1
|
Yeh SC, Diosa-Toro M, Tan WL, Rachenne F, Hain A, Yeo CPX, Bribes I, Xiang BWW, Sathiamoorthy Kannan G, Manuel MC, Missé D, Mok YK, Pompon J. Characterization of dengue virus 3'UTR RNA binding proteins in mosquitoes reveals that AeStaufen reduces subgenomic flaviviral RNA in saliva. PLoS Pathog 2022; 18:e1010427. [PMID: 36121894 PMCID: PMC9531803 DOI: 10.1371/journal.ppat.1010427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/04/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Dengue viruses (DENV) are expanding global pathogens that are transmitted through the bite of mosquitoes, mostly Aedes aegypti. As RNA viruses, DENV rely on RNA-binding proteins (RBPs) to complete their life cycle. Alternatively, RBPs can act as restriction factors that prevent DENV multiplication. While the importance of RBPs is well-supported in humans, there is a dearth of information about their influence on DENV transmission by mosquitoes. Such knowledge could be harnessed to design novel, effective interventions against DENV. Here, we successfully adapted RNA-affinity chromatography coupled with mass spectrometry-a technique initially developed in mammalian cells-to identify RBPs in Ae. aegypti cells. We identified fourteen RBPs interacting with DENV serotype 2 3'UTR, which is involved in the viral multiplication and produces subgenomic flaviviral RNA (sfRNA). We validated the RNA affinity results for two RBPs by confirming that AePur binds the 3'UTR, whereas AeStaufen interacts with both 3'UTR and sfRNA. Using in vivo functional evaluation, we determined that RBPs like AeRan, AeExoRNase, and AeRNase have pro-viral functions, whereas AeGTPase, AeAtu, and AePur have anti-viral functions in mosquitoes. Furthermore, we showed that human and mosquito Pur homologs have a shared affinity to DENV2 RNA, although the anti-viral effect is specific to the mosquito protein. Importantly, we revealed that AeStaufen mediates a reduction of gRNA and sfRNA copies in several mosquito tissues, including the salivary glands and that AeStaufen-mediated sfRNA reduction diminishes the concentration of transmission-enhancing sfRNA in saliva, thereby revealing AeStaufen's role in DENV transmission. By characterizing the first RBPs that associate with DENV2 3'UTR in mosquitoes, our study unravels new pro- and anti-viral targets for the design of novel therapeutic interventions as well as provides foundation for studying the role of RBPs in virus-vector interactions.
Collapse
Affiliation(s)
- Shih-Chia Yeh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Wei-Lian Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | | | - Arthur Hain
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Celestia Pei Xuan Yeo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Inès Bribes
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Benjamin Wong Wei Xiang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | | | - Menchie Casayuran Manuel
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
2
|
dos Reis VP, Keller M, Schmidt K, Ulrich RG, Groschup MH. αVβ3 Integrin Expression Is Essential for Replication of Mosquito and Tick-Borne Flaviviruses in Murine Fibroblast Cells. Viruses 2021; 14:v14010018. [PMID: 35062222 PMCID: PMC8780171 DOI: 10.3390/v14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.
Collapse
Affiliation(s)
- Vinicius Pinho dos Reis
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Institute for Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Hermann Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-71163
| |
Collapse
|
3
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
4
|
Specific Interaction of DDX6 with an RNA Hairpin in the 3' UTR of the Dengue Virus Genome Mediates G 1 Phase Arrest. J Virol 2021; 95:e0051021. [PMID: 34132569 DOI: 10.1128/jvi.00510-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extent to which viral genomic RNAs interact with host factors and contribute to host response and disease pathogenesis is not well known. Here, we report that the human RNA helicase DDX6 specifically binds to the viral most conserved RNA hairpin in the A3 element in the dengue 3' UTR, with nanomolar affinities. DDX6 CLIP confirmed the interaction in HuH-7 cells infected by dengue virus serotype 2. This interaction requires three conserved residues-Lys307, Lys367, and Arg369-as well as the unstructured extension in the C-terminal domain of DDX6. Interestingly, alanine substitution of these three basic residues resulted in RNA-independent ATPase activity, suggesting a mechanism by which RNA-binding and ATPase activities are coupled in DEAD box helicases. Furthermore, we applied a cross-omics gene enrichment approach to suggest that DDX6 is functionally related to cell cycle regulation and viral pathogenicity. Indeed, infected cells exhibited cell cycle arrest in G1 phase and a decrease in the early S phase. Exogenous expression of intact DDX6, but not A3-binding-deficient mutants, alleviated these effects by rescue of the DNA preinitiation complex expression. Disruption of the DDX6-binding site was found in dengue and Zika live-attenuated vaccine strains. Our results suggested that dengue virus has evolved an RNA aptamer against DDX6 to alter host cell states and defined DDX6 as a new regulator of G1/S transition. IMPORTANCE Dengue virus (DENV) is transmitted by mosquitoes to humans, infecting 390 million individuals per year globally. About 20% of infected patients shows a spectrum of clinical manifestation, ranging from a mild flu-like syndrome, to dengue fever, to life-threatening severe dengue diseases, including dengue hemorrhagic fever and dengue shock syndrome. There is currently no specific treatment for dengue diseases, and the molecular mechanism underlying dengue pathogenesis remains poorly understood. In this study, we combined biochemical, bioinformatics, high-content analysis and RNA sequencing approaches to characterize a highly conserved interface of the RNA genome of DENV with a human factor named DDX6 in infected cells. The significance of our research is in identifying the mechanism for a viral strategy to alter host cell fates, which conceivably allows us to generate a model for live-attenuated vaccine and the design of new therapeutic reagent for dengue diseases.
Collapse
|
5
|
Soveg FW, Schwerk J, Gokhale NS, Cerosaletti K, Smith JR, Pairo-Castineira E, Kell AM, Forero A, Zaver SA, Esser-Nobis K, Roby JA, Hsiang TY, Ozarkar S, Clingan JM, McAnarney ET, Stone AEL, Malhotra U, Speake C, Perez J, Balu C, Allenspach EJ, Hyde JL, Menachery VD, Sarkar SN, Woodward JJ, Stetson DB, Baillie JK, Buckner JH, Gale M, Savan R. Endomembrane targeting of human OAS1 p46 augments antiviral activity. eLife 2021; 10:e71047. [PMID: 34342578 PMCID: PMC8357416 DOI: 10.7554/elife.71047] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Many host RNA sensors are positioned in the cytosol to detect viral RNA during infection. However, most positive-strand RNA viruses replicate within a modified organelle co-opted from intracellular membranes of the endomembrane system, which shields viral products from cellular innate immune sensors. Targeting innate RNA sensors to the endomembrane system may enhance their ability to sense RNA generated by viruses that use these compartments for replication. Here, we reveal that an isoform of oligoadenylate synthetase 1, OAS1 p46, is prenylated and targeted to the endomembrane system. Membrane localization of OAS1 p46 confers enhanced access to viral replication sites and results in increased antiviral activity against a subset of RNA viruses including flaviviruses, picornaviruses, and SARS-CoV-2. Finally, our human genetic analysis shows that the OAS1 splice-site SNP responsible for production of the OAS1 p46 isoform correlates with protection from severe COVID-19. This study highlights the importance of endomembrane targeting for the antiviral specificity of OAS1 and suggests that early control of SARS-CoV-2 replication through OAS1 p46 is an important determinant of COVID-19 severity.
Collapse
Affiliation(s)
- Frank W Soveg
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Johannes Schwerk
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Nandan S Gokhale
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | | | - Julian R Smith
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | | | - Alison M Kell
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New MexicoAlbuquerqueUnited States
| | - Adriana Forero
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Shivam A Zaver
- Department of Microbiology, School of Medicine, University of WashingtonSeattleUnited States
| | - Katharina Esser-Nobis
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Justin A Roby
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Tien-Ying Hsiang
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Snehal Ozarkar
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Jonathan M Clingan
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Eileen T McAnarney
- Department of Microbiology and Immunology, University of Texas Medical CenterGalvestonUnited States
| | - Amy EL Stone
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University NevadaHendersonUnited States
| | - Uma Malhotra
- Department of Infectious Disease, Virginia Mason Medical CenterSeattleUnited States
- Department of Medicine, Section of Infectious Diseases, University of WashingtonSeattleUnited States
| | - Cate Speake
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Joseph Perez
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of PittsburghPittsburghUnited States
| | - Chiraag Balu
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research InstituteSeattleUnited States
| | - Jennifer L Hyde
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical CenterGalvestonUnited States
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of PittsburghPittsburghUnited States
| | - Joshua J Woodward
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Microbiology, School of Medicine, University of WashingtonSeattleUnited States
| | - Daniel B Stetson
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - John Kenneth Baillie
- Roslin Institute, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General HospitalEdinburghUnited Kingdom
| | - Jane H Buckner
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Michael Gale
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Ram Savan
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| |
Collapse
|
6
|
Embarc-Buh A, Francisco-Velilla R, Martinez-Salas E. RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses 2021; 13:952. [PMID: 34064059 PMCID: PMC8224014 DOI: 10.3390/v13060952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.
Collapse
Affiliation(s)
| | | | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain; (A.E.-B.); (R.F.-V.)
| |
Collapse
|
7
|
Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5' Terminal Regions. Int J Mol Sci 2021; 22:ijms22010413. [PMID: 33401776 PMCID: PMC7795613 DOI: 10.3390/ijms22010413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5' terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with the 5' TR of JEV is the DEAD-box helicase, DDX3X. In this study, we in vitro transcribed the 5' TR of JEV and demonstrated its direct interaction with recombinant DDX3X (Kd of 1.66 ± 0.21 µM) using microscale thermophoresis (MST). Due to the proposed structural similarities of 5' and 3' TRs of flaviviruses, we investigated if the ZIKV 5' TR could also interact with human DDX3X. Our MST studies suggested that DDX3X recognizes ZIKV 5' TR with a Kd of 7.05 ± 0.75 µM. Next, we performed helicase assays that suggested that the binding of DDX3X leads to the unwinding of JEV and ZIKV 5' TRs. Overall, our data indicate, for the first time, that DDX3X can directly bind and unwind in vitro transcribed flaviviral TRs. In summary, our work indicates that DDX3X could be further explored as a therapeutic target to inhibit Flaviviral replication.
Collapse
|
8
|
Declercq M, Biquand E, Karim M, Pietrosemoli N, Jacob Y, Demeret C, Barbezange C, van der Werf S. Influenza A virus co-opts ERI1 exonuclease bound to histone mRNA to promote viral transcription. Nucleic Acids Res 2020; 48:10428-10440. [PMID: 32960265 PMCID: PMC7544206 DOI: 10.1093/nar/gkaa771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Cellular exonucleases involved in the processes that regulate RNA stability and quality control have been shown to restrict or to promote the multiplication cycle of numerous RNA viruses. Influenza A viruses are major human pathogens that are responsible for seasonal epidemics, but the interplay between viral proteins and cellular exonucleases has never been specifically studied. Here, using a stringent interactomics screening strategy and an siRNA-silencing approach, we identified eight cellular factors among a set of 75 cellular proteins carrying exo(ribo)nuclease activities or involved in RNA decay processes that support influenza A virus multiplication. We show that the exoribonuclease ERI1 interacts with the PB2, PB1 and NP components of the viral ribonucleoproteins and is required for viral mRNA transcription. More specifically, we demonstrate that the protein-protein interaction is RNA dependent and that both the RNA binding and exonuclease activities of ERI1 are required to promote influenza A virus transcription. Finally, we provide evidence that during infection, the SLBP protein and histone mRNAs co-purify with vRNPs alongside ERI1, indicating that ERI1 is most probably recruited when it is present in the histone pre-mRNA processing complex in the nucleus.
Collapse
Affiliation(s)
- Marion Declercq
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Elise Biquand
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Marwah Karim
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Yves Jacob
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Caroline Demeret
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Cyril Barbezange
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Sylvie van der Werf
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Li M, Ramage H, Cherry S. Deciphering flavivirus-host interactions using quantitative proteomics. Curr Opin Immunol 2020; 66:90-97. [PMID: 32682290 DOI: 10.1016/j.coi.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Flaviviruses are a group of important emerging and re-emerging human pathogens that cause worldwide epidemics with thousands of deaths annually. Flaviviruses are small, enveloped, positive-sense, single-stranded RNA viruses that are obligate intracellular pathogens, relying heavily on host cell machinery for productive replication. Proteomic approaches have become an increasingly powerful tool to investigate the mechanisms by which viruses interact with host proteins and manipulate cellular processes to promote infection. Here, we review recent advances in employing quantitative proteomics techniques to improve our understanding of the complex interplay between flaviviruses and host cells. We describe new findings on our understanding of how flaviviruses impact protein-protein interactions, protein-RNA interactions, protein abundance, and post-translational modifications to modulate viral infection.
Collapse
Affiliation(s)
- Minghua Li
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly Ramage
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Zhang L, Wang T, Song M, Jin M, Liu S, Guo K, Zhang Y. Rab1b-GBF1-ARFs mediated intracellular trafficking is required for classical swine fever virus replication in swine umbilical vein endothelial cells. Vet Microbiol 2020; 246:108743. [PMID: 32605744 DOI: 10.1016/j.vetmic.2020.108743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 01/24/2023]
Abstract
Classical swine fever virus (CSFV), a plus-sense RNA virus, utilizes host intracellular membrane organelles for its replication. Our previous studies have shown that disruption of the intracellular membrane-trafficking events can inhibit CSFV replication. However, the underlying mechanism of this process in CSFV infection has not been elucidated. To determine the role of Golgi-associated anterograde and retrograde trafficking in CSFV replication, we revealed the effect of vesicular transport between Golgi and ER inhibitors Brefeldin A (BFA) and 2,2-methyl-N-(2,4,6,-trimethoxyphenyl) dodecanamide (CI-976), the GBF1 inhibitor golgicide A (GCA) on virus production. Our results showed that disruption of vesicular trafficking by BFA, CI-976, and GCA significantly inhibited CSFV infection. Subsequent experiments revealed that knockdown of Rab1b by lentiviruses and negative-mutant Rab1b-N121I transfection inhibited CSFV infection. Furthermore, we showed that the Rab1b downstream vesicular component effectors GBF1, and class I and class II ADP-ribosylation factors (ARFs) were also involved in virus replication. In addition, confocal microscopy assay showed that CSFV infection disrupted the Golgi apparatus resulting in extended Golgi distribution around the nucleus. We also showed that cell secretory pathway, measured using Gaussia luciferase flash assay, was blocked in CSFV infected cells. Taken together, these findings demonstrate that CSFV utilizes Rab1b-GBF1-ARFs mediated trafficking to promote its own replication. These findings also provide new insights into the intracellular trafficking pathways utilized for CSFV life cycle.
Collapse
Affiliation(s)
- Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingxing Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanchuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Abstract
Viruses manipulate cellular lipids and membranes at each stage of their life cycle. This includes lipid-receptor interactions, the fusion of viral envelopes with cellular membranes during endocytosis, the reorganization of cellular membranes to form replication compartments, and the envelopment and egress of virions. In addition to the physical interactions with cellular membranes, viruses have evolved to manipulate lipid signaling and metabolism to benefit their replication. This review summarizes the strategies that viruses use to manipulate lipids and membranes at each stage in the viral life cycle.
Collapse
Affiliation(s)
- Ellen Ketter
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
12
|
Lemmens I, Jansen S, de Rouck S, de Smet AS, Defever D, Neyts J, Dallmeier K, Tavernier J. The Development of RNA-KISS, a Mammalian Three-Hybrid Method to Detect RNA-Protein Interactions in Living Mammalian Cells. J Proteome Res 2020; 19:2529-2538. [PMID: 32216351 DOI: 10.1021/acs.jproteome.0c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA-protein interactions are essential for the regulation of mRNA and noncoding RNA functions and are implicated in many diseases, such as cancer and neurodegenerative disorders. A method that can detect RNA-protein interactions in living mammalian cells on a proteome-wide scale will be an important asset to identify and study these interactions. Here we show that a combination of the mammalian two-hybrid protein-protein detection method KISS (kinase substrate sensor) and the yeast RNA three-hybrid method, utilizing the specific interaction between the MS2 RNA and MS2 coat protein, is capable of detecting RNA-protein interactions in living mammalian cells. For conceptional proof we used the subgenomic flavivirus RNA (sfRNA) of the dengue virus (DENV), a highly structured noncoding RNA derived from the DENV genome known to target host cell proteins involved in innate immunity and antiviral defense, as bait. Using RNA-KISS, we could confirm the previously established interaction between the RNA-binding domain of DDX6 and the DENV sfRNA. Finally, we performed a human proteome-wide screen for DENV sfRNA-binding host factors, identifying several known flavivirus host factors such as DDX6 and PACT, further validating the RNA-KISS method as a robust and high-throughput cell-based RNA-protein interaction screening tool.
Collapse
Affiliation(s)
- Irma Lemmens
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.,Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
| | - Sander Jansen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Steffi de Rouck
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.,Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
| | - Anne-Sophie de Smet
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.,Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
| | - Dieter Defever
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.,Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.,Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium.,Orionis Biosciences, B-9052 Ghent, Belgium
| |
Collapse
|
13
|
Zeng M, Duan Y, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Chen S, Cheng A. Universal RNA Secondary Structure Insight Into Mosquito-Borne Flavivirus (MBFV) cis-Acting RNA Biology. Front Microbiol 2020; 11:473. [PMID: 32292394 PMCID: PMC7118588 DOI: 10.3389/fmicb.2020.00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) spread between vertebrate (mammals and birds) and invertebrate (mosquitoes) hosts. The cis-acting RNAs of MBFV share common evolutionary origins and contain frequent alterations, which control the balance of linear and circular genome conformations and allow effective replication. Importantly, multiple cis-acting RNAs interact with trans-acting regulatory RNA-binding proteins (RBPs) and affect the MBFV lifecycle process, including viral replicase binding, viral RNA translation-cyclisation-synthesis and nucleocapsid assembly. Considering that extensive structural probing analyses have been performed on MBFV cis-acting RNAs, herein the homologous RNA structures are online folded and consensus structures are constructed by sort. The specific traits and underlying biology of MBFV cis-acting RNA are illuminated accordingly in a review of RNA structure. These findings deepen our understanding of MBFV cis-acting RNA biology and serve as a resource for designing therapeutics in targeting protein-viral RNA interaction or viral RNA secondary structures.
Collapse
Affiliation(s)
- Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanping Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yangling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
14
|
Barrows NJ, Anglero-Rodriguez Y, Kim B, Jamison SF, Le Sommer C, McGee CE, Pearson JL, Dimopoulos G, Ascano M, Bradrick SS, Garcia-Blanco MA. Dual roles for the ER membrane protein complex in flavivirus infection: viral entry and protein biogenesis. Sci Rep 2019; 9:9711. [PMID: 31273220 PMCID: PMC6609633 DOI: 10.1038/s41598-019-45910-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Hundreds of cellular host factors are required to support dengue virus infection, but their identity and roles are incompletely characterized. Here, we identify human host dependency factors required for efficient dengue virus-2 (DENV2) infection of human cells. We focused on two, TTC35 and TMEM111, which we previously demonstrated to be required for yellow fever virus (YFV) infection and others subsequently showed were also required by other flaviviruses. These proteins are components of the human endoplasmic reticulum membrane protein complex (EMC), which has roles in ER-associated protein biogenesis and lipid metabolism. We report that DENV, YFV and Zika virus (ZIKV) infections were strikingly inhibited, while West Nile virus infection was unchanged, in cells that lack EMC subunit 4. Furthermore, targeted depletion of EMC subunits in live mosquitoes significantly reduced DENV2 propagation in vivo. Using a novel uncoating assay, which measures interactions between host RNA-binding proteins and incoming viral RNA, we show that EMC is required at or prior to virus uncoating. Importantly, we uncovered a second and important role for the EMC. The complex is required for viral protein accumulation in a cell line harboring a ZIKV replicon, indicating that EMC participates in the complex process of viral protein biogenesis.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA
| | - Yesseinia Anglero-Rodriguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Byungil Kim
- Department of Biochemistry, Vanderbilt University, Nashville, USA
| | - Sharon F Jamison
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA
| | - Caroline Le Sommer
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA
| | | | - James L Pearson
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University, Nashville, USA
| | - Shelton S Bradrick
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA. .,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA.
| | - Mariano A Garcia-Blanco
- Department of Microbiology and Molecular Genetics, and Center for RNA Biology, Duke University, Durham, USA. .,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, USA. .,Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
15
|
Campos RK, Garcia-Blanco MA, Bradrick SS. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections. Curr Top Microbiol Immunol 2019; 419:43-67. [PMID: 28688087 DOI: 10.1007/82_2017_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.
Collapse
Affiliation(s)
- Rafael K Campos
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University, Durham, NC, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA. .,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
RNA Helicase A Is an Important Host Factor Involved in Dengue Virus Replication. J Virol 2019; 93:JVI.01306-18. [PMID: 30463971 DOI: 10.1128/jvi.01306-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) utilizes host factors throughout its life cycle. In this study, we identified RNA helicase A (RHA), a member of the DEAD/H helicase family, as an important host factor of DENV. In response to DENV2 infection, nuclear RHA protein was partially redistributed into the cytoplasm. The short interfering RNA-mediated knockdown of RHA significantly reduced the amounts of infectious viral particles in various cells. The RHA knockdown reduced the multistep viral growth of DENV2 and Japanese encephalitis virus but not Zika virus. Further study showed that the absence of RHA resulted in a reduction of both viral RNA and protein levels, and the data obtained from the reporter replicon assay indicated that RHA does not directly promote viral protein synthesis. RHA bound to the DENV RNA and associated with three nonstructural proteins, including NS1, NS2B3, and NS4B. Further study showed that different domains of RHA mediated its interaction with these viral proteins. The expression of RHA or RHA-K417R mutant protein lacking ATPase/helicase activity in RHA-knockdown cells successfully restored DENV2 replication levels, suggesting that the helicase activity of RHA is dispensable for its proviral effect. Overall, our work reveals that RHA is an important factor of DENV and might serve as a target for antiviral agents.IMPORTANCE Dengue, caused by dengue virus, is a rapidly spreading disease, and currently there are no treatments available. Host factors involved in the viral replication of dengue virus are potential antiviral therapeutic targets. Although RHA has been shown to promote the multiplication of several viruses, such as HIV and adenovirus, its role in the flavivirus family, including dengue virus, Japanese encephalitis virus, and emerging Zika virus, remains elusive. The current study revealed that RHA relocalized into the cytoplasm upon DENV infection and associated with viral RNA and nonstructural proteins, implying that RHA was actively engaged in the viral life cycle. We further provide evidence that RHA promoted the viral yields of DENV2 independent of its helicase activity. These findings demonstrated that RHA is a new host factor required for DENV replication and might serve as a target for antiviral drugs.
Collapse
|
17
|
Cook KC, Cristea IM. Location is everything: protein translocations as a viral infection strategy. Curr Opin Chem Biol 2019; 48:34-43. [PMID: 30339987 PMCID: PMC6382524 DOI: 10.1016/j.cbpa.2018.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/16/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
Protein movement between different subcellular compartments is an essential aspect of biological processes, including transcriptional and metabolic regulation, and immune and stress responses. As obligate intracellular parasites, viruses are master manipulators of cellular composition and organization. Accumulating evidences have highlighted the importance of infection-induced protein translocations between organelles. Both directional and temporal, these translocation events facilitate localization-dependent protein interactions and changes in protein functions that contribute to either host defense or virus replication. The discovery and characterization of protein movement is technically challenging, given the necessity for sensitive detection and subcellular resolution. Here, we discuss infection-induced translocations of host and viral proteins, and the value of integrating quantitative proteomics with advanced microscopy for understanding the biology of human virus infections.
Collapse
Affiliation(s)
- Katelyn C Cook
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018. [PMID: 30564270 DOI: 10.3389/fgene.2018.00595/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
19
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018; 9:595. [PMID: 30564270 PMCID: PMC6288177 DOI: 10.3389/fgene.2018.00595] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
20
|
Zakaria MK, Carletti T, Marcello A. Cellular Targets for the Treatment of Flavivirus Infections. Front Cell Infect Microbiol 2018; 8:398. [PMID: 30483483 PMCID: PMC6240593 DOI: 10.3389/fcimb.2018.00398] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
Classical antiviral therapy targets viral functions, mostly viral enzymes or receptors. Successful examples include precursor herpesvirus drugs, antiretroviral drugs that target reverse transcriptase and protease, influenza virus directed compounds as well as more recent direct antiviral agents (DAA) applied in the treatment of hepatitis C virus (HCV). However, from early times, the possibility of targeting the host cell to contain the infection has frequently re-emerged as an alternative and complementary antiviral strategy. Advantages of this approach include an increased threshold to the emergence of resistance and the possibility to target multiple viruses. Major pitfalls are related to important cellular side effects and cytotoxicity. In this mini-review, the concept of host directed antiviral therapy will be discussed with a focus on the most recent advances in the field of Flaviviruses, a family of important human pathogens for which we do not have antivirals available in the clinics.
Collapse
Affiliation(s)
- Mohammad Khalid Zakaria
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tea Carletti
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
21
|
Sager G, Gabaglio S, Sztul E, Belov GA. Role of Host Cell Secretory Machinery in Zika Virus Life Cycle. Viruses 2018; 10:E559. [PMID: 30326556 PMCID: PMC6213159 DOI: 10.3390/v10100559] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The high human cost of Zika virus infections and the rapid establishment of virus circulation in novel areas, including the United States, present an urgent need for countermeasures against this emerging threat. The development of an effective vaccine against Zika virus may be problematic because of the cross reactivity of the antibodies with other flaviviruses leading to antibody-dependent enhancement of infection. Moreover, rapidly replicating positive strand RNA viruses, including Zika virus, generate large spectrum of mutant genomes (quasi species) every replication round, allowing rapid selection of variants resistant to drugs targeting virus-specific proteins. On the other hand, viruses are ultimate cellular parasites and rely on the host metabolism for every step of their life cycle, thus presenting an opportunity to manipulate host processes as an alternative approach to suppress virus replication and spread. Zika and other flaviviruses critically depend on the cellular secretory pathway, which transfers proteins and membranes from the ER through the Golgi to the plasma membrane, for virion assembly, maturation and release. In this review, we summarize the current knowledge of interactions of Zika and similar arthropod-borne flaviviruses with the cellular secretory machinery with a special emphasis on virus-specific changes of the secretory pathway. Identification of the regulatory networks and effector proteins required to accommodate the trafficking of virions, which represent a highly unusual cargo for the secretory pathway, may open an attractive and virtually untapped reservoir of alternative targets for the development of superior anti-viral drugs.
Collapse
Affiliation(s)
- Garrett Sager
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - Samuel Gabaglio
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL 35294, UK.
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Staufen1 Interacts with Multiple Components of the Ebola Virus Ribonucleoprotein and Enhances Viral RNA Synthesis. mBio 2018; 9:mBio.01771-18. [PMID: 30301857 PMCID: PMC6178623 DOI: 10.1128/mbio.01771-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ebola virus (EBOV) is a negative-strand RNA virus with significant public health importance. Currently, no therapeutics are available for Ebola, which imposes an urgent need for a better understanding of EBOV biology. Here we dissected the virus-host interplay between EBOV and host RNA-binding proteins. We identified novel EBOV host factors, including Staufen1, which interacts with multiple viral factors and is required for efficient viral RNA synthesis. Ebola virus (EBOV) genome and mRNAs contain long, structured regions that could hijack host RNA-binding proteins to facilitate infection. We performed RNA affinity chromatography coupled with mass spectrometry to identify host proteins that bind to EBOV RNAs and identified four high-confidence proviral host factors, including Staufen1 (STAU1), which specifically binds both 3′ and 5′ extracistronic regions of the EBOV genome. We confirmed that EBOV infection rate and production of infectious particles were significantly reduced in STAU1-depleted cells. STAU1 was recruited to sites of EBOV RNA synthesis upon infection and enhanced viral RNA synthesis. Furthermore, STAU1 interacts with EBOV nucleoprotein (NP), virion protein 30 (VP30), and VP35; the latter two bridge the viral polymerase to the NP-coated genome, forming the viral ribonucleoprotein (RNP) complex. Our data indicate that STAU1 plays a critical role in EBOV replication by coordinating interactions between the viral genome and RNA synthesis machinery.
Collapse
|
23
|
Simões ML, Caragata EP, Dimopoulos G. Diverse Host and Restriction Factors Regulate Mosquito-Pathogen Interactions. Trends Parasitol 2018; 34:603-616. [PMID: 29793806 DOI: 10.1016/j.pt.2018.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Mosquitoes transmit diseases that seriously impact global human health. Despite extensive knowledge of the life cycles of mosquito-borne parasites and viruses within their hosts, control strategies have proven insufficient to halt their spread. An understanding of the relationships established between such pathogens and the host tissues they inhabit is therefore paramount for the development of new strategies that specifically target these interactions, to prevent the pathogens' maturation and transmission. Here we present an updated account of the antagonists and host factors that affect the development of Plasmodium, the parasite causing malaria, and mosquito-borne viruses, such as dengue virus and Zika virus, within their mosquito vectors, and we discuss the similarities and differences between Plasmodium and viral systems, looking toward the elucidation of new targets for disease control.
Collapse
Affiliation(s)
- Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; These authors contributed equally
| | - Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; These authors contributed equally
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018; 118:4448-4482. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Shih-Chia Yeh
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Julien Pompon
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore.,MIVEGEC, IRD, CNRS, Université de Montpellier , Montpellier 34090 , France
| | - October M Sessions
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| |
Collapse
|
25
|
Flaviviral RNA Structures and Their Role in Replication and Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:45-62. [PMID: 29845524 DOI: 10.1007/978-981-10-8727-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than simple vectors of genetic information, flaviviral RNAs have emerged as critical regulators of the virus life cycle. Viral RNAs regulate interactions with viral and cellular proteins in both, mosquito and mammalian hosts to ultimately influence processes as diverse as RNA replication, translation, packaging or pathogenicity. In this chapter, we will review the current knowledge of the role of sequence and structures in the flaviviral RNA in viral propagation and interaction with the host cell. We will also cover the increasing body of evidence linking viral non-coding RNAs with pathogenicity, host immunity and epidemic potential.
Collapse
|
26
|
Abstract
Viral replication in eukaryotes is a process inherently organized in both space and time. Viral components target subcellular organelles to access host machineries required for replication and spread. Diverse viruses are known to alter organelle shape, composition, function, and dynamics as part of their replication cycles. Here, we highlight recent advances in microscopy and proteomic methods that have helped and will continue to help define mechanisms used by viruses to exploit host proteome organization.
Collapse
|
27
|
Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. Proc Natl Acad Sci U S A 2017; 114:E3462-E3471. [PMID: 28389568 DOI: 10.1073/pnas.1616683114] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Positive-stranded RNA viruses, such as hepatitis C virus (HCV), assemble their viral replication complexes by remodeling host intracellular membranes to a membranous web. The precise composition of these replication complexes and the detailed mechanisms by which they are formed are incompletely understood. Here we show that the human immunity-related GTPase M (IRGM), known to contribute to autophagy, plays a previously unrecognized role in this process. We show that IRGM is localized at the Golgi apparatus and regulates the fragmentation of Golgi membranes in response to HCV infection, leading to colocalization of Golgi vesicles with replicating HCV. Our results show that IRGM controls phosphorylation of GBF1, a guanine nucleotide exchange factor for Arf-GTPases, which normally operates in Golgi membrane dynamics and vesicle coating in resting cells. We also find that HCV triggers IRGM-mediated phosphorylation of the early autophagy initiator ULK1, thereby providing mechanistic insight into the role of IRGM in HCV-mediated autophagy. Collectively, our results identify IRGM as a key Golgi-situated regulator that links intracellular membrane remodeling by autophagy and Golgi fragmentation with viral replication.
Collapse
|
28
|
Pando-Robles V, Batista CV. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings. Vector Borne Zoonotic Dis 2017; 17:361-375. [PMID: 28192064 DOI: 10.1089/vbz.2016.2040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.
Collapse
Affiliation(s)
- Victoria Pando-Robles
- 1 Laboratorio de Proteómica, Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Cesar V Batista
- 2 Laboratorio Universitario de Proteómica, Instituto de Biotecnología. Universidad Nacional Autónoma de México , Cuernavaca, México
| |
Collapse
|