1
|
Cao C, Melegari M, Philippi M, Domaretskiy D, Ubrig N, Gutiérrez-Lezama I, Morpurgo AF. Full Control of Solid-State Electrolytes for Electrostatic Gating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211993. [PMID: 36812653 DOI: 10.1002/adma.202211993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Indexed: 05/05/2023]
Abstract
Ionic gating is a powerful technique to realize field-effect transistors (FETs) enabling experiments not possible otherwise. So far, ionic gating has relied on the use of top electrolyte gates, which pose experimental constraints and make device fabrication complex. Promising results obtained recently in FETs based on solid-state electrolytes remain plagued by spurious phenomena of unknown origin, preventing proper transistor operation, and causing limited control and reproducibility. Here, a class of solid-state electrolytes for gating (Lithium-ion conducting glass-ceramics, LICGCs) is explored, the processes responsible for the spurious phenomena and irreproducible behavior are identified, and properly functioning transistors exhibiting high density ambipolar operation with gate capacitance of ≈ 20 - 50 µ F c m - 2 \[20{\bm{ - }}50\;\mu F c{m^{{\bm{ - }}2}}\] (depending on the polarity of the accumulated charges) are demonstrated. Using 2D semiconducting transition-metal dichalcogenides, the ability to implement ionic-gate spectroscopy to determine the semiconducting bandgap, and to accumulate electron densities above 1014 cm-2 are demostrated, resulting in gate-induced superconductivity in MoS2 multilayers. As LICGCs are implemented in a back-gate configuration, they leave the surface of the material exposed, enabling the use of surface-sensitive techniques (such as scanning tunneling microscopy and photoemission spectroscopy) impossible so far in ionic-gated devices. They also allow double ionic gated devices providing independent control of charge density and electric field.
Collapse
Affiliation(s)
- Chuanwu Cao
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
| | - Margherita Melegari
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
| | - Marc Philippi
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
| | - Daniil Domaretskiy
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
| | - Nicolas Ubrig
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
| | - Ignacio Gutiérrez-Lezama
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
| | - Alberto F Morpurgo
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland
| |
Collapse
|
2
|
Pierini S, Abadie C, Dang TH, Khalili A, Zhang H, Cavallo M, Prado Y, Gallas B, Ithurria S, Sauvage S, Dayen JF, Vincent G, Lhuillier E. Lithium-Ion Glass Gating of HgTe Nanocrystal Film with Designed Light-Matter Coupling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2335. [PMID: 36984214 PMCID: PMC10054404 DOI: 10.3390/ma16062335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Nanocrystals' (NCs) band gap can be easily tuned over the infrared range, making them appealing for the design of cost-effective sensors. Though their growth has reached a high level of maturity, their doping remains a poorly controlled parameter, raising the need for post-synthesis tuning strategies. As a result, phototransistor device geometry offers an interesting alternative to photoconductors, allowing carrier density control. Phototransistors based on NCs that target integrated infrared sensing have to (i) be compatible with low-temperature operation, (ii) avoid liquid handling, and (iii) enable large carrier density tuning. These constraints drive the search for innovative gate technologies beyond traditional dielectric or conventional liquid and ion gel electrolytes. Here, we explore lithium-ion glass gating and apply it to channels made of HgTe narrow band gap NCs. We demonstrate that this all-solid gate strategy is compatible with large capacitance up to 2 µF·cm-2 and can be operated over a broad range of temperatures (130-300 K). Finally, we tackle an issue often faced by NC-based phototransistors:their low absorption; from a metallic grating structure, we combined two resonances and achieved high responsivity (10 A·W-1 or an external quantum efficiency of 500%) over a broadband spectral range.
Collapse
Affiliation(s)
- Stefano Pierini
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Claire Abadie
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- ONERA-The French Aerospace Lab, 6 Chemin de la Vauve aux Granges, 91123 Palaiseau, France
| | - Tung Huu Dang
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Adrien Khalili
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Huichen Zhang
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Mariarosa Cavallo
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Bruno Gallas
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d’Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Sébastien Sauvage
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 91120 Palaiseau, France
| | - Jean Francois Dayen
- IPCMS-CNRS, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, France
- Institut Universitaire de France, 1 Rue Descartes, CEDEX 05, 75231 Paris, France
| | - Grégory Vincent
- ONERA-The French Aerospace Lab, 6 Chemin de la Vauve aux Granges, 91123 Palaiseau, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| |
Collapse
|
3
|
Shrivastava M, Ramgopal Rao V. A Roadmap for Disruptive Applications and Heterogeneous Integration Using Two-Dimensional Materials: State-of-the-Art and Technological Challenges. NANO LETTERS 2021; 21:6359-6381. [PMID: 34342450 DOI: 10.1021/acs.nanolett.1c00729] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This Mini Review attempts to establish a roadmap for two-dimensional (2D) material-based microelectronic technologies for future/disruptive applications with a vision for the semiconductor industry to enable a universal technology platform for heterogeneous integration. The heterogeneous integration would involve integrating orthogonal capabilities, such as different forms of computing (classical, neuromorphic, and quantum), all forms of sensing, digital and analog memories, energy harvesting, and so forth, all in a single chip using a universal technology platform. We have reviewed the state-of-the-art 2D materials such as graphene, transition metal dichalcogenides, phosphorene and hexagonal boron nitride, and so forth, and how they offer unique possibilities for a range of futuristic/disruptive applications. Besides, we have discussed the technological and fundamental challenges in enabling such a universal technology platform, where the world stands today, and what gaps are required to be filled.
Collapse
Affiliation(s)
- Mayank Shrivastava
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - V Ramgopal Rao
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 40076, India
| |
Collapse
|
4
|
Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers. Nat Commun 2020; 11:3203. [PMID: 32581271 PMCID: PMC7314772 DOI: 10.1038/s41467-020-17006-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Electrostatic gating of two-dimensional (2D) materials with ionic liquids (ILs), leading to the accumulation of high surface charge carrier densities, has been often exploited in 2D devices. However, the intrinsic liquid nature of ILs, their sensitivity to humidity, and the stress induced in frozen liquids inhibit ILs from constituting an ideal platform for electrostatic gating. Here we report a lithium-ion solid electrolyte substrate, demonstrating its application in high-performance back-gated n-type MoS2 and p-type WSe2 transistors with sub-threshold values approaching the ideal limit of 60 mV/dec and complementary inverter amplifier gain of 34, the highest among comparable amplifiers. Remarkably, these outstanding values were obtained under 1 V power supply. Microscopic studies of the transistor channel using microwave impedance microscopy reveal a homogeneous channel formation, indicative of a smooth interface between the TMD and underlying electrolytic substrate. These results establish lithium-ion substrates as a promising alternative to ILs for advanced thin-film devices. Electrostatic gating of 2D transistors with ionic liquids presents intrinsic limitations. Here, the authors demonstrate n-type MoS2 and p-type WSe2 transistors on a lithium-ion solid electrolyte substrate, displaying sub-threshold values approaching the ideal limit of 60 mV/dec and complementary amplifier gain of 34 with 1 V supply.
Collapse
|
5
|
Liao M, Zhu Y, Zhang J, Zhong R, Schneeloch J, Gu G, Jiang K, Zhang D, Ma X, Xue QK. Superconductor-Insulator Transitions in Exfoliated Bi 2Sr 2CaCu 2O 8+δ Flakes. NANO LETTERS 2018; 18:5660-5665. [PMID: 30111116 DOI: 10.1021/acs.nanolett.8b02183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We realize superconductor-insulator transitions (SIT) in mechanically exfoliated Bi2Sr2CaCu2O8+δ (BSCCO) flakes and address simultaneously their transport properties as well as the evolution of density of states. Back-gating via the solid ion conductor (SIC) engenders a SIT in BSCCO due to the modulation of carrier density by intercalated lithium ions. Scaling analysis indicates that the SIT follows the theoretical description of a two-dimensional quantum phase transition (2D-QPT). We further carry out tunneling spectroscopy in graphite(G)/BSCCO heterojunctions. We observe V-shaped gaps in the critical regime of the SIT. The density of states in BSCCO gets symmetrically suppressed by further going into the insulating regime. Our technique of combining solid state gating with tunneling spectroscopy can be easily applied to the study of other two-dimensional materials.
Collapse
Affiliation(s)
- Menghan Liao
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics , Tsinghua University , Beijing , 100084 , China
| | - Yuying Zhu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics , Tsinghua University , Beijing , 100084 , China
| | - Jin Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics , Tsinghua University , Beijing , 100084 , China
| | - Ruidan Zhong
- Condensed Matter Physics and Materials Science Department , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - John Schneeloch
- Condensed Matter Physics and Materials Science Department , Brookhaven National Laboratory , Upton , New York 11973 , United States
- Department of Physics and Astronomy , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Kaili Jiang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics , Tsinghua University , Beijing , 100084 , China
- Tsinghua-Foxconn Nanotechnology Research Center , Tsinghua University , Beijing , 100084 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100084 , China
| | - Ding Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics , Tsinghua University , Beijing , 100084 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100084 , China
| | - Xucun Ma
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics , Tsinghua University , Beijing , 100084 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100084 , China
| | - Qi-Kun Xue
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics , Tsinghua University , Beijing , 100084 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100084 , China
| |
Collapse
|
6
|
Qin F, Ideue T, Shi W, Zhang Y, Suzuki R, Yoshida M, Saito Y, Iwasa Y. Electric-field Control of Electronic States in WS2 Nanodevices by Electrolyte Gating. J Vis Exp 2018:56862. [PMID: 29708534 PMCID: PMC5933487 DOI: 10.3791/56862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A method of carrier number control by electrolyte gating is demonstrated. We have obtained WS2 thin flakes with atomically flat surface via scotch tape method or individual WS2 nanotubes by dispersing the suspension of WS2 nanotubes. The selected samples have been fabricated into devices by the use of the electron beam lithography and electrolyte is put on the devices. We have characterized the electronic properties of the devices under applying the gate voltage. In the small gate voltage region, ions in the electrolyte are accumulated on the surface of the samples which leads to the large electric potential drop and resultant electrostatic carrier doping at the interface. Ambipolar transfer curve has been observed in this electrostatic doping region. When the gate voltage is further increased, we met another drastic increase of source-drain current which implies that ions are intercalated into layers of WS2 and electrochemical carrier doping is realized. In such electrochemical doping region, superconductivity has been observed. The focused technique provides a powerful strategy for achieving the electric-filed-induced quantum phase transition.
Collapse
Affiliation(s)
- Feng Qin
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo
| | - Toshiya Ideue
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo;
| | - Wu Shi
- Materials Sciences Division, Lawrence Berkeley National Laboratory
| | - Yijin Zhang
- Institute of Scientific and Industrial Research, Osaka University; Max Planck Institute for Solid State Research
| | - Ryuji Suzuki
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo
| | | | - Yu Saito
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo
| | - Yoshihiro Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo; RIKEN Center for Emergent Matter Science (CEMS)
| |
Collapse
|
7
|
Wu CL, Yuan H, Li Y, Gong Y, Hwang HY, Cui Y. Gate-Induced Metal-Insulator Transition in MoS 2 by Solid Superionic Conductor LaF 3. NANO LETTERS 2018; 18:2387-2392. [PMID: 29580055 DOI: 10.1021/acs.nanolett.7b05377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 1014 cm-2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, we demonstrate an all solid-state EDL device based on a solid superionic conductor LaF3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF3 EDL transistors (EDLTs), we observe the metal-insulator transition in MoS2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS2 transistors. This result shows the powerful gating capability of LaF3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.
Collapse
Affiliation(s)
- Chun-Lan Wu
- Department of Material Science and Engineering , Stanford University , Stanford , California 94305 , United States
| | - Hongtao Yuan
- Department of Material Science and Engineering , Stanford University , Stanford , California 94305 , United States
- Stanford Institute for Materials and Energy Sciences , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Yanbin Li
- Department of Material Science and Engineering , Stanford University , Stanford , California 94305 , United States
| | - Yongji Gong
- Department of Material Science and Engineering , Stanford University , Stanford , California 94305 , United States
- School of Material Science and Engineering , Beihang University , Beijing 100191 , China
| | - Harold Y Hwang
- Stanford Institute for Materials and Energy Sciences , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
- Department of Applied Physics , Stanford University , Stanford , California 94305 , United States
| | - Yi Cui
- Department of Material Science and Engineering , Stanford University , Stanford , California 94305 , United States
- Stanford Institute for Materials and Energy Sciences , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
8
|
Zhao J, Wang M, Zhang X, Lv Y, Wu T, Qiao S, Song S, Gao B. Application of sodium-ion-based solid electrolyte in electrostatic tuning of carrier density in graphene. Sci Rep 2017; 7:3168. [PMID: 28600521 PMCID: PMC5466694 DOI: 10.1038/s41598-017-03413-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 11/09/2022] Open
Abstract
Using a solid electrolyte to tune the carrier density in thin-film materials is an emerging technique that has potential applications in both basic and applied research. Until now, only materials containing small ions, such as protons and lithium ions, have been used to demonstrate the gating effect. Here, we report the study of a lab-synthesised sodium-ion-based solid electrolyte, which shows a much stronger capability to tune the carrier density in graphene than previously reported lithium-ion-based solid electrolyte. Our findings may stimulate the search for solid electrolytes better suited for gating applications, taking benefit of many existing materials developed for battery research.
Collapse
Affiliation(s)
- Jialin Zhao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefu Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, China
| | - Yue Lv
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianru Wu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, China
| | - Shan Qiao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shufeng Song
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Bo Gao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China. .,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|