1
|
Feng X, Zhang H, Yang S, Cui D, Wu Y, Qi X, Su Z. From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes. Mol Cell Biochem 2025; 480:173-190. [PMID: 38642274 DOI: 10.1007/s11010-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Collapse
Affiliation(s)
- Xingrong Feng
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Yanting Wu
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Xiaocun Qi
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China.
| |
Collapse
|
2
|
Jeong JH, Park KN, Kim JH, Noh K, Hur SS, Kim Y, Hong M, Chung JC, Park JH, Lee J, Son YI, Lee JH, Kim SH, Hwang Y. Self-organized insulin-producing β-cells differentiated from human omentum-derived stem cells and their in vivo therapeutic potential. Biomater Res 2023; 27:82. [PMID: 37644502 PMCID: PMC10466773 DOI: 10.1186/s40824-023-00419-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Human omentum-derived mesenchymal stem cells (hO-MSCs) possess great potential to differentiate into multiple lineages and have self-renewal capacity, allowing them to be utilized as patient-specific cell-based therapeutics. Although the use of various stem cell-derived β-cells has been proposed as a novel approach for treating diabetes mellitus, developing an efficient method to establish highly functional β-cells remains challenging. METHODS We aimed to develop a novel cell culture platform that utilizes a fibroblast growth factor 2 (FGF2)-immobilized matrix to regulate the adhesion and differentiation of hO-MSCs into insulin-producing β-cells via cell-matrix/cell-cell interactions. In our study, we evaluated the in vitro differentiation potential of hO-MSCs cultured on an FGF2-immobilized matrix and a round-bottom plate (RBP). Further, the in vivo therapeutic efficacy of the β-cells transplanted into kidney capsules was evaluated using animal models with streptozotocin (STZ)-induced diabetes. RESULTS Our findings demonstrated that cells cultured on an FGF2-immobilized matrix could self-organize into insulin-producing β-cell progenitors, as evident from the upregulation of pancreatic β-cell-specific markers (PDX-1, Insulin, and Glut-2). Moreover, we observed significant upregulation of heparan sulfate proteoglycan, gap junction proteins (Cx36 and Cx43), and cell adhesion molecules (E-cadherin and Ncam1) in cells cultured on the FGF2-immobilized matrix. In addition, in vivo transplantation of differentiated β-cells into animal models of STZ-induced diabetes revealed their survival and engraftment as well as glucose-sensitive production of insulin within the host microenvironment, at over 4 weeks after transplantation. CONCLUSIONS Our findings suggest that the FGF2-immobilized matrix can support initial cell adhesion, maturation, and glucose-stimulated insulin secretion within the host microenvironment. Such a cell culture platform can offer novel strategies to obtain functional pancreatic β-cells from patient-specific cell sources, ultimately enabling better treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Ki Nam Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, 14584, Republic of Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - KyungMu Noh
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Moonju Hong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Jun Chul Chung
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Jongsoon Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Young-Ik Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Bio-Med Engineering, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea.
| |
Collapse
|
3
|
Yellapragada V, Eskici N, Wang Y, Madhusudan S, Vaaralahti K, Tuuri T, Raivio T. Time and dose-dependent effects of FGF8-FGFR1 signaling in GnRH neurons derived from human pluripotent stem cells. Dis Model Mech 2022; 15:276003. [PMID: 35833364 PMCID: PMC9403748 DOI: 10.1242/dmm.049436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper. Summary: This article demonstrates the essential role FGF8–FGFR1 signaling has in the development of gonadotropin-releasing hormone (GnRH)-expressing neurons by using a human stem cell model.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Stem Cell-Derived Islets for Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23095099. [PMID: 35563490 PMCID: PMC9105352 DOI: 10.3390/ijms23095099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of insulin a century ago, insulin injection has been a primary treatment for both type 1 (T1D) and type 2 diabetes (T2D). T2D is a complicated disea se that is triggered by the dysfunction of insulin-producing β cells and insulin resistance in peripheral tissues. Insulin injection partially compensates for the role of endogenous insulin which promotes glucose uptake, lipid synthesis and organ growth. However, lacking the continuous, rapid, and accurate glucose regulation by endogenous functional β cells, the current insulin injection therapy is unable to treat the root causes of the disease. Thus, new technologies such as human pluripotent stem cell (hPSC)-derived islets are needed for both identifying the key molecular and genetic causes of T2D and for achieving a long-term treatment. This perspective review will provide insight into the efficacy of hPSC-derived human islets for treating and understanding T2D. We discuss the evidence that β cells should be the primary target for T2D treatment, the use of stem cells for the modeling of T2D and the potential use of hPSC-derived islet transplantation for treating T2D.
Collapse
|
5
|
Hiyoshi H, Sakuma K, Tsubooka-Yamazoe N, Asano S, Mochida T, Yamaura J, Konagaya S, Fujii R, Matsumoto H, Ito R, Toyoda T. Characterization and reduction of non-endocrine cells accompanying islet-like endocrine cells differentiated from human iPSC. Sci Rep 2022; 12:4740. [PMID: 35304548 PMCID: PMC8933508 DOI: 10.1038/s41598-022-08753-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
The differentiation of pancreatic endocrine cells from human pluripotent stem cells has been thoroughly investigated for their application in cell therapy against diabetes. Although non-endocrine cells are inevitable contaminating by-products of the differentiation process, a comprehensive profile of such cells is lacking. Therefore, we characterized non-endocrine cells in iPSC-derived pancreatic islet cells (iPIC) using single-cell transcriptomic analysis. We found that non-endocrine cells consist of (1) heterogeneous proliferating cells, and (2) cells with not only pancreatic traits but also liver or intestinal traits marked by FGB or AGR2. Non-endocrine cells specifically expressed FGFR2, PLK1, and LDHB. We demonstrated that inhibition of pathways involving these genes selectively reduced the number of non-endocrine cells in the differentiation process. These findings provide useful insights into cell purification approaches and contribute to the improvement of the mass production of endocrine cells for stem cell-derived cell therapy for diabetes.
Collapse
Affiliation(s)
- Hideyuki Hiyoshi
- T-CiRA Discovery, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan. .,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan.
| | - Kensuke Sakuma
- T-CiRA Discovery, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan.,Orizuru Therapeutics, Inc, Fujisawa, Kanagawa, Japan
| | - Noriko Tsubooka-Yamazoe
- T-CiRA Discovery, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan.,Orizuru Therapeutics, Inc, Fujisawa, Kanagawa, Japan
| | - Shinya Asano
- Axcelead Drug Discovery Partners, Inc, Fujisawa, Kanagawa, Japan
| | - Taisuke Mochida
- T-CiRA Discovery, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Junji Yamaura
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan.,Pharmaceutical Science, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shuhei Konagaya
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan.,Orizuru Therapeutics, Inc, Fujisawa, Kanagawa, Japan
| | - Ryo Fujii
- Axcelead Drug Discovery Partners, Inc, Fujisawa, Kanagawa, Japan
| | - Hirokazu Matsumoto
- T-CiRA Discovery, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Ryo Ito
- T-CiRA Discovery, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan.,Orizuru Therapeutics, Inc, Fujisawa, Kanagawa, Japan
| | - Taro Toyoda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
6
|
Akhavan S, Tutunchi S, Malmir A, Ajorlou P, Jalili A, Panahi G. Molecular study of the proliferation process of beta cells derived from pluripotent stem cells. Mol Biol Rep 2021; 49:1429-1436. [PMID: 34734370 DOI: 10.1007/s11033-021-06892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disorder, increasing in the number of patients and poses a severe threat to human health. Significant advances have been made in DM treatment; the most important of which is differentiation and proliferation of beta cells from IPSCs. METHODS Data were collected from PUBMED at various time points up to the academic year of 2020. The related keywords are listed as follows: "Induced pluripotent stem cell", "Proliferation", "Growth factor", "Small molecule", "cardiotoxicity" and "Scaffold." RESULT The use of growth factors along with small molecules can be a good strategy for beta-cell proliferation. Also, proliferation of beta cells on nanofibers scaffolds can create a similar in vivo environment, that leads to increased function of beta-cell. Some transcription factors that cause beta cells proliferation play an important role in inflammation; so, it is essential to monitor them to prevent inflammation. CONCLUSION Finally, the simultaneous use of growth factors, micronutrients and scaffolds can be an excellent strategy to increase the proliferation and function of beta cells derived from IPSCs.
Collapse
Affiliation(s)
- Saeedeh Akhavan
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Sara Tutunchi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Malmir
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Ajorlou
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Liu H, Li R, Liao HK, Min Z, Wang C, Yu Y, Shi L, Dan J, Hayek A, Martinez Martinez L, Nuñez Delicado E, Izpisua Belmonte JC. Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional β cells. Nat Commun 2021; 12:3330. [PMID: 34099664 PMCID: PMC8184986 DOI: 10.1038/s41467-021-23525-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived pancreatic β cells are an attractive cell source for treating diabetes. However, current derivation methods remain inefficient, heterogeneous, and cell line dependent. To address these issues, we first devised a strategy to efficiently cluster hPSC-derived pancreatic progenitors into 3D structures. Through a systematic study, we discovered 10 chemicals that not only retain the pancreatic progenitors in 3D clusters but also enhance their potentiality towards NKX6.1+/INS+ β cells. We further systematically screened signaling pathway modulators in the three steps from pancreatic progenitors toward β cells. The implementation of all these strategies and chemical combinations resulted in generating β cells from different sources of hPSCs with high efficiency. The derived β cells are functional and can reverse hyperglycemia in mice within two weeks. Our protocol provides a robust platform for studying human β cells and developing hPSC-derived β cells for cell replacement therapy.
Collapse
Affiliation(s)
- Haisong Liu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronghui Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hsin-Kai Liao
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zheying Min
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chao Wang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yang Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lei Shi
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jiameng Dan
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Alberto Hayek
- Department of Pediatrics, UCSD-Medical School, La Jolla, California, USA
| | | | | | | |
Collapse
|
8
|
Watanabe A, Tanaka A, Koga C, Matsumoto M, Okazaki Y, Kin T, Miyajima A. CD82 is a marker to isolate β cell precursors from human iPS cells and plays a role for the maturation of β cells. Sci Rep 2021; 11:9530. [PMID: 33953224 PMCID: PMC8100138 DOI: 10.1038/s41598-021-88978-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Generation of pancreatic β cells from pluripotent stem cells is a key technology to develop cell therapy for insulin-dependent diabetes and considerable efforts have been made to produce β cells. However, due to multiple and lengthy differentiation steps, production of β cells is often unstable. It is also desirable to eliminate undifferentiated cells to avoid potential risks of tumorigenesis. To isolate β cell precursors from late stage pancreatic endocrine progenitor (EP) cells derived from iPS cells, we have identified CD82, a member of the tetraspanin family. CD82+ cells at the EP stage differentiated into endocrine cells more efficiently than CD82- EP stage cells. We also show that CD82+ cells in human islets secreted insulin more efficiently than CD82- cells. Furthermore, knockdown of CD82 expression by siRNA or inhibition of CD82 by monoclonal antibodies in NGN3+ cells suppressed the function of β cells with glucose-stimulated insulin secretion, suggesting that CD82 plays a role in maturation of EP cells to β cells.
Collapse
Affiliation(s)
- Ami Watanabe
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Gene Techno Science Co.,Ltd, Kita 21-jo Nishi 11-chome Kita-ku, Sapporo, 001-0021, Japan.
| | - Anna Tanaka
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Chizuko Koga
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masahito Matsumoto
- Graduate School of Medical and Dental Sciences, Department of Biofunction Research, Institute of Biomaterials and Bioenginnering, Tokyo Medical University and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Intractable Disease Research Center, Juntendo University, 2-1-2 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, 210 College Plaza, 8215-112 St, Edmonton, AB, T6G2C8, Canada
| | - Atsushi Miyajima
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Gene Techno Science Co.,Ltd, Kita 21-jo Nishi 11-chome Kita-ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
9
|
Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021; 39:522-535. [PMID: 33497522 DOI: 10.1002/stem.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand β-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and β-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human β-cells, to cell lines, to pluripotent stem cell-derived β-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are β-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying β-cell biology, improving β-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.
Collapse
Affiliation(s)
- Phillip L Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Mochida T, Ueno H, Tsubooka-Yamazoe N, Hiyoshi H, Ito R, Matsumoto H, Toyoda T. Insulin-Deficient Diabetic Condition Upregulates the Insulin-Secreting Capacity of Human Induced Pluripotent Stem Cell-Derived Pancreatic Endocrine Progenitor Cells After Implantation in Mice. Diabetes 2020; 69:634-646. [PMID: 32005704 DOI: 10.2337/db19-0728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022]
Abstract
The host environment is a crucial factor for considering the transplant of stem cell-derived immature pancreatic cells in patients with type 1 diabetes. Here, we investigated the effect of insulin (INS)-deficient diabetes on the fate of immature pancreatic endocrine cell grafts and the underlying mechanisms. Human induced pluripotent stem cell-derived pancreatic endocrine progenitor cells (EPCs), which contained a high proportion of chromogranin A+ NK6 homeobox 1+ cells and very few INS+ cells, were used. When the EPCs were implanted under the kidney capsule in immunodeficient mice, INS-deficient diabetes accelerated increase in plasma human C-peptide, a marker of graft-derived INS secretion. The acceleration was suppressed by INS infusion but not affected by partial attenuation of hyperglycemia by dapagliflozin, an INS-independent glucose-lowering agent. Immunohistochemical analyses indicated that the grafts from diabetic mice contained more endocrine cells including proliferative INS-producing cells compared with that from nondiabetic mice, despite no difference in whole graft mass between the two groups. These data suggest that INS-deficient diabetes upregulates the INS-secreting capacity of EPC grafts by increasing the number of endocrine cells including INS-producing cells without changing the graft mass. These findings provide useful insights into postoperative diabetic care for cell therapy using stem cell-derived pancreatic cells.
Collapse
Affiliation(s)
- Taisuke Mochida
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Hikaru Ueno
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Noriko Tsubooka-Yamazoe
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Hideyuki Hiyoshi
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Ryo Ito
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Hirokazu Matsumoto
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Taro Toyoda
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Tanaka A, Watanabe A, Nakano Y, Matsumoto M, Okazaki Y, Miyajima A. Reversible expansion of pancreatic islet progenitors derived from human induced pluripotent stem cells. Genes Cells 2020; 25:302-311. [PMID: 32065490 DOI: 10.1111/gtc.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Transplantation of pancreatic islets is an effective therapy for severe type 1 diabetes. As donor shortage is a major problem for this therapy, attempts have been made to produce a large number of pancreatic islets from human pluripotent stem cells (hPSCs). However, as the differentiation of hPSCs to pancreatic islets requires multiple and lengthy processes using various expensive cytokines, the process is variable, low efficiency and costly. Therefore, it would be beneficial if islet progenitors could be expanded. Neurogenin3 (NGN3)-expressing pancreatic endocrine progenitor (EP) cells derived from hPSCs exhibited the ability to differentiate into pancreatic islets while their cell cycle was arrested. By using a lentivirus vector, we introduced several growth-promoting genes into NGN3-expressing EP cells. We found that SV40LT expression induced proliferation of the EP cells but reduced the expression of endocrine lineage-commitment factors, NGN3, NEUROD1 and NKX2.2, resulting in the suppression of islet differentiation. By using the Cre-loxP system, we removed SV40LT after the expansion, leading to re-expression of endocrine-lineage commitment genes and differentiation into functional pancreatic islets. Thus, our findings will pave a way to generate a large quantity of functional pancreatic islets through the expansion of EP cells from hPSCs.
Collapse
Affiliation(s)
- Anna Tanaka
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ami Watanabe
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Nakano
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahito Matsumoto
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan.,Department of Biofunction Research, Institute of Biomaterials and Bioenginnering, Tokyo Medical University and Dental University, Tokyo, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Villani V, Thornton ME, Zook HN, Crook CJ, Grubbs BH, Orlando G, De Filippo R, Ku HT, Perin L. SOX9+/PTF1A+ Cells Define the Tip Progenitor Cells of the Human Fetal Pancreas of the Second Trimester. Stem Cells Transl Med 2019; 8:1249-1264. [PMID: 31631582 PMCID: PMC6877773 DOI: 10.1002/sctm.19-0231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Significant progress has been made in recent years in characterizing human multipotent progenitor cells (hMPCs) of the early pancreas; however, the identity and persistence of these cells during the second trimester, after the initiation of branching morphogenesis, remain elusive. Additionally, studies on hMPCs have been hindered by few isolation methods that allow for the recovery of live cells. Here, we investigated the tip progenitor domain in the branched epithelium of human fetal pancreas between 13.5 and 17.5 gestational weeks by immunohistological staining. We also used a novel RNA-based technology to isolate live cells followed by gene expression analyses. We identified cells co-expressing SOX9 and PTF1A, two transcription factors known to be important for pancreatic MPCs, within the tips of the epithelium and observed a decrease in their proportions over time. Pancreatic SOX9+/PTF1A+ cells were enriched for MPC markers, including MYC and GATA6. These cells were proliferative and appeared active in branching morphogenesis and matrix remodeling, as evidenced by gene set enrichment analysis. We identified a hub of genes pertaining to the expanding tip progenitor niche, such as FOXF1, GLI3, TBX3, FGFR1, TGFBR2, ITGAV, ITGA2, and ITGB3. YAP1 of the Hippo pathway emerged as a highly enriched component within the SOX9+/PTF1A+ cells. Single-cell RNA-sequencing further corroborated the findings by identifying a cluster of SOX9+/PTF1A+ cells with multipotent characteristics. Based on these results, we propose that the SOX9+/PTF1A+ cells in the human pancreas are uncommitted MPC-like cells that reside at the tips of the expanding pancreatic epithelium, directing self-renewal and inducing pancreatic organogenesis. Stem Cells Translational Medicine 2019;8:1249&1264.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Heather N. Zook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Christiana J. Crook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Giuseppe Orlando
- Department of SurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Roger De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Dual usage of a stage-specific fluorescent reporter system based on a helper-dependent adenoviral vector to visualize osteogenic differentiation. Sci Rep 2019; 9:9705. [PMID: 31273280 PMCID: PMC6609771 DOI: 10.1038/s41598-019-46105-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
We developed a reporter system that can be used in a dual manner in visualizing mature osteoblast formation. The system is based on a helper-dependent adenoviral vector (HDAdV), in which a fluorescent protein, Venus, is expressed under the control of the 19-kb human osteocalcin (OC) genomic locus. By infecting human and murine primary osteoblast (POB) cultures with this reporter vector, the cells forming bone-like nodules were specifically visualized by the reporter. In addition, the same vector was utilized to efficiently knock-in the reporter into the endogenous OC gene of human induced pluripotent stem cells (iPSCs), by homologous recombination. Neural crest-like cells (NCLCs) derived from the knock-in reporter iPSCs were differentiated into osteoblasts forming bone-like nodules and could be visualized by the expression of the fluorescent reporter. Living mature osteoblasts were then isolated from the murine mixed POB culture by fluorescence-activated cell sorting (FACS), and their mRNA expression profile was analyzed. Our study presents unique utility of reporter HDAdVs in stem cell biology and related applications.
Collapse
|
14
|
Päth G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus - Focus on mesenchymal stem cells. Metabolism 2019; 90:1-15. [PMID: 30342065 DOI: 10.1016/j.metabol.2018.10.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 1 and type 2 have become a global epidemic with dramatically increasing incidences. Poorly controlled diabetes is associated with severe life-threatening complications. Beside traditional treatment with insulin and oral anti-diabetic drugs, clinicians try to improve patient's care by cell therapies using embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) and adult mesenchymal stem cells (MSC). ESC display a virtually unlimited plasticity, including the differentiation into insulin producing β-cells, but they raise ethical concerns and bear, like iPSC, the risk of tumours. IPSC may further inherit somatic mutations and remaining somatic transcriptional memory upon incomplete re-programming, but allow the generation of patient/disease-specific cell lines. MSC avoid such issues but have not been successfully differentiated into β-cells. Instead, MSC and their pericyte phenotypes outside the bone marrow have been recognized to secrete numerous immunomodulatory and tissue regenerative factors. On this account, the term 'medicinal signaling cells' has been proposed to define the new conception of a 'drug store' for injured tissues and to stay with the MSC nomenclature. This review presents the biological background and the resulting clinical potential and limitations of ESC, iPSC and MSC, and summarizes the current status quo of cell therapeutic concepts and trials.
Collapse
Affiliation(s)
- Günter Päth
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
15
|
Kieffer TJ, Woltjen K, Osafune K, Yabe D, Inagaki N. Beta-cell replacement strategies for diabetes. J Diabetes Investig 2017; 9:457-463. [PMID: 28984038 PMCID: PMC5934267 DOI: 10.1111/jdi.12758] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes is characterized by elevated levels of blood glucose as a result of insufficient production of insulin from loss or dysfunction of pancreatic islet β-cells. Here, we review several approaches to replacing β-cells that were recently discussed at a symposium held in Kyoto, Japan. Transplant of donor human islets can effectively treat diabetes and eliminate the need for insulin injections, supporting research aimed at identifying abundant supplies of cells. Studies showing the feasibility of producing mouse islets in rats support the concept of generating pigs with human pancreas that can serve as donors of human islets, although scientific and ethical challenges remain. Alternatively, in vitro differentiation of both human embryonic stem cells and induced pluripotent stem cells is being actively pursued as an islet cell source, and embryonic stem cell-derived pancreatic progenitor cells are now in clinical trials in North America in patients with diabetes. Macro-encapsulation devices are being used to contain and protect the cells from immune attack, and alternate strategies of immune-isolation are being pursued, such as islets contained within long microfibers. Recent advancements in genetic engineering tools offer exciting opportunities to broaden therapeutic strategies and to probe the genetic involvement in β-cell failure that contributes to diabetes. Personalized medicine might eventually become a possibility with genetically edited patient-induced pluripotent stem cells, and the development of simplified robust differentiation protocols that ideally become standardized and automated. Additional efforts to develop a safe and effective β-cell replacement strategy to treat diabetes are warranted.
Collapse
Affiliation(s)
- Timothy J Kieffer
- Department of Cellular & Physiological SciencesLife Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| | - Kenji Osafune
- Department of Cellular & Physiological SciencesLife Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
16
|
Gnatenko DA, Kopantzev EP, Sverdlov ED. [Fibroblast growth factors and their effects in pancreas organogenesis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:211-218. [PMID: 28781254 DOI: 10.18097/pbmc20176303211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.
Collapse
Affiliation(s)
- D A Gnatenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E P Kopantzev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E D Sverdlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| |
Collapse
|