1
|
Gaudilliere B, Xue L, Tsai AS, Gao X, McAllister TN, Tingle M, Porras G, Feinstein I, Feyaerts D, Verdonk F, Sabayev M, Hedou J, Ganio EA, Berson E, Becker M, Espinosa C, Kim Y, Lehallier B, Rawner E, Feng C, Amanatullah DF, Huddleston JI, Goodman SB, Aghaeepour N, Angst MS. Infusion of young donor plasma components in older patients modifies the immune and inflammatory response to surgical tissue injury: a randomized clinical trial. J Transl Med 2025; 23:183. [PMID: 39953524 PMCID: PMC11829456 DOI: 10.1186/s12967-025-06215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Preclinical evidence suggests that young plasma has beneficial effects on multiple organ systems in aged mice. Whether young plasma exerts beneficial effects in an aging human population remains highly controversial. Despite lacking data, young donor plasma infusions have been promoted for age-related conditions. Given the preclinical evidence that young plasma exerts beneficial effects by attenuating inflammation, this study examined whether administering a young plasma protein fraction to an elderly population would exert anti-inflammatory and immune modulating effects in humans, using surgery as a tissue injury model. METHODS This double-blind, placebo-controlled study enrolled and randomized 38 patients undergoing major joint replacement surgery. Patients received four separate infusions of a plasma protein fraction derived from young donors, or placebo one day before surgery, before and after surgery on the day of surgery, and one day after surgery. Blood specimens for proteomic and immunological analyses were collected before each infusion. Based on the high-content assessment of circulating plasma proteins with single-cell analyses of peripheral immune cells, proteomic signatures and cell-type-specific signaling responses that separated the treatment groups were derived with regression models. RESULTS Elastic net regression models revealed that administration a young plasma protein fraction significantly altered the proteomic (AUC = 0.796, p = 0.002) and the cellular immune response (AUC 0.904, p < 0.001) to surgical trauma resulting in signaling pathway- and cell type-specific anti-inflammatory immune modulation. Affected proteomic pathways regulating inflammation included JAK-STAT, NF-kappa B, and MAPK (p < 0.001). These findings were confirmed at the cellular level as the MAPK and JAK/STAT signaling responses were diminished and IkB, the negative regulator of NFkB, was elevated in adaptive immune cells. CONCLUSION Reported findings provide a first proof of principle in humans that a young plasma protein fraction actively regulates inflammatory and immune responses in an elderly population. They provide a solid rationale for elucidating active principles in young plasma that may be of therapeutic benefits for a range of age-related pathologies. TRIAL REGISTRATION ClinicalTrials.gov, NCT03981419.
Collapse
Affiliation(s)
- Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Xue
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Xiaoxiao Gao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Tiffany N McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Martha Tingle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Gladys Porras
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Igor Feinstein
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maximilian Sabayev
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Julien Hedou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eloïse Berson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Yeasul Kim
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Derek F Amanatullah
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James I Huddleston
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Noonan ML, Muto Y, Yoshimura Y, Leckie-Harre A, Wu H, Kalinichenko VV, Humphreys BD, Chang-Panesso M. Injury-induced Foxm1 expression in the mouse kidney drives epithelial proliferation by a cyclin F-dependent mechanism. JCI Insight 2024; 9:e175416. [PMID: 38916959 PMCID: PMC11383596 DOI: 10.1172/jci.insight.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.
Collapse
Affiliation(s)
- Megan L Noonan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Aidan Leckie-Harre
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Williams MJ, Halabi CM, Patel HM, Joseph Z, McCommis K, Weinheimer C, Kovacs A, Lima F, Finck B, Malluche H, Hruska KA. In chronic kidney disease altered cardiac metabolism precedes cardiac hypertrophy. Am J Physiol Renal Physiol 2024; 326:F751-F767. [PMID: 38385175 PMCID: PMC11386984 DOI: 10.1152/ajprenal.00416.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.
Collapse
Affiliation(s)
- Matthew J Williams
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carmen M Halabi
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hiral M Patel
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Zachary Joseph
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Kyle McCommis
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carla Weinheimer
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Attila Kovacs
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Florence Lima
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Brian Finck
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hartmut Malluche
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Keith A Hruska
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Cell Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Yu C, Zhang J, Pei J, Luo J, Hong Y, Tian X, Liu Z, Zhu C, Long C, Shen L, He X, Wen S, Liu X, Wu S, Hua Y, Wei G. IL-13 alleviates acute kidney injury and promotes regeneration via activating the JAK-STAT signaling pathway in a rat kidney transplantation model. Life Sci 2024; 341:122476. [PMID: 38296190 DOI: 10.1016/j.lfs.2024.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
AIMS To identify whether and how a younger systemic internal milieu alleviates acute kidney injury (AKI) in grafts after kidney transplantation. MATERIALS AND METHODS We conducted an allogenic heterotopic rat kidney transplantation model with young and adult recipients receiving similar donor kidneys. We evaluated the renal function, histological damage, apoptosis, dedifferentiation, proliferation, hub regulating cytokines, and signaling pathways involved in young and adult recipients based on transcriptomics, proteomics, and experimental validation. We also validated the protective effect and mechanism of interleukin-13 (IL-13) on tubular epithelial cell injury induced by transplantation in vivo and by cisplatin in vitro. KEY FINDINGS Compared with adult recipients, the young recipients had lower levels of renal histological damage and apoptosis, while had higher levels of dedifferentiation and proliferation. Serum IL-13 levels were higher in young recipients both before and after surgery. Pretreating with IL-13 decreased apoptosis and promoted regeneration in injured rat tubular epithelial cells induced by cisplatin, while this effect can be counteracted by a JAK2 and STAT3 specific inhibitor, AG490. Recipients pretreated with IL-13 also had lower levels of histological damage and improved renal function. SIGNIFICANCE Higher levels of IL-13 in young recipients ameliorates tubular epithelial cell apoptosis and promotes regeneration via activating the JAK-STAT signaling pathway both in vivo and in vitro. Our results suggest that IL-13 is a promising therapeutic strategy for alleviating AKI. The therapeutic potential of IL-13 in injury repair and immune regulation deserves further evaluation and clinical consideration.
Collapse
Affiliation(s)
- Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jie Zhang
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jun Pei
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jin Luo
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yifan Hong
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xiaomao Tian
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Zhiyuan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Chumeng Zhu
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Lianju Shen
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xingyue He
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| |
Collapse
|
5
|
Lin G, Jiang H, Zhang Z, Ning L, Zhang W, Peng L, Xu S, Sun W, Tao S, Zhang T, Tang L. Molecular mechanism of NR4A1/MDM2/P53 signaling pathway regulation inducing ferroptosis in renal tubular epithelial cells involved in the progression of renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166968. [PMID: 38008232 DOI: 10.1016/j.bbadis.2023.166968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Revealing the possible molecular mechanism of the NR4A1 (nuclear receptor subfamily 4 group A member 1)-MDM2 (MDM2 proto-oncogene)-P53 (tumor protein p53) signaling pathway that induces ferroptosis in renal tubular epithelial cells. Renal ischemia-reperfusion injury (RIRI) -related datasets were obtained from the GEO database. Differentially expressed genes in RIRI were analyzed using R language, intersected with RIRI-related genes in the GeneCard database, and retrieved from the literature to finally obtain differential ferroptosis-related genes. An in vitro cell model of RIRI was constructed using mouse renal cortical proximal tubule epithelial cells (mRTEC cells) treated with hypoxia-reoxygenation (H/R). Bioinformatic analysis showed that NR4A1 may be involved in RIRI through the induction of ferroptosis; in addition, we predicted through online databases that the downstream target gene of NR4A1, MDM2, could be targeted and regulated by ChIP and dual luciferase assays, and that NR4A1 could prevent MDM2 by inhibiting it, and NR4A1 was able to promote ferroptosis by inhibiting the ubiquitinated degradation of P53. NR4A1 expression was significantly increased in mRTEC cells in the hypoxia/reoxygenation model, and the expression of ferroptosis-related genes was increased in vitro experiments. NR4A1 reduces the ubiquitinated degradation of P53 by targeting the inhibition of MDM2 expression, thereby inducing ferroptosis and ultimately exacerbating RIRI by affecting the oxidative respiration process in mitochondria and producing oxidized lipids. This study presents a novel therapeutic approach for the clinical treatment of renal ischemia-reperfusion injury by developing drugs that inhibit NR4A1 to alleviate kidney damage caused by renal ischemia-reperfusion.
Collapse
Affiliation(s)
- Guangzheng Lin
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Heng Jiang
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhihui Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ling Ning
- Department of Infectious Diseases, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei 230000, PR China
| | - Wenbo Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Longfei Peng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Shen Xu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Wei Sun
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Sha Tao
- Second School of Clinical Medicine, Anhui Medical University, Hefei 230601, PR China
| | - Tao Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Liang Tang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
6
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
7
|
Li Y, Li R, Qin H, He H, Li S. OTUB1's role in promoting OSCC development by stabilizing RACK1 involves cell proliferation, migration, invasion, and tumor-associated macrophage M1 polarization. Cell Signal 2023; 110:110835. [PMID: 37532135 DOI: 10.1016/j.cellsig.2023.110835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Ovarian tumor domain, ubiquitin aldehyde binding 1 (OTUB1), a deubiquitinating enzyme known to regulate the stability of downstream proteins, has been reported to regulate various cancers tumorigenesis, yet its direct effects on oral squamous cell carcinoma (OSCC) progression are unclear. Bioinformatics analysis was performed to screen for genes of interest, and in vitro and in vivo studies were carried out to investigate the function and mechanism of OTUB1 in OSCC. We found that OTUB1 was abnormally elevated in OSCC tissues and positively associated with the pathological stage and tumor stage. Knockdown of OTUB1 impaired the malignance of OSCC cells - suppressed cell proliferation, invasion, migration, and xenografted tumor growth. OTUB1 silencing also drove tumor-associated macrophage M1 polarization but suppressed M2 polarization, and the induction of M1 polarization inhibited the survival of OSCC cells. However, OTUB1 overexpression exerted the opposite effects. Furthermore, the protein network that interacted with the OTUB1 protein was constructed based on the GeneMANIA website. Receptor for activated C kinase 1 (RACK1), a facilitator of OSCC progression, was identified as a potential target of the OTUB1 protein. We revealed that OTUB1 positively regulated RACK1 expression and inhibited RACK1 ubiquitination. Additionally, RACK1 upregulation reversed the effects of OTUB1 knockdown on OSCC progression. Overall, we demonstrated that OTUB1 might regulate OSCC progression by maintaining the stability of the RACK1 protein. These findings highlight the potential roles of the OTUB1/RACK1 axis as a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Yunyun Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhe Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Qin
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongliu He
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Liu WH, Feng L, Wang X, Wei L, Zou HQ. GDF11 Improves Ischemia-Reperfusion-Induced Acute Kidney Injury via Regulating Macrophage M1/M2 Polarization. Kidney Blood Press Res 2023; 48:209-219. [PMID: 36780878 PMCID: PMC10124752 DOI: 10.1159/000529444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinical emergency caused by the rapid decline of renal function caused by various etiologies. Growth differentiation factor 11 (GDF11) can promote renal tubular regeneration and improve kidney function in AKI, but the specific mechanism remains unclear. Herein, we investigated the effect and mechanisms of GDF11 in ameliorating AKI induced by ischemia-reperfusion (I/R). METHODS An animal model of AKI was established by I/R method, and the changes of serum urea nitrogen and creatinine were measured to evaluate the AKI. Enzyme-linked immunosorbent assay (ELISA) was used to measure cytokines, malondialdehyde, superoxide dismutase, nitric oxide synthase, and arginase 1 levels. Flow cytometry was used to count the M1/M2 macrophages. IHC, WB, and q-PCR experiments were used to evaluate the expression of GDF11. RESULTS The changes in serum levels of urea nitrogen and creatinine after I/R suggest that an animal model of AKI induced by I/R was successfully established. AKI caused by I/R significantly changed the M1/M2 macrophage polarization balance, with an increase in M2 being significantly higher than M1 as well as increased oxidative stress. Treatment with GDF11 after I/R significantly increased the differentiation of M2 cells and inhibited the differentiation of M1 macrophages, as well as decreased oxidative stress. CONCLUSION GDF11 can promote the repair of AKI caused by I/R by regulating the balance of M1/M2 polarization in macrophages and oxidative stress.
Collapse
Affiliation(s)
- Wei-hua Liu
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ling Feng
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xuan Wang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Wei
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - He-qun Zou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Wang H, Zhang Y, Liu H, Li S. GDF11, a target of miR-32-5p, suppresses high-glucose-induced mitochondrial dysfunction and apoptosis in HK-2 cells through PI3K/AKT signaling activation. Int Urol Nephrol 2023:10.1007/s11255-023-03495-3. [PMID: 36749472 DOI: 10.1007/s11255-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the role and underlying mechanism of GDF11 on diabetic nephropathy (DN)-related mitochondrial dysfunction and apoptosis. METHODS A DN model of rats was established in this study. Human Kidney-2 (HK-2) cells were cultured under high-glucose (HG) condition with or without recombinant GDF11 (rGDF11). Mitochondrial morphology of HK-2 cells was analyzed by transmission electron microscope and MitoTracker Red CMXRos staining. Mitochondrial membrane potential (MMP) and ROS production were monitored using JC-1 assay kit and MitoSOX staining, respectively. Cell apoptosis was detected by TUNEL or flow cytometry assays. RESULTS Herein, we observed that GDF11 was down-regulated in renal cortex and serum of DN rats, which was accompanied by renal mitochondrial morphological abnormalities. In line with the findings in vivo, HK-2 cells exposed to HG presented with mitochondrial morphological alterations and further apoptosis accompanied by GDF11 reduction. In addition, HG promoted a decrease in MMP while an increase in mitochondrial ROS production. Conversely, rGDF11 treatment significantly alleviated these HG-induced mitochondrial defects in HK-2 cells. Meanwhile, HK-2 cell apoptosis induced by HG was simultaneously suppressed by rGDF11. Mechanistically, the decreased levels of p-AKT induced by HG were attenuated after rGDF11 administration. Inhibition of the PI3K/AKT pathway resisted the effects of rGDF11 on the MMP and apoptosis of HK-2 cells. In addition, we identified that GDF11 is a target of miR-32-5p. Up-regulation of miR-32-5p could inhibit the expression of GDF11. CONCLUSION rGDF11 treatment rescued HG-induced HK-2 cell mitochondrial dysfunction and apoptosis, which may be dependent on the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hongjie Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, China.
| | - Yunxia Zhang
- Department of Endocrinology, Da Qing Long Nan Hospital, Daqing, China
| | - Huan Liu
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, China
| | - Shuang Li
- Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Calorie Restriction Provides Kidney Ischemic Tolerance in Senescence-Accelerated OXYS Rats. Int J Mol Sci 2022; 23:ijms232315224. [PMID: 36499550 PMCID: PMC9735762 DOI: 10.3390/ijms232315224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases belong to a group of pathologies, which are most common among elderly people. With age, even outwardly healthy organisms start to exhibit some age-related changes in the renal tissue, which reduce the filtration function of kidneys and increase the susceptibility to injury. The therapy of acute kidney injury (AKI) is aggravated by the absence of targeted pharmacotherapies thus yielding high mortality of patients with AKI. In this study, we analyzed the protective effects of calorie restriction (CR) against ischemic AKI in senescence-accelerated OXYS rats. We observed that CR afforded OXYS rats with significant nephroprotection. To uncover molecular mechanisms of CR beneficial effects, we assessed the levels of anti- and proapoptotic proteins of the Bcl-2 family, COX IV, GAPDH, and mitochondrial deacetylase SIRT-3, as well as alterations in total protein acetylation and carbonylation, mitochondrial dynamics (OPA1, Fis1, Drp1) and kidney regeneration pathways (PCNA, GDF11). The activation of autophagy and mitophagy was analyzed by LC3 II/LC3 I ratio, beclin-1, PINK-1, and total mitochondrial protein ubiquitination. Among all considered protective pathways, the improvement of mitochondrial functioning may be suggested as one of the possible mechanisms for beneficial effects of CR.
Collapse
|
11
|
Age-Associated Loss in Renal Nestin-Positive Progenitor Cells. Int J Mol Sci 2022; 23:ijms231911015. [PMID: 36232326 PMCID: PMC9569966 DOI: 10.3390/ijms231911015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.
Collapse
|
12
|
de Liyis BG, Halim W, Widyadharma IPE. Potential role of recombinant growth differentiation factor 11 in Alzheimer’s disease treatment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAlzheimer's disease (AD) is a neurodegenerative disease closely related to the accumulation of beta-amyloid (Aβ) plaques. Growth differentiation factor 11 (GDF11) is one of the proteins that play a role in the aggravation of AD. Decreased concentration of GDF11 disrupts regenerative nervous system, blood vessels, and various vital systems. Low levels of GDF11 with age can be overcome with recombinant GDF11 (rGDF11) to rejuvenate the regenerative effect. Based on research results, rGDF11 enhance the proliferation rate of neuronal precursor cells as well as angiogenesis. rGDF11 can replace lost levels of GDF11, overcome astrogliosis and activation of nerve cell microglia. Therapeutic effect of rGDF11 leads to an improved prognosis in AD patients by neurogenesis and angiogenesis. The prospects of rGDF11 in the treatment of AD have great potential for further research in the future.
Collapse
|
13
|
Su HH, Yen JC, Liao JM, Wang YH, Liu PH, MacDonald IJ, Tsai CF, Chen YH, Huang SS. In situ slow-release recombinant growth differentiation factor 11 exhibits therapeutic efficacy in ischemic stroke. Biomed Pharmacother 2021; 144:112290. [PMID: 34673423 DOI: 10.1016/j.biopha.2021.112290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Systemic growth differentiation factor 11 (GDF11) treatment improves the vasculature in the hippocampus and cortex in mice in recent studies. However, systemic application of recombinant GDF11 (rGDF11) cannot cross the brain blood barrier (BBB). Thus, large doses and long-term administration are required, while systemically applied high-dose rGDF11 is associated with deleterious effects, such as severe cachexia. This study tested whether in situ low dosage rGDF11 (1 μg/kg) protects the brain against ischemic stroke and it investigated the underlying mechanisms. Fibrin glue mixed with rGDF11 was applied to the surgical cortex for the slow release of rGDF11 in mice after permanent middle cerebral artery occlusion (MCAO). In situ rGDF11 improved cerebral infarction and sensorimotor function by upregulating Smad2/3 and downregulating FOXO3 expression. In situ rGDF11 was associated with reductions in protein and lipid oxidation, Wnt5a, iNOS and COX2 expression, at 24 h after injury. In situ rGDF11 protected hippocampal neurons and subventricular neural progenitor cells against MCAO injury, and increased newborn neurogenesis in the peri-infarct cortex. Systematic profiling and qPCR analysis revealed that Pax5, Sox3, Th, and Cdk5rap2, genes associated with neurogenesis, were increased by in situ rGDF11 treatment. In addition, greater numbers of newborn neurons in the peri-infarct cortex were observed with in situ rGDF11 than with systemic application. Our evidence indicates that in situ rGDF11 effectively decreases the extent of damage after ischemic stroke via antioxidative, anti-inflammatory and proneurogenic activities. We suggest that in situ slow-release rGDF11 with fibrin glue is a potential therapeutic approach against ischemic stroke.
Collapse
Affiliation(s)
- Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC; Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC
| | - Jiin-Cherng Yen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Yi-Hsin Wang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Pei-Hsun Liu
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Iona J MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC
| | - Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan,ROC; Department of Computer Science and Information Engineering, Asia University, Wufeng, Taichung, 41354, Taiwan.
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
14
|
Mei W, Zhu B, Shu Y, Liang Y, Lin M, He M, Luo H, Ye J. GDF11 protects against glucotoxicity-induced mice retinal microvascular endothelial cell dysfunction and diabetic retinopathy disease. Mol Cell Endocrinol 2021; 537:111422. [PMID: 34391845 DOI: 10.1016/j.mce.2021.111422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of embryonic development and age-related dysfunction, including the regulation of retinal progenitor cells. However, little is known about the functions of GDF11 in diabetic retinopathy. In this study, we demonstrated that GDF11 treatment improved diabetes-induced retinal cell death, capillary degeneration, pericyte loss, inflammation, and blood-retinal barrier breakdown in mice. Treatment of isolated mouse retinal microvascular endothelial cells with recombinant GDF11 in vitro attenuated glucotoxicity-induced retinal endothelial apoptosis and the inflammatory response. The protective mechanisms exerted are associated with TGF-β/Smad2, PI3k-Akt-FoxO1 activation,and NF-κB pathway inhibition. This study indicated that GDF11 is a novel therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Wen Mei
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China; Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Stomatology, Fuxing Hospital, Capital Medical University, Fuxingmen Wai Street A 20, Beijing, 100038, China
| | - Yi Shu
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Yanhua Liang
- Department of Ophthalmology, People's Hospital of Jiangmen, Penglai Road 19, Jiangmen, 529000, Guangdong Province, China
| | - Mei Lin
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China.
| | - Mingjuan He
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Haizhao Luo
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Jingwen Ye
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| |
Collapse
|
15
|
Kaucsár T, Róka B, Tod P, Do PT, Hegedűs Z, Szénási G, Hamar P. Divergent regulation of lncRNA expression by ischemia in adult and aging mice. GeroScience 2021; 44:429-445. [PMID: 34697716 PMCID: PMC8811094 DOI: 10.1007/s11357-021-00460-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Elderly patients have increased susceptibility to acute kidney injury (AKI). Long noncoding RNAs (lncRNA) are key regulators of cellular processes, and have been implicated in both aging and AKI. Our aim was to study the effects of aging and ischemia-reperfusion injury (IRI) on the renal expression of lncRNAs. Adult and old (10- and 26-30-month-old) C57BL/6 N mice were subjected to unilateral IRI followed by 7 days of reperfusion. Renal expression of 90 lncRNAs and mRNA expression of injury, regeneration, and fibrosis markers was measured by qPCR in the injured and contralateral control kidneys. Tubular injury, regeneration, and fibrosis were assessed by histology. Urinary lipocalin-2 excretion was increased in old mice prior to IRI, but plasma urea was similar. In the control kidneys of old mice tubular cell necrosis and apoptosis, mRNA expression of kidney injury molecule-1, fibronectin-1, p16, and p21 was elevated. IRI increased plasma urea concentration only in old mice, but injury, regeneration, and fibrosis scores and their mRNA markers were similar in both age groups. AK082072 and Y lncRNAs were upregulated, while H19 and RepA transcript were downregulated in the control kidneys of old mice. IRI upregulated Miat, Igf2as, SNHG5, SNHG6, RNCR3, Malat1, Air, Linc1633, and Neat1 v1, while downregulated Linc1242. LncRNAs H19, AK082072, RepA transcript, and Six3os were influenced by both aging and IRI. Our results indicate that both aging and IRI alter renal lncRNA expression suggesting that lncRNAs have a versatile and complex role in aging and kidney injury. An Ingenuity Pathway Analysis highlighted that the most downregulated H19 may be linked to aging/senescence through p53.
Collapse
Affiliation(s)
- Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Róka
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Phuong Thanh Do
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
16
|
Wang X, Zu Q, Lu J, Zhang L, Zhu Q, Sun X, Dong J. Effects of Donor-Recipient Age Difference in Renal Transplantation, an Investigation on Renal Function and Fluid Proteome. Clin Interv Aging 2021; 16:1457-1470. [PMID: 34349505 PMCID: PMC8326938 DOI: 10.2147/cia.s314587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Our previous study revealed that a young internal environment ameliorated kidney aging by virtue of an animal model of heterochronic parabiosis and a model of heterochronic renal transplantation. In this research, we used proteome to investigate the effects of donor-recipient age difference in clinical renal transplantation. Methods This study included 10 pairs of renal transplantation donors and recipients with an age difference of greater than 20 years to their corresponding recipients/donors. All recipients have received transplantation more than 3 years ago. Renal function and the serum/urine proteomes of the donors and recipients were analyzed. Results The renal function was similar between the young recipients and the old donors. In contrast, the renal function of the young donors was significantly superior to that of the old recipients. Furthermore, 497 and 975 proteins were identified in the serum and urine proteomes, respectively. The content of SLC3A2 in the blood was found to be related to aging, while the contents of SERPINA1 and SERPINA3 in the urine were related to immune functions after renal transplantation. Conclusion This study demonstrated that, in the human body, a younger internal environment could ameliorate kidney aging and provided not only clinical evidence for increasing the age limit of kidney transplant donors but also new information for kidney aging research.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qiang Zu
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jinshan Lu
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qiang Zhu
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jun Dong
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
17
|
Abdel-Raouf KMA, Rezgui R, Stefanini C, Teo JCM, Christoforou N. Transdifferentiation of Human Fibroblasts into Skeletal Muscle Cells: Optimization and Assembly into Engineered Tissue Constructs through Biological Ligands. BIOLOGY 2021; 10:biology10060539. [PMID: 34208436 PMCID: PMC8235639 DOI: 10.3390/biology10060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Engineered human skeletal muscle tissue is a platform tool that can help scientists and physicians better understand human physiology, pharmacology, and disease modeling. Over the past few years this area of research has been actively being pursued by many labs worldwide. Significant challenges remain, including accessing an adequate cell source, and achieving proper physiological-like architecture of the engineered tissue. To address cell resourcing we aimed at further optimizing a process called transdifferentiation which involves the direct conversion of fibroblasts into skeletal muscle cells. The opportunity here is that fibroblasts are readily available and can be expanded sufficiently to meet the needs of a tissue engineering approach. Additionally, we aimed to demonstrate the applicability of transdifferentiation in assembling tissue engineered skeletal muscle. We implemented a screening process of protein ligands in an effort to refine transdifferentiation, and identified that most proteins resulted in a deficit in transdifferentiation efficiency, although one resulted in robust expansion of cultured cells. We were also successful in assembling engineered constructs consisting of transdifferentiated cells. Future directives involve demonstrating that the engineered tissues are capable of contractile and functional activity, and pursuit of optimizing factors such as electrical and chemical exposure, towards achieving physiological parameters observed in human muscle. Abstract The development of robust skeletal muscle models has been challenging due to the partial recapitulation of human physiology and architecture. Reliable and innovative 3D skeletal muscle models recently described offer an alternative that more accurately captures the in vivo environment but require an abundant cell source. Direct reprogramming or transdifferentiation has been considered as an alternative. Recent reports have provided evidence for significant improvements in the efficiency of derivation of human skeletal myotubes from human fibroblasts. Herein we aimed at improving the transdifferentiation process of human fibroblasts (tHFs), in addition to the differentiation of murine skeletal myoblasts (C2C12), and the differentiation of primary human skeletal myoblasts (HSkM). Differentiating or transdifferentiating cells were exposed to single or combinations of biological ligands, including Follistatin, GDF8, FGF2, GDF11, GDF15, hGH, TMSB4X, BMP4, BMP7, IL6, and TNF-α. These were selected for their critical roles in myogenesis and regeneration. C2C12 and tHFs displayed significant differentiation deficits when exposed to FGF2, BMP4, BMP7, and TNF-α, while proliferation was significantly enhanced by FGF2. When exposed to combinations of ligands, we observed consistent deficit differentiation when TNF-α was included. Finally, our direct reprogramming technique allowed for the assembly of elongated, cross-striated, and aligned tHFs within tissue-engineered 3D skeletal muscle constructs. In conclusion, we describe an efficient system to transdifferentiate human fibroblasts into myogenic cells and a platform for the generation of tissue-engineered constructs. Future directions will involve the evaluation of the functional characteristics of these engineered tissues.
Collapse
Affiliation(s)
- Khaled M. A. Abdel-Raouf
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
- Correspondence: (K.M.A.A.-R.); (N.C.)
| | - Rachid Rezgui
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Cesare Stefanini
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jeremy C. M. Teo
- Department of Mechanical and Biomedical Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Nicolas Christoforou
- Pfizer Inc., Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, USA
- Correspondence: (K.M.A.A.-R.); (N.C.)
| |
Collapse
|
18
|
Shaw IW, O'Sullivan ED, Pisco AO, Borthwick G, Gallagher KM, Péault B, Hughes J, Ferenbach DA. Aging modulates the effects of ischemic injury upon mesenchymal cells within the renal interstitium and microvasculature. Stem Cells Transl Med 2021; 10:1232-1248. [PMID: 33951342 PMCID: PMC8284778 DOI: 10.1002/sctm.20-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The renal mesenchyme contains heterogeneous cells, including interstitial fibroblasts and pericytes, with key roles in wound healing. Although healing is impaired in aged kidneys, the effect of age and injury on the mesenchyme remains poorly understood. We characterized renal mesenchymal cell heterogeneity in young vs old animals and after ischemia‐reperfusion‐injury (IRI) using multiplex immunolabeling and single cell transcriptomics. Expression patterns of perivascular cell markers (α‐SMA, CD146, NG2, PDGFR‐α, and PDGFR‐β) correlated with their interstitial location. PDGFR‐α and PDGFR‐β co‐expression labeled renal myofibroblasts more efficiently than the current standard marker α‐SMA, and CD146 was a superior murine renal pericyte marker. Three renal mesenchymal subtypes; pericytes, fibroblasts, and myofibroblasts, were recapitulated with data from two independently performed single cell transcriptomic analyzes of murine kidneys, the first dataset an aging cohort and the second dataset injured kidneys following IRI. Mesenchymal cells segregated into subtypes with distinct patterns of expression with aging and following injury. Baseline uninjured old kidneys resembled post‐ischemic young kidneys, with this phenotype further exaggerated following IRI. These studies demonstrate that age modulates renal perivascular/interstitial cell marker expression and transcriptome at baseline and in response to injury and provide tools for the histological and transcriptomic analysis of renal mesenchymal cells, paving the way for more accurate classification of renal mesenchymal cell heterogeneity and identification of age‐specific pathways and targets.
Collapse
Affiliation(s)
- Isaac W Shaw
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Gary Borthwick
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kevin M Gallagher
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Liu A, Wang L, Feng Q, Zhang D, Chen K, Yiming GH, Wang Q, Hong Y, Whelchel A, Zhang X, Li X, Dong L. Low expression of GSTP1 in the aqueous humour of patients with primary open-angle glaucoma. J Cell Mol Med 2021; 25:3063-3079. [PMID: 33599104 PMCID: PMC7957170 DOI: 10.1111/jcmm.16361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Primary open‐angle glaucoma (POAG) is characterized by irreversible neurodegeneration accompanied by visual field defects and high intraocular pressure. Currently, an effective treatment is not available to prevent the progression of POAG, other than treatments to decrease the high intraocular pressure. We performed proteomic analysis of aqueous humour (AH) samples from patients with POAG combined with cataract and patients with cataract to obtain a better understanding of the pathogenesis of POAG and explore potential treatment targets for this condition. Samples were collected from 10 patients with POAG combined with cataract and 10 patients with cataract. Samples from each group were pooled. A high‐resolution, label‐free, liquid chromatography‐tandem mass spectrometry‐based quantitative proteomic analysis was performed. In total, 610 proteins were identified in human AH samples from the two groups. A total of 48 up‐regulated proteins and 49 down‐regulated proteins were identified in the POAG combined with cataract group compared with the control group. Gene Ontology (GO) analysis revealed key roles for these proteins in inflammation, immune responses, growth and development, cellular movement and vesicle‐mediated transport in the biological process category. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the down‐regulated expression of glutathione S‐transferase P (GSTP1) in the glutathione metabolism signalling pathway in the POAG combined with cataract group. Additionally, certain significantly differentially expressed proteins in the proteomic profile were verified by enzyme‐linked immunosorbent assay (ELISA). GSTP1 levels were reduced in the human AH samples from the POAG combined with cataract group, based on the results of ELISA and proteomic profiling. Therefore, GSTP1, a redox‐related marker, may be involved in the pathological process of POAG and may become a treatment target in the future.
Collapse
Affiliation(s)
- Aihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Liming Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Qiang Feng
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | - Dandan Zhang
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | - Kexi Chen
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | - Guli Humaer Yiming
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | - Qiong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yaru Hong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Amy Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
20
|
Mohammadi B, Esmaeilizadeh Z, Rajabibazl M, Ghaderian SMH, Omrani MD, Fazeli Z. Preconditioning of human adipose tissue-derived mesenchymal stem cells with HEK293-coditioned media can influence on the expression of BMP2, BMP6 and BMP11: Potential application in the treatment of renal lesions. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
22
|
Kim HJ, Kim SH, Kim M, Baik H, Park SJ, Kang MS, Kim DH, Kim BW, Markowitz SD, Bae KB. Inhibition of 15-PGDH prevents ischemic renal injury by the PGE 2/EP 4 signaling pathway mediating vasodilation, increased renal blood flow, and increased adenosine/A 2A receptors. Am J Physiol Renal Physiol 2020; 319:F1054-F1066. [PMID: 33135478 DOI: 10.1152/ajprenal.00103.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present study, we demonstrated the marked activity of SW033291, an inhibitor of 15-hydoxyprostaglandin dehydrogenase (15-PGDH), in preventing acute kidney injury (AKI) in a murine model of ischemia-reperfusion injury. AKI due to ischemic injury represents a significant clinical problem. PGE2 is vasodilatory in the kidney, but it is rapidly degraded in vivo due to catabolism by 15-PGDH. We investigated the potential of SW033291, a potent and specific 15-PGDH inhibitor, as prophylactic treatment for ischemic AKI. Prophylactic administration of SW033291 significantly increased renal tissue PGE2 levels and increased post-AKI renal blood flow and renal arteriole area. In parallel, prophylactic SW033291 decreased post-AKI renal morphology injury scores and tubular apoptosis and markedly reduced biomarkers of renal injury that included blood urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Prophylactic SW033291 also reduced post-AKI induction of proinflammatory cytokines, high-mobility group box 1, and malondialdehyde. Protective effects of SW033291 were mediated by PGE2 signaling, as they could be blocked by pharmacological inhibition of PGE2 synthesis. Consistent with activation of PGE2 signaling, SW033291 induced renal levels of both EP4 receptors and cAMP, along with other vasodilatory effectors, including AMP, adenosine, and the adenosine A2A receptor. The protective effects of SW0333291 could largely be achieved with a single prophylactic dose of the drug. Inhibition of 15-PGDH may thus represent a novel strategy for prophylaxis of ischemic AKI in multiple clinical settings, including renal transplantation and cardiovascular surgery.
Collapse
Affiliation(s)
- Hye Jung Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| | - Sun-Hee Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.,In-Dang Bio Medical Research Institute, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Minjung Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| | - HyungJoo Baik
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Seok Ju Park
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea.,Department of Nephrology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Mi Seon Kang
- Department of Pathology, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology, Inje University College of Medicine, Busan, Republic of Korea
| | - Byeong Woo Kim
- Department of Nephrology, Haeundae Bumin Hospital, Busan, Republic of Korea
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University, and Seidman Cancer Center, University Hospitals, Cleveland, Ohio
| | - Ki Beom Bae
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
23
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
24
|
Dusabimana T, Kim SR, Park EJ, Je J, Jeong K, Yun SP, Kim HJ, Kim H, Park SW. P2Y2R contributes to the development of diabetic nephropathy by inhibiting autophagy response. Mol Metab 2020; 42:101089. [PMID: 32987187 PMCID: PMC7568185 DOI: 10.1016/j.molmet.2020.101089] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) is one of the most common complications of diabetes and a critical risk factor for developing end-stage renal disease. Activation of purinergic receptors, including P2Y2R has been associated with the pathogenesis of renal diseases, such as polycystic kidney and glomerulonephritis. However, the role of P2Y2R and its precise mechanisms in DN remain unknown. We hypothesised that P2Y2R deficiency may play a protective role in DN by modulating the autophagy signalling pathway. METHODS We used a mouse model of DN by combining a treatment of high-fat diet and streptozotocin after unilateral nephrectomy in wild-type or P2Y2R knockout mice. We measured renal functional parameter in plasma, examined renal histology, and analysed expression of autophagy regulatory proteins. RESULTS Hyperglycaemia and ATP release were induced in wild type-DN mice and positively correlated with renal dysfunction. Conversely, P2Y2R knockout markedly attenuates albuminuria, podocyte loss, development of glomerulopathy, renal tubular injury, apoptosis and interstitial fibrosis induced by DN. These protective effects were associated with inhibition of AKT-mediated FOXO3a (forkhead box O3a) phosphorylation and induction of FOXO3a-induced autophagy gene transcription. Furthermore, inhibitory phosphorylation of ULK-1 was decreased, and the downstream Beclin-1 autophagy signalling was activated in P2Y2R deficiency. Increased SIRT-1 (sirtuin-1) and FOXO3a expression in P2Y2R deficiency also enhanced autophagy response, thereby ameliorating renal dysfunction in DN. CONCLUSIONS P2Y2R contributes to the pathogenesis of DN by impairing autophagy and serves as a therapeutic target for treating DN.
Collapse
Affiliation(s)
- Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea.
| |
Collapse
|
25
|
Exogenous biological renal support ameliorates renal pathology after ischemia reperfusion injury in elderly mice. Aging (Albany NY) 2020; 11:2031-2044. [PMID: 30978173 PMCID: PMC6503883 DOI: 10.18632/aging.101899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/31/2019] [Indexed: 12/28/2022]
Abstract
We established an exogenous biological renal support model through the generation of parabiotic mice. At 72 hours after ischemia reperfusion injury (IRI), the aged mice that received exogenous biological renal support showed significantly higher levels of renal cell proliferation and dedifferentiation, lower levels of renal tubular injury, improved renal function, and a lower mortality than those that did not receive exogenous biological renal support. Using the Quantibody Mouse Cytokine Antibody Array, we found that aged IRI mice that received exogenous biological renal support had an up-regulation of multiple inflammatory related cytokines compared to the group that did not receive exogenous biological renal support. We suggest that the exogenous biological renal support might promote renal tubular epithelial cell proliferation and dedifferentiation and improve the prognosis of aged IRI mice. Exogenous biological renal support may play an important role in the amelioration of renal IRI by regulating the expression of multiple cytokines.
Collapse
|
26
|
Hudobenko J, Ganesh BP, Jiang J, Mohan EC, Lee S, Sheth S, Morales D, Zhu L, Kofler JK, Pautler RG, McCullough LD, Chauhan A. Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. Aging (Albany NY) 2020; 12:8049-8066. [PMID: 32365331 PMCID: PMC7244081 DOI: 10.18632/aging.103122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Growth differentiation factor (GDF) 11 levels decline with aging. The age-related loss of GDF 11 has been implicated in the pathogenesis of a variety of age-related diseases. GDF11 supplementation reversed cardiac hypertrophy, bone loss, and pulmonary dysfunction in old mice, suggesting that GDF11 has a rejuvenating effect. Less is known about the potential of GDF11 to improve recovery after an acute injury, such as stroke, in aged mice. GDF11/8 levels were assessed in young and aged male mice and in postmortem human brain samples. Aged mice were subjected to a transient middle cerebral artery occlusion (MCAo). Five days after MCAo, mice received and bromodeoxyuridine / 5-Bromo-2'-deoxyuridine (BrdU) and either recombinant GDF11 or vehicle for five days and were assessed for recovery for one month following stroke. MRI was used to determine cerebrospinal fluid (CSF) volume, corpus callosum (CC) area, and brain atrophy at 30 days post-stroke. Immunohistochemistry was used to assess gliosis, neurogenesis, angiogenesis and synaptic density. Lower GDF11/8 levels were found with age in both mice and humans (p<0.05). GDF11 supplementation reduced mortality and improved sensorimotor deficits after stroke. Treatment also reduced brain atrophy and gliosis, increased angiogenesis, improved white matter integrity, and reduced inflammation after stroke. GDF11 may have a role in brain repair after ischemic injury.
Collapse
Affiliation(s)
- Jacob Hudobenko
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Eric C Mohan
- University of Connecticut Health Science Center, Farmington, CT 06030, USA
| | - Songmi Lee
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sunil Sheth
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Diego Morales
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
27
|
Liu W, Zhou L, Xue H, Li H, Yuan Q. Growth differentiation factor 11 impairs titanium implant healing in the femur and leads to mandibular bone loss. J Periodontol 2020; 91:1203-1212. [PMID: 31983062 DOI: 10.1002/jper.19-0247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor-β superfamily, has recently been suggested as an anti-aging factor that declines with age in the bloodstream, and restoration of the youthful level by administration of its recombinant protein could reverse age-related dysfunctions. However, its effects on titanium implant osseointegration and mandibular bone during aging remain unknown. METHODS Two-month-old and 18-month-old C57BL male mice were given daily intraperitoneal injections of recombinant GDF11 (rGDF11) or vehicle for 6 weeks. Experimental titanium implants were inserted into femurs on the fourth week. Inhibition of GDF11 function was achieved by GDF11 antibody. Implant-bearing femurs were subjected to histomorphometric analysis and biomechanical evaluation. Mandibles were scanned with micro-CT and decalcified for histological measurements. RESULTS In both young adult and aged mice, supraphysiologic GDF11 leads to a significantly decreased bone-to-implant contact ratio (BIC) and peri-implant bone volume/total volume (BV/TV) at the histologic level and reduced resistance at the biomechanical level, indicating weakened implant fixation. Moreover, rGDF11 administration resulted in less trabecular bone volume and thinner cortical thickness in the mandible, which was further compromised in the old animals. In contrast, inhibition of GDF11 improved peri-implant bone healing in old mice. CONCLUSIONS Rather than functioning as a rejuvenating factor, exogenous GDF11 negatively affects not only titanium implant healing but also mandibular bone in both young and old mice. In contrast, neutralization of endogenous GDF11 has positive effects on implant fixation in aged mice.
Collapse
Affiliation(s)
- Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Zhou
- Dept. of Implant, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanxiao Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanshi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Modi A, Verma SK, Bellare J. Surface-Functionalized Poly(Ether Sulfone) Composite Hollow Fiber Membranes with Improved Biocompatibility and Uremic Toxins Clearance for Bioartificial Kidney Application. ACS APPLIED BIO MATERIALS 2020; 3:1589-1597. [DOI: 10.1021/acsabm.9b01183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Akshay Modi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Surendra Kumar Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
- Centre for Research in Nanotechnology & Sciences, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra400076, India
| |
Collapse
|
29
|
Liu S, Zhao M, Zhou Y, Li L, Wang C, Yuan Y, Li L, Liao G, Bresette W, Chen Y, Cheng J, Lu Y, Liu J. A self-assembling peptide hydrogel-based drug co-delivery platform to improve tissue repair after ischemia-reperfusion injury. Acta Biomater 2020; 103:102-114. [PMID: 31843715 DOI: 10.1016/j.actbio.2019.12.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 01/14/2023]
Abstract
Ischemia-reperfusion (I/R)-induced organ injury is a serious health problem worldwide, and poor recovery of acute phase injury leads to chronic fibrosis and further organ dysfunction. Thus, a more precise approach to enhance tissue repair is needed. By using a renal I/R model, we aimed to evaluate the role of a hydrogel-based dual-drug delivery platform on promoting tissue repair. An injectable, self-assembling peptide/heparin (SAP/Hep) hydrogel was used to co-deliver TNF-α neutralizing antibody (anti-TNF-α) and hepatocyte growth factor (HGF). The microstructure and controlled release properties of KLD2R/Hep hydrogel were analyzed. The effects of the drug-loaded hydrogel (SAP-drug) on renal injury were evaluated in mice with I/R injury. In vitro, the SAP/Hep hydrogel allowed for a faster release of anti-TNF-α with a sustained release of HGF, and both drugs maintained their bioactivities after release. In vivo, combined anti-TNF-α/HGF showed better renal protective potential than anti-TNF-α or HGF alone. SAP-drug (anti-TNF-α/HGF in SAP hydrogel) treatment reduced the level of serum creatinine (Scr), blood urea nitrogen (BUN), tubular apoptosis, renal inflammatory factors, and macrophage infiltration compared to Free-drug (anti-TNF-α/HGF in solution) or SAP alone. Moreover, the SAP-drug group had better efficacy on promoting tubular cell proliferation and dedifferentiation than SAP or Free-drug alone, and thus reduced chronic renal fibrosis in I/R mice. This study highlighted that SAP could sequentially deliver the two drugs to achieve anti-inflammatory and pro-proliferative effects with one injection and thus is a promising delivery platform for tissue repair. STATEMENT OF SIGNIFICANCE: Ischemia-reperfusion (I/R)-induced organ injury is a serious health issue, and delayed tissue repair leads to chronic fibrosis and organ failure. Systemic administration of anti-inflammatory agents or growth factors have shown some benefits on I/R injury, but their therapeutic efficacy was limited by side effects, poor bioavailability, and absent key signals of tissue repair. To address these issues, a hydrogel-based drug co-delivery platform was used to treat I/R injury. This platform could achieve sequential release kinetics with faster rate of anti-TNF-ɑ and slower rate of HGF, and effectively promoted tissue repair by targeting inflammation and proliferation in mice with renal I/R. This nanoscale delivery platform represents a promising strategy for solid organs (heart, liver and kidney) regeneration after I/R.
Collapse
|
30
|
Circulating factors in young blood as potential therapeutic agents for age-related neurodegenerative and neurovascular diseases. Brain Res Bull 2019; 153:15-23. [PMID: 31400495 DOI: 10.1016/j.brainresbull.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Recent animal studies on heterochronic parabiosis (a technique combining the blood circulation of two animals) have revealed that young blood has a powerful rejuvenating effect on brain aging. Circulating factors, especially growth differentiation factor 11 (GDF11) and C-C motif chemokine 11 (CCL11), may play a key role in this effect, which inspires hope for novel approaches to treating age-related cerebral diseases in humans, such as neurodegenerative and neurovascular diseases. Recently, attempts have begun to translate these astonishing and exciting findings from mice to humans and from bench to bedside. However, increasing reports have shown contradictory data, questioning the capacity of these circulating factors to reverse age-related brain dysfunction. In this review, we summarize the current research on the role of young blood, as well as the circulating factors GDF11 and CCL11, in the aging brain and age-related cerebral diseases. We highlight recent controversies, discuss related challenges and provide a future outlook.
Collapse
|
31
|
Wang MJ, Chen J, Chen F, Liu Q, Sun Y, Yan C, Yang T, Bao Y, Hu YP. Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging. Aging Dis 2019; 10:871-882. [PMID: 31440391 PMCID: PMC6675530 DOI: 10.14336/ad.2018.1119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Although aging is a physiological process, it has raised interest in the science of aging and rejuvenation because of the increasing burden on the rapidly aging global population. With advanced age, there is a decline in homeostatic maintenance and regenerative responsiveness to the injury of various tissues, thereby contributing to the incidence of age-related diseases. The primary cause of the functional declines that occur along with aging is considered to be the exhaustion of stem cell functions in their corresponding tissues. Age-related changes in the systemic environment, the niche, and stem cells contribute to this loss. Thus, the reversal of stem cell aging at the cellular level might lead to the rejuvenation of the animal at an organismic level and the prevention of aging, which would be critical for developing new therapies for age-related dysfunction and diseases. Here, we will explore the effects of aging on stem cells in different tissues. The focus of this discussion is on pro-youth interventions that target intrinsic stem cell properties, environmental niche component, systemic factors, and senescent cellular clearance, which are promising for developing strategies related to the reversal of aged stem cell function and optimizing tissue repair processes.
Collapse
Affiliation(s)
- Min-Jun Wang
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Jiajia Chen
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Fei Chen
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Qinggui Liu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yu Sun
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Chen Yan
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Tao Yang
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yiwen Bao
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China.,2Department of Diagnostic radiology, University of Hong Kong, Hong Kong 999077, China
| | - Yi-Ping Hu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
32
|
Growth differentiation factor 11 (GDF11) has pronounced effects on skin biology. PLoS One 2019; 14:e0218035. [PMID: 31181098 PMCID: PMC6557520 DOI: 10.1371/journal.pone.0218035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) belongs to the TGF-β superfamily of proteins and is closely related to myostatin. Recent findings show that GDF11 has rejuvenating properties with pronounced effects on the cardiovascular system, brain, skeletal muscle, and skeleton in mice. Several human studies were also conducted, some implicating decreasing levels of circulating GDF11 with age. To date, however, there have not been any reports on its role in human skin. This study examined the impact of GDF11 on human skin, specifically related to skin aging. The effect of recombinant GDF11 on the function of various skin cells was examined in human epidermal keratinocytes, dermal fibroblasts, melanocytes, dermal microvascular endothelial cells and 3D skin equivalents, as well as in ex vivo human skin explants. GDF11 had significant effects on the production of dermal matrix components in multiple skin models in vitro and ex vivo. In addition, it had a pronounced effect on expression of multiple skin related genes in full thickness 3D skin equivalents. This work, for the first time, demonstrates an important role for GDF11 in skin biology and a potential impact on skin health and aging.
Collapse
|
33
|
AKF-PD alleviates diabetic nephropathy via blocking the RAGE/AGEs/NOX and PKC/NOX Pathways. Sci Rep 2019; 9:4407. [PMID: 30867431 PMCID: PMC6416244 DOI: 10.1038/s41598-018-36344-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes. Currently, drugs are not available to effectively control the disease. Fluorofenidone (AKF-PD) is a recently developed drug; it possesses activities in reducing DN progression in preclinical research. Nonetheless, its renal protection and the underlying mechanisms have not been thoroughly investigated. We report here that AKF-PD significantly alleviatesrenal oxidative stress (OS) in db/dbmice through downregulation of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase and upregulation of glutathione peroxidase and superoxide dismutase, thereby protecting kidney from DN pathogenesis. AKF-PD likely reduces OS through the advanced glycation end products (AGE) and protein kinase C (PKC) pathways. While renal AGEs, PKCα, PKCβ, and NADPH oxidase 4 (NOX4) were all substantially upregulated in db/db mice compared to db/m animals, AKF-PD robustly downregulated all these events to the basal levelsdetected in db/m mice. In primary human renal mesangial cells (HMCs), high glucose (HG) elevated receptor for advanced glycation endproducts (RAGE), PKCα, PKCβ and NOX4 activity, and induced the production of reactive oxygen species (ROS); these events were all inhibited by AKF-PD. Furthermore, HG led to mitochondrial damagein HMCs;AKF-PD conferred protection on the damage. Knockdown of either PKCα or PKCβ reduced HG-induced ROS production and mitochondrial damage in HMCs. The knockdown significantly enhanced AKF-PD-mediated inhibition of ROS production and mitochondrial damage in HG-treated HMCs. Collectively, our study demonstrates that AKF-PD protects renal function under diabetes conditions in part through inhibition of OS during DN pathogenesis. AKF-PD can be explored for clinical applications in DN therapy.
Collapse
|
34
|
Zheng R, Xie L, Liu W, Guo Y, Wang Y, Wu Y, Liu Y, Luo H, Kang N, Yuan Q. Recombinant growth differentiation factor 11 impairs fracture healing through inhibiting chondrocyte differentiation. Ann N Y Acad Sci 2018; 1440:54-66. [PMID: 30575056 DOI: 10.1111/nyas.13994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023]
Abstract
Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor-β (TGF-β) superfamily, has been reported to have the capacity to reverse age-related pathologic changes and regulate organ regeneration after injury; however, the role of GDF11 in fracture healing and bone repair is still unclear. Here, we established a fracture model in 12-week-old male mice to observe two healing states: the cartilaginous callus and bony callus formation phases. Our results showed that recombinant GDF11 (rGDF11) injection inhibits cartilaginous callus maturation and hard callus formation, thereby impairing fracture healing in vivo. In vitro, rGDF11 administration inhibited chondrocyte differentiation and maturation by phosphorylating SMAD2/3 protein and inhibiting RUNX2 expression. Notably, inhibition of TGF-β activity by a SMAD-specific inhibitor attenuated GDF11 effects. Thus, our study demonstrates that, rather than acting as a rejuvenating agent, rGDF11 impairs fracture healing by inhibiting chondrocyte differentiation and maturation.
Collapse
Affiliation(s)
- Rixin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongke Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Kang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Wang L, Wang Y, Wang Z, Qi Y, Zong B, Liu M, Li X, Zhang X, Liu C, Cao R, Ma Y. Growth differentiation factor 11 ameliorates experimental colitis by inhibiting NLRP3 inflammasome activation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G909-G920. [PMID: 30188752 DOI: 10.1152/ajpgi.00159.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth differentiation factor 11 (GDF11) has an anti-inflammatory effect in the mouse model of atherosclerosis and Alzheimer's disease, but how GDF11 regulates intestinal inflammation during ulcerative colitis (UC) is poorly defined. The Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome is closely associated with intestinal inflammation because of its ability to increase IL-1β secretion. Our aim is to determine whether GDF11 has an effect on attenuating experimental colitis in mice. In this study, using a dextran sodium sulfate (DSS)-induced acute colitis mouse model, we reported that GDF11 treatment attenuated loss of body weight, the severity of the disease activity index, shortening of the colon, and histological changes in the colon. GDF11 remarkably suppressed IL-1β secretion and NLRP3 inflammasome activation in colon samples and RAW 264.7 cells, such as the levels of NLRP3 and activated caspase-1. Furthermore, we found that GDF11 inhibited NLRP3 inflammasome activation by downregulating the Toll-like receptor 4/NF-κB p65 pathway and reactive oxygen species production via the typical Smad2/3 pathway. Thus, our research shows that GDF11 alleviates DSS-induced colitis by inhibiting NLRP3 inflammasome activation, providing some basis for its potential use in the treatment of UC. NEW & NOTEWORTHY Here, we identify a new role for growth differentiation factor 11 (GDF11), which ameliorates dextran sodium sulfate-induced acute colitis. Meanwhile, we discover a new phenomenon of GDF11 inhibiting IL-1β secretion and Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome activation. These findings reveal that GDF11 is a new potential candidate for the treatment of ulcerative colitis patients with a hyperactive NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lanju Wang
- School of Basic Medical Sciences, Zhengzhou University , Zhengzhou, Henan , China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Zhenfeng Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Yu Qi
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Xuefang Li
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Xingkun Zhang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Chengguo Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Yuanfang Ma
- School of Basic Medical Sciences, Zhengzhou University , Zhengzhou, Henan , China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| |
Collapse
|
36
|
Zhang J, Li Y, Li H, Zhu B, Wang L, Guo B, Xiang L, Dong J, Liu M, Xiang G. GDF11 Improves Angiogenic Function of EPCs in Diabetic Limb Ischemia. Diabetes 2018; 67:2084-2095. [PMID: 30026260 DOI: 10.2337/db17-1583] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been shown to promote stem cell activity and rejuvenate the function of multiple organs in old mice, but little is known about the functions of GDF11 in the diabetic rat model of hindlimb ischemia. In this study, we found that systematic replenishment of GDF11 rescues angiogenic function of endothelial progenitor cells (EPCs) and subsequently improves vascularization and increases blood flow in diabetic rats with hindlimb ischemia. Conversely, anti-GDF11 monoclonal antibody treatment caused impairment of vascularization and thus, decreased blood flow. In vitro treatment of EPCs with recombinant GDF11 attenuated EPC dysfunction and apoptosis. Mechanistically, the GDF11-mediated positive effects could be attributed to the activation of the transforming growth factor-β/Smad2/3 and protein kinase B/hypoxia-inducible factor 1α pathways. These findings suggest that GDF11 repletion may enhance EPC resistance to diabetes-induced damage, improve angiogenesis, and thus, increase blood flow. This benefit of GDF11 may lead to a new therapeutic approach for diabetic hindlimb ischemia.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA
| | - Huan Li
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Biao Zhu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Li Wang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Bei Guo
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Lin Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Jing Dong
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Min Liu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| | - Guangda Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei, China
| |
Collapse
|
37
|
Cury MFR, Olivares EQ, Garcias RC, Toledo GQ, Anselmo NA, Paskakulis LC, Botelho FFR, Carvalho NZ, Silva AAD, Agren C, Carlos CP. Inflammation and kidney injury attenuated by prior intake of Brazil nuts in the process of ischemia and reperfusion. ACTA ACUST UNITED AC 2018; 40:312-318. [PMID: 30118536 PMCID: PMC6533994 DOI: 10.1590/2175-8239-jbn-2018-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Introduction: Ischemia and reperfusion (IR) is a process inherent to the procedures
involved in the transplantation of organs that causes inflammation, cell
death and cell injury, and may lead to rejection of the graft. It is
possible that the anti-inflammatory properties of the Brazil nuts (BN) can
mitigate the renal injury caused by IR. Objective: To investigate whether the previous intake of BN reduces the expression of
markers of inflammation, injury, and cell death after renal IR. Methods: Male Wistar rats were distributed into six groups (N = 6/group): SHAM
(control), SHAM treated with 75 or 150 mg of BN, IR, and IR treated with 75
or 150 mg of BN. The IR procedure consisted of right nephrectomy and
occlusion of the left renal artery with a non-traumatic vascular clamp for
30 min. BN was given daily from day 1 to 7 before surgery (SHAM or IR), and
maintained until sacrifice (48 h after surgery). Inflammation was evaluated
by renal expression of COX-2 and TGF-β, injury by the expression of
vimentin, and cell death by apoptosis through caspase-3 expression
(immunohistochemistry). Results: Pretreatment with 75 mg of BN reduced renal expression of the COX-2, TGF-β,
vimentin, and caspase-3. The dose of 150 mg caused increased expression of
COX-2. Conclusion: In experimental IR, the damage can be minimized with a prior low-dose intake
of BN, improving inflammation, injury, and cell death.
Collapse
Affiliation(s)
| | - Estéfany Queiroz Olivares
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Renata Correia Garcias
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Giovana Queda Toledo
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Natassia Alberici Anselmo
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | | | | | - Natiele Zanardo Carvalho
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Analice Andreoli da Silva
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Camila Agren
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Carla Patrícia Carlos
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| |
Collapse
|
38
|
Liu D, Lun L, Huang Q, Ning Y, Zhang Y, Wang L, Yin Z, Zhang Y, Xia L, Yin Z, Fu B, Cai G, Sun X, Chen X. Youthful systemic milieu alleviates renal ischemia-reperfusion injury in elderly mice. Kidney Int 2018; 94:268-279. [PMID: 29935950 DOI: 10.1016/j.kint.2018.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023]
Abstract
The incidence of acute kidney injury (AKI) is high in elderly people, and is difficult to prevent and treat. One of its major causes is renal ischemia-reperfusion injury (IRI). A young systemic environment may prevent the senescence of old organs. However, it is unknown whether a young milieu may reduce renal IRI in the elderly. To examine this question, bilateral renal IRI was induced in old (24 months) mice three weeks after parabiosis model establishment. At 24 hours after IRI, compared to old wild-type mice, the old mice with IRI had significantly damaged renal histology, decreased renal function, increased oxidative stress, inflammation, and apoptosis. However, there was no increase in autophagy. Compared to old mice with IRI, old-old parabiosis mice with IRI did not show differences in renal histological damage, oxidative stress, inflammation, apoptosis, or autophagy, but did exhibit improved renal function. Compared to the old-old parabiosis mice with IRI, the old mice with IRI in the young (12 week)-old parabiosis showed less renal histological injury and better renal function. Renal oxidative stress, inflammation, and apoptosis were significantly decreased, and autophagy was significantly increased. Thus, a youthful systemic milieu may decrease oxidative stress, inflammation, and apoptosis, and increase autophagy in old mice with IRI. These effects ameliorated IRI injuries in old mice. Our study provides new ideas for effectively preventing and treating AKI in the elderly.
Collapse
Affiliation(s)
- Dong Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China; Department of Nephrology, Air Force General Hospital, Chinese PLA, Beijing, China
| | - Lide Lun
- Department of Nephrology, Air Force General Hospital, Chinese PLA, Beijing, China
| | - Qi Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yichun Ning
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China; Department of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Ying Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Linna Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Zhiwei Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yinping Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Lihua Xia
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Zhong Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| |
Collapse
|
39
|
GDF11 Modulates Ca 2+-Dependent Smad2/3 Signaling to Prevent Cardiomyocyte Hypertrophy. Int J Mol Sci 2018; 19:ijms19051508. [PMID: 29783655 PMCID: PMC5983757 DOI: 10.3390/ijms19051508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β family, has been shown to act as a negative regulator in cardiac hypertrophy. Ca2+ signaling modulates cardiomyocyte growth; however, the role of Ca2+-dependent mechanisms in mediating the effects of GDF11 remains elusive. Here, we found that GDF11 induced intracellular Ca2+ increases in neonatal rat cardiomyocytes and that this response was blocked by chelating the intracellular Ca2+ with BAPTA-AM or by pretreatment with inhibitors of the inositol 1,4,5-trisphosphate (IP3) pathway. Moreover, GDF11 increased the phosphorylation levels and luciferase activity of Smad2/3 in a concentration-dependent manner, and the inhibition of IP3-dependent Ca2+ release abolished GDF11-induced Smad2/3 activity. To assess whether GDF11 exerted antihypertrophic effects by modulating Ca2+ signaling, cardiomyocytes were exposed to hypertrophic agents (100 nM testosterone or 50 μM phenylephrine) for 24 h. Both treatments increased cardiomyocyte size and [3H]-leucine incorporation, and these responses were significantly blunted by pretreatment with GDF11 over 24 h. Moreover, downregulation of Smad2 and Smad3 with siRNA was accompanied by inhibition of the antihypertrophic effects of GDF11. These results suggest that GDF11 modulates Ca2+ signaling and the Smad2/3 pathway to prevent cardiomyocyte hypertrophy.
Collapse
|
40
|
Liu A, Dong W, Peng J, Dirsch O, Dahmen U, Fang H, Zhang C, Sun J. Growth differentiation factor 11 worsens hepatocellular injury and liver regeneration after liver ischemia reperfusion injury. FASEB J 2018; 32:5186-5198. [DOI: 10.1096/fj.201800195r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anding Liu
- Experimental Medicine CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Dong
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Peng
- Department of Clinical LaboratoryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Olaf Dirsch
- Institute of PathologyKlinikum ChemnitzChemnitzGermany
| | - Uta Dahmen
- Experimental Transplantation SurgeryDepartment of Generalm, Visceral, and Vascular SurgeryFriedrich-Schiller-University JenaJenaGermany
| | - Haoshu Fang
- Department of PathophysiologyAnhui Medical UniversityHefeiChina
| | - Cuntai Zhang
- Department of GeriatricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jian Sun
- Department of Biliopancreatic Surgery Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
41
|
Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion. Brain Res Bull 2018; 139:38-47. [PMID: 29432795 DOI: 10.1016/j.brainresbull.2018.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 01/09/2023]
Abstract
The recent suggestion that growth differentiation factor 11 (GDF11) acts as a rejuvenation factor has remained controversial. However, in addition to its role in aging, the relationship between GDF11 and cerebral ischemia is still an important area that needs more investigation. Here we examined effects of GDF11 on angiogenesis and recovery of neurological function in a rat model of stroke. Exogenous recombinant GDF11 (rGDF11) at different doses were directly injected into the tail vein in rats subjected to cerebral ischemia/reperfusion (I/R). Neurobehavioral tests were performed, the proliferation of endothelial cells (ECs) and GDF11 downstream signal activin-like kinase 5 (ALK5) were assessed, and functional microvessels were measured. Results showed that rGDF11 at a dosage of 0.1 mg/kg/day could effectively activate cerebral angiogenesis in vivo. In addition, rGDF11 improved the modified neurological severity scores and the adhesive removal somatosensory test, promoted proliferation of ECs, induced ALK5 and increased vascular surface area and the number of vascular branch points in the peri-infarct cerebral cortex after cerebral I/R. These effects were suppressed by blocking ALK5. Our novel findings shed new light on the role of GDF11. Our results strongly suggest that GDF11 improves neurofunctional recovery from cerebral I/R injury and that this effect is mediated partly through its proangiogenic effect in the peri-infarct cerebral cortex, which is associated with ALK5. Thus, GDF11/ALK5 may represent new therapeutic targets for aiding recovery from stroke.
Collapse
|
42
|
Mehdipour M, Liu Y, Liu C, Kumar B, Kim D, Gathwala R, Conboy IM. Key Age-Imposed Signaling Changes That Are Responsible for the Decline of Stem Cell Function. Subcell Biochem 2018; 90:119-143. [PMID: 30779008 DOI: 10.1007/978-981-13-2835-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter analyzes recent developments in the field of signal transduction of ageing with the focus on the age-imposed changes in TGF-beta/pSmad, Notch, Wnt/beta-catenin, and Jak/Stat networks. Specifically, this chapter delineates how the above-mentioned evolutionary-conserved morphogenic signaling pathways operate in young versus aged mammalian tissues, with insights into how the age-specific broad decline of stem cell function is precipitated by the deregulation of these key cell signaling networks. This chapter also provides perspectives onto the development of defined therapeutic approaches that aim to calibrate intensity of the determinant signal transduction to health-youth, thereby rejuvenating multiple tissues in older people.
Collapse
Affiliation(s)
- Melod Mehdipour
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Yutong Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Chao Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Binod Kumar
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Daehwan Kim
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Ranveer Gathwala
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
43
|
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int 2017; 92:569-579. [DOI: 10.1016/j.kint.2017.02.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
|
44
|
Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget 2017; 8:81604-81616. [PMID: 29113418 PMCID: PMC5655313 DOI: 10.18632/oncotarget.20258] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Growth differentiation factor (GDF11) is a member of TGF-β/BMP superfamily that activates Smad and non-Smad signaling pathways and regulates expression of its target nuclear genes. Since its discovery in 1999, studies have shown the involvement of GDF11 in normal physiological processes, such as embryonic development and erythropoiesis, as well as in the pathophysiology of aging, cardiovascular disease, diabetes mellitus, and cancer. In addition, there are contradictory reports regarding the role of GDF11 in aging, cardiovascular disease, diabetes mellitus, osteogenesis, skeletal muscle development, and neurogenesis. In this review, we describe the GDF11 signaling pathway and its potential role in development, physiology and disease.
Collapse
|
45
|
Plotnikov EY, Pavlenko TA, Pevzner IB, Zorova LD, Manskikh VN, Silachev DN, Sukhikh GT, Zorov DB. The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS J 2017; 284:3069-3078. [DOI: 10.1111/febs.14177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology; M.V. Lomonosov Moscow State University; Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology; Ministry of Health of the Russian Federation; Moscow Russia
| | - Tatiana A. Pavlenko
- A.N. Belozersky Institute of Physico-Chemical Biology; M.V. Lomonosov Moscow State University; Russia
- Russian Cardiology Research and Production Center; Moscow Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology; M.V. Lomonosov Moscow State University; Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology; Ministry of Health of the Russian Federation; Moscow Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology; M.V. Lomonosov Moscow State University; Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology; Ministry of Health of the Russian Federation; Moscow Russia
- International Laser Center; M.V. Lomonosov Moscow State University; Russia
| | - Vasily N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology; M.V. Lomonosov Moscow State University; Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology; M.V. Lomonosov Moscow State University; Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology; Ministry of Health of the Russian Federation; Moscow Russia
| | - Gennady T. Sukhikh
- V. I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology; Ministry of Health of the Russian Federation; Moscow Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology; M.V. Lomonosov Moscow State University; Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology; Ministry of Health of the Russian Federation; Moscow Russia
| |
Collapse
|
46
|
Neves J, Sousa-Victor P, Jasper H. Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell 2017; 20:161-175. [PMID: 28157498 DOI: 10.1016/j.stem.2017.01.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM, and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for the development of new strategies to improve stem cell function and optimize tissue repair processes.
Collapse
Affiliation(s)
- Joana Neves
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Leibniz Institute on Aging - Fritz Lipmann Institute, Jena 07745, Germany.
| |
Collapse
|
47
|
Li H, Li Y, Xiang L, Zhang J, Zhu B, Xiang L, Dong J, Liu M, Xiang G. GDF11 Attenuates Development of Type 2 Diabetes via Improvement of Islet β-Cell Function and Survival. Diabetes 2017; 66:1914-1927. [PMID: 28450417 DOI: 10.2337/db17-0086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of islet development and a variety of aging conditions, but little is known about the physiological functions of GDF11 in adult pancreatic islets. Here, we showed that systematic replenishment of GDF11 not only preserved insulin secretion but also improved the survival and morphology of β-cells and improved glucose metabolism in both nongenetic and genetic mouse models of type 2 diabetes (T2D). Conversely, anti-GDF11 monoclonal antibody treatment caused β-cell failure and lethal T2D. In vitro treatment of isolated murine islets and MIN6 cells with recombinant GDF11 attenuated glucotoxicity-induced β-cell dysfunction and apoptosis. Mechanistically, the GDF11-mediated protective effects could be attributed to the activation of transforming growth factor-β/Smad2 and phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-FoxO1 signaling. These findings suggest that GDF11 repletion may improve β-cell function and mass and thus may lead to a new therapeutic approach for T2D.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Yixiang Li
- Radiation-Diagnostic/Oncology School of Medicine, Emory University, Atlanta, GA
| | - Lingwei Xiang
- Mathematics and Statistics Department, Georgia State University, Atlanta, GA
| | - JiaJia Zhang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Guangda Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| |
Collapse
|
48
|
Abstract
Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair. In this review, we describe NSCs and their niches during tissue homeostasis and how they undergo age-associated remodeling and dysfunction. We also discuss some of the functional ramifications in the brain from NSC aging. Finally, we discuss some recent insights from interventions in NSC aging that could eventually translate into therapies for healthy brain aging.
Collapse
Affiliation(s)
- Deana M Apple
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; The Barshop Institute on Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Rene Solano-Fonseca
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; The Barshop Institute on Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; The Barshop Institute on Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States.
| |
Collapse
|