1
|
Heil L, Jewell S, Lines JL, Garvy BA. The Altered Neonatal CD8 + T Cell Immunodominance Hierarchy during Influenza Virus Infection Impacts Peptide Vaccination. Viruses 2024; 16:1271. [PMID: 39205245 PMCID: PMC11359775 DOI: 10.3390/v16081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neonates are more susceptible to influenza virus infection than adults, resulting in increased morbidity and mortality and delayed clearance of the virus. Generating effective CD8+ T cell responses may be important for improving vaccination outcomes in vulnerable populations, but neonatal T cells frequently respond differently than adult cells. We sought to understand CD8+ T cell specificity and immunodominance during neonatal influenza infection and how any differences from the adult hierarchy might impact peptide vaccine effectiveness. Neonatal C57BL/6 mice displayed an altered CD8+ T cell immunodominance hierarchy during influenza infection, preferentially responding to an epitope in the influenza protein PA rather than the co-dominant adult response to NP and PA. Heterosubtypic infections in mice first infected as pups also displayed altered immunodominance and reduced protection compared to mice first infected as adults. Adoptive transfer of influenza-infected bone-marrow-derived dendritic cells promoted an NP-specific CD8+ T cell response in influenza-virus-infected pups and increased viral clearance. Finally, pups responded to PA (224-233), but not NP (366-374) during peptide vaccination. PA (224-233)-vaccinated mice were not protected during viral challenge. Epitope usage should be considered when designing vaccines that target T cells when the intended patient population includes infants and adults.
Collapse
Affiliation(s)
- Luke Heil
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
| | - Samantha Jewell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Department of Physical and Life Sciences, Nevada State University, Henderson, NV 89002, USA
| | - J. Louise Lines
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Beth A. Garvy
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Division of Infectious Diseases, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Kim SH, Españo E, Padasas BT, Son JH, Oh J, Webby RJ, Lee YR, Park CS, Kim JK. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Netw 2024; 24:e19. [PMID: 38974213 PMCID: PMC11224667 DOI: 10.4110/in.2024.24.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | | | - Ju-Ho Son
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jihee Oh
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38195, USA
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
3
|
Lemcke R, Egebjerg C, Berendtsen NT, Egerod KL, Thomsen AR, Pers TH, Christensen JP, Kornum BR. Molecular consequences of peripheral Influenza A infection on cell populations in the murine hypothalamus. eLife 2023; 12:RP87515. [PMID: 37698546 PMCID: PMC10497288 DOI: 10.7554/elife.87515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.
Collapse
Affiliation(s)
- René Lemcke
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Christine Egebjerg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Nicolai T Berendtsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
5
|
Uddbäck I, Kohlmeier JE, Thomsen AR, Christensen JP. A Novel H-2 d Epitope for Influenza A Polymerase Acidic Protein. Viruses 2022; 14:601. [PMID: 35337006 PMCID: PMC8949235 DOI: 10.3390/v14030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023] Open
Abstract
Understanding the complexity of the T-cell epitope hierarchy in humans through mouse models can be difficult. In particular, using only one murine strain, the C57BL/6 mouse, to investigate the immune response to influenza virus infection limits our understanding. In the present study, by immunizing C57BL/6 mice with an adenoviral vector encoding the polymerase acidic (AdIiPA) protein of influenza A virus, we were able to induce a high number of PA-specific T cells. However, upon challenge, these cells were only partly protective. When instead immunizing BALB/c mice with AdIiPA, we found that the immunized mice were fully protected against challenge. We found that this protection was dependent on CD8 T cells, and we identified a novel H-2Dd-restricted epitope, PA33. These findings provide a new tool for researchers to study PA-specific immunity in mice with an H-2d haplotype. Additionally, our findings underscore the importance of critically evaluating important limitations of using a single inbred mouse strain in vaccine studies.
Collapse
Affiliation(s)
- Ida Uddbäck
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (I.U.); (A.R.T.)
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA;
| | - Allan R. Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (I.U.); (A.R.T.)
| | - Jan P. Christensen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (I.U.); (A.R.T.)
| |
Collapse
|
6
|
Uddbäck I, Kohlmeier JE, Thomsen AR, Christensen JP. Harnessing Cross-Reactive CD8 + T RM Cells for Long-Standing Protection Against Influenza A Virus. Viral Immunol 2021; 33:201-207. [PMID: 32286174 PMCID: PMC7185354 DOI: 10.1089/vim.2019.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ida Uddbäck
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
9
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
10
|
Xie X, Zhao C, He Q, Qiu T, Yuan S, Ding L, Liu L, Jiang L, Wang J, Zhang L, Zhang C, Wang X, Zhou D, Zhang X, Xu J. Influenza Vaccine With Consensus Internal Antigens as Immunogens Provides Cross-Group Protection Against Influenza A Viruses. Front Microbiol 2019; 10:1630. [PMID: 31379782 PMCID: PMC6647892 DOI: 10.3389/fmicb.2019.01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
Abstract
Given that continuing antigenic shift and drift of influenza A viruses result in the escape from previous vaccine-induced immune protection, a universal influenza vaccine has been actively sought. However, there were very few vaccines capable of eliciting cross-group ant-influenza immunity. Here, we designed two novel composite immunogens containing highly conserved T-cell epitopes of six influenza A virus internal antigens, and expressed them in DNA, recombinant adenovirus-based (AdC68) and recombinant vaccinia vectors, respectively, to formulate three vaccine forms. The introduction of the two immunogens via a DNA priming and viral vectored vaccine boosting modality afforded cross-group protection from both PR8 and H7N9 influenza virus challenges in mice. Both respiratory residential and systemic T cells contributed to the protective efficacy. Intranasal but not intramuscular administration of AdC68 based vaccine was capable of raising both T cell subpopulations to confer a full protection from lethal PR8 and H7N9 challenges, and blocking the lymphatic egress of T cells during challenges attenuated the protection. Thus, by targeting highly conserved internal viral epitopes to efficiently generate both respiratory and systemic memory T cells, the sequential vaccination strategy reported here represented a new promising candidate for the development of T-cell based universal influenza vaccines.
Collapse
Affiliation(s)
- Xinci Xie
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Wang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Christensen D, Christensen JP, Korsholm KS, Isling LK, Erneholm K, Thomsen AR, Andersen P. Seasonal Influenza Split Vaccines Confer Partial Cross-Protection against Heterologous Influenza Virus in Ferrets When Combined with the CAF01 Adjuvant. Front Immunol 2018; 8:1928. [PMID: 29358939 PMCID: PMC5766649 DOI: 10.3389/fimmu.2017.01928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 11/13/2022] Open
Abstract
Influenza epidemics occur annually, and estimated 5–10% of the adult population and 20–30% of children will become ill from influenza infection. Seasonal vaccines primarily work through the induction of neutralizing antibodies against the principal surface antigen hemagglutinin (HA). This important role of HA-specific antibodies explains why previous pandemics have emerged when new HAs have appeared in circulating human viruses. It has long been recognized that influenza virus-specific CD4(+) T cells are important in protection from infection through direct effector mechanisms or by providing help to B cells and CD8(+) T cells. However, the seasonal influenza vaccine is poor at inducing CD4(+) T-cell responses and needs to be combined with an adjuvant facilitating this response. In this study, we applied the ferret model to investigate the cross-protective efficacy of a heterologous trivalent influenza split-virion (TIV) vaccine adjuvanted with the CAF01 adjuvant, with proven ability to induce CD4(+) T-cell and antibody responses in mice, ferrets, pigs, primates, and humans. Our results indicate that CAF01-adjuvanted vaccine induces HA inhibition (HAI)-independent protection after heterologous challenge, manifested as reduced viral load and fever. On the other hand, we observe increased inflammation in the airways and more neutrophil and mononuclear cell infiltration in these ferrets when compared with optimally protected animals, i.e., ferrets receiving the same vaccine but a homologous challenge. This suggest that HAI-independent immunity induced by TIV + CAF01 can reduce viral shedding and systemic disease symptoms, but does not reduce local inflammation in the nasal cavity.
Collapse
Affiliation(s)
- Dennis Christensen
- Department of Infectious Disease Immunology, Division of Vaccine, Statens Serum Institut, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Karen S Korsholm
- Department of Infectious Disease Immunology, Division of Vaccine, Statens Serum Institut, Copenhagen, Denmark
| | - Louise K Isling
- Department of Quality Assurance/Quality Control, Section of Biological Service, Division of Vaccine, Statens Serum Institut, Copenhagen, Denmark
| | - Karin Erneholm
- Department of Infectious Disease Immunology, Division of Vaccine, Statens Serum Institut, Copenhagen, Denmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Division of Vaccine, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|