1
|
Balboni A, Magliocca M, Urbani L, Battilani M. Canine Adenoviruses in Wildlife: Role in At-Risk Species Conservation and Interface with Domestic Animals. Pathogens 2025; 14:200. [PMID: 40005575 PMCID: PMC11858118 DOI: 10.3390/pathogens14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Canine adenovirus type 1 (CAdV-1) and type 2 (CAdV-2) are well known pathogens of domestic dogs but are little investigated in wild animals. The few available studies about CAdV-1 in wild animals show that it circulates in various species and that transmission of the virus in the interface between wildlife and domestic animals is a frequent event. Furthermore, wild animals are usually subject to asymptomatic infections, but cases of serious and fatal diseases have been documented, with possible effects on the conservation of the species. In contrast, CAdV-2 infection was reported only recently and sporadically in some wild animals, with few data regarding its pathogenic role in these species. However, the real prevalence of these viruses in wildlife is still uncertain due to the use of serological tests that are largely unable to distinguish antibodies against CAdV-1 and CAdV-2. This review, reporting all the data currently available on CAdV-1 and CAdV-2 infection in wild animals, highlights the importance of these pathogens for wildlife conservation and their role in the potential transmission of the infection to domestic dogs.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy; (M.M.); (L.U.); (M.B.)
| | | | | | | |
Collapse
|
2
|
Sevinc Temizkan S, Temizkan MC. Complete Genome Characterization of Canine Adenovirus From Türkiye With Next-Generation Sequencing. Vet Med Sci 2025; 11:e70163. [PMID: 39792570 PMCID: PMC11721475 DOI: 10.1002/vms3.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Determining the complete genome sequence data of adenoviruses has recently become greatly important due to their use by scientists as vectors in cancer studies and other fields, including vaccine development. However, the GenBank database currently has few complete genome sequences of adenoviruses, which are known for their large genomes. To address this gap, we analysed next-generation sequencing data obtained from our previous study to provide the complete genome sequence of the canine adenovirus-2 strain. METHODS For the obtained canine adenovirus-2 strain (OQ596341), comparative genomics, recombination and phylogenetic analysis were conducted. This sequence was compared and phylogenetically analysed with the 20 complete genome sequences of canine adenovirus previously reported in GenBank worldwide, as well as partial E3 ORFA sequences obtained from Türkiye. RESULTS The nucleotide similarity rates of the sequence obtained from this study with other CAdV-2 whole genomes are over 99.04%. The gene alignment results reveal that the OQ596341 was found to be closely related to the AC000020 reference genome and LC557011. There are two recombination events related to the genome in this study. Comparisons with other complete genome sequences revealed several previously unseen mutations. These mutations include H34Y in the E1A gene; P55A in the E1B 55K gene; D13N and D202N in the IVa2 gene; K679R, V934I and K989N in the Pol gene; E205K in the pTP gene; T455A in the pIIIa gene; A310V in the V gene; G151R in the protease gene; E268K in the 100K gene; G66S and G141S in the 33K gene; T14A, E250K, D287N and I293T in the E3 ORFA gene; and L193F in the E434K gene. Moreover, a comparison with partial sequences obtained from Türkiye revealed the E250K mutation in the E3 ORFA gene, which we report for the first time in Türkiye. CONCLUSIONS The complete CAdV-2 genome sequence obtained in the present study is the first sequence from Europe. Comparative analysis with other genomes revealed some unique mutations. This study is the first to report the E250K amino acid change in the E3 ORFA gene in Türkiye. We anticipate that this data can be used in future CAdV-2 vaccine development studies. Further studies are recommended to evaluate the impact of these mutations on viral tropism and other host interactions.
Collapse
Affiliation(s)
- Secil Sevinc Temizkan
- Department of VirologyFaculty of Veterinary MedicineYozgat Bozok UniversityYozgatTürkiye
| | - Mehmet Cevat Temizkan
- Department of GeneticsFaculty of Veterinary MedicineYozgat Bozok UniversityYozgatTürkiye
| |
Collapse
|
3
|
Magliocca M, Taddei R, Urbani L, Bertasio C, Facile V, Gallina L, Sampieri M, Rugna G, Rubini S, Maioli G, Terrusi A, Battilani M, Balboni A. Molecular Detection of Viral and Bacterial Pathogens in Red Foxes ( Vulpes vulpes) from Italy. Animals (Basel) 2024; 14:1969. [PMID: 38998080 PMCID: PMC11240561 DOI: 10.3390/ani14131969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Animals, including wildlife, are part of One-Health concept since many infectious diseases can affect both humans and animals. In this study, 126 red foxes (Vulpes vulpes) from Northern Italy in 2022-2023 were tested by molecular assays for Protoparvovirus carnivoran 1 (PPVC-1), Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), Circovirus canine (CanineCV), Canine distemper virus (CDV), and Leptospira spp. A total of 39 of 126 (30.9%) red foxes were infected with at least one pathogen and five of these were coinfected: 20/126 (15.9%) red foxes tested positive for PPVC-1, 3/126 (2.4%) for CAdV, 20/126 (15.9%) for CanineCV, and 2/126 (1.6%) for Leptospira spp. DNA. No foxes tested positive for CDV RNA. The pathogens identified were genetically analysed. New findings were reported such as a fox with multiple feline panleukopenia virus (FPV) and canine parvovirus type 2b (CPV-2b) infection associated with quasispecies dynamics, typical genetic characteristics of the identified CanineCV, and the first detection in red foxes of Leptospira ST198 related to L. interrogans serogroup Australis. Further studies are necessary to investigate the transmission between domestic animals and wildlife and to understand the role of red foxes in the maintenance of these pathogens not only in the wild but also in urban and peri-urban environments.
Collapse
Affiliation(s)
- Martina Magliocca
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Roberta Taddei
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Bologna, 40127 Bologna, Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Cristina Bertasio
- Italian Reference Centre for Animal Leptospirosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Brescia, 25124 Brescia, Italy
| | - Veronica Facile
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Laura Gallina
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Maria Sampieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Bologna, 40127 Bologna, Italy
| | - Gianluca Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Modena, 41122 Modena, Italy
| | - Silva Rubini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Ferrara, 44124 Ferrara, Italy
| | - Giulia Maioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Bologna, 40127 Bologna, Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| |
Collapse
|
4
|
Rosemarie Q, Sugden B. Five families of diverse DNA viruses comprehensively restructure the nucleus. PLoS Biol 2023; 21:e3002347. [PMID: 37930945 PMCID: PMC10627436 DOI: 10.1371/journal.pbio.3002347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Many viruses have evolved ways to restructure their host cell's nucleus profoundly and unexpectedly upon infection. In particular, DNA viruses that need to commandeer their host's cellular synthetic functions to produce their progeny can induce the condensation and margination of host chromatin during productive infection, a phenomenon known as virus-induced reorganization of cellular chromatin (ROCC). These ROCC-inducing DNA viruses belong to 5 families (herpesviruses, baculoviruses, adenoviruses, parvoviruses, and geminiviruses) that infect a wide range of hosts and are important for human and ecosystem health, as well as for biotechnology. Although the study of virus-induced ROCC is in its infancy, investigations are already raising important questions, such as why only some DNA viruses that replicate their genomes in the nucleus elicit ROCC. Studying the shared and distinct properties of ROCC-inducing viruses will provide valuable insights into viral reorganization of host chromatin that could have implications for future therapies that target the viral life cycle.
Collapse
Affiliation(s)
- Quincy Rosemarie
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bill Sugden
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Pacini MI, Mazzei M, Sgorbini M, D’Alfonso R, Papini RA. A One-Year Retrospective Analysis of Viral and Parasitological Agents in Wildlife Animals Admitted to a First Aid Hospital. Animals (Basel) 2023; 13:ani13050931. [PMID: 36899788 PMCID: PMC10000059 DOI: 10.3390/ani13050931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to provide information on the presence and frequency of viral and parasitic agents in wildlife presented to a Veterinary Teaching Hospital in 2020-2021. Serum and faecal samples were collected from 50 rescued animals (roe deer, fallow deer, foxes, badgers, pine martens, and porcupines) and examined by serological, molecular, and parasitological techniques. Transtracheal wash (TTW) was also collected post-mortem from roe deer. Overall, the results of the different techniques showed infections with the following viral and parasitic agents: Bovine Viral Diarrhea Virus, Small Ruminant Lentiviruses, Kobuvirus, Astrovirus, Canine Adenovirus 1, Bopivirus, gastrointestinal strongyles, Capillaria, Ancylostomatidae, Toxocara canis, Trichuris vulpis, Hymenolepis, Strongyloides, Eimeria, Isospora, Dictyocaulus, Angiostrongylus vasorum, Crenosoma, Dirofilaria immitis, Neospora caninum, Giardia duodenalis, and Cryptosporidium. Sequencing (Tpi locus) identified G. duodenalis sub-assemblages AI and BIV in one roe deer and one porcupine, respectively. Adult lungworms collected from the TTW were identified as Dictyocaulus capreolus (COX1 gene). This is the first molecular identification of G. duodenalis sub-assemblage AI and D. capreolus in roe deer in Italy. These results show a wide presence of pathogens in wild populations and provide an overview of environmental health surveillance.
Collapse
Affiliation(s)
- Maria Irene Pacini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Correspondence:
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Rossella D’Alfonso
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Amerigo Papini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| |
Collapse
|
6
|
Canuti M, Mira F, Sorensen RG, Rodrigues B, Bouchard É, Walzthoni N, Hopson M, Gilroy C, Whitney HG, Lang AS. Distribution and diversity of dog parvoviruses in wild, free-roaming and domestic canids of Newfoundland and Labrador, Canada. Transbound Emerg Dis 2022; 69:e2694-e2705. [PMID: 35689408 DOI: 10.1111/tbed.14620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 01/02/2023]
Abstract
Some parvoviruses of carnivorans can infect multiple host species. Since many canine parvoviruses were only discovered recently, their host-range is still unexplored. We examined the host distribution and diversity of five dog parvoviruses in four canine populations from Newfoundland and Labrador, Canada, and investigated the potential for these viruses to cross the species barriers. Canine bocavirus 2 (CBoV-2) and the minute virus of canines were detected in stool from free-roaming dogs from Labrador (5/48 [10.4%] and 3/48 [6.3%], respectively) and two different CBoV-2 variants were identified. Canine bufavirus was identified in stool from free-roaming dogs (1/48, 2.1%) and foxes (3/80, 3.8%) from Labrador, but two different variants were observed in the two host species. The variant found in foxes was highly divergent from previously identified strains. Two cachavirus 1 variants, genetically similar to those circulating in other Canadian wildlife, were found in spleens from Newfoundland coyotes (3/87, 3.5%). Canine parvovirus type 2 (CPV-2) was found in stool from free-roaming dogs from Labrador (2/48, 4.2%) and in spleens from Newfoundland coyotes (3/87, 3.5%). Comparing CPV-2 sequences from these hosts to those retrieved from local symptomatic domestic dogs revealed the presence of a highly heterogeneous viral population as detected strains belonged to five different clades. The close relationship between CPV-2a strains from a dog and a coyote suggests the occurrence of viral transfer between wild and domestic canids. The identification of highly related strains with a similar molecular signature characteristic of older CPV-2 strains in free-roaming and domestic dogs suggests a probable common ancestry and that older CPV-2 strains, which have not been identified in dogs since the 1990s, persist in this part of Canada. Follow-up studies should evaluate samples from a larger number of animals and host species to extensively investigate the possible occurrence of cross-species transmission for recently discovered parvoviruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia 'A. Mirri', Palermo, Italy
| | - Rachel G Sorensen
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Bruce Rodrigues
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, Corner Brook, Newfoundland and Labrador, Canada
| | - Émilie Bouchard
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Walzthoni
- Veterinary Specialty Centre of Newfoundland and Labrador, Mount Pearl, Newfoundland and Labrador, Canada
| | - Marti Hopson
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Cornelia Gilroy
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
7
|
Lial HC, Navas-Suárez PE, Ewbank AC, Exposto Novoselecki H, Ferreira-Machado E, Dos Santos Cirqueira C, de Azevedo Fernandes NCC, Esperón F, Catão-Dias JL, Sacristán C. Adenovirus surveillance in wild carnivores from Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105246. [PMID: 35158084 DOI: 10.1016/j.meegid.2022.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Landscape transformation favors the spread of new pathogens that can be shared between domestic and wild animals. Certain adenoviruses (e.g., canine adenovirus 1 and 2, family Adenoviridae) can infect domestic and wild carnivores. In domestic canids, these viruses are associated with hepatic and respiratory diseases (among others). Nevertheless, information regarding adenovirus pathogenicity and molecular features in wild carnivores is still limited. Herein we surveyed adenovirus in free-ranging carnivores from Brazil. Total DNA was extracted from and subsequently tested by a nested panPCR in spleen and/or lung of 52 carnivores, representing species of the following families: Canidae (n = 4), Felidae (n = 3), Mustelidae (n = 2) and Procyonidae (n = 2). The obtained sequences were compared to others available at GenBank. Available tissue samples from the positive cases were evaluated histopathologically. One out of 52 (1.9%, CI 95%, 0.0-5.7%) carnivores was positive; a roadkilled ocelot (Leopardus pardalis). The obtained sequence presented a low deduced amino acid (78.1%) similarity with the closest adenovirus, identified in a pinniped from the United States of America. This fact and its detection in a novel host suggest it may be representative of a novel species and denominated ocelot adenovirus 1. None of the gross and microscopic findings of the positive case were associated with adenovirus. To the authors' knowledge, this is the first report of adenovirus in wild felids of South America and the second worldwide. Further studies are necessary to assess the epidemiology and potential pathogenicity of this agent in wild carnivores.
Collapse
Affiliation(s)
- Henrique Christino Lial
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil.
| | - Pedro Enrique Navas-Suárez
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Helena Exposto Novoselecki
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Eduardo Ferreira-Machado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; School of Veterinary Medicine and Animal Science, Júlio de Mesquita Filho São Paulo State University - Botucatu campus, Botucatu 18618-681, SP, Brazil
| | | | - Natália Coelho Couto de Azevedo Fernandes
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; Instituto Adolfo Lutz, São Paulo, 01246-000, SP, Brazil
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, 28130 Madrid, Spain; Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil.
| |
Collapse
|
8
|
Ndiana LA, Lanave G, Vasinioti V, Desario C, Martino C, Colaianni ML, Pellegrini F, Camarda A, Berjaoui S, Sgroi G, Elia G, Pratelli A, Buono F, Martella V, Buonavoglia C, Decaro N. Detection and Genetic Characterization of Canine Adenoviruses, Circoviruses, and Novel Cycloviruses From Wild Carnivores in Italy. Front Vet Sci 2022; 9:851987. [PMID: 35433913 PMCID: PMC9010027 DOI: 10.3389/fvets.2022.851987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Wild carnivores are known to play a role in the epidemiology of several canine viruses, including canine adenoviruses types 1 (CAdV-1) and 2 (CAdV-2), canine circovirus (CanineCV) and canine distemper virus (CDV). In the present study, we report an epidemiological survey for these viruses in free ranging carnivores from Italy. A total of 262 wild carnivores, including red foxes (Vulpes vulpes), wolves (Canis lupus) and Eurasian badgers (Meles meles) were sampled. Viral nucleic acid was extracted and screened by real-time PCR assays (qPCR) for the presence of CAdVs and CanineCV DNA, as well as for CDV RNA. CAdV-1 DNA was detected only in red foxes (4/232, 1.7%) whilst the wolves (0/8, 0%) and Eurasian badgers (0/22, 0%) tested negative. CanineCV DNA was detected in 4 (18%) Eurasian badgers, 4 (50%) wolves and 0 (0%) red foxes. None of the animals tested positive for CDV or CAdV-2. By sequence and phylogenetic analyses, CAdV-1 and CanineCV sequences from wild carnivores were closely related to reference sequences from domestic dogs and wild carnivores. Surprisingly, two sequences from wolf intestines were identified as cycloviruses with one sequence (145.20-5432) displaying 68.6% nucleotide identity to a cyclovirus detected in a domestic cat, while the other (145.201329) was more closely related (79.4% nucleotide identity) to a cyclovirus sequence from bats. A continuous surveillance in wild carnivores should be carried out in order to monitor the circulation in wildlife of viruses pathogenic for domestic carnivores and endangered wild species.
Collapse
Affiliation(s)
- Linda A. Ndiana
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | | | - Camillo Martino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | | | | | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | - Francesco Buono
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- *Correspondence: Nicola Decaro
| |
Collapse
|
9
|
Zhu Y, Xu J, Lian S, Zhang R, Hou J, Wang M, Yan X. Difference Analysis Between Canine Adenovirus Types 1 And 2. Front Cell Infect Microbiol 2022; 12:854876. [PMID: 35360116 PMCID: PMC8963759 DOI: 10.3389/fcimb.2022.854876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Canine adenoviruses (CAdVs) include type 1 (CAdV-1, virulent strain) and type 2 (CAdV-2, attenuated strain). In recent years, the incidences of CAdV infections are increasing. However, they are difficult to distinguish when the symptoms are untypical. It is pivotal to find the differences between the two virus types for scientific, epidemiological, and specific treatment. CAdV-1 (virulent strain) and CAdV-2 (attenuated strain) induced canine hepatitis (ICH) and tracheobronchitis (ITB), respectively, but the clinical symptom is not obvious. CAdV-1 and CAdV-2 have the same genome structure, diameter, morphological features, and cytopathic features, but the same character hinder the diagnose time of the serotypes. CAdV-1 and CAdV-2 have a difference in the genome sequence, coding proteins, viral activity, hemagglutination patterns. After infection, pathogenicity and transmission route are different between the two serotypes. Sequence alignment, PCR, Real time-PCR assay are useful methods to distinguish the two serotypes. The attenuated live CAdV-2 vaccine is currently used to protect against CAdV-1, but it also has a risk. The further research should focus on the pathogenicity mechanism and the useful vaccine for the two serotypes of canine adenovirus.
Collapse
Affiliation(s)
- Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
- *Correspondence: Yanzhu Zhu,
| | - Jinfeng Xu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shizhen Lian
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jinyu Hou
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Minchun Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xijun Yan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
10
|
Canuti M, Fry K, Dean Cluff H, Mira F, Fenton H, Lang AS. Co‐circulation of five species of dog parvoviruses and canine adenovirus type 1 among gray wolves (
Canis lupus
) in northern Canada. Transbound Emerg Dis 2022; 69:e1417-e1433. [DOI: 10.1111/tbed.14474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Kelsi Fry
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - H. Dean Cluff
- Environment and Natural Resources ‐ North Slave Region Government of the Northwest Territories Yellowknife Canada
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri” Palermo Italy
| | - Heather Fenton
- Environment and Natural Resources ‐ North Slave Region Government of the Northwest Territories Yellowknife Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
11
|
Integrated Use of Molecular Techniques to Detect and Genetically Characterise DNA Viruses in Italian Wolves ( Canis lupus italicus). Animals (Basel) 2021; 11:ani11082198. [PMID: 34438655 PMCID: PMC8388400 DOI: 10.3390/ani11082198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In our study, different quantitative and qualitative molecular techniques were used to detect and genetically characterise Carnivore protoparvovirus 1, Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), and Canine circovirus (CanineCV) in Italian wolves (Canis lupus italicus) of the Italian Apennines. Carnivore protoparvoviruses were the most frequently detected viruses, followed by CanineCV and CAdV. All the wolves tested positive for at least one of the DNA viruses screened, and 47.8% of the subjects were coinfected with two or three viruses. From viral sequences analysis, close correlations emerged between the viruses identified in the wolves and those circulating in domestic dogs, suggesting that the same viruses infect wolves and domestic dogs. Further studies are needed to investigate if pathogens are transmitted between the two species. Abstract In this study, internal organs (tongue, intestine, and spleen) of 23 free-ranging Italian wolves (Canis lupus italicus) found dead between 2017 and 2019 were tested for Carnivore protoparvovirus 1, Canine adenovirus (CAdV), and Canine circovirus (CanineCV) using real-time PCR assays. Genetic characterisation of the identified viruses was carried out by amplification, sequencing, and analysis of the complete viral genome or informative viral genes. All the wolves tested positive for at least one of the DNA viruses screened, and 11/23 were coinfected. Carnivore protoparvoviruses were the most frequently detected viruses (21/23), followed by CanineCV (11/23) and CAdV (4/23). From the analysis of the partial VP2 gene of 13 carnivore protoparvoviruses, 12 were canine parvovirus type 2b, closely related to the strains detected in dogs and wild carnivores from Italy, and one was a feline panleukopenia-like virus. Of the four CAdV identified, two were CAdV-1 and two were CAdV-2. The complete genome of seven CanineCVs was sequenced and related to the CanineCV identified in dogs, wolves, and foxes worldwide. Close correlations emerged between the viruses identified in wolves and those circulating in domestic dogs. Further studies are needed to investigate if these pathogens may be potentially cross-transmitted between the two species.
Collapse
|
12
|
Identification of Two Novel Linear Neutralizing Epitopes within the Hexon Protein of Canine Adenovirus Using Monoclonal Antibodies. Vaccines (Basel) 2021; 9:vaccines9020135. [PMID: 33567652 PMCID: PMC7914820 DOI: 10.3390/vaccines9020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Canine adenovirus (CAdV) has a high prevalence in canine populations. High affinity neutralizing antibodies against conserved epitopes can provide protective immunity against CAdV and protect against future outbreaks. In this study, we identified two CAdV-2-specific neutralizing monoclonal antibodies (mAbs), 2C1 and 7D7, which recognized two linear-dependent epitopes. MAb 2C1 potently neutralized CAdV-2 with a 50% neutralization titer (NT50) of 4096, and mAb 7D7 partially neutralized CAdV-2 with a 50% NT50 of 64. Immunoprecipitation, Western blot and protein spectral analysis indicated that both neutralizing mAbs recognized the hexon protein (Hex) of CAdV-2. Through a 12-mer random peptide phage display and synthetic peptides analysis, we finely mapped the neutralizing epitopes to two 10-amino acid (aa) peptides within the CAdV Hex: 634RIKQRETPAL643 located on the surface region; and 736PESYKDRMYS745 located in the inner region of the expected 3D structure of trimeric Hex. Importantly, the two epitopes are highly conserved among all CAdV isolates by sequence alignment analysis. Thus, these results provide insights into the interaction between virus and mAbs at the aa level and may have potential applications in the development of novel therapeutic or epitope-based vaccines, antibody therapeutics and a diagnostic method suitable for the rapid detection of all CAdVs.
Collapse
|
13
|
Oleaga A, Balseiro A, Espí A, Royo LJ. Wolf (Canis lupus) as canine adenovirus type 1 (CAdV-1) sentinel for the endangered cantabrian brown bear (Ursus arctos arctos). Transbound Emerg Dis 2021; 69:516-523. [PMID: 33527683 DOI: 10.1111/tbed.14010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
Canine adenovirus type 1 (CAdV-1) causes infectious canine hepatitis (ICH) and has recently been described as a cause of death among endangered populations of European brown bear (Ursus arctos arctos) in the Cantabrian mountain range in Asturias, Spain. Sympatric wild and domestic carnivores can act as reservoirs of the virus and likely spread it into the environment and subsequently transmit it to brown bears. The present work investigates the prevalence and geo-temporal distribution of CAdV-1 among free-ranging wolves (Canis lupus) in Asturias from 2009 to 2018, during which three fatal cases of ICH were reported among brown bears in the region. A total of 149 wolves were analysed in this study, of which 21 (14%) were found to have CAdV-1 DNA based on real-time polymerase chain reaction (RT-PCR) of spleen samples. Prevalence of the virus was similar between males and females. All but one of the 20 CAdV-1-positive animals of estimable age were younger than 2 years, and only one of the 46 adult animals (>2 years) tested positive. Prevalence was highest in the western area of Asturias and during 2010 and 2011. Our results confirm that CAdV-1 is circulating in Asturian free-ranging wolves, supporting their possible role as virus reservoirs and sentinels in the region of this emerging disease in brown bears.
Collapse
Affiliation(s)
- Alvaro Oleaga
- Sociedad de Servicios del Principado de Asturias S.A. (SERPA), La Laboral, Gijón, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Alberto Espí
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Gijón, Spain
| | - Luis J Royo
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Gijón, Spain
| |
Collapse
|
14
|
Zhu Y, Sun J, Yan M, Lian S, Hu B, Lv S, Li Y, Zhang Y, Yan X. The biological characteristics of the canine adenovirus type 1 from fox and the transcriptome analysis of the infected MDCK cell. Cell Biol Int 2021; 45:936-947. [PMID: 33382191 DOI: 10.1002/cbin.11537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/09/2020] [Accepted: 12/25/2020] [Indexed: 11/09/2022]
Abstract
Canine adenovirus type 1 (CAdV-1) is the etiologic agent of fox encephalitis, and a virus strain from fox encephalitis is isolated and related research are conducted. In this experiment, the results showed that the F1301 strain was confirmed to be the CAdV-1. The whole genome of the CAdV-1 F1301 strain isolated from fox was 30,535 bp and had higher homology to the other reported CAdV-1 strains. After 0, 12, and 36 h of CAdV-1 infection, the difference gene of the 592 long noncoding RNA and 11,215 microRNA were involved in cell responses to CAdV-1 infection through the PI3K-AKT, Wnt, Herpes simplex, hepatitis C, and Epstein-Barr virus infection pathway in Madin-Darby canine kidney cell line (MDCK). The results indicate that the biological characterization of the CAdV-1 and the MDCK cell-CAdV-1 interaction are clarified.
Collapse
Affiliation(s)
- Yanzhu Zhu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Sun
- Pharmaron Beijing Co., Ltd., Beijing, China
| | - Minghao Yan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Lv
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yali Li
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yufei Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xijun Yan
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,Sinovet Biopharm. Co., Ltd., Taizhou, China
| |
Collapse
|
15
|
Ji J, Li W, Hu W, Xu X, Kan Y, Yao L, Bi Y, Xie Q. Novel Genotype Definition and the First Epidemiological Investigation of Canine Adenovirus Type 2 in Dogs in Central China. Front Vet Sci 2020; 7:534. [PMID: 32974402 PMCID: PMC7466760 DOI: 10.3389/fvets.2020.00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023] Open
Abstract
Infections caused by canine adenovirus (CAdV) type 1 have been reported worldwide in the past two decades. However, only few studies have specifically reported the prevalence of CAdV type 2 (CAdV-2). The present study investigated the persistent circulation of CAdV-2 in dogs with diarrhea in the Henan, Hubei, and Jiangsu provinces in central China from 2017 to 2019. We conducted polymerase chain reaction for detecting CAdV-2 and other related pathogens in 224 rectal swabs of pet dogs and the co-infection of canine diseases was also analyzed. In addition, the structural protein genes-Fiber, Hexon, and Penton-of the isolated CAdV-2 strains were sequenced and analyzed. The similarity between Hexon and Penton among the 19 strains was 97.4%, as revealed by sequence alignment. Multiple sequence alignment results showed that the Fiber gene sequences of these CAdV-2 strains shared 97.4-99.8% nucleotide and 94.1-99.3% amino acid identity with reference sequences and shared only 79.0-80.5% nucleotide and 77.3-80.5% amino acid identity with the vaccine strain CLL, indicating that Fiber harbored most of the variant sites. Furthermore, pairwise sequence comparisons of Hexon of CH-JS-1901 and CH-HN-1801 with that of India2006 revealed a novel genotype. Furthermore, protein model prediction showed that the amino acid mutation of fiber protein in 19 strains was located in the head region, that may cause structural changes on the surface of the fiber protein. These findings are of significance for monitoring the epidemiology of CAdV-2 infection and developing a novel vaccine which contribute to understanding genetic evolution of CAdV-2 in China.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | - Wanyu Li
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | - Wen Hu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Establishment of a Simple and Efficient Reverse Genetics System for Canine Adenoviruses Using Bacterial Artificial Chromosomes. Viruses 2020; 12:v12070767. [PMID: 32708703 PMCID: PMC7412426 DOI: 10.3390/v12070767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Canine adenoviruses (CAdVs) are divided into pathotypes CAdV1 and CAdV2, which cause infectious hepatitis and laryngotracheitis in canid animals, respectively. They can be the backbones of viral vectors that could be applied in recombinant vaccines or for gene transfer in dogs and in serologically naïve humans. Although conventional plasmid-based reverse genetics systems can be used to construct CAdV vectors, their large genome size creates technical difficulties in gene cloning and manipulation. In this study, we established an improved reverse genetics system for CAdVs using bacterial artificial chromosomes (BACs), in which genetic modifications can be efficiently and simply made through BAC recombineering. To validate the utility of this system, we used it to generate CAdV2 with the early region 1 gene deleted. This mutant was robustly generated and attenuated in cell culture. The results suggest that our established BAC-based reverse genetics system for CAdVs would be a useful and powerful tool for basic and advanced practical studies with these viruses.
Collapse
|
17
|
Wang S, Wen Y, An T, Duan G, Sun M, Ge J, Li X, Yang K, Cai X. Development of an Immunochromatographic Strip for Rapid Detection of Canine Adenovirus. Front Microbiol 2019; 10:2882. [PMID: 31921060 PMCID: PMC6917642 DOI: 10.3389/fmicb.2019.02882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/29/2019] [Indexed: 12/01/2022] Open
Abstract
Although canine adenovirus (CAdV) is highly prevalent in dogs, there is currently a lack of a quick diagnostic method. In this study, we developed a rapid immunochromatographic strip (ICS) assay using colloidal gold coupled to CAdV-2-specific monoclonal antibodies (mAbs). BALB/c mice were immunized with a purified CAdV-2 suspension, and four mAbs (belonging to two different epitopes) were generated and designated as 2C1, 7D7, 10D1, and 4G1. Western blot and protein spectral analysis indicated that the hexon protein of CAdV-2 recognized all four mAbs. The colloidal gold-coupled 7D7 and 2C1 mAbs were chosen for inclusion in the rapid ICS assay. The optimal concentrations of the coating antibody (2C1), the capture antibody (7D7), and the goat anti-mouse antibody were 1.0 mg/ml, 10 μg/ml, and 2.0 mg/ml, respectively. The limit of detection was approximately 2.0 × 102 tissue culture infective dose (TCID50)/ml. Other common canine viruses were tested to evaluate the specificity of the ICS, and positive results were observed for only CAdV-1 and CAdV-2. The ICS test was conducted on 360 samples to detect CAdV, and the results were compared with those of polymerase chain reaction (PCR) tests. The ICS test was found to be a sufficiently sensitive and specific detection method for the convenient and rapid detection of CAdV.
Collapse
Affiliation(s)
- Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongjun Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Tongqing An
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guixin Duan
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - MingXia Sun
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinying Ge
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xi Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kongbin Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
18
|
Multicentric Molecular and Pathologic Study on Canine Adenovirus Type 1 in Red Foxes (Vulpes vulpes) in Three European Countries. J Wildl Dis 2019. [DOI: 10.7589/2018-12-295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Song T, Hao J, Zhang R, Tang M, Li W, Hui W, Fu Q, Wang C, Xin S, Zhang S, Rui P, Ren H, Ma Z. First detection and phylogenetic analysis of porcine circovirus type 2 in raccoon dogs. BMC Vet Res 2019; 15:107. [PMID: 30961660 PMCID: PMC6454600 DOI: 10.1186/s12917-019-1856-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/28/2019] [Indexed: 11/25/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is a major emerging virus of porcine circovirus-associated disease (PCVAD), which has brought huge economic losses to the global pig industry. Pigs are well known as the natural reservoir of PCV2. Recently, many researchers have revealed PCV2 could infect many other mammals like mice, calves, minks, dogs and goats. In 2018, our laboratory has admitted six cases of raccoon dogs from Qinhuangdao city of China, which were characterized by inappetence, lethargy, depression, abortion, and sterility. Results At last, six raccoon dog-origin PCV2 strains were isolated in this study. Pairwise-sequence comparisons demonstrated that the six raccoon dog-origin PCV2 strains shared a nucleotide similarity of 92.1–99.8% among 40 PCV2 representative strains. Phylogenetic analysis indicated these PCV2 isolates belonged to Chinese epidemic genotypes PCV2b and PCV2d. And aborted or sterile symptom was significantly associated with PCV2 infection in raccoon dogs by the chi-square test (χ2 = 87.3, p < 0.001). The retrospective study revealed that raccoon dog-origin PCV2 strains shared 100% sequence similarity with the PCV2 stains isolated from pig farms around these raccoon dog farms, respectively. Conclusion In this study, the first supported evidence of PCV2 prevalence in raccoon dog farms of China was documented. PCV2 may be one of the most significant causative agents resulting in the reproductive failure of farmed raccoon dogs, implying that PCV2 could transmit from pigs to raccoon dogs. That indicated that PCV2 cross-species transmission will be a serious threat to China’s fur animal farming industry.
Collapse
Affiliation(s)
- Tao Song
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Jianxiang Hao
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Ran Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Menghu Tang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Wenao Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Weirong Hui
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Qiyuan Fu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Chunfang Wang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Shuyang Xin
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Shoucong Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Ping Rui
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Hai Ren
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Zengjun Ma
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China.
| |
Collapse
|
20
|
Unique genetic features of canine adenovirus type 1 (CAdV-1) infecting red foxes (Vulpes vulpes) in northern Norway and arctic foxes (Vulpes lagopus) in Svalbard. Vet Res Commun 2019; 43:67-76. [DOI: 10.1007/s11259-019-09746-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
21
|
Yang DK, Kim HH, Lee EJ, Yoo JY, Yoon SS, Park J, Kim CH, Kim HR. Recharacterization of the Canine Adenovirus Type 1 Vaccine Strain based on the Biological and Molecular Properties. ACTA ACUST UNITED AC 2019. [DOI: 10.4167/jbv.2019.49.3.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dong-Kun Yang
- Viral Disease Research Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, 39660, Republic of Korea
| | - Ha-Hyun Kim
- Viral Disease Research Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, 39660, Republic of Korea
| | - Eun-Jin Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, 39660, Republic of Korea
| | - Jae-Young Yoo
- Viral Disease Research Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, 39660, Republic of Korea
| | - Soon-Seek Yoon
- Viral Disease Research Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, 39660, Republic of Korea
| | - Jungwon Park
- Viral Disease Research Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, 39660, Republic of Korea
| | - Chae-Hyun Kim
- KBNP Technology Institute, KBNP, Yesan-gun, 32417, Republic of Korea
| | - Ho-Ryoung Kim
- KBNP Technology Institute, KBNP, Yesan-gun, 32417, Republic of Korea
| |
Collapse
|
22
|
Song T, Zhang S, Hao J, Xin S, Hui W, Tang M, Li W, Tian R, Liu X, Rui P, Ren H, Wang C, Fu Q, Ma Z. First detection and genetic analysis of fox-origin porcine circovirus type 2. Transbound Emerg Dis 2018; 66:1-6. [PMID: 30153367 DOI: 10.1111/tbed.13004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 08/18/2018] [Indexed: 02/01/2023]
Abstract
Porcine circovirus type 2 (PCV2) is a causative agent of porcine circovirus-associated disease (PCVAD), which is a serious problem in the swine industry worldwide. In recent years, nonporcine-origin PCV2 has attracted more and more attention of the researchers. This study reported on the first identification of PCV2 in farmed foxes with reproductive failure. Three fox-origin PCV2 strains were successfully isolated, sequenced, and designated as FoxHB1, FoxHB2, and FoxHB3 respectively. Pairwise-sequence comparisons of the complete genomes revealed that three fox-origin PCV2 strains had nucleotide identities varied from 91.9% to 99.7% with representative strains of PCV2 different genotypes. Meanwhile, phylogenetic analysis based on complete genomes of 44 PCV2 strains indicated that the fox-origin PCV2 strains belonged to Chinese epidemic genotypes PCV2b and PCV2d. These results provided the first supported evidence that PCV2 could infect foxes, implying that the cross-species transmission of PCV2 would be a big threat to Chinese fur animal-bearing industry.
Collapse
Affiliation(s)
- Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China.,Animal Disease Diagnosis & Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Shoucong Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China.,Animal Disease Diagnosis & Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jianxiang Hao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China.,Animal Disease Diagnosis & Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Shuyang Xin
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China.,Animal Disease Diagnosis & Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Weirong Hui
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Menghu Tang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Wenao Li
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Rui Tian
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Xuanfu Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Ping Rui
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China.,Animal Disease Diagnosis & Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Hai Ren
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Chunfang Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Qiyuan Fu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China
| | - Zengjun Ma
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Key Laboratory of Preventive Veterinary Medicine of Hebei, Qinhuangdao, China.,Animal Disease Diagnosis & Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
23
|
Dowgier G, Lahoreau J, Lanave G, Losurdo M, Varello K, Lucente MS, Ventriglia G, Bozzetta E, Martella V, Buonavoglia C, Decaro N. Sequential circulation of canine adenoviruses 1 and 2 in captive wild carnivores, France. Vet Microbiol 2018; 221:67-73. [PMID: 29981710 PMCID: PMC7172945 DOI: 10.1016/j.vetmic.2018.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022]
Abstract
Two canine adenoviruses (CAdVs) were found to circulate sequentially in captive wild carnivores in France. CAdV-1 caused the death of a Eurasian wolf (Canis lupus lupus) with gross lesions and histopathological changes compatible with infectious canine hepatitis. CAdV-2 was subsequently found to circulate subclinically in other carnivores of the same zoological park. Analysis of the full-length genome of the wolf CAdV-1 strain showed a high genetic relatedness with an Italian strain detected in the same species. Future studies are needed to assess the CAdV ecology in endangered wild carnivores.
Scarce data are currently available about the ecology of canine adenoviruses (CAdVs) in wild carnivores. In this paper, the consecutive circulation of CAdV-1 and CAdV-2 in wild carnivores maintained in a French zoological park is reported. A fatal CAdV-1 infection was observed in a Eurasian wolf (Canis lupus lupus), which displayed gross lesions, histopathological changes and immunohistochemical findings suggestive of CAdV-1 infection. The virus was isolated on cell cultures and its genome was determined through next-generation sequencing, resulting genetically related to a recent Italian CAdV-1 strain detected in an Italian wolf. Subsequently, subclinical circulation of CAdV-2 was demonstrated by molecular methods in wild carnivores maintained in the same zoological park, some of which had been previously vaccinated with a CAdV-2 vaccine. Virus detection at a long distance from vaccination and by unvaccinated animals was suggestive of infection by a CAdV-2 field strain, although no data are available about the extent and duration of shedding of CAdV-2 modified-live virus in wild or domestic carnivores. The present paper provides new insights into the CAdV ecology in wildlife, although future studies are needed to fully understand the pathogenic potential of both CAdVs especially in endangered carnivore species.
Collapse
Affiliation(s)
- Giulia Dowgier
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy; The Pirbright Institute, Pirbright, Woking, UK
| | | | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Michele Losurdo
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale di Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | | | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale di Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| |
Collapse
|
24
|
Walker D, Gregory WF, Turnbull D, Rocchi M, Meredith AL, Philbey AW, Sharp CP. Novel adenoviruses detected in British mustelids, including a unique Aviadenovirus in the tissues of pine martens ( Martes martes). J Med Microbiol 2017; 66:1177-1182. [PMID: 28749327 PMCID: PMC5817191 DOI: 10.1099/jmm.0.000546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Several adenoviruses are known to cause severe disease in veterinary species. Recent evidence suggests that canine adenovirus type 1 (CAV-1) persists in the tissues of healthy red foxes (Vulpes vulpes), which may be a source of infection for susceptible species. It was hypothesized that mustelids native to the UK, including pine martens (Martes martes) and Eurasian otters (Lutra lutra), may also be persistently infected with adenoviruses. Based on high-throughput sequencing and additional Sanger sequencing, a novel Aviadenovirus, tentatively named marten adenovirus type 1 (MAdV-1), was detected in pine marten tissues. The detection of an Aviadenovirus in mammalian tissue has not been reported previously. Two mastadenoviruses, tentatively designated marten adenovirus type 2 (MAdV-2) and lutrine adenovirus type 1 (LAdV-1), were also detected in tissues of pine martens and Eurasian otters, respectively. Apparently healthy free-ranging animals may be infected with uncharacterized adenoviruses with possible implications for translocation of wildlife.
Collapse
Affiliation(s)
- David Walker
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
- *Correspondence: David Walker,
| | - William F. Gregory
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Dylan Turnbull
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK
| | - Mara Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK
| | - Anna L. Meredith
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Adrian W. Philbey
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Colin P. Sharp
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
25
|
SURVEILLANCE FOR ANTIBODIES AGAINST SIX CANINE VIRUSES IN WILD RACCOONS (PROCYON LOTOR) IN JAPAN. J Wildl Dis 2017; 53:761-768. [PMID: 28715293 DOI: 10.7589/2016-11-253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Raccoons (Procyon lotor) are found worldwide. They are frequently seen in crowded inner cities as well as in forests or wooded areas, often living in proximity to humans and their pets. We examined sera from 100 wild raccoons in Japan for antibodies to six canine viruses with veterinary significance to assess their potential as reservoirs. We also aimed to understand the distribution of potentially infected wildlife. We found that 7% of samples were seropositive for canine distemper virus (CDV), 10% for canine parvovirus type 2, 2% for canine adenovirus type 1, 6% for canine adenovirus type 2, and 7% for canine coronavirus. No samples were found to be seropositive for canine parainfluenza virus. Seropositivity rates for canine distemper virus and canine parvovirus type 2 were significantly different between areas, and younger raccoons (<1 yr old) were more frequently seropositive than older raccoons. Because raccoons belong to the suborder Caniformia, similar to dogs (Canis lupus familiaris), our results suggest that they can act as reservoirs for some of these important canine viruses and might be involved in viral transmission. Further study should include isolation and analysis of canine viruses in wild raccoons from a wider area.
Collapse
|
26
|
Novel sequence variants of viral hexon and fibre genes in two dogs with canine adenovirus type 1-associated disease. Vet J 2017; 223:73-75. [PMID: 28671077 DOI: 10.1016/j.tvjl.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022]
Abstract
There is little information on sequence variation of canine adenovirus type 1 (CAdV-1), the aetiological agent of infectious canine hepatitis (ICH). This study reports hexon and fibre gene sequence variants of CAdV-1 in a dog with systemic ICH and a dog with the ocular form of the disease ('blue eye') in Northern Italy in 2013. One of the sequence variants matched a CAdV-1 fox sequence previously detected in Italy.
Collapse
|
27
|
Wong M, Woolford L, Hasan NH, Hemmatzadeh F. A Novel Recombinant Canine Adenovirus Type 1 Detected from Acute Lethal Cases of Infectious Canine Hepatitis. Viral Immunol 2017; 30:258-263. [PMID: 28426340 DOI: 10.1089/vim.2016.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, canine adenoviruses (CAdVs) from two acute fatal cases of infectious canine hepatitis (ICH) were analyzed using molecular detection and sequencing of the pVIII, E3, and fiber protein genes. Pathological findings in affected dogs were typical for CAdV-1 associated disease, characterized by severe centrilobular to panlobular necrohemorrhagic hepatitis and the development of disseminated intravascular coagulation in the terminal stages of disease. Comparison of partial genome sequences revealed that although these newly detected viruses mainly had CAdV-1 genome characteristics, their pVIII gene was more similar to that of CAdV-2. This likely suggests that a recombination has occurred between CAdV-1 and CAdV-2, which possibly explains the cause of vaccine failure or increased virulence of the virus in the observed ICH cases.
Collapse
Affiliation(s)
- Magdelene Wong
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| | - Lucy Woolford
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| | - Noor Haliza Hasan
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, University Malaysia Sabah , Sabah, Malaysia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| |
Collapse
|