1
|
Yi Q, Xiong L. From sensory organs to internal pathways: A comprehensive review of amino acid sensing in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111828. [PMID: 39983896 DOI: 10.1016/j.cbpa.2025.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organisms require various nutrients to provide energy, support growth, and maintain metabolic balance. Amino acid is among the most basic nutrients, serving as fundamental building blocks for protein synthesis while playing vital roles in growth, development, and reproduction. Understanding the mechanisms by which organisms perceive amino acids is key to unraveling how they select appropriate food sources and adapt to environmental challenges. The fruit fly, Drosophila melanogaster, serves as a powerful model for understanding fundamental genetic and physiological processes. This review focuses on recent advances in amino acid sensing mechanisms in Drosophila melanogaster and their relevance to feeding behavior, nutrient homeostasis, and adaptive responses, and integrates insights into peripheral sensory systems, such as the legs and proboscis, as well as internal regulatory mechanisms within the gut, fat body, and brain. It highlights key molecular players, including ionotropic receptors, gut-derived hormones, neuropeptides, and the microbiome-gut-brain axis. Additionally, the manuscript identifies knowledge gaps and proposes directions for future research, providing a comprehensive overview of this dynamic field.
Collapse
Affiliation(s)
- Quan Yi
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liangyao Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Baik LS, Talross GJS, Gray S, Pattisam HS, Peterson TN, Nidetz JE, Hol FJH, Carlson JR. Mosquito taste responses to human and floral cues guide biting and feeding. Nature 2024; 635:639-646. [PMID: 39415007 PMCID: PMC11578787 DOI: 10.1038/s41586-024-08047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The taste system controls many insect behaviours, yet little is known about how tastants are encoded in mosquitoes or how they regulate critical behaviours. Here we examine how taste stimuli are encoded by Aedes albopictus mosquitoes-a highly invasive disease vector-and how these cues influence biting, feeding and egg laying. We find that neurons of the labellum, the major taste organ of the head, differentially encode a wide variety of human and other cues. We identify three functional classes of taste sensilla with an expansive coding capacity. In addition to excitatory responses, we identify prevalent inhibitory responses, which are predictive of biting behaviour. Certain bitter compounds suppress physiological and behavioural responses to sugar, suggesting their use as potent stop signals against appetitive cues. Complex cues, including human sweat, nectar and egg-laying site water, elicit distinct response profiles from the neuronal repertoire. We identify key tastants on human skin and in sweat that synergistically promote biting behaviours. Transcriptomic profiling identifies taste receptors that could be targeted to disrupt behaviours. Our study sheds light on key features of the taste system that suggest new ways of manipulating chemosensory function and controlling mosquito vectors.
Collapse
Affiliation(s)
- Lisa S Baik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sydney Gray
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Himani S Pattisam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Taylor N Peterson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - James E Nidetz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Felix J H Hol
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Kim SJ, Lee KM, Park SH, Yang T, Song I, Rai F, Hoshino R, Yun M, Zhang C, Kim JI, Lee S, Suh GSB, Niwa R, Park ZY, Kim YJ. A sexually transmitted sugar orchestrates reproductive responses to nutritional stress. Nat Commun 2024; 15:8477. [PMID: 39353950 PMCID: PMC11445483 DOI: 10.1038/s41467-024-52807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones. Venerose enters the hemolymph and directly activates nutrient-sensing Dh44+ neurons in the brain. Food deprivation directs the nutrient-sensing neurons to secrete more of the neuropeptide Dh44 in response to infused venerose. The secreted Dh44 then enhances the local niche signal, stimulating GSC proliferation. It also extends the retention of ejaculate by females, resulting in greater venerose absorption and increased sperm storage. In this study, we uncovered the role of a sugar-like seminal substance produced by males that coordinates reproductive responses to nutritional challenges in females.
Collapse
Affiliation(s)
- Seong-Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Si Hyung Park
- School of Horticulture and Forestry, College of Bio and Medical Sciences, Mokpo National University, Muan, 58554, Republic of Korea
| | - Taekyun Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ingyu Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Fumika Rai
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryo Hoshino
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chen Zhang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae-Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
4
|
Guillemin J, Li J, Li V, McDowell SAT, Audette K, Davis G, Jelen M, Slamani S, Kelliher L, Gordon MD, Stanley M. Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Cell Rep 2024; 43:114625. [PMID: 39141516 DOI: 10.1016/j.celrep.2024.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Chemosensory cells across the body of Drosophila melanogaster evaluate the environment to prioritize certain behaviors. Previous mapping of gustatory receptor neurons (GRNs) on the fly labellum identified a set of neurons in L-type sensilla that express Ionotropic Receptor 94e (IR94e), but the impact of IR94e GRNs on behavior remains unclear. We used optogenetics and chemogenetics to activate IR94e neurons and found that they drive mild feeding suppression but enhance egg laying. In vivo calcium imaging revealed that IR94e GRNs respond strongly to certain amino acids, including glutamate, and that IR94e plus co-receptors IR25a and IR76b are required for amino acid detection. Furthermore, IR94e mutants show behavioral changes to solutions containing amino acids, including increased consumption and decreased egg laying. Overall, our results suggest that IR94e GRNs on the fly labellum discourage feeding and encourage egg laying as part of an important behavioral switch in response to certain chemical cues.
Collapse
Affiliation(s)
| | - Jinfang Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Viktoriya Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sasha A T McDowell
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kayla Audette
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Grace Davis
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Meghan Jelen
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samy Slamani
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Liam Kelliher
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Molly Stanley
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
5
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Gabrawy MM, Westbrook R, King A, Khosravian N, Ochaney N, DeCarvalho T, Wang Q, Yu Y, Huang Q, Said A, Abadir M, Zhang C, Khare P, Fairman JE, Le A, Milne GL, Vonhoff FJ, Walston JD, Abadir PM. Dual treatment with kynurenine pathway inhibitors and NAD + precursors synergistically extends life span in Drosophila. Aging Cell 2024; 23:e14102. [PMID: 38481042 PMCID: PMC11019140 DOI: 10.1111/acel.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 04/17/2024] Open
Abstract
Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.
Collapse
Affiliation(s)
- Mariann M. Gabrawy
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Reyhan Westbrook
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Austin King
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Nick Khosravian
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Neeraj Ochaney
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Tagide DeCarvalho
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Qinchuan Wang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yuqiong Yu
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Qiao Huang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Adam Said
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Emory UniversityAtlantaGeorgiaUSA
| | - Michael Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- University of Maryland, College ParkCollege ParkMarylandUSA
| | | | | | - Jennifer E. Fairman
- Department of Arts as Applied to MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Anne Le
- Gigantest Inc.BaltimoreMarylandUSA
| | - Ginger L. Milne
- Vanderbilt UniversityVanderbilt Brain Institute, Neurochemistry CoreNashvilleTennesseeUSA
| | - Fernando J. Vonhoff
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jeremy D. Walston
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Peter M. Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
7
|
Toshima N, Schleyer M. IR76b-expressing neurons in Drosophila melanogaster are necessary for associative reward learning of an amino acid mixture. Biol Lett 2024; 20:20230519. [PMID: 38351746 PMCID: PMC10865000 DOI: 10.1098/rsbl.2023.0519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Learning where to find nutrients while at the same time avoiding toxic food is essential for survival of any animal. Using Drosophila melanogaster larvae as a study case, we investigate the role of gustatory sensory neurons expressing IR76b for associative learning of amino acids, the building blocks of proteins. We found surprising complexity in the neuronal underpinnings of sensing amino acids, and a functional division of sensory neurons. We found that the IR76b receptor is dispensable for amino acid learning, whereas the neurons expressing IR76b are specifically required for the rewarding but not the punishing effect of amino acids. This unexpected dissociation in neuronal processing of amino acids for different behavioural functions provides a study case for functional divisions of labour in gustatory systems.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Kosakamoto H, Miura M, Obata F. Epidermal tyrosine catabolism is crucial for metabolic homeostasis and survival against high-protein diets in Drosophila. Development 2024; 151:dev202372. [PMID: 38165175 DOI: 10.1242/dev.202372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
The insect epidermis forms the exoskeleton and determines the body size of an organism. How the epidermis acts as a metabolic regulator to adapt to changes in dietary protein availability remains elusive. Here, we show that the Drosophila epidermis regulates tyrosine (Tyr) catabolism in response to dietary protein levels, thereby promoting metabolic homeostasis. The gene expression profile of the Drosophila larval body wall reveals that enzymes involved in the Tyr degradation pathway, including 4-hydroxyphenylpyruvate dioxygenase (Hpd), are upregulated by increased protein intake. Hpd is specifically expressed in the epidermis and is dynamically regulated by the internal Tyr levels. Whereas basal Hpd expression is maintained by insulin/IGF-1 signalling, Hpd induction on high-protein diet requires activation of the AMP-activated protein kinase (AMPK)-forkhead box O subfamily (FoxO) axis. Impairment of the FoxO-mediated Hpd induction in the epidermis leads to aberrant increases in internal Tyr and its metabolites, disrupting larval development on high-protein diets. Taken together, our findings uncover a crucial role of the epidermis as a metabolic regulator in coping with an unfavourable dietary environment.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. eLife 2023; 12:RP89795. [PMID: 38060294 PMCID: PMC10703443 DOI: 10.7554/elife.89795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, gustatory sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand -gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence, and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor 1 (VR1), which is activated by capsaicin, a chemical to which wild-type Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| |
Collapse
|
10
|
Ali MZ, Anushree A, Bilgrami AL, Ahsan A, Ola MS, Haque R, Ahsan J. Phenylacetaldehyde induced olfactory conditioning in Drosophila melanogaster (Diptera: Drosophilidae) larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:25. [PMID: 38092368 PMCID: PMC10718815 DOI: 10.1093/jisesa/iead112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic odorant, exists in varied fruits including overripe bananas and prickly pear cactus, the 2 major host fruits of Drosophila melanogaster. It acts as a potent ligand for the Ionotropic receptor 84a (IR84a) and the Odorant receptor 67a (OR67a), serving as an important food and courtship cue for adult fruit flies. Drosophila melanogaster larvae respond robustly to diverse feeding odorants, such as ethyl acetate (EA), an aliphatic ester. Since the chemical identity and concentration of an odorant are vital neural information handled by the olfactory system, we studied how larvae respond to PAH, an aromatic food odorant with aphrodisiac properties for adult flies. Our findings revealed that PAH attracted larvae significantly in a dose-dependent manner. Larvae could also be trained with PAH associated to appetitive and aversive reinforcers. Thus, like EA, PAH might serve as an important odorant cue for larvae, aiding in food tracking and survival in the wild. Since IR84a/IR8a complex primarily governs PAH response in adult flies, we examined expression of Ir84a and Ir8a in early third-instar larvae. Our experiments showed the presence of Ir8a, a novel finding. However, contrary to adult flies, PAH-responsive Ir84a was not found. Our behavioral experiments with Ir8a1 mutant larvae exhibited normal chemotaxis to PAH, whereas Orco1 mutant showed markedly reduced chemotaxis, indicating an OR-mediated neural circuitry for sensing of PAH in larvae. The results obtained through this study are significantly important as information on how larvae perceive and process PAH odorant at the neuronal level is lacking.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
11
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545761. [PMID: 37905057 PMCID: PMC10614748 DOI: 10.1101/2023.06.20.545761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Most animals have functionally distinct populations of taste cells, expressing receptors that are tuned to compounds of different valence. This organizational feature allows for discrimination between chemicals associated with specific taste modalities and facilitates differentiating between unadulterated foods and foods contaminated with toxic substances. In the fruit fly D. melanogaster , primary sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor (VR1), which is activated by capsaicin, a chemical to which wildtype Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca 2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
|
12
|
Ruedenauer FA, Parreño MA, Grunwald Kadow IC, Spaethe J, Leonhardt SD. The ecology of nutrient sensation and perception in insects. Trends Ecol Evol 2023; 38:994-1004. [PMID: 37328389 DOI: 10.1016/j.tree.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023]
Abstract
Insects are equipped with neurological, physiological, and behavioral tools to locate potential food sources and assess their nutritional quality based on volatile and chemotactile cues. We summarize current knowledge on insect taste perception and the different modalities of reception and perception. We suggest that the neurophysiological mechanisms of reception and perception are closely linked to the species-specific ecology of different insects. Understanding these links consequently requires a multidisciplinary approach. We also highlight existing knowledge gaps, especially in terms of the exact ligands of receptors, and provide evidence for a perceptional hierarchy suggesting that insects have adapted their reception and perception to preferentially perceive nutrient stimuli that are important for their fitness.
Collapse
Affiliation(s)
- Fabian A Ruedenauer
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| | - Maria Alejandra Parreño
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University of Bonn, University Clinic Bonn (UKB), Bonn, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sara D Leonhardt
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
13
|
Aleya A, Mihok E, Pecsenye B, Jolji M, Kertész A, Bársony P, Vígh S, Cziaky Z, Máthé AB, Burtescu RF, Oláh NK, Neamțu AA, Turcuș V, Máthé E. Phytoconstituent Profiles Associated with Relevant Antioxidant Potential and Variable Nutritive Effects of the Olive, Sweet Almond, and Black Mulberry Gemmotherapy Extracts. Antioxidants (Basel) 2023; 12:1717. [PMID: 37760021 PMCID: PMC10525884 DOI: 10.3390/antiox12091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The extracts of whole plants or specific organs from different plant species are gaining increasing attention for their phytotherapy applications. Accordingly, we prepared standardized gemmotherapy extracts (GTEs) from young shoots/buds of olive (Olea europaea), sweet almond (Prunus amygdalus), and black mulberry (Morus nigra), and analyzed the corresponding phytonutrient profiles. We identified 42, 103, and 109 phytonutrients in the olive, almond, and black mulberry GTEs, respectively, containing amino acids, vitamins, polyphenols, flavonoids, coumarins, alkaloids, iridoids, carboxylic acids, lignans, terpenoids, and others. In order to assess the physiological effects generated by the GTEs, we developed a translational nutrition model based on Drosophila melanogaster and Cyprinus carpio. The results indicate that GTEs could influence, to a variable extent, viability and ATP synthesis, even though both are dependent on the specific carbohydrate load of the applied diet and the amino acid and polyphenol pools provided by the GTEs. It seems, therefore, likely that the complex chemical composition of the GTEs offers nutritional properties that cannot be separated from the health-promoting mechanisms that ultimately increase viability and survival. Such an approach sets the paves the way for the nutritional genomic descriptions regarding GTE-associated health-promoting effects.
Collapse
Affiliation(s)
- Amina Aleya
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (A.A.); (E.M.); (A.K.)
| | - Emőke Mihok
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (A.A.); (E.M.); (A.K.)
| | - Bence Pecsenye
- Doctoral School of Nutrition and Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary (M.J.)
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary;
| | - Maria Jolji
- Doctoral School of Nutrition and Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary (M.J.)
| | - Attila Kertész
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (A.A.); (E.M.); (A.K.)
| | - Péter Bársony
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary;
| | - Szabolcs Vígh
- Agricultural and Molecular Research Institute, University of Nyíregyháza, Sóstói Str. 31, 4400 Nyíregyháza, Hungary; (S.V.); (Z.C.)
| | - Zoltán Cziaky
- Agricultural and Molecular Research Institute, University of Nyíregyháza, Sóstói Str. 31, 4400 Nyíregyháza, Hungary; (S.V.); (Z.C.)
| | - Anna-Beáta Máthé
- Doctoral School of Neuroscience, Faculty of Medicine, University of Debrecen, Nagyerdei Str. 94, 4032 Debrecen, Hungary;
| | | | - Neli-Kinga Oláh
- PlantExtrakt Ltd., 407059 Cluj, Romania; (R.F.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Vasile Goldiș Western University from Arad, L.Rebreanu Str. 86, 310414 Arad, Romania
| | - Andreea-Adriana Neamțu
- Department of Life Sciences, Faculty of Medicine, Vasile Goldiș Western University from Arad, L.Rebreanu Str. 86, 310414 Arad, Romania
| | - Violeta Turcuș
- Department of Life Sciences, Faculty of Medicine, Vasile Goldiș Western University from Arad, L.Rebreanu Str. 86, 310414 Arad, Romania
- CE-MONT Mountain Economy Center, Costin C. Kirițescu National Institute of Economic Research, Romanian Academy, Petreni Str. 49, 725700 Suceava, Romania
| | - Endre Máthé
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary;
- Department of Life Sciences, Faculty of Medicine, Vasile Goldiș Western University from Arad, L.Rebreanu Str. 86, 310414 Arad, Romania
| |
Collapse
|
14
|
Cesur MF, Basile A, Patil KR, Çakır T. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease. Life Sci Alliance 2023; 6:e202201695. [PMID: 37236669 PMCID: PMC10215973 DOI: 10.26508/lsa.202201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tunahan Çakır
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
15
|
Tierney AJ, Velazquez E, Johnson L, Hiranandani S, Pauly M, Souvignier M. Nutritional and reproductive status affect amino acid appetite in house crickets (Acheta domesticus). FRONTIERS IN INSECT SCIENCE 2023; 3:1120413. [PMID: 38469515 PMCID: PMC10926381 DOI: 10.3389/finsc.2023.1120413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 03/13/2024]
Abstract
We examined amino acid appetite in the omnivorous house cricket (Acheta domesticus), a common model organism for both research and teaching. Our first experiment addressed the hypothesis that house crickets can discriminate between sucrose and essential amino acids (EAA), and that preference for the latter would be affected by prior feeding experience. To test this hypothesis, we compared feeding responses of juvenile and adult crickets following pre-feeding with sucrose or an essential amino acid mixture, predicting that sucrose-only pre-feeding would enhance subsequent intake of amino acids in a two-choice preference test. Based on previous studies, we also predicted that amino acid consumption would be enhanced in females compared to males, and in mated compared to virgin females. Hence we compared responses in male and female last instar nymphs, adult males, virgin females, mated females, and mated females allowed to lay eggs. The second experiment examined how extended periods of essential amino acid deprivation (48 h to 6 days) affected appetite for these nutrients in adult male and female insects. Finally, we examined growth and survival of juvenile and adult crickets fed a holidic diet lacking all amino acids and protein. Our results demonstrated that house crickets can distinguish EAA from sucrose and that consumption of the former is enhanced following sucrose-only pre-feeding. We also found sex and developmental differences, with juvenile and virgin females showing a greater preference for EAA than juvenile or adult males. Contrary to expectation, mated females preferred sucrose over EAA both prior to and after egg laying. We also found that the crickets of both sexes increased their intake of EAA when exposed to longer periods of deprivation, indicating that they engage in compensatory feeding on these nutrients. Finally, as expected we found that growth was severely limited in juveniles fed a diet lacking all amino acids, but adults and many juveniles survived for 30 days on this diet.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, United States
| | | | | | | | | | | |
Collapse
|
16
|
Walker WB, Mori BA, Cattaneo AM, Gonzalez F, Witzgall P, Becher PG. Comparative transcriptomic assessment of the chemosensory receptor repertoire of Drosophila suzukii adult and larval olfactory organs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101049. [PMID: 36528931 DOI: 10.1016/j.cbd.2022.101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.
Collapse
Affiliation(s)
- William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA.
| | - Boyd A Mori
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Alberto M Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Research and Development, ChemTica Internacional S.A., Apdo. 640-3100, Santo Domingo, Heredia, Costa Rica.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
17
|
King BH, Gunathunga PB. Gustation in insects: taste qualities and types of evidence used to show taste function of specific body parts. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 37014302 PMCID: PMC10072106 DOI: 10.1093/jisesa/iead018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.
Collapse
Affiliation(s)
- B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
18
|
Wosniack ME, Festa D, Hu N, Gjorgjieva J, Berni J. Adaptation of Drosophila larva foraging in response to changes in food resources. eLife 2022; 11:e75826. [PMID: 36458693 PMCID: PMC9822246 DOI: 10.7554/elife.75826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
All animals face the challenge of finding nutritious resources in a changing environment. To maximize lifetime fitness, the exploratory behavior has to be flexible, but which behavioral elements adapt and what triggers those changes remain elusive. Using experiments and modeling, we characterized extensively how Drosophila larvae foraging adapts to different food quality and distribution and how the foraging genetic background influences this adaptation. Our work shows that different food properties modulated specific motor programs. Food quality controls the traveled distance by modulating crawling speed and frequency of pauses and turns. Food distribution, and in particular the food-no food interface, controls turning behavior, stimulating turns toward the food when reaching the patch border and increasing the proportion of time spent within patches of food. Finally, the polymorphism in the foraging gene (rover-sitter) of the larvae adjusts the magnitude of the behavioral response to different food conditions. This study defines several levels of control of foraging and provides the basis for the systematic identification of the neuronal circuits and mechanisms controlling each behavioral response.
Collapse
Affiliation(s)
- Marina E Wosniack
- Computation in Neural Circuits Group, Max Planck Institute for Brain ResearchFrankfurtGermany
| | - Dylan Festa
- School of Life Sciences, Technical University of MunichMunichGermany
| | - Nan Hu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain ResearchFrankfurtGermany
- School of Life Sciences, Technical University of MunichMunichGermany
| | - Jimena Berni
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Brighton and Sussex Medical School,, University of SussexBrightonUnited Kingdom
| |
Collapse
|
19
|
Gu X, Jouandin P, Lalgudi PV, Binari R, Valenstein ML, Reid MA, Allen AE, Kamitaki N, Locasale JW, Perrimon N, Sabatini DM. Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature 2022; 608:209-216. [PMID: 35859173 PMCID: PMC10112710 DOI: 10.1038/s41586-022-04960-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/09/2022] [Indexed: 12/28/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.
Collapse
Affiliation(s)
- Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Pranav V Lalgudi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rich Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Max L Valenstein
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Annamarie E Allen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Nolan Kamitaki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
20
|
Meslin C, Mainet P, Montagné N, Robin S, Legeai F, Bretaudeau A, Johnston JS, Koutroumpa F, Persyn E, Monsempès C, François MC, Jacquin-Joly E. Spodoptera littoralis genome mining brings insights on the dynamic of expansion of gustatory receptors in polyphagous noctuidae. G3 (BETHESDA, MD.) 2022; 12:6598846. [PMID: 35652787 PMCID: PMC9339325 DOI: 10.1093/g3journal/jkac131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
The bitter taste, triggered via gustatory receptors, serves as an important natural defense against the ingestion of poisonous foods in animals, and the increased host breadth is usually linked to an increase in the number of gustatory receptor genes. This has been especially observed in polyphagous insect species, such as noctuid species from the Spodoptera genus. However, the dynamic and physical mechanisms leading to these gene expansions and the evolutionary pressures behind them remain elusive. Among major drivers of genome dynamics are the transposable elements but, surprisingly, their potential role in insect gustatory receptor expansion has not been considered yet. In this work, we hypothesized that transposable elements and possibly positive selection would be involved in the highly dynamic evolution of gustatory receptor in Spodoptera spp. We first sequenced de novo the full 465 Mb genome of S. littoralis, and manually annotated the main chemosensory genes, including a large repertoire of 373 gustatory receptor genes (including 19 pseudogenes). We also improved the completeness of S. frugiperda and S. litura gustatory receptor gene repertoires. Then, we annotated transposable elements and revealed that a particular category of class I retrotransposons, the SINE transposons, was significantly enriched in the vicinity of gustatory receptor gene clusters, suggesting a transposon-mediated mechanism for the formation of these clusters. Selection pressure analyses indicated that positive selection within the gustatory receptor gene family is cryptic, only 7 receptors being identified as positively selected. Altogether, our data provide a new good quality Spodoptera genome, pinpoint interesting gustatory receptor candidates for further functional studies and bring valuable genomic information on the mechanisms of gustatory receptor expansions in polyphagous insect species.
Collapse
Affiliation(s)
- Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Pauline Mainet
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Stéphanie Robin
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - Fabrice Legeai
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - Anthony Bretaudeau
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Fotini Koutroumpa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France.,Present address: INRAE, Université Tours, Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France
| | - Emma Persyn
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France.,CIRAD, UMR PVBMT, Réunion, France
| | - Christelle Monsempès
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| |
Collapse
|
21
|
McDowell SAT, Stanley M, Gordon MD. A molecular mechanism for high salt taste in Drosophila. Curr Biol 2022; 32:3070-3081.e5. [PMID: 35772408 DOI: 10.1016/j.cub.2022.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Dietary salt detection and consumption are crucial to maintaining fluid and ionic homeostasis. To optimize salt intake, animals employ salt-dependent activation of multiple taste pathways. Generally, sodium activates attractive taste cells, but attraction is overridden at high salt concentrations by cation non-selective activation of aversive taste cells. In flies, high salt avoidance is driven by both "bitter" taste neurons and a class of glutamatergic "high salt" neurons expressing pickpocket23 (ppk23). Although the cellular basis of salt taste has been described, many of the molecular mechanisms remain elusive. Here, we show that ionotropic receptor 7c (IR7c) is expressed in glutamatergic high salt neurons, where it functions with co-receptors IR76b and IR25a to detect high salt and is essential for monovalent salt taste. Misexpression of IR7c in sweet neurons, which endogenously express IR76b and IR25a, confers responsiveness to non-sodium salts, indicating that IR7c is sufficient to convert a sodium-selective gustatory receptor neuron to a cation non-selective one. Furthermore, the resultant transformation of taste neuron tuning switches potassium chloride from an aversive to an attractive tastant. This research provides insight into the molecular basis of monovalent and divalent salt-taste coding.
Collapse
Affiliation(s)
- Sasha A T McDowell
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Molly Stanley
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
22
|
Engert S, Sterne GR, Bock DD, Scott K. Drosophila gustatory projections are segregated by taste modality and connectivity. eLife 2022; 11:e78110. [PMID: 35611959 PMCID: PMC9170244 DOI: 10.7554/elife.78110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gustatory sensory neurons detect caloric and harmful compounds in potential food and convey this information to the brain to inform feeding decisions. To examine the signals that gustatory neurons transmit and receive, we reconstructed gustatory axons and their synaptic sites in the adult Drosophila melanogaster brain, utilizing a whole-brain electron microscopy volume. We reconstructed 87 gustatory projections from the proboscis labellum in the right hemisphere and 57 from the left, representing the majority of labellar gustatory axons. Gustatory neurons contain a nearly equal number of interspersed pre- and postsynaptic sites, with extensive synaptic connectivity among gustatory axons. Morphology- and connectivity-based clustering revealed six distinct groups, likely representing neurons recognizing different taste modalities. The vast majority of synaptic connections are between neurons of the same group. This study resolves the anatomy of labellar gustatory projections, reveals that gustatory projections are segregated based on taste modality, and uncovers synaptic connections that may alter the transmission of gustatory signals.
Collapse
Affiliation(s)
- Stefanie Engert
- University of California, BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
23
|
Sims C, Birkett MA, Withall DM. Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. INSECTS 2022; 13:368. [PMID: 35447810 PMCID: PMC9030700 DOI: 10.3390/insects13040368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
Olfaction is a complex recognition process that is critical for chemical communication in insects. Though some insect species are capable of discrimination between compounds that are structurally similar, little is understood about how this high level of discrimination arises. Some insects rely on discriminating between enantiomers of a compound, demonstrating an ability for highly selective recognition. The role of two major peripheral olfactory proteins in insect olfaction, i.e., odorant-binding proteins (OBPs) and odorant receptors (ORs) has been extensively studied. OBPs and ORs have variable discrimination capabilities, with some found to display highly specialized binding capability, whilst others exhibit promiscuous binding activity. A deeper understanding of how odorant-protein interactions induce a response in an insect relies on further analysis such as structural studies. In this review, we explore the potential role of OBPs and ORs in highly specific recognition, specifically enantiomeric discrimination. We summarize the state of research into OBP and OR function and focus on reported examples in the literature of clear enantiomeric discrimination by these proteins.
Collapse
Affiliation(s)
- Cassie Sims
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael A. Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| | - David M. Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| |
Collapse
|
24
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
25
|
Aryal B, Dhakal S, Shrestha B, Lee Y. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr Biol 2022; 32:1376-1386.e4. [PMID: 35176225 DOI: 10.1016/j.cub.2022.01.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
Abstract
Amino acids are essential nutrients that act as building blocks for protein synthesis. Recent studies in Drosophila have demonstrated that glycine, phenylalanine, and threonine elicit attraction, whereas tryptophan elicits aversion at ecologically relevant concentrations. Here, we demonstrated that eight amino acids, including arginine, glycine, alanine, serine, phenylalanine, threonine, cysteine, and proline, differentially stimulate feeding behavior by activating sweet-sensing gustatory receptor neurons (GRNs) in L-type and S-type sensilla. In turn, this process is mediated by three GRs (GR5a, GR61a, and GR64f), as well as two broadly required ionotropic receptors (IRs), IR25a and IR76b. However, GR5a, GR61a, and GR64f are only required for sensing amino acids in the sweet-sensing GRNs of L-type sensilla. This suggests that amino acid sensing in different type sensilla occurs through dual mechanisms. Furthermore, our findings indicated that ecologically relevant high concentrations of arginine, lysine, proline, valine, tryptophan, isoleucine, and leucine elicit aversive responses via bitter-sensing GRNs, which are mediated by three IRs (IR25a, IR51b, and IR76b). More importantly, our results demonstrate that arginine, lysine, and proline induce biphasic responses in a concentration-dependent manner. Therefore, amino acid detection in Drosophila occurs through two classes of receptors that activate two sets of sensory neurons in physiologically distinct pathways, which ultimately mediates attraction or aversion behaviors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Subash Dhakal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
26
|
Crava CM, Bobkov YV, Sollai G, Anfora G, Crnjar R, Cattaneo AM. Chemosensory Receptors in the Larval Maxilla of Papilio hospiton. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.795994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the butterflies of the genus Papilio (Lepidoptera: Papilionidae), Papilio hospiton (Géné) has a geographical distribution limited to the Mediterranean islands of Sardinia (Italy) and Corsica (France). This is mainly due to the host range that includes only a few plant species of Apiaceae and Rutaceae growing on these islands. In a previous electrophysiological investigation conducted on the maxillary gustatory system of larvae of P. hospiton and its closely phylogenetically related species Papilio machaon, a significantly higher spike activity was shown for the gustatory neurons of lateral and medial styloconic sensilla in P. hospiton when bitter compounds were tested. This effect was possibly correlated to the limited host choice range for P. hospiton. To shed light on the molecular aspects of this phenomenon, we investigated the expression pattern of sensory-related sequences by conducting a transcriptomic analysis from total RNA isolates of P. hospiton larval maxillae. We identified several transcripts that may be involved in taste (one gustatory receptor, one divergent ionotropic receptor, and several transient receptor potential channels, TRPs) as well as transcripts supporting an olfactory function for this appendage, including odorant receptors (ORs), antennal ionotropic receptors (A-IRs), sensory neuron membrane proteins (SNMPs), and odorant-binding proteins (OBPs). We used Human Embryonic Kidney (HEK293A) cells to heterologously express two of the identified receptors, PhospOR1 and PhospPain, together with their orthologs from P. machaon, for functional characterization. While our data suggest no activation of these two receptors by the ligands known so far to activate the electrophysiological response in larval maxillary neurons of Papilio species, nor temperature activation of both Papilio TRPA-channel Painless, they represent the first attempt in connecting neuronal activity with their molecular bases to unravel diet specialization between closely related Papilio species.
Collapse
|
27
|
Shrestha B, Nhuchhen Pradhan R, Nath DK, Lee Y. Cellular and molecular basis of IR3535 perception in Drosophila. PEST MANAGEMENT SCIENCE 2022; 78:793-802. [PMID: 34708523 DOI: 10.1002/ps.6693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND IR3535 is among the most widely used synthetic insect repellents, particularly for the mitigation of mosquito-borne diseases such as malaria, yellow fever, dengue and Zika, as well as to control flies, ticks, fleas, lice and mites. These insects are well-known vectors of deadly diseases that affect humans, livestock and crops. Moreover, global warming could increase the populations of these vectors. RESULTS Here, we performed IR3535 dose-response analyses on Drosophila melanogaster, a well-known insect model organism, using electrophysiology and binary food choice assays. Our findings indicated that bitter-sensing gustatory receptor neurons (GRNs) are indispensable to detect IR3535. Further, potential candidate gustatory receptors were screened, among which GR47a was identified as a key molecular sensor. IR3535 concentrations in the range 0.1-0.4% affected larval development and mortality. In addition, N,N-diethyl-m-toluamide (DEET, another commonly used insecticide) was found to exert synergistic effects when co-administered with IR3535. CONCLUSION Our findings confirmed that IR3535 directly activates bitter-sensing GRNs, which are mediated by GR47a. This relatively safe and highly potent insecticide can be largely used in combination with DEET to increase its efficiency to protect livestock and crops. Collectively, our findings suggest that the molecular sensors elucidated herein could be used as targets for the development of alternative insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Roshani Nhuchhen Pradhan
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Dharmendra Kumar Nath
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Nakagawa H, Nakane S, Ban G, Tomita J, Kume K. Effects of D-amino acids on sleep in Drosophila. Biochem Biophys Res Commun 2021; 589:180-185. [PMID: 34922200 DOI: 10.1016/j.bbrc.2021.11.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
Abstract
Sleep and metabolism are closely related and nutritional elements such as sugars and amino acids are known to regulate sleep differently. Here we comprehensively investigated the effects of D-amino acids fed in the diet on the sleep of Drosophila melanogaster. Among 19 amino acids examined, both D-serine (Ser) and D-glutamine (Gln) induced a significant increase in sleep amount and the effect of D-Ser was the largest at the same concentration of 1% of the food. The effects were proportional to its concentration and significant above 0.5% (about 50 mM). D-Ser is known to bind NR1 subunit of NMDA type glutamate receptor (NMDAR) and activate it. D-Ser did not increase the sleep of the NR1 hypomorphic mutant flies indicating its effects on sleep is mediated by NMDAR. In addition, hypomorphic mutants of D-amino acid oxidase (Daao1), which catabolizes D-amino acids and its disruption is known to increase D-Ser in the brain, showed increase in sleep. These results altogether suggested that D-Ser activated NMDAR in the brain thus increase sleep, and that D-Ser work physiologically to regulate sleep.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Shin Nakane
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Gosuke Ban
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
29
|
Maier GL, Komarov N, Meyenhofer F, Kwon JY, Sprecher SG. Taste sensing and sugar detection mechanisms in Drosophila larval primary taste center. eLife 2021; 10:67844. [PMID: 34859782 PMCID: PMC8709573 DOI: 10.7554/elife.67844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Despite the small number of gustatory sense neurons, Drosophila larvae are able to sense a wide range of chemicals. Although evidence for taste multimodality has been provided in single neurons, an overview of gustatory responses at the periphery is missing and hereby we explore whole-organ calcium imaging of the external taste center. We find that neurons can be activated by different combinations of taste modalities, including opposite hedonic valence and identify distinct temporal dynamics of response. Although sweet sensing has not been fully characterized so far in the external larval gustatory organ, we recorded responses elicited by sugar. Previous findings established that larval sugar sensing relies on the Gr43a pharyngeal receptor, but the question remains if external neurons contribute to this taste. Here, we postulate that external and internal gustation use distinct and complementary mechanisms in sugar sensing and we identify external sucrose sensing neurons.
Collapse
Affiliation(s)
- G Larisa Maier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Nikita Komarov
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Felix Meyenhofer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
30
|
Vulpe A, Menuz K. Ir76b is a Co-receptor for Amine Responses in Drosophila Olfactory Neurons. Front Cell Neurosci 2021; 15:759238. [PMID: 34867202 PMCID: PMC8635857 DOI: 10.3389/fncel.2021.759238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022] Open
Abstract
Two large families of olfactory receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs), mediate responses to most odors in the insect olfactory system. Individual odorant binding "tuning" OrX receptors are expressed by olfactory neurons in basiconic and trichoid sensilla and require the co-receptor Orco. The situation for IRs is more complex. Different tuning IrX receptors are expressed by olfactory neurons in coeloconic sensilla and rely on either the Ir25a or Ir8a co-receptors; some evidence suggests that Ir76b may also act as a co-receptor, but its function has not been systematically examined. Surprisingly, recent data indicate that nearly all coeloconic olfactory neurons co-express Ir25a, Ir8a, and Ir76b. Here, we demonstrate that Ir76b and Ir25a function together in all amine-sensing olfactory receptor neurons. In most neurons, loss of either co-receptor abolishes amine responses. In contrast, amine responses persist in the absence of Ir76b or Ir25a in ac1 sensilla but are lost in a double mutant. We show that responses mediated by acid-sensing neurons do not require Ir76b, despite their expression of this co-receptor. Our study also demonstrates that one population of coeloconic olfactory neurons exhibits Ir76b/Ir25a-dependent and Orco-dependent responses to distinct odorants. Together, our data establish the role of Ir76b as a bona fide co-receptor, which acts in partnership with Ir25a. Given that these co-receptors are among the most highly conserved olfactory receptors and are often co-expressed in chemosensory neurons, our data suggest Ir76b and Ir25a also work in tandem in other insects.
Collapse
Affiliation(s)
- Alina Vulpe
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
31
|
Dhakal S, Sang J, Aryal B, Lee Y. Ionotropic receptors mediate nitrogenous waste avoidance in Drosophila melanogaster. Commun Biol 2021; 4:1281. [PMID: 34773080 PMCID: PMC8589963 DOI: 10.1038/s42003-021-02799-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ammonia and its amine-containing derivatives are widely found in natural decomposition byproducts. Here, we conducted biased chemoreceptor screening to investigate the mechanisms by which different concentrations of ammonium salt, urea, and putrescine in rotten fruits affect feeding and oviposition behavior. We identified three ionotropic receptors, including the two broadly required IR25a and IR76b receptors, as well as the narrowly tuned IR51b receptor. These three IRs were fundamental in eliciting avoidance against nitrogenous waste products, which is mediated by bitter-sensing gustatory receptor neurons (GRNs). The aversion of nitrogenous wastes was evaluated by the cellular requirement by expressing Kir2.1 and behavioral recoveries of the mutants in bitter-sensing GRNs. Furthermore, by conducting electrophysiology assays, we confirmed that ammonia compounds are aversive in taste as they directly activated bitter-sensing GRNs. Therefore, our findings provide insights into the ecological roles of IRs as a means to detect and avoid toxic nitrogenous waste products in nature.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Binod Aryal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
32
|
Komarov N, Sprecher SG. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly (Austin) 2021; 16:1-12. [PMID: 34612150 PMCID: PMC8496535 DOI: 10.1080/19336934.2021.1953364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must sense their surroundings and be able to distinguish between relevant and irrelevant cues. An enticing area of research aims to uncover the mechanisms by which animals respond to chemical signals that constitute critical sensory input. In this review, we describe the principles of a model chemosensory system: the Drosophila larva. While distinct in many ways, larval behaviour is reminiscent of the dogmatic goals of life: to reach a stage of reproductive potential. It takes into account a number of distinct and identifiable parameters to ultimately provoke or modulate appropriate behavioural output. In this light, we describe current knowledge of chemosensory anatomy, genetic components, and the processing logic of chemical cues. We outline recent advancements and summarize the hypothesized neural circuits of sensory systems. Furthermore, we note yet-unanswered questions to create a basis for further investigation of molecular and systemic mechanisms of chemosensation in Drosophila and beyond.
Collapse
Affiliation(s)
- Nikita Komarov
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
34
|
Aryal B, Lee Y. Histamine gustatory aversion in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103586. [PMID: 33992752 DOI: 10.1016/j.ibmb.2021.103586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Many foods and drinks contain histamine; however, the mechanisms that drive histamine taste perception have not yet been investigated. Here, we use a simple model organism, Drosophila melanogaster, to dissect the molecular sensors required to taste histamine. We first investigated histidine and histamine taste perception by performing a binary food choice assay and electrophysiology to identify essential sensilla for histamine sensing in the labellum. Histamine was found to activate S-type sensilla, which harbor bitter-sensing gustatory receptor neurons. Moreover, unbiased genetic screening for chemoreceptors revealed that a gustatory receptor, GR22e and an ionotropic receptor, IR76b are required for histamine sensing. Ectopic expression of GR22e was sufficient to induce a response in I-type sensilla, which normally do not respond to histamine. Taken together, our findings provide new insights into the mechanisms by which insects discriminate between the toxic histamine and beneficial histidine via their taste receptors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
35
|
Bestea L, Réjaud A, Sandoz JC, Carcaud J, Giurfa M, de Brito Sanchez MG. Peripheral taste detection in honey bees: What do taste receptors respond to? Eur J Neurosci 2021; 54:4417-4444. [PMID: 33934411 DOI: 10.1111/ejn.15265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institut Universitaire de France (IUF), Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| |
Collapse
|
36
|
Response of the microbiome-gut-brain axis in Drosophila to amino acid deficit. Nature 2021; 593:570-574. [PMID: 33953396 DOI: 10.1038/s41586-021-03522-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor1. Taste receptors (T1R1-T1R3)2 can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor)3 monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs)4. This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa)5 was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.
Collapse
|
37
|
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, Benoit JB. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol 2021; 19:41. [PMID: 33750380 PMCID: PMC7944917 DOI: 10.1186/s12915-021-00975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. Conclusions The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00975-9.
Collapse
Affiliation(s)
- Pia U Olafson
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California - Davis, Davis, CA, USA
| | - Greta Buckmeier
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig J Coates
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - Megan Davis
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Justin Dykema
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Scott J Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Evan N Jansen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Lawson
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Gareth L Maslen
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dana Nayduch
- Arthropod-borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler J Raszick
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Perot Saelao
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Sonja L Swiger
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Stephenville, TX, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - David B Taylor
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Wesley C Warren
- University of Missouri, Bond Life Sciences Center, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,College of Medicine, Ohio State University, Columbus, OH, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
38
|
Kobler O, Weiglein A, Hartung K, Chen YC, Gerber B, Thomas U. A quick and versatile protocol for the 3D visualization of transgene expression across the whole body of larval Drosophila. J Neurogenet 2021; 35:306-319. [PMID: 33688796 DOI: 10.1080/01677063.2021.1892096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Larval Drosophila are used as a genetically accessible study case in many areas of biological research. Here we report a fast, robust and user-friendly procedure for the whole-body multi-fluorescence imaging of Drosophila larvae; the protocol has been optimized specifically for larvae by systematically tackling the pitfalls associated with clearing this small but cuticularized organism. Tests on various fluorescent proteins reveal that the recently introduced monomeric infrared fluorescent protein (mIFP) is particularly suitable for our approach. This approach comprises an effective, low-cost clearing protocol with minimal handling time and reduced toxicity in the reagents employed. It combines a success rate high enough to allow for small-scale screening approaches and a resolution sufficient for cellular-level analyses with light sheet and confocal microscopy. Given that publications and database documentations typically specify expression patterns of transgenic driver lines only within a given organ system of interest, the present procedure should be versatile enough to extend such documentation systematically to the whole body. As examples, the expression patterns of transgenic driver lines covering the majority of neurons, or subsets of chemosensory, central brain or motor neurons, are documented in the context of whole larval body volumes (using nsyb-Gal4, IR76b-Gal4, APL-Gal4 and mushroom body Kenyon cells, or OK371-Gal4, respectively). Notably, the presented protocol allows for triple-color fluorescence imaging with near-infrared, red and yellow fluorescent proteins.
Collapse
Affiliation(s)
- Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial NeuroImaging Core Facility (CNI), Magdeburg, Germany
| | - Aliće Weiglein
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kathrin Hartung
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Yi-Chun Chen
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
39
|
Arguello JR, Abuin L, Armida J, Mika K, Chai PC, Benton R. Targeted molecular profiling of rare olfactory sensory neurons identifies fate, wiring, and functional determinants. eLife 2021; 10:63036. [PMID: 33666172 PMCID: PMC7993999 DOI: 10.7554/elife.63036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Determining the molecular properties of neurons is essential to understand their development, function and evolution. Using Targeted DamID (TaDa), we characterize RNA polymerase II occupancy and chromatin accessibility in selected Ionotropic receptor (Ir)-expressing olfactory sensory neurons in Drosophila. Although individual populations represent a minute fraction of cells, TaDa is sufficiently sensitive and specific to identify the expected receptor genes. Unique Ir expression is not consistently associated with differences in chromatin accessibility, but rather to distinct transcription factor profiles. Genes that are heterogeneously expressed across populations are enriched for neurodevelopmental factors, and we identify functions for the POU-domain protein Pdm3 as a genetic switch of Ir neuron fate, and the atypical cadherin Flamingo in segregation of neurons into discrete glomeruli. Together this study reveals the effectiveness of TaDa in profiling rare neural populations, identifies new roles for a transcription factor and a neuronal guidance molecule, and provides valuable datasets for future exploration.
Collapse
Affiliation(s)
- J Roman Arguello
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Department of Ecology and Evolution Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Jan Armida
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Kaan Mika
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Phing Chian Chai
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Ni L. The Structure and Function of Ionotropic Receptors in Drosophila. Front Mol Neurosci 2021; 13:638839. [PMID: 33597847 PMCID: PMC7882480 DOI: 10.3389/fnmol.2020.638839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Ionotropic receptors (IRs) are a highly divergent subfamily of ionotropic glutamate receptors (iGluR) and are conserved across Protostomia, a major branch of the animal kingdom that encompasses both Ecdysozoa and Lophothrochozoa. They are broadly expressed in peripheral sensory systems, concentrated in sensory dendrites, and function in chemosensation, thermosensation, and hygrosensation. As iGluRs, four IR subunits form a functional ion channel to detect environmental stimuli. Most IR receptors comprise individual stimulus-specific tuning receptors and one or two broadly expressed coreceptors. This review summarizes the discoveries of the structure of IR complexes and the expression and function of each IR, as well as discusses the future direction for IR studies.
Collapse
Affiliation(s)
- Lina Ni
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
41
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
42
|
Kozma MT, Ngo-Vu H, Rump MT, Bobkov YV, Ache BW, Derby CD. Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics 2020; 21:649. [PMID: 32962631 PMCID: PMC7510291 DOI: 10.1186/s12864-020-07034-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.
Collapse
Affiliation(s)
- Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Matthew T Rump
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
43
|
Chen YCD, Dahanukar A. Recent advances in the genetic basis of taste detection in Drosophila. Cell Mol Life Sci 2020; 77:1087-1101. [PMID: 31598735 PMCID: PMC7125039 DOI: 10.1007/s00018-019-03320-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023]
Abstract
The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H2O2, bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA.
- Department of Molecular, Cell and Systems Biology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
44
|
Toshima N, Schleyer M. Neuronal processing of amino acids in Drosophila: from taste sensing to behavioural regulation. CURRENT OPINION IN INSECT SCIENCE 2019; 36:39-44. [PMID: 31473590 DOI: 10.1016/j.cois.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Finding and feeding on appropriate food are crucial for all animals. Carbohydrates and amino acids are both essential nutrients, albeit with distinct roles: the former are the main energy source whereas the latter are the building blocks of proteins and are used as neurotransmitters. Despite their crucial role, neither the sensing nor the neuronal processing of amino acids is well understood. Studies in Drosophila melanogaster have only recently gained momentum in shedding new light on the molecular and neuronal mechanisms of peripheral and internal amino acid sensing, as well as the organization of amino acid feeding behaviour. Furthermore, amino acids have been shown to act as rewards in associative learning. Focusing on recent studies in Drosophila, we summarize what is known so far about the perception of, and the behavioural responses to, amino acids in insects, and try to identify key questions for future research.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany.
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| |
Collapse
|
45
|
Toshima N, Kantar Weigelt M, Weiglein A, Boetzl FA, Gerber B. An amino-acid mixture can be both rewarding and punishing to larval Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.209486. [PMID: 31672727 DOI: 10.1242/jeb.209486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Amino acids are important nutrients for animals because they are necessary for protein synthesis in particular during growth, as well as for neurotransmission. However, little is known about how animals use past experience to guide their search for amino-acid-rich food. We reasoned that the larvae of Drosophila melanogaster are suitable for investigating this topic because they are the feeding and growth stages in the life cycle of these holometabolous insects. Specifically, we investigated whether experiencing an odour with a 20 amino-acid mixture as a semi-natural tastant during training establishes odour-tastant associative memories. Across a broad concentration range (0.01-20 mmol l-1), such an amino-acid mixture was found to have a rewarding effect, establishing appetitive memory for the odour. To our surprise, however, manipulation of the test conditions revealed that relatively high concentrations of the amino-acid mixture (3.3 mmol l-1 and higher) in addition establish aversive memory for the odour. We then characterized both of these oppositely valenced memories in terms of their dependency on the number of training trials, their temporal stability, their modulation through starvation and the specific changes in locomotion underlying them. Collectively, and in the light of what is known about the neuronal organization of odour-food memory in larval D . melanogaster, our data suggest that these memories are established in parallel. We discuss the similarity of our results to what has been reported for sodium chloride, and the possible neurogenetic bases for concentration-dependent changes in valence when these tastants are used as reinforcers.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Melisa Kantar Weigelt
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Fabian A Boetzl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany.,Institute for Biology, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
46
|
Rihani K, Fraichard S, Chauvel I, Poirier N, Delompré T, Neiers F, Tanimura T, Ferveur JF, Briand L. A conserved odorant binding protein is required for essential amino acid detection in Drosophila. Commun Biol 2019; 2:425. [PMID: 31799428 PMCID: PMC6874667 DOI: 10.1038/s42003-019-0673-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/01/2019] [Indexed: 11/10/2022] Open
Abstract
Animals need to detect in the food essential amino acids that they cannot synthesize. We found that the odorant binding protein OBP19b, which is highly expressed in Drosophila melanogaster taste sensilla, is necessary for the detection of several amino acids including the essential l-phenylalanine. The recombinant OBP19b protein was produced and characterized for its binding properties: it stereoselectively binds to several amino acids. Using a feeding-choice assay, we found that OBP19b is necessary for detecting l-phenylalanine and l-glutamine, but not l-alanine or D-phenylalanine. We mapped the cells expressing OBP19b and compared the electrophysiological responses of a single taste sensillum to several amino acids: OBP19b mutant flies showed a reduced response compared to control flies when tested to preferred amino acids, but not to the other ones. OBP19b is well conserved in phylogenetically distant species suggesting that this protein is necessary for detection of specific amino acids in insects.
Collapse
Affiliation(s)
- Karen Rihani
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| | - Stéphane Fraichard
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| | - Isabelle Chauvel
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| | - Nicolas Poirier
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| | - Thomas Delompré
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| | - Fabrice Neiers
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| | - Teiichi Tanimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602 Japan
- Department of Genetics, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Jean-François Ferveur
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| | - Loïc Briand
- AgroSup Dijon, CNRS, INRA, Université de Bourgogne-Franche Comté, Centre des Sciences du Goût et de l’Alimentation, 21000 Dijon, France
| |
Collapse
|
47
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Antennal ionotropic receptors IR64a1 and IR64a2 of the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidate) collaboratively perceive habitat and host cues. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103204. [PMID: 31422151 DOI: 10.1016/j.ibmb.2019.103204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 05/12/2023]
Abstract
Ionotropic receptors (IRs), as a member of the conserved chemoreceptor families in the peripheral nervous system, play a critical role in the chemoreception of Drosophila. However, little is known about IRs in Hymenoptera insects. Here, we comprehensively characterized the gene structure, topological map and chemosensory roles of antennal IRs (MmedIRs) in the hymenopteran parasitoid wasp Microplitis mediator. We found that the IRs were conserved across various insect species. In the in situ hybridization assays, most IRs showed female antennae biased features, and there was no co-expression of the IRs and the olfactory receptor co-receptor (ORco). Moreover, three IR co-expressed complexes, IR75u-IR8a, IR64a1-IR8a and IR64a2-IR8a, were detected. Two genes with high similarity, IR64a1 and IR64a2, were located in distinct neurons but projected to the same sensillum. In two-electrode voltage-clamp recordings, IR64a1 was widely tuned to the chemicals from habitat cues released from host plants over long distances, whereas IR64a2 responded to a narrow range host cues and plant odors with low-volatility. Notably, IR64a2 was able to perceive Z9-14: Ald, a vital sex pheromone component that is released from Helicoverpa armigera, which is the preferred host of M. mediator. Furthermore, most ligands of IR64a1 and IR64a2 can trigger electrophysiological responses in female wasps. We propose that IR64a1 and IR64a2 collaboratively perceive habitat and host cues to assist parasitoids in efficiently seeking hosts.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Plant Protection, Agricultural University of Hebei, Baoding, 071000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071000, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
48
|
Gendron CM, Chakraborty TS, Chung BY, Harvanek ZM, Holme KJ, Johnson JC, Lyu Y, Munneke AS, Pletcher SD. Neuronal Mechanisms that Drive Organismal Aging Through the Lens of Perception. Annu Rev Physiol 2019; 82:227-249. [PMID: 31635526 DOI: 10.1146/annurev-physiol-021119-034440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Zachary M Harvanek
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Kristina J Holme
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jacob C Johnson
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Allyson S Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
49
|
Cui Y, Kang C, Wu Z, Lin J. Identification and Expression Analyses of Olfactory Gene Families in the Rice Grasshopper, Oxya chinensis, From Antennal Transcriptomes. Front Physiol 2019; 10:1223. [PMID: 31616318 PMCID: PMC6775195 DOI: 10.3389/fphys.2019.01223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
The rice grasshopper Oxya chinensis is an important agricultural pest of rice and other gramineous plants. Chemosensory genes are crucial factors in direct interactions with odorants in the olfactory process. Here we identified genes encoding 18 odorant-binding proteins (OBPs), 13 chemosensory proteins (CSPs), 94 olfactory receptors (ORs), 12 ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs) from O. chinensis using an transcriptomic approach. Semi-quantitative RT-PCR assays revealed that six OBP-encoding genes (OchiOBP4, 5, 8, 9, 10, and 14), one CSP gene (OchiOBP10) and two IR genes (OchiIR28 and 29) were exclusively expressed in antennae, suggesting their roles in olfaction. Real-time quantitative PCR analyses revealed that genes expressed exclusively or predominantly in antennae also displayed significant differences in expression levels between males and females. Among the differentially expressed genes, 17 OR-encoding genes, one CSP- and one SNMP-gene showed female-biased expression, suggesting that they may be involved in some female-specific behaviors such as seeking oviposition site; whereas the three remaining OR-encoding genes showed male-biased expression, indicating their possible roles in sensing female sex pheromones. Our results laid a solid foundation for future studies to reveal olfactory mechanisms as well as designing strategies for controlling this rice pest.
Collapse
Affiliation(s)
- Yang Cui
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Cong Kang
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
50
|
Molecular control limiting sensitivity of sweet taste neurons in Drosophila. Proc Natl Acad Sci U S A 2019; 116:20158-20168. [PMID: 31527261 DOI: 10.1073/pnas.1911583116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To assess the biological value of environmental stimuli, animals' sensory systems must accurately decode both the identities and the intensities of these stimuli. While much is known about the mechanism by which sensory neurons detect the identities of stimuli, less is known about the mechanism that controls how sensory neurons respond appropriately to different intensities of stimuli. The ionotropic receptor IR76b has been shown to be expressed in different Drosophila chemosensory neurons for sensing a variety of chemicals. Here, we show that IR76b plays an unexpected role in lowering the sensitivity of Drosophila sweet taste neurons. First, IR76b mutants exhibited clear behavioral responses to sucrose and acetic acid (AA) at concentrations that were too low to trigger observable behavioral responses from WT animals. Second, IR76b is expressed in many sweet neurons on the labellum, and these neurons responded to both sucrose and AA. Removing IR76b from the sweet neurons increased their neuronal responses as well as animals' behavioral responses to sucrose and AA. Conversely, overexpressing IR76b in the sweet neurons decreased their neuronal as well as animals' behavioral responses to sucrose and AA. Last, IR76b's response-lowering ability has specificity: IR76b mutants and WT showed comparable responses to capsaicin when the mammalian capsaicin receptor VR1 was ectopically expressed in their sweet neurons. Our findings suggest that sensitivity of Drosophila sweet neurons to their endogenous ligands is actively limited by IR76b and uncover a potential molecular target by which contexts can modulate sensitivity of sweet neurons.
Collapse
|