yu Ye
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at Imperial College London, London W12 0NN, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Yeboah F, Kim TE, Bill A, Dettmer U. Dynamic behaviors of α-synuclein and tau in the cellular context: New mechanistic insights and therapeutic opportunities in neurodegeneration. Neurobiol Dis 2019; 132:104543. [PMID: 31351173 DOI: 10.1016/j.nbd.2019.104543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022] Open
Abstract
α-Synuclein (αS) and tau have a lot in common. Dyshomeostasis and aggregation of both proteins are central in the pathogenesis of neurodegenerative diseases: Parkinson's disease, dementia with Lewy bodies, multi-system atrophy and other 'synucleinopathies' in the case of αS; Alzheimer's disease, frontotemporal dementia, progressive supranuclear palsy and other 'tauopathies' in the case of tau. The aggregated states of αS and tau are found to be (hyper)phosphorylated, but the relevance of the phosphorylation in health or disease is not well understood. Both tau and αS are typically characterized as 'intrinsically disordered' proteins, while both engage in transient interactions with cellular components, thereby undergoing structural changes and context-specific folding. αS transiently binds to (synaptic) vesicles forming a membrane-induced amphipathic helix; tau transiently interacts with microtubules forming an 'extended structure'. The regulation and exact nature of the interactions are not fully understood. Here we review recent and previous insights into the dynamic, transient nature of αS and tau with regard to the mode of interaction with their targets, the dwell-time while bound, and the cis and trans factors underlying the frequent switching between bound and unbound states. These aspects are intimately linked to hypotheses on how subtle changes in the transient behaviors may trigger the earliest steps in the pathogenesis of the respective brain diseases. Based on a deeper understanding of transient αS and tau conformations in the cellular context, new therapeutic strategies may emerge, and it may become clearer why existing approaches have failed or how they could be optimized.
Collapse
Affiliation(s)
- Fred Yeboah
- Novartis Institute for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, MA 02139, USA
| | - Tae-Eun Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anke Bill
- Novartis Institute for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, MA 02139, USA.
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Matsuo K, Cheng A, Yabuki Y, Takahata I, Miyachi H, Fukunaga K. Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice. Neuropharmacology 2019; 150:164-174. [PMID: 30930168 DOI: 10.1016/j.neuropharm.2019.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Accumulation and aggregation of α-synuclein (αSyn) triggers dopaminergic (DAergic) neuronal loss in Parkinson's disease (PD). This pathological event is partly facilitated by the presence of long-chain polyunsaturated fatty acids (LC-PUFAs), including arachidonic acid. The intracellular transport and metabolism of LC-PUFAs are mediated by fatty acid-binding proteins (FABPs). We previously reported that heart-type FABP (FABP3) interacts with αSyn, thereby promoting αSyn oligomerization in DAergic neurons in the substantia nigra pars compacta (SNpc) following 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. This αSyn oligomerization is prevented in Fabp3 gene knock out mice. We document a novel FABP3 ligand, MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy)butanoic acid), that inhibits αSyn accumulation in DA neurons, thereby inhibiting the oligomerization of αSyn, loss of DAergic neurons, and PD-like motor deficits in MPTP-treated mice. Chronic oral administration of MF1 (0.3 or 1.0 mg/kg/day) significantly improved motor impairments and inhibited MPTP-induced accumulation and oligomerization of αSyn in the SNpc, and in turn prevented loss of tyrosine hydroxylase (TH)-positive cells in the SNpc. MF1 administration (0.1, 0.3, or 1.0 mg/kg/day) also restored MPTP-induced cognitive impairments. Although chronic administration of l-DOPA (3,4-dihydroxl-l-phenylalanine; 25 mg/kg/day, i.p.) also improved motor deficits, it failed to improve the cognitive impairments. In addition, l-DOPA failed to inhibit DAergic neuronal loss and αSyn pathologies in the SNpc. In summary, the novel FABP3 ligand MF1 rescues MPTP-induced behavioural and neuropathological features, suggesting that MF1 may be a disease-modifying drug candidate for synucleinopathies.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ibuki Takahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
37
|
Measuring Mitochondrial Dysfunction Caused by Soluble α-Synuclein Oligomers. Methods Mol Biol 2019. [PMID: 30771178 DOI: 10.1007/978-1-4939-9124-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Accumulation of misfolded αSyn and mitochondrial dysfunction are central features of Parkinson's disease. Growing evidence points to a relationship between these two phenomena as oligomeric α-synuclein (αSyn) can interact with mitochondria and impair their function. Standardization of methods to prepare αSyn oligomers and isolate functional mitochondria will facilitate efforts to expand upon early findings. Here we present detailed protocols for preparing soluble αSyn oligomers; for isolating functional mitochondria from mouse tissue; and for simultaneously measuring several aspects of mitochondrial physiology. These protocols will benefit future studies aimed at characterizing the mitotoxicity of αSyn species isolated from the brains of synucleinopathy patients as well as efforts to identify small molecules and genetic or environmental alterations that prevent αSyn-induced mitochondrial dysfunction.
Collapse
|
38
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
39
|
Imaging individual protein aggregates to follow aggregation and determine the role of aggregates in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:870-878. [PMID: 30611780 PMCID: PMC6676340 DOI: 10.1016/j.bbapap.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 01/07/2023]
Abstract
Protein aggregates play a key role in the initiation and spreading of neurodegenerative disease but have been difficult to study due to their low abundance and heterogeneity, in both size and structure. Fluorescence based methods capable of detecting and characterising single aggregates have recently been developed and can be used to measure many important aggregate properties, and can be combined with sensitive assays to measure aggregate toxicity. Here we review these methods and discuss recent examples of their application to determine the molecular mechanism of aggregation and the detection of aggregates in cells and cerebrospinal fluid. The further development of these methods and their application to the aggregates present in humans has the potential to solve a major problem in the field and allow the identification of the key toxic species that should be targeted in therapies. Individual protein aggregates can be imaged using fluorescence imaging. Ultra-sensitive assays have been developed to measure aggregate toxicity. The aggregation mechanism of proteins can be determined. Experiments can be performed in cells or human cerebrospinal fluid. These methods can potentially identify the toxic aggregates that cause neurodegenerative disease.
Collapse
|
40
|
Imberdis T, Fanning S, Newman A, Ramalingam N, Dettmer U. Studying α-Synuclein Conformation by Intact-Cell Cross-Linking. Methods Mol Biol 2019; 1948:77-91. [PMID: 30771172 DOI: 10.1007/978-1-4939-9124-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
β-Sheet-rich aggregates of α-synuclein (αS) are the hallmark neuropathology of Parkinson's disease (PD) and related synucleinopathies, whereas the native conformations of αS in healthy cells are under debate. Cross-linking analyses in intact cells detect a large portion of endogenous αS in apparent multimeric states, most notably as putative tetramers (αS60) that run around 60 kDa on SDS-PAGE, but also point at the dynamic nature of cellular αS states. Standardization of αS cross-linking methods will facilitate efforts to study the effects of genetic, pharmacological, and environmental factors on αS conformation. Here, we present detailed protocols for cross-linking cellular αS multimers in cultured cells and brain tissues. These protocols will benefit future studies aimed at characterizing αS conformation in its cellular environment, both at steady state and upon perturbation, be it chronic or acute.
Collapse
Affiliation(s)
- Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew Newman
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Dettmer U. Rationally Designed Variants of α-Synuclein Illuminate Its in vivo Structural Properties in Health and Disease. Front Neurosci 2018; 12:623. [PMID: 30319334 PMCID: PMC6167557 DOI: 10.3389/fnins.2018.00623] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
α-Synuclein (αS) is a conserved and abundant neuronal protein with unusual structural properties. It appears to partition between folded and unstructured states as well as between membrane-bound and aqueously soluble states. In addition, a switch between monomeric and tetrameric/multimeric states has been observed recently. The precise composition, localization and abundance of the multimeric species are under study and remain unsettled. Yet to interfere with disease pathogenesis, we must dissect how small changes in αS homeostasis may give rise to Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and other human synucleinopathies. Rationally designed αS point mutations that prevent the protein from populating all states within its normal folding repertoire have continued to be instrumental in bringing new insights into its biochemistry in vivo. This review summarizes biochemical and cell biological findings about αS homeostasis from different labs, with a special emphasis on intact-cell approaches that may preserve the complex, metastable native states of αS.
Collapse
Affiliation(s)
- Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Choi ML, Gandhi S. Crucial role of protein oligomerization in the pathogenesis of Alzheimer's and Parkinson's diseases. FEBS J 2018; 285:3631-3644. [PMID: 29924502 DOI: 10.1111/febs.14587] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Abstract
Misfolding and aggregation of the proteins amyloid-β, tau and alpha-synuclein is the predominant pathology underlying the neurodegenerative disorders, Alzheimer's and Parkinson's disease. While end stage insoluble products of aggregation have been well characterised in human and animal models of disease, accumulating evidence from biophysical, cellular and in vivo studies has shown that soluble intermediates of aggregation, or oligomers, may be the key species that mediate toxicity and underlie seeding and spreading in disease. Here, we review the process of protein misfolding, and the intrinsic and extrinsic processes that cause the native states of the key aggregating proteins to undergo conformational change to form oligomers and ultimately fibrils. We discuss the structural features of the key toxic intermediate, and describe the putative mechanisms by which oligomers may cause cell toxicity. Finally, we explore the potential therapeutic approaches raised by the oligomer hypothesis in neurodegenerative disease.
Collapse
Affiliation(s)
- Minee L Choi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,The Francis Crick Institute, London, UK
| | - Sonia Gandhi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,The Francis Crick Institute, London, UK
| |
Collapse
|
43
|
Spillantini MG, Goedert M. Neurodegeneration and the ordered assembly of α-synuclein. Cell Tissue Res 2018; 373:137-148. [PMID: 29119326 PMCID: PMC6015613 DOI: 10.1007/s00441-017-2706-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
Abstract
In 2017, it was 200 years since James Parkinson published 'An Essay on the Shaking Palsy' and 20 years since α-synuclein aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson's disease and dementia with Lewy bodies as the third major synucleinopathy. Here, we describe the work that led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies. We also review some of the findings reported since 1997.
Collapse
Affiliation(s)
- Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
44
|
Degradation of alpha-synuclein by dendritic cell factor 1 delays neurodegeneration and extends lifespan in Drosophila. Neurobiol Aging 2018; 67:67-74. [DOI: 10.1016/j.neurobiolaging.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/03/2017] [Accepted: 03/07/2018] [Indexed: 11/23/2022]
|
45
|
Fecchio C, Palazzi L, de Laureto PP. α-Synuclein and Polyunsaturated Fatty Acids: Molecular Basis of the Interaction and Implication in Neurodegeneration. Molecules 2018; 23:molecules23071531. [PMID: 29941855 PMCID: PMC6099649 DOI: 10.3390/molecules23071531] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 12/31/2022] Open
Abstract
α-Synuclein (α-syn) is a 140-amino acid protein, the physiological function of which has yet to be clarified. It is involved in several neurodegenerative disorders, and the interaction of the protein with brain lipids plays an important role in the pathogenesis of Parkinson’s disease (PD). Polyunsaturated fatty acids (PUFA) are highly abundant in the brain where they play critical roles in neuronal membrane fluidity and permeability, serve as energy reserves and function as second messengers in cell signaling. PUFA concentration and composition in the brain are altered with age when also an increase of lipid peroxidation is observed. Considering that PD is clearly correlated with oxidative stress, PUFA abundance and composition became of great interest in neurodegeneration studies because of PUFA’s high propensity to oxidize. The high levels of the PUFA docosahexaenoic acid (DHA) in brain areas containing α-syn inclusions in patients with PD further support the hypothesis of possible interactions between α-syn and DHA. Additionally, a possible functional role of α-syn in sequestering the early peroxidation products of fatty acids was recently proposed. Here, we provide an overview of the current knowledge regarding the molecular interactions between α-syn and fatty acids and the effect exerted by the protein on their oxidative state. We highlight recent findings supporting a neuroprotective role of the protein, linking α-syn, altered lipid composition in neurodegenerative disorders and PD development.
Collapse
Affiliation(s)
- Chiara Fecchio
- Department of Biomedical Sciences, University of Padova; Padova 35131, Italy.
| | - Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences, CRIBI, University of Padova; Padova 35131, Italy.
| | | |
Collapse
|
46
|
Galvagnion C. The Role of Lipids Interacting with α-Synuclein in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2018; 7:433-450. [PMID: 28671142 DOI: 10.3233/jpd-171103] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
α-synuclein is a small protein abundantly expressed in the brain and mainly located in synaptic terminals. The conversion of α-synuclein into oligomers and fibrils is the hallmark of a range of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. α-synuclein is disordered in solution but can adopt an α-helical conformation upon binding to lipid membranes. This lipid-protein interaction plays an important role in its proposed biological function, i.e., synaptic plasticity, but can also entail the aggregation of the protein. Both the chemical properties of the lipids and the lipid-to-protein-ratio have been reported to modulate the aggregation propensity of α-synuclein. In this review, the influence of changes in the nature and levels of lipids on the aggregation propensity of α-synuclein in vivo and in vitro will be discussed within a common general framework. In particular, while biophysical measurements and kinetic analyses of the time courses of α-synuclein aggregation in the presence of different types of lipid vesicles allow a mechanistic dissection of the influence of the lipids on α-synuclein aggregation, biological studies of cellular and animal models of Parkinson's disease allow the determination of changes in lipid levels and properties associated with the disease.
Collapse
Affiliation(s)
- Céline Galvagnion
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Physical Biology, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
47
|
Werner-Allen JW, Monti S, DuMond JF, Levine RL, Bax A. Isoindole Linkages Provide a Pathway for DOPAL-Mediated Cross-Linking of α-Synuclein. Biochemistry 2018; 57:1462-1474. [PMID: 29394048 PMCID: PMC6120588 DOI: 10.1021/acs.biochem.7b01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a toxic and reactive product of dopamine catabolism. In the catecholaldehyde hypothesis for Parkinson's disease, it is a critical driver of the selective loss of dopaminergic neurons that characterizes the disease. DOPAL also cross-links α-synuclein, the main component of Lewy bodies, which are a pathological hallmark of the disease. We previously described the initial adduct formed in reactions between DOPAL and α-synuclein, a dicatechol pyrrole lysine (DCPL). Here, we examine the chemical basis for DOPAL-based cross-linking. We find that autoxidation of DCPL's catechol rings spurs its decomposition, yielding an intermediate dicatechol isoindole lysine (DCIL) product formed by an intramolecular reaction of the two catechol rings to give an unstable tetracyclic structure. DCIL then reacts with a second DCIL to give a dimeric, di-DCIL. This product is formed by an intermolecular carbon-carbon bond between the isoindole rings of the two DCILs that generates two structurally nonequivalent and separable atropisomers. Using α-synuclein, we demonstrate that the DOPAL-catalyzed formation of oligomers can be separated into two steps. The initial adduct formation occurs robustly within an hour, with DCPL as the main product, and the second step cross-links α-synuclein molecules. Exploiting this two-stage reaction, we use an isotopic labeling approach to show the predominant cross-linking mechanism is an interadduct reaction. Finally, we confirm that a mass consistent with a di-DCIL linkage can be observed in dimeric α-synuclein by mass spectrometry. Our work elucidates previously unknown pathways of catechol-based oxidative protein damage and will facilitate efforts to detect DOPAL-based cross-links in disease-state neurons.
Collapse
Affiliation(s)
- Jonathan W. Werner-Allen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Sarah Monti
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jenna F. DuMond
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| |
Collapse
|
48
|
Kundel F, Tosatto L, Whiten DR, Wirthensohn DC, Horrocks MH, Klenerman D. Shedding light on aberrant interactions - a review of modern tools for studying protein aggregates. FEBS J 2018; 285:3604-3630. [PMID: 29453901 DOI: 10.1111/febs.14409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/27/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The link between protein aggregation and neurodegenerative disease is well established. However, given the heterogeneity of species formed during the aggregation process, it is difficult to delineate details of the molecular events involved in generating pathological aggregates from those producing soluble monomers. As aberrant aggregates are possible pharmacological targets for the treatment of neurodegenerative diseases, the need to observe and characterise soluble oligomers has pushed traditional biophysical techniques to their limits, leading to the development of a plethora of new tools capable of detecting soluble oligomers with high precision and specificity. In this review, we discuss a range of modern biophysical techniques that have been developed to study protein aggregation, and give an overview of how they have been used to understand, in detail, the aberrant aggregation of amyloidogenic proteins associated with the two most common neurodegenerative disorders, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | - Laura Tosatto
- Centre for Integrative Biology, Università degli Studi di Trento, Italy
| | | | | | | | - David Klenerman
- Department of Chemistry, University of Cambridge, UK.,UK Dementia Research Institute, University of Cambridge, UK
| |
Collapse
|
49
|
Dettmer U, Ramalingam N, von Saucken VE, Kim TE, Newman AJ, Terry-Kantor E, Nuber S, Ericsson M, Fanning S, Bartels T, Lindquist S, Levy OA, Selkoe D. Loss of native α-synuclein multimerization by strategically mutating its amphipathic helix causes abnormal vesicle interactions in neuronal cells. Hum Mol Genet 2018; 26:3466-3481. [PMID: 28911198 DOI: 10.1093/hmg/ddx227] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein (αS) forms round cytoplasmic inclusions in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence suggests a physiological function of αS in vesicle trafficking and release. In contrast to earlier tenets, recent work indicates that αS normally exists in cells in a dynamic equilibrium between monomers and tetramers/multimers. We engineered αS mutants incapable of multimerization, leading to excess monomers at vesicle membranes. By EM, such mutants induced prominent vesicle clustering, leading to round cytoplasmic inclusions. Immunogold labeling revealed abundant αS intimately associated with vesicles of varied size. Fluorescence microscopy with marker proteins showed that the αS-associated vesicles were of diverse endocytic and secretory origin. An αS '3K' mutant (E35K + E46K + E61K) that amplifies the PD/DLB-causing E46K mutation induced αS-rich vesicle clusters resembling the vesicle-rich areas of Lewy bodies, supporting pathogenic relevance. Mechanistically, E46K can increase αS vesicle binding via membrane-induced amphipathic helix formation, and '3K' further enhances this effect. Another engineered αS variant added hydrophobicity to the hydrophobic half of αS helices, thereby stabilizing αS-membrane interactions. Importantly, substituting charged for uncharged residues within the hydrophobic half of the stabilized helix not only reversed the strong membrane interaction of the multimer-abolishing αS variant but also restored multimerization and prevented the aberrant vesicle interactions. Thus, reversible αS amphipathic helix formation and dynamic multimerization regulate a normal function of αS at vesicles, and abrogating multimers has pathogenic consequences.
Collapse
Affiliation(s)
- Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nagendran Ramalingam
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Victoria E von Saucken
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tae-Eun Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Newman
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Terry-Kantor
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Silke Nuber
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Saranna Fanning
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tim Bartels
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- HHMI, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Oren A Levy
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Pauwels K, Lebrun P, Tompa P. To be disordered or not to be disordered: is that still a question for proteins in the cell? Cell Mol Life Sci 2017; 74:3185-3204. [PMID: 28612216 PMCID: PMC11107661 DOI: 10.1007/s00018-017-2561-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
Abstract
There is ample evidence that many proteins or regions of proteins lack a well-defined folded structure under native-like conditions. These are called intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). Whether this intrinsic disorder is also their main structural characteristic in living cells has been a matter of intense debate. The structural analysis of IDPs became an important challenge also because of their involvement in a plethora of human diseases, which made IDPs attractive targets for therapeutic development. Therefore, biophysical approaches are increasingly being employed to probe the structural and dynamical state of proteins, not only in isolation in a test tube, but also in a complex biological environment and even within intact cells. Here, we survey direct and indirect evidence that structural disorder is in fact the physiological state of many proteins in the proteome. The paradigmatic case of α-synuclein is used to illustrate the controversial nature of this topic.
Collapse
Affiliation(s)
- Kris Pauwels
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pierre Lebrun
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium.
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|