1
|
Mikiewicz M, Otrocka-Domagała I. Immunohistochemical analysis of smooth muscle actin and CD31 in feline post-injection site fibrosarcomas: association with tumour grade, vascular density, and multinucleated giant cells. BMC Vet Res 2025; 21:191. [PMID: 40119382 PMCID: PMC11927333 DOI: 10.1186/s12917-025-04637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Multinucleated giant cells are commonly observed in various malignancies; however their clinical and biological significance remains largely unexplored and it has been hypothesised that the cells may play a role in vascular mimicry, tumour progression and tumour survival. This study aimed to investigate the expression of smooth muscle actin and CD31 in feline post-injection site fibrosarcomas, focusing on relationships between multinucleated giant cells presence, tumour grade, and vascular density to elucidate their potential role in tumour progression. RESULTS A total of 61 feline post-injection site fibrosarcomas, histologically graded into grades I, II, and III, were examined immunohistochemically. Smooth muscle actin immunoreactivity was detected in 57/61 (93.4%) cases. Multinucleated giant cells expressing CD31 were identified in 39/61 (63.9%) cases, predominantly in high-grade tumours, with a correlation observed between multinucleated giant cell presence, tumour grade, and mitotic index. Vascular density differed across tumour grades. A negative correlation between vascular density, tumour grade and necrosis score was identified. Additionally, a negative correlation was observed between multinucleated giant cells presence and vascular density. CONCLUSIONS The findings suggest a complex tumour microenvironment in which multinucleated giant cells and vascular mimicry may facilitate tumour survival under hypoxic conditions, potentially contributing to an aggressive tumour phenotype.
Collapse
Affiliation(s)
- Mateusz Mikiewicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St, Olsztyn, Poland.
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St, Olsztyn, Poland
| |
Collapse
|
2
|
Fan J, Xie Y, Liu D, Cui R, Zhang W, Shen M, Cao L. Crosstalk Between H-Type Vascular Endothelial Cells and Macrophages: A Potential Regulator of Bone Homeostasis. J Inflamm Res 2025; 18:2743-2765. [PMID: 40026304 PMCID: PMC11871946 DOI: 10.2147/jir.s502604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
The crosstalk between H-type endothelial cells (ECs) and macrophages is critical for maintaining angiogenesis and osteogenesis in bone homeostasis. As core components of type H vessels, ECs respond to various pro-angiogenic signals, forming specialized vascular structures characterized by high expression of platelet-endothelial cell adhesion molecule-1 (CD31) and endothelial mucin (EMCN), thereby facilitating angiogenesis-osteogenesis coupling during bone formation. Macrophages, as key immune cells in the perivascular region, are primarily classified into the classically activated pro-inflammatory M1 phenotype and the selectively activated anti-inflammatory M2 phenotype, thereby performing dual functions in regulating local tissue homeostasis and innate immunity. In recent years, the complex crosstalk between type H vessel ECs and macrophages has garnered significant interest in the context of bone-related diseases. Orderly regulation of angiogenesis and bone immunity provides a new direction for preventing bone metabolic disorders such as osteoporosis and osteoarthritis. However, their interactions in bone homeostasis remain insufficiently understood, with limited clinical data available. This review comprehensively examines the intricate interactions between type H vessel ECs and macrophages with diverse phenotypes, and Insights into the signaling pathways that regulate their crosstalk, focusing on their roles in angiogenesis and osteogenesis. Furthermore, the review discusses recent interventions targeting this crosstalk and the challenges that remain. These insights may offer new perspectives on bone homeostasis and provide a theoretical foundation for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxuan Fan
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yaohui Xie
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Desun Liu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Rui Cui
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Wei Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Mengying Shen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Linzhong Cao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
3
|
Qi X, Lian Y, Fan Z, Wang H, Jiang H, He M, Li L, Huang J, Wan Y. Electroacupuncture normalized tumor vasculature by downregulating glyoxalase-1 to polarize tumor-associated macrophage to M1 phenotype in triple-negative breast cancer. Int Immunopharmacol 2025; 147:113988. [PMID: 39778275 DOI: 10.1016/j.intimp.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Triple-negative breast cancer is a particularly aggressive type of breast cancer that is closely associated with abnormal vascularization within the tumor. However, traditional anti-VEGF therapies and other treatments have limited efficacy. Tumor-associated macrophages (TAMs) induce and regulate tumor angiogenesis. In recent years, regulating TAMs polarization has become a hot topic for research with objectives to normalize tumor vasculature and improve drug delivery and the tumor microenvironment. Our previous studies have found that peritumoral electroacupuncture (EA) can regulate tumor angiogenesis, but the underlying mechanism remains unclear. METHODS In this study, we examined the phenotype of TAMs and inflammatory factors to observe the effect of peritumoral electroacupuncture on the phenotypic polarization of TAMs. Based on this, we evaluated the structure and function of tumor vasculature. Finally, we conducted a preliminary exploration of the mechanism underlying the regulation of TAMs phenotypic polarization by peritumoral electroacupuncture. RESULTS In this study, we found that peritumoral electroacupuncture could promote the phenotypic polarization of TAMs toward the M1 type, thereby reducing microvascular density in tumor tissue, increasing pericyte coverage, improving the stability of the basement membrane, promoting vascular maturation, and enhancing perfusion while reducing tissue hypoxia. CONCLUSIONS Peritumoral electroacupuncture can promote the phenotypic polarization of TAMs toward the M1 type, leading to normalization of tumor vascular structure and function. The mechanism may be related to the downregulation of glyoxalase-1 and subsequent activation of the MGO-AGEs/RAGE axis.
Collapse
Affiliation(s)
- Xuewei Qi
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanyan Lian
- Chaoyang District Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhenjia Fan
- Beijing University of Chinese Medicine, Beijing, China
| | - Hui Wang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Honglin Jiang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyang He
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liling Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchang Huang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuxiang Wan
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Ostadi Y, Khanali J, Tehrani FA, Yazdanpanah G, Bahrami S, Niazi F, Niknejad H. Decellularized Extracellular Matrix Scaffolds for Soft Tissue Augmentation: From Host-Scaffold Interactions to Bottlenecks in Clinical Translation. Biomater Res 2024; 28:0071. [PMID: 39247652 PMCID: PMC11378302 DOI: 10.34133/bmr.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials. Accordingly, the review delves into the dual role of macrophages and their M1/M2 polarization paradigm to form both constructive and destructive immune responses to DEM implants. Moreover, the contribution of macrophages in angiogenesis has been elucidated, which includes but is not limited to the secretion of angiogenic growth factors and extracellular matrix (ECM) remodeling. The findings challenge the traditional view of immune cells as solely destructive entities in biomaterials and indicate their multifaceted roles in tissue regeneration. Furthermore, the review discusses how the compositional factors of DEMs, such as the presence of growth factors and matrikines, can influence angiogenesis, cell fate, and differentiation during the recellularization process. It is also shown that the biomechanical properties of DEMs, including tissue stiffness, modulate cell responses through mechanotransduction pathways, and the structural properties of DEMs, such as scaffold porosity, impact cell-cell and cell-ECM interactions. Finally, we pointed out the current clinical applications, the bottlenecks in the clinical translation of DEM biomaterials into soft tissue fillers, as well as the naïve research areas of the field.
Collapse
Affiliation(s)
- Yasamin Ostadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Tehrani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Senk A, Fazzari J, Djonov V. Vascular mimicry in zebrafish fin regeneration: how macrophages build new blood vessels. Angiogenesis 2024; 27:397-410. [PMID: 38546923 PMCID: PMC11303510 DOI: 10.1007/s10456-024-09914-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/10/2024] [Indexed: 08/07/2024]
Abstract
Vascular mimicry has been thoroughly investigated in tumor angiogenesis. In this study, we demonstrate for the first time that a process closely resembling tumor vascular mimicry is present during physiological blood vessel formation in tissue regeneration using the zebrafish fin regeneration assay. At the fin-regenerating front, vasculature is formed by mosaic blood vessels with endothelial-like cells possessing the morphological phenotype of a macrophage and co-expressing both endothelial and macrophage markers within single cells. Our data demonstrate that the vascular segments of the regenerating tissue expand, in part, through the transformation of adjacent macrophages into endothelial-like cells, forming functional, perfused channels and contributing to the de novo formation of microvasculature. Inhibiting the formation of tubular vascular-like structures by CVM-1118 prevents vascular mimicry and network formation resulting in a 70% shorter regeneration area with 60% reduced vessel growth and a complete absence of any signs of regeneration in half of the fin area. Additionally, this is associated with a significant reduction in macrophages. Furthermore, depleting macrophages using macrophage inhibitor PLX-3397, results in impaired tissue regeneration and blood vessel formation, namely a reduction in the regeneration area and vessel network by 75% in comparison to controls.
Collapse
Affiliation(s)
- Anita Senk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Xiao X, Zheng Y, Wang T, Zhang X, Fang G, Zhang Z, Zhang Z, Zhao J. Enhancing anti-angiogenic immunotherapy for melanoma through injectable metal-organic framework hydrogel co-delivery of combretastatin A4 and poly(I:C). NANOSCALE ADVANCES 2024; 6:3135-3145. [PMID: 38868828 PMCID: PMC11166098 DOI: 10.1039/d4na00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The interplay between vascularization and macrophage-induced immune suppression plays a crucial role in melanoma treatment. In this study, we propose a novel combination approach to combat melanoma by simultaneously inhibiting tumor vascularization and enhancing macrophage-mediated anti-tumor responses. We investigate the potential of combining combretastatin A4 (CA4), a vascular-disrupting agent, with poly(I:C) (PIC), an immunostimulatory adjuvant. This combination approach effectively suppresses melanoma cell proliferation, disrupts vascularization, and promotes macrophage polarization towards the M1 phenotype for melanoma suppression. To facilitate efficient co-delivery of CA4 and PIC for enhanced anti-angiogenic immunotherapy, we develop an injectable metal-organic framework hydrogel using Zeolitic Imidazolate Framework-8 (ZIF-8) and hyaluronic acid (HA) (ZIF-8/HA). Our findings demonstrate that ZIF-8 enables efficient loading of CA4 and enhances the stability of PIC against RNAase degradation in vitro. Furthermore, the developed co-delivery hydrogel system, PIC/CA4@ZIF-8/HA, exhibits improved rheological properties, good injectability and prolonged drug retention. Importantly, in vivo experiments demonstrate that the PIC/CA4@ZIF-8/HA formulation significantly reduces the dosage and administration frequency while achieving a more pronounced therapeutic effect. It effectively inhibits melanoma growth by suppressing angiogenesis, destroying blood vessels, promoting M1 macrophage infiltration, and demonstrating excellent biocompatibility. In conclusion, our study advances anti-angiogenic immunotherapy for melanoma through the potent combination of PIC/CA4, particularly when administered using the PIC/CA4@ZIF-8/HA formulation. These findings provide a new perspective on clinical anti-angiogenic immunotherapy for melanoma, emphasizing the importance of targeting tumor vascularization and macrophage-mediated immune suppression simultaneously.
Collapse
Affiliation(s)
- Xufeng Xiao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Yunuo Zheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Xuzhou 221009 Jiangsu China
| | - Tianlong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Xiaoqing Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Gaochuan Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Zhonghai Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University Xuzhou 221002 Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 Jiangsu China
| | - Jiaojiao Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| |
Collapse
|
7
|
Tang H, Chen L, Liu X, Zeng S, Tan H, Chen G. Pan-cancer dissection of vasculogenic mimicry characteristic to provide potential therapeutic targets. Front Pharmacol 2024; 15:1346719. [PMID: 38694917 PMCID: PMC11061449 DOI: 10.3389/fphar.2024.1346719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/30/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Vasculogenic mimicry (VM) represents a novel form of tumor angiogenesis that is associated with tumor invasiveness and drug resistance. However, the VM landscape across cancer types remains poorly understood. In this study, we elucidate the characterizations of VM across cancers based on multi-omics data and provide potential targeted therapeutic strategies. Methods Multi-omics data from The Cancer Genome Atlas was used to conduct comprehensive analyses of the characteristics of VM related genes (VRGs) across cancer types. Pan-cancer vasculogenic mimicry score was established to provide a depiction of the VM landscape across cancer types. The correlation between VM and cancer phenotypes was conducted to explore potential regulatory mechanisms of VM. We further systematically examined the relationship between VM and both tumor immunity and tumor microenvironment (TME). In addition, cell communication analysis based on single-cell transcriptome data was used to investigate the interactions between VM cells and TME. Finally, transcriptional and drug response data from the Genomics of Drug Sensitivity in Cancer database were utilized to identify potential therapeutic targets and drugs. The impact of VM on immunotherapy was also further clarified. Results Our study revealed that VRGs were dysregulated in tumor and regulated by multiple mechanisms. Then, VM level was found to be heterogeneous among different tumors and correlated with tumor invasiveness, metastatic potential, malignancy, and prognosis. VM was found to be strongly associated with epithelial-mesenchymal transition (EMT). Further analyses revealed cancer-associated fibroblasts can promote EMT and VM formation. Furthermore, the immune-suppressive state is associated with a microenvironment characterized by high levels of VM. VM score can be used as an indicator to predict the effect of immunotherapy. Finally, seven potential drugs targeting VM were identified. Conclusion In conclusion, we elucidate the characteristics and key regulatory mechanisms of VM across various cancer types, underscoring the pivotal role of CAFs in VM. VM was further found to be associated with the immunosuppressive TME. We also provide clues for the research of drugs targeting VM. Our study provides an initial overview and reference point for future research on VM, opening up new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuxun Chen
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xvdong Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjie Zeng
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
9
|
Dahms P, Lyons TR. Toward Characterizing Lymphatic Vasculature in the Mammary Gland During Normal Development and Tumor-Associated Remodeling. J Mammary Gland Biol Neoplasia 2024; 29:1. [PMID: 38218743 PMCID: PMC10787674 DOI: 10.1007/s10911-023-09554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Lymphatic vasculature has been shown to promote metastatic spread of breast cancer. Lymphatic vasculature, which is made up of larger collecting vessels and smaller capillaries, has specialized cell junctions that facilitate cell intravasation. Normally, these junctions are designed to collect immune cells and other cellular components for immune surveillance by lymph nodes, but they are also utilized by cancer cells to facilitate metastasis. Although lymphatic development overall in the body has been well-characterized, there has been little focus on how the lymphatic network changes in the mammary gland during stages of remodeling such as pregnancy, lactation, and postpartum involution. In this review, we aim to define the currently known lymphangiogenic factors and lymphatic remodeling events during mammary gland morphogenesis. Furthermore, we juxtapose mammary gland pubertal development and postpartum involution to show similarities of pro-lymphangiogenic signaling as well as other molecular signals for epithelial cell survival that are critical in these morphogenic stages. The similar mechanisms include involvement of M2-polarized macrophages that contribute to matrix remodeling and vasculogenesis; signal transducer and activator of transcription (STAT) survival and proliferation signaling; and cyclooxygenase 2 (COX2)/Prostaglandin E2 (PGE2) signaling to promote ductal and lymphatic expansion. Investigation and characterization of lymphangiogenesis in the normal mammary gland can provide insight to targetable mechanisms for lymphangiogenesis and lymphatic spread of tumor cells in breast cancer.
Collapse
Affiliation(s)
- Petra Dahms
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA
| | - Traci R Lyons
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA.
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA.
| |
Collapse
|
10
|
Hung CN, Chen M, DeArmond DT, Chiu CHL, Limboy CA, Tan X, Kusi M, Chou CW, Lin LL, Zhang Z, Wang CM, Chen CL, Mitsuya K, Osmulski PA, Gaczynska ME, Kirma NB, Vadlamudi RK, Gibbons DL, Warner S, Brenner AJ, Mahadevan D, Michalek JE, Huang THM, Taverna JA. AXL-initiated paracrine activation of pSTAT3 enhances mesenchymal and vasculogenic supportive features of tumor-associated macrophages. Cell Rep 2023; 42:113067. [PMID: 37659081 PMCID: PMC10577802 DOI: 10.1016/j.celrep.2023.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daniel T DeArmond
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Cheryl H-L Chiu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Catherine A Limboy
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Li-Ling Lin
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA; Office of Nursing Research & Scholarship, School of Nursing, University of Texas Health Science Center, San Antonio, TX, USA
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Don L Gibbons
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Joel E Michalek
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA; Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Josephine A Taverna
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA; Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
11
|
Zou Q, Yuan R, Zhang Y, Wang Y, Zheng T, Shi R, Zhang M, Li Y, Fei K, Feng R, Pan B, Zhang X, Gong Z, Zhu L, Tang G, Li M, Li X, Jiang Y. A single-cell transcriptome atlas of pig skin characterizes anatomical positional heterogeneity. eLife 2023; 12:86504. [PMID: 37276016 DOI: 10.7554/elife.86504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Different anatomical locations of the body skin show differences in their gene expression patterns depending on different origins, and the inherent heterogeneous information can be maintained in adults. However, highly resolvable cellular specialization is less well characterized in different anatomical regions of the skin. Pig is regarded as an excellent model animal for human skin research in view of its similar physiology to human. In this study, single-cell RNA sequencing was performed on pig skin tissues from six different anatomical regions of Chenghua (CH) pigs, with a superior skin thickness trait, and the back site of large white (LW) pigs. We obtained 233,715 cells, representing seven cell types, among which we primarily characterized the heterogeneity of the top three cell types, including smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts (FBs). Then, we further identified several subtypes of SMCs, ECs, and FBs, and discovered the expression patterns of site-specific genes involved in some important pathways such as the immune response and extracellular matrix (ECM) synthesis in different anatomical regions. By comparing differentially expressed genes of skin FBs among different anatomical regions, we considered TNN, COL11A1, and INHBA as candidate genes for facilitating ECM accumulation. These findings of heterogeneity in the main skin cell types from different anatomical sites will contribute to a better understanding of inherent skin information and place the potential focus on skin generation, transmission, and transplantation, paving the foundation for human skin priming.
Collapse
Affiliation(s)
- Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, China
| | - Yu Zhang
- BGI Beijing Genome Institute, Beijing, China
| | - Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ran Feng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Binyun Pan
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xinyue Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
12
|
Delgado-Bellido D, Oliver FJ, Vargas Padilla MV, Lobo-Selma L, Chacón-Barrado A, Díaz-Martin J, de Álava E. VE-Cadherin in Cancer-Associated Angiogenesis: A Deceptive Strategy of Blood Vessel Formation. Int J Mol Sci 2023; 24:ijms24119343. [PMID: 37298296 DOI: 10.3390/ijms24119343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor growth depends on the vascular system, either through the expansion of blood vessels or novel adaptation by tumor cells. One of these novel pathways is vasculogenic mimicry (VM), which is defined as a tumor-provided vascular system apart from endothelial cell-lined vessels, and its origin is partly unknown. It involves highly aggressive tumor cells expressing endothelial cell markers that line the tumor irrigation. VM has been correlated with high tumor grade, cancer cell invasion, cancer cell metastasis, and reduced survival of cancer patients. In this review, we summarize the most relevant studies in the field of angiogenesis and cover the various aspects and functionality of aberrant angiogenesis by tumor cells. We also discuss the intracellular signaling mechanisms involved in the abnormal presence of VE-cadherin (CDH5) and its role in VM formation. Finally, we present the implications for the paradigm of tumor angiogenesis and how targeted therapy and individualized studies can be applied in scientific analysis and clinical settings.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - F J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
| | | | - Laura Lobo-Selma
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | | | - Juan Díaz-Martin
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Enrique de Álava
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
13
|
Qiao T, Yang W, He X, Song P, Chen X, Liu R, Xiao J, Yang X, Li M, Gao Y, Chen G, Lu Y, Zhang J, Leng J, Ren H. Dynamic differentiation of F4/80+ tumor-associated macrophage and its role in tumor vascularization in a syngeneic mouse model of colorectal liver metastasis. Cell Death Dis 2023; 14:117. [PMID: 36781833 PMCID: PMC9925731 DOI: 10.1038/s41419-023-05626-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Tumor-associated macrophages (TAMs) are highly heterogeneous and play vital roles in tumor progression. Here we adopted a C57BL/6 mouse model imitating the late-stage colorectal liver metastasis (CRLM) by Mc38 colorectal cancer cell injection via the portal vein. With serial sections of CRLM biopsies, we defined 7-9 days post-injection as the critical period for tumor neovascularization, which was initiated from the innate liver vessels via vessel cooption and extended by vascular mimicry and thereof growth of CD34+cells. In samples with increasing-sized liver metastases, the infiltrated Ly6C+ CD11b+ F4/80- monocytes steadily gained the expression of F4/80, a Kupffer cell marker, before transformed into Ly6C- CD11bint F4/80+ cells, which, the same phenotype was also adapted by Ly6C- CD11b- F4/80+ Kupffer cells. F4/80+ TAMs showed proximity to neovascularization and tumor vessels, functionally angiogenic in vivo; and greatly promoted the activation of a few key angiogenic markers such as VEGFA, Ki67, etc. in endothelial cells in vitro. Depletion of macrophages or diversion of macrophage polarization during neovascularization impeded tumor growth and vascularization and resulted in greatly reduced F4/80+ TAMs, yet increased CD11b+ cells due to inhibition of TAM differentiation. In summary, our results showed dynamic and spatial-temporal F4/80+ TAM transformation within the tumor microenvironment and strengthened its role as perivascular and angiogenic TAMs in CRLM.
Collapse
Affiliation(s)
- Ting Qiao
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wanli Yang
- Department of Immunology, Harbin Medical University, Harbin, China
- Chongming Hospital affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangchuan He
- Department of Immunology, Harbin Medical University, Harbin, China
- Clinical Center for BioTherapy & Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Song
- Department of Immunology, Harbin Medical University, Harbin, China
- Department of Ophthalmology, Jiarun Hospital of Harbin, Harbin, China
| | - Xiao Chen
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ruijie Liu
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Jian Xiao
- Department of Microbiology & Immunology, Guangxi Chinese Medicine University, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Xiaoli Yang
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Mingqi Li
- Department of Colorectal Surgery, the 3rd Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Yudan Gao
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, China.
| | - Jing Leng
- Department of Microbiology & Immunology, Guangxi Chinese Medicine University, Nanning, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-incidence Infectious Diseases with Integrative Medicine, Nanning, China.
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
14
|
Zheng Y, Jiang B, Guo H, Zhang Z, Chen B, Zhang Z, Wu S, Zhao J. The combinational nano-immunotherapy of ferumoxytol and poly(I:C) inhibits melanoma via boosting anti-angiogenic immunity. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102658. [PMID: 36708910 DOI: 10.1016/j.nano.2023.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Angiogenesis plays a key role in the progression and metastasis of melanoma, and the pro-angiogenic effect of macrophages is one major reason for the failure of current anti-angiogenic therapies. Here, a nano-immunotherapy combining ferumoxytol and poly(I:C) (ferumoxytol/poly(I:C)) has been developed to boost the anti-angiogenic activities of macrophages to inhibit melanoma. Our findings demonstrated that ferumoxytol/poly(I:C) was a highly efficacious anti-tumor therapy with limited toxicity. Both in vivo and in vitro experiments indicated that this combination was successful in impeding angiogenesis. Ferumoxytol/poly(I:C) was demonstrated to reduce the viability of endothelial cells, thus hindering tube formation. Particularly, ferumoxytol/poly(I:C) was able to polarize macrophages to the M1 phenotype and decrease the expression of vascular endothelial growth factor, which in turn amplified the anti-angiogenic properties of ferumoxytol/poly(I:C). This combination of ferumoxytol/poly(I:C) nano-immunotherapy enriches the anti-angiogenic therapeutic nature of ferumoxytol and will shed new light on the treatment of melanoma.
Collapse
Affiliation(s)
- Yunuo Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Hongmei Guo
- Department of Ultrasonography, Weinan Maternal and Child Health Hospital, Weinan 714000, Shaanxi, China
| | - Zhonghai Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; Department of Physiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, China.
| | - Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jiaojiao Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
15
|
Li W, Zhao Y, Wang Y, He Z, Zhang L, Yuan B, Li C, Luo Z, Gao B, Yan M. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome. Front Immunol 2023; 14:1090637. [PMID: 36817437 PMCID: PMC9929188 DOI: 10.3389/fimmu.2023.1090637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a chronic inflammatory disease with intricate connections between immune infiltration and oxidative stress (OS). Complex cell niches exist in degenerative intervertebral disk (IVD) and interact with each other and regulate the disk homeostasis together. However, few studies have used longitudinal approach to describe the immune response of IDD progression. Here, we conducted conjoint analysis of bulk-RNA sequencing and single-cell sequencing, together with a series of techniques like weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, and differential analysis, to systematically decipher the difference in OS-related functions of different cell populations within degenerative IVD tissues, and further depicted the longitudinal alterations of immune cells, especially monocytes/macrophages in the progression of IDD. The OS-related genes CYP1A1, MMP1, CCND1, and NQO1 are highly expressed and might be diagnostic biomarkers for the progression of IDD. Further landscape of IVD microenvironment showed distinct changes in cell proportions and characteristics at late degeneration compared to early degeneration of IDD. Monocytes/macrophages were classified into five distinct subpopulations with different roles. The trajectory lineage analysis revealed transcriptome alterations from effector monocytes/macrophages and regulatory macrophages to other subtypes during the evolution process and identified monocytes/macrophage subpopulations that had rapidly experienced the activation of inflammatory or anti-inflammatory responses. This study further proposed that personalized therapeutic strategies are needed to be formulated based on specific monocyte/macrophage subtypes and degenerative stages of IDD.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Linyuan Zhang
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an, Shaanxi, China
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
16
|
Zhang H, Sheng D, Han Z, Zhang L, Sun G, Yang X, Wang X, Wei L, Lu Y, Hou X, Zhang L. Doxorubicin-liposome combined with clodronate-liposome inhibits hepatocellular carcinoma through the depletion of macrophages and tumor cells. Int J Pharm 2022; 629:122346. [DOI: 10.1016/j.ijpharm.2022.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
17
|
Corbett V, Hallenbeck P, Rychahou P, Chauhan A. Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Front Mol Biosci 2022; 9:930207. [PMID: 36090051 PMCID: PMC9458967 DOI: 10.3389/fmolb.2022.930207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have made a significant inroad in cancer drug development. Numerous clinical trials are currently investigating oncolytic viruses both as single agents or in combination with various immunomodulators. Oncolytic viruses (OV) are an integral pillar of immuno-oncology and hold potential for not only delivering durable anti-tumor responses but also converting “cold” tumors to “hot” tumors. In this review we will discuss one such promising oncolytic virus called Seneca Valley Virus (SVV-001) and its therapeutic implications. SVV development has seen seismic evolution over the past decade and now boasts of being the only OV with a practically applicable biomarker for viral tropism. We discuss relevant preclinical and clinical data involving SVV and how bio-selecting for TEM8/ANTXR1, a negative tumor prognosticator can lead to first of its kind biomarker driven oncolytic viral cancer therapy.
Collapse
Affiliation(s)
- Virginia Corbett
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Piotr Rychahou
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Aman Chauhan,
| |
Collapse
|
18
|
Hu H, Ma T, Liu N, Hong H, Yu L, Lyu D, Meng X, Wang B, Jiang X. Immunotherapy checkpoints in ovarian cancer vasculogenic mimicry: Tumor immune microenvironments, and drugs. Int Immunopharmacol 2022; 111:109116. [PMID: 35969899 DOI: 10.1016/j.intimp.2022.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/09/2023]
Abstract
Vasculogenic mimicry (VM), a vessel-like structure independent of endothelial cells, commonly exists in solid tumors which requires blood vessels to grow. As a special source of blood supply for tumor progression to a more aggressive state, VM has been observed in a variety of human malignant tumors and is tightly associated with tumor proliferation, invasion, metastasis, and poor patient prognosis. So far, various factors, including immune cells and cytokines, were reported to regulate ovarian cancer progression by influencing VM formation. Herein, we review the mechanisms that regulate VM formation in ovarian cancer and the effect of cells, cytokines, and signaling molecules in the tumor microenvironment on VM formation, Furthermore, we summarize the current clinical application of drugs targeting VM formation.
Collapse
Affiliation(s)
- Haitao Hu
- Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, PR China.
| | - Ting Ma
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Hong Hong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, PR China.
| | - Lujiao Yu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, PR China.
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, PR China.
| | - Xuefeng Jiang
- Department of Immunology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
19
|
Wang F, Ding P, Liang X, Ding X, Brandt CB, Sjöstedt E, Zhu J, Bolund S, Zhang L, de Rooij LPMH, Luo L, Wei Y, Zhao W, Lv Z, Haskó J, Li R, Qin Q, Jia Y, Wu W, Yuan Y, Pu M, Wang H, Wu A, Xie L, Liu P, Chen F, Herold J, Kalucka J, Karlsson M, Zhang X, Helmig RB, Fagerberg L, Lindskog C, Pontén F, Uhlen M, Bolund L, Jessen N, Jiang H, Xu X, Yang H, Carmeliet P, Mulder J, Chen D, Lin L, Luo Y. Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nat Commun 2022; 13:3620. [PMID: 35750885 PMCID: PMC9232580 DOI: 10.1038/s41467-022-31388-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-β, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.
Collapse
Affiliation(s)
- Fei Wang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Peiwen Ding
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Camilla Blunk Brandt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiacheng Zhu
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Saga Bolund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lijing Zhang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Wei
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Wandong Zhao
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhiyuan Lv
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - János Haskó
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Runchu Li
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Qiuyu Qin
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi Jia
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Wendi Wu
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuting Yuan
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Mingyi Pu
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Haoyu Wang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Lin Xie
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Ping Liu
- MGI, BGI-Shenzhen, Shenzhen, China
| | | | | | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Aarhus University of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Max Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiuqing Zhang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rikke Bek Helmig
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Peter Carmeliet
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen, China.
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- BGI-Shenzhen, Shenzhen, China.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
20
|
Bonanni M, Rehak L, Massaro G, Benedetto D, Matteucci A, Russo G, Esperto F, Federici M, Mauriello A, Sangiorgi GM. Autologous Immune Cell-Based Regenerative Therapies to Treat Vasculogenic Erectile Dysfunction: Is the Immuno-Centric Revolution Ready for the Prime Time? Biomedicines 2022; 10:biomedicines10051091. [PMID: 35625828 PMCID: PMC9138496 DOI: 10.3390/biomedicines10051091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
About 35% of patients affected by erectile dysfunction (ED) do not respond to oral phosphodiesterase-5 inhibitors (PDE5i) and more severe vasculogenic refractory ED affects diabetic patients. Innovative approaches, such as regenerative therapies, including stem cell therapy (SCT) and platelet-rich plasma (PRP), are currently under investigation. Recent data point out that the regenerative capacity of stem cells is strongly influenced by local immune responses, with macrophages playing a pivotal role in the injury response and as a coordinator of tissue regeneration, suggesting that control of the immune response could be an appealing approach in regenerative medicine. A new generation of autologous cell therapy based on immune cells instead of stem cells, which could change regenerative medicine for good, is discussed. Increasing safety and efficacy data are coming from clinical trials using peripheral blood mononuclear cells to treat no-option critical limb ischemia and diabetic foot. In this review, ongoing phase 1/phase 2 stem cell clinical trials are discussed. In addition, we examine the mechanism of action and rationale, as well as propose a new generation of regenerative therapies, evolving from typical stem cell or growth factor to immune cell-based medicine, based on autologous peripheral blood mononuclear cells (PBMNC) concentrates for the treatment of ED.
Collapse
Affiliation(s)
- Michela Bonanni
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Laura Rehak
- Athena Biomedical Innovations, 50126 Florence, Italy;
| | - Gianluca Massaro
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Daniela Benedetto
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Andrea Matteucci
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Division of Cardiology San Filippo Neri Hospital, 00135 Rome, Italy
| | - Giulio Russo
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giuseppe Massimo Sangiorgi
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Correspondence:
| |
Collapse
|
21
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
22
|
Zhou X, Zhao R, Yanamandra AK, Hoth M, Qu B. Light-Sheet Scattering Microscopy to Visualize Long-Term Interactions Between Cells and Extracellular Matrix. Front Immunol 2022; 13:828634. [PMID: 35154150 PMCID: PMC8831865 DOI: 10.3389/fimmu.2022.828634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Visualizing interactions between cells and the extracellular matrix (ECM) mesh is important to understand cell behavior and regulatory mechanisms by the extracellular environment. However, long term visualization of three-dimensional (3D) matrix structures remains challenging mainly due to photobleaching or blind spots perpendicular to the imaging plane. Here, we combine label-free light-sheet scattering microcopy (LSSM) and fluorescence microscopy to solve these problems. We verified that LSSM can reliably visualize structures of collagen matrices from different origin including bovine, human and rat tail. The quality and intensity of collagen structure images acquired by LSSM did not decline with time. LSSM offers abundant wavelength choice to visualize matrix structures, maximizing combination possibilities with fluorescently-labelled cells, allowing visualizing of long-term ECM-cell interactions in 3D. Interestingly, we observed ultrathin thread-like structures between cells and matrix using LSSM, which were not observed by normal fluorescence microscopy. Transient local alignment of matrix by cell-applied forces can be observed. In summary, LSSM provides a powerful and robust approach to investigate the complex interplay between cells and ECM.
Collapse
Affiliation(s)
- Xiangda Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Archana K Yanamandra
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
23
|
Marques Dos Reis E, Vieira Berti F. Vasculogenic Mimicry-An Overview. Methods Mol Biol 2022; 2514:3-13. [PMID: 35771413 DOI: 10.1007/978-1-0716-2403-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vasculogenic mimicry (VM), a tumor microcirculation model found in melanoma in the last 20 years, is a vascular channel-like structure composed of tumor cells, but without endothelial cells, that stains positive for periodic acid-Schiff (PAS) and negative staining for CD31. VM provides, to the highly aggressive malignant tumor cells, adequate oxygen and nutrient supply for tumor growth and subsequent metastasis process and its presence are related to poor prognosis in patients. VM is independent of endothelial cells, which may partly explain why angiogenesis drug inhibitors have not achieved the expected success for cancer treatment.
Collapse
Affiliation(s)
- Emily Marques Dos Reis
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fernanda Vieira Berti
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
24
|
Magenta A, Florio MC, Ruggeri M, Furgiuele S. Autologous cell therapy in diabetes‑associated critical limb ischemia: From basic studies to clinical outcomes (Review). Int J Mol Med 2021; 48:173. [PMID: 34278463 DOI: 10.3892/ijmm.2021.5006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 01/13/2023] Open
Abstract
Cell therapy is becoming an attractive alternative for the treatment of patients with no‑option critical limb ischemia (CLI). The main benefits of cell therapy are the induction of therapeutic angiogenesis and neovascularization that lead to an increase in blood flow in the ischemic limb and tissue regeneration in non‑healing cutaneous trophic lesions. In the present review, the current state of the art of strategies in the cell therapy field are summarized, focusing on intra‑operative autologous cell concentrates in diabetic patients with CLI, examining different sources of cell concentrates and their mechanisms of action. The present study underlined the detrimental effects of the diabetic condition on different sources of autologous cells used in cell therapy, and also in delaying wound healing capacity. Moreover, relevant clinical trials and critical issues arising from cell therapy trials are discussed. Finally, the new concept of cell therapy as an adjuvant therapy to increase wound healing in revascularized diabetic patients is introduced.
Collapse
Affiliation(s)
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Massimo Ruggeri
- Department of Vascular Surgery, San Camillo de Lellis Hospital, I‑02100 Rieti, Italy
| | | |
Collapse
|
25
|
Kostrikov S, Johnsen KB, Braunstein TH, Gudbergsson JM, Fliedner FP, Obara EAA, Hamerlik P, Hansen AE, Kjaer A, Hempel C, Andresen TL. Optical tissue clearing and machine learning can precisely characterize extravasation and blood vessel architecture in brain tumors. Commun Biol 2021; 4:815. [PMID: 34211069 PMCID: PMC8249617 DOI: 10.1038/s42003-021-02275-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Precise methods for quantifying drug accumulation in brain tissue are currently very limited, challenging the development of new therapeutics for brain disorders. Transcardial perfusion is instrumental for removing the intravascular fraction of an injected compound, thereby allowing for ex vivo assessment of extravasation into the brain. However, pathological remodeling of tissue microenvironment can affect the efficiency of transcardial perfusion, which has been largely overlooked. We show that, in contrast to healthy vasculature, transcardial perfusion cannot remove an injected compound from the tumor vasculature to a sufficient extent leading to considerable overestimation of compound extravasation. We demonstrate that 3D deep imaging of optically cleared tumor samples overcomes this limitation. We developed two machine learning-based semi-automated image analysis workflows, which provide detailed quantitative characterization of compound extravasation patterns as well as tumor angioarchitecture in large three-dimensional datasets from optically cleared samples. This methodology provides a precise and comprehensive analysis of extravasation in brain tumors and allows for correlation of extravasation patterns with specific features of the heterogeneous brain tumor vasculature.
Collapse
Affiliation(s)
- Serhii Kostrikov
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kasper B Johnsen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas H Braunstein
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johann M Gudbergsson
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Laboratory for Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frederikke P Fliedner
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth A A Obara
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Bispebjerg, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anders E Hansen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Casper Hempel
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas L Andresen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
26
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
27
|
Götz P, Braumandl A, Kübler M, Kumaraswami K, Ishikawa-Ankerhold H, Lasch M, Deindl E. C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. Int J Mol Sci 2021; 22:5800. [PMID: 34071589 PMCID: PMC8198161 DOI: 10.3390/ijms22115800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
The complement system is a potent inflammatory trigger, activator, and chemoattractant for leukocytes, which play a crucial role in promoting angiogenesis. However, little information is available about the influence of the complement system on angiogenesis in ischemic muscle tissue. To address this topic and analyze the impact of the complement system on angiogenesis, we induced muscle ischemia in complement factor C3 deficient (C3-/-) and wildtype control mice by femoral artery ligation (FAL). At 24 h and 7 days after FAL, we isolated the ischemic gastrocnemius muscles and investigated them by means of (immuno-)histological analyses. C3-/- mice showed elevated ischemic damage 7 days after FAL, as evidenced by H&E staining. In addition, angiogenesis was increased in C3-/- mice, as demonstrated by increased capillary/muscle fiber ratio and increased proliferating endothelial cells (CD31+/BrdU+). Moreover, our results showed that the total number of leukocytes (CD45+) was increased in C3-/- mice, which was based on an increased number of neutrophils (MPO+), neutrophil extracellular trap formation (MPO+/CitH3+), and macrophages (CD68+) displaying a shift toward an anti-inflammatory and pro-angiogenic M2-like polarized phenotype (CD68+/MRC1+). In summary, we show that the deficiency of complement factor C3 increased neutrophil and M2-like polarized macrophage accumulation in ischemic muscle tissue, contributing to angiogenesis.
Collapse
Affiliation(s)
- Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anna Braumandl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Konda Kumaraswami
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
28
|
DeCarbo WT. Biologics in the Treatment of Achilles Tendon. Clin Podiatr Med Surg 2021; 38:235-244. [PMID: 33745654 DOI: 10.1016/j.cpm.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The treatment of Achilles tendinitis from conservative to minimally invasive to surgery gives patients a wide range of treatment options for this common pathology. The use and role of biologics to augment this treatment is emerging. The use of biologics may enhance the healing potential of the Achilles tendon when conservative treatment fails. There are a handful of biologics being investigated to obtain if improved outcomes can be maximized.
Collapse
Affiliation(s)
- William T DeCarbo
- St. Clair Orthopedic Associates, 1050 Bower Hill Road, Suite 105, Pittsburgh, PA 14243, USA.
| |
Collapse
|
29
|
Abstract
Cancer treatment remains a challenge due to a high level of intra- and intertumoral heterogeneity and the rapid development of chemoresistance. In the brain, this is further hampered by the blood-brain barrier that reduces passive diffusion of drugs to a minimum. Tumors grow invasively and form new blood vessels, also in brain tissue where remodeling of pre-existing vasculature is substantial. The cancer-associated vessels in the brain are considered leaky and thus could facilitate the transport of chemotherapeutic agents. Yet, brain tumors are extremely difficult to treat, and, in this review, we will address how different aspects of the vasculature in brain tumors contribute to this.
Collapse
Affiliation(s)
- Casper Hempel
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| | - Kasper B Johnsen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Serhii Kostrikov
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thomas L Andresen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
30
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
31
|
Rios R, Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. Macrophage roles in peripheral nervous system injury and pathology: Allies in neuromuscular junction recovery. Mol Cell Neurosci 2021; 111:103590. [PMID: 33422671 DOI: 10.1016/j.mcn.2021.103590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.
Collapse
Affiliation(s)
- Rachel Rios
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| |
Collapse
|
32
|
Niu Y, Wang Z, Shi Y, Dong L, Wang C. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater 2021; 6:244-261. [PMID: 32913932 PMCID: PMC7451865 DOI: 10.1016/j.bioactmat.2020.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
A coordinated interaction between osteogenesis and osteoimmune microenvironment is essential for successful bone healing. In particular, macrophages play a central regulatory role in all stages of bone repair. Depending on the signals they sense, these highly plastic cells can mediate the host immune response against the exterior signals of molecular stimuli and implanted scaffolds, to exert regenerative potency to a varying extent. In this article, we first encapsulate the immunomodulatory functions of macrophages during bone regeneration into three aspects, as sweeper, mediator and instructor. We introduce the phagocytic role of macrophages in different bone healing periods ('sweeper') and overview a variety of paracrine cytokines released by macrophages either mediating cell mobilisation, vascularisation and matrix remodelling ('mediator'), or directly driving the osteogenic differentiation of bone progenitors and bone repair ('instructor'). Then, we systematically classify and discuss the emerging engineering strategies to recruit, activate and modulate the phenotype transition of macrophages, to exploit the power of endogenous macrophages to enhance the performance of engineered bone tissue.
Collapse
Affiliation(s)
- Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Yuchen Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|
33
|
Menzel L, Höpken UE, Rehm A. Angiogenesis in Lymph Nodes Is a Critical Regulator of Immune Response and Lymphoma Growth. Front Immunol 2020; 11:591741. [PMID: 33343570 PMCID: PMC7744479 DOI: 10.3389/fimmu.2020.591741] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-induced remodeling of the microenvironment in lymph nodes (LNs) includes the formation of blood vessels, which goes beyond the regulation of metabolism, and shaping a survival niche for tumor cells. In contrast to solid tumors, which primarily rely on neo-angiogenesis, hematopoietic malignancies usually grow within pre-vascularized autochthonous niches in secondary lymphatic organs or the bone marrow. The mechanisms of vascular remodeling in expanding LNs during infection-induced responses have been studied in more detail; in contrast, insights into the conditions of lymphoma growth and lodging remain enigmatic. Based on previous murine studies and clinical trials in human, we conclude that there is not a universal LN-specific angiogenic program applicable. Instead, signaling pathways that are tightly connected to autochthonous and infiltrating cell types contribute variably to LN vascular expansion. Inflammation related angiogenesis within LNs relies on dendritic cell derived pro-inflammatory cytokines stimulating vascular endothelial growth factor-A (VEGF-A) expression in fibroblastic reticular cells, which in turn triggers vessel growth. In high-grade B cell lymphoma, angiogenesis correlates with poor prognosis. Lymphoma cells immigrate and grow in LNs and provide pro-angiogenic growth factors themselves. In contrast to infectious stimuli that impact on LN vasculature, they do not trigger the typical inflammatory and hypoxia-related stroma-remodeling cascade. Blood vessels in LNs are unique in selective recruitment of lymphocytes via high endothelial venules (HEVs). The dissemination routes of neoplastic lymphocytes are usually disease stage dependent. Early seeding via the blood stream requires the expression of the homeostatic chemokine receptor CCR7 and of L-selectin, both cooperate to facilitate transmigration of tumor and also of protective tumor-reactive lymphocytes via HEV structures. In this view, the HEV route is not only relevant for lymphoma cell homing, but also for a continuous immunosurveillance. We envision that HEV functional and structural alterations during lymphomagenesis are not only key to vascular remodeling, but also impact on tumor cell accessibility when targeted by T cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Lutz Menzel
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uta E. Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Armin Rehm
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
34
|
Beyond Growth Factors: Macrophage-Centric Strategies for Angiogenesis. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00215-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractFunctional angiogenesis is a critical therapeutic goal in many pathological conditions. Logically, the use of pro-angiogenic growth factors has been the mainstay approach despite obvious limitations and modest success. Recently, macrophages have been identified as key regulators of the host response to implanted materials. Particularly, our understanding of dynamically plastic macrophage phenotypes, their interactions with biomaterials, and varied roles in different stages of angiogenic processes is evolving rapidly. In this review, we discuss changing perspectives on therapeutic angiogenesis, in relation to implantable materials and macrophage-centric strategies therein. Harnessing the different mechanisms through which the macrophage-driven host response is involved in angiogenesis has great potential for improving clinical outcome.
Collapse
|
35
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1255] [Impact Index Per Article: 251.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
36
|
Li Y, Guo S, Zhao K, Conrad C, Driescher C, Rothbart V, Schlomann U, Guerreiro H, Bopp MH, König A, Carl B, Pagenstecher A, Nimsky C, Bartsch JW. ADAM8 affects glioblastoma progression by regulating osteopontin-mediated angiogenesis. Biol Chem 2020; 402:195-206. [PMID: 33544472 DOI: 10.1515/hsz-2020-0184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer with a median survival of only 15 months. To complement standard treatments including surgery, radiation and chemotherapy, it is essential to understand the contribution of the GBM tumor microenvironment. Brain macrophages and microglia particularly contribute to tumor angiogenesis, a major hallmark of GBM. ADAM8, a metalloprotease-disintegrin strongly expressed in tumor cells and associated immune cells of GBMs, is related to angiogenesis and correlates with poor clinical prognosis. However, the specific contribution of ADAM8 to GBM tumorigenesis remains elusive. Knockdown of ADAM8 in U87 glioma cells led to significantly decreased angiogenesis and tumor volumes of these cells after stereotactic injection into striate body of mice. We found that the angiogenic potential of ADAM8 in GBM cells and in primary macrophages is mediated by the regulation of osteopontin (OPN), an important inducer of tumor angiogenesis. By in vitro cell signaling analyses, we demonstrate that ADAM8 regulates OPN via JAK/STAT3 pathway in U87 cells and in primary macrophages. As ADAM8 is a dispensable protease for physiological homeostasis, we conclude that ADAM8 could be a tractable target to modulate angiogenesis in GBM with minor side-effects.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Songbo Guo
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Catharina Conrad
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Caroline Driescher
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Vanessa Rothbart
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Helena Guerreiro
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Miriam H Bopp
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Alexander König
- Department of Diagnostic and Interventional Radiology, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| |
Collapse
|
37
|
Castelucci BG, Pereira AHM, Fioramonte M, Carazzolle MF, de Oliveira PSL, Franchini KG, Kobarg J, Martins-de-Souza D, Joazeiro PP, Consonni SR. Evidence of macrophage modulation in the mouse pubic symphysis remodeling during the end of first pregnancy and postpartum. Sci Rep 2020; 10:12403. [PMID: 32709949 PMCID: PMC7381608 DOI: 10.1038/s41598-020-68676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 11/10/2022] Open
Abstract
In mouse pregnancy, pubic symphysis (PS) remodels into an elastic interpubic ligament (IpL) in a temporally regulated process to provide safe delivery. It restores at postpartum to assure reproductive tract homeostasis. Recently, macrophage localization in the IpL and dynamic changes in the expression of inflammatory mediators observed from the end of pregnancy (D18, D19) to early days postpartum (1dpp, 3dpp) highlighted the necessity of the identification of the key molecules involved in innate immune processes in PS remodeling. Therefore, this study uses morphological and high-sensitivity molecular techniques to identify both macrophage association with extracellular matrix (ECM) remodeling and the immunological processes involved in PS changes from D18 to 3dpp. Results showed macrophage association with active gelatinases and ECM components and 25 differentially expressed genes (DEGs) related to macrophage activities in interpubic tissues from D18 to 3dpp. Additionally, microarray and proteomic analysis showed a significant association of interpubic tissue DEGs with complement system activation and differentially expressed proteins (DEPs) with phagocytosis, highlighting the involvement of macrophage-related activities in mouse PS remodeling. Therefore, the findings suggest that PS ECM remodeling is associated with evidence of macrophage modulation that ensures both IpL relaxation and fast PS recovery postpartum for first labor.
Collapse
Affiliation(s)
- B G Castelucci
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - A H M Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - M Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - M F Carazzolle
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - P S L de Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - K G Franchini
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - J Kobarg
- School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - D Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), State University of Campinas (UNICAMP), Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - P P Joazeiro
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - S R Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
38
|
Czapla J, Cichoń T, Pilny E, Jarosz-Biej M, Matuszczak S, Drzyzga A, Krakowczyk Ł, Smolarczyk R. Adipose tissue-derived stromal cells stimulated macrophages-endothelial cells interactions promote effective ischemic muscle neovascularization. Eur J Pharmacol 2020; 883:173354. [PMID: 32663541 DOI: 10.1016/j.ejphar.2020.173354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Neovascularization, the process of new blood vessels formation in response to hypoxia induced signals, is an essential step during wound healing or ischemia repair. It follows as a cascade of consecutive events leading to new blood vessels formation and their subsequent remodeling to a mature and functional state, enabling tissue regeneration. Any disruption in consecutive stages of neovascularization can lead to chronic wounds or impairment of tissue repair. In the study we try to explain the biological basis of accelerated blood vessels formation in ischemic tissue after adipose tissue-derived stromal cells (ADSCs) administration. Experiments were performed on mouse models of hindlimb ischemia. We have evaluated the level of immune cells (neutrophils, macrophages) infiltration. The novelty of our work was the assessment of bone marrow-derived stem/progenitor cells (BMDCs) infiltration and their contribution to the neovascularization process in ischemic tissue. We have noticed that ADSCs regulated immune response and affected the kinetics and ratio of macrophages population infiltrating ischemic tissue. Our research revealed that ADSCs promoted changes in the morphology of infiltrating macrophages and their tight association with forming blood vessels. We assume that recruited macrophages may take over the role of pericytes and stabilize the new blood vessel or even differentiate into endothelial cells, which in consequence can accelerate vascular formation upon ADSCs administration. Our findings indicate that administration of ADSCs into ischemic muscle influence spatio-temporal distribution of infiltrating cells (macrophages, neutrophils and BMDCs), which are involved in each step of vascular formation, promoting effective ischemic tissue neovascularization.
Collapse
Affiliation(s)
- Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland.
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland; Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Księdza Marcina Strzody 9 Street, 44-100, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| | - Łukasz Krakowczyk
- Department of Oncologic and Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Street, 44-101, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-101, Gliwice, Poland
| |
Collapse
|
39
|
Abstract
All organisms growing beyond the oxygen diffusion limit critically depend on a functional vasculature for survival. Yet blood vessels are far more than passive, uniform conduits for oxygen and nutrient supply. A remarkable organotypic heterogeneity is brought about by tissue-specific differentiated endothelial cells (lining the blood vessels' lumen) and allows blood vessels to deal with organ-specific demands for homeostasis. On the flip side, when blood vessels go awry, they promote life-threatening diseases characterized by endothelial cells inappropriately adopting an angiogenic state (eg, tumor vascularization) or becoming dysfunctional (eg, diabetic microvasculopathies), calling respectively for antiangiogenic therapies and proangiogenic/vascular regenerative strategies. In solid tumors, despite initial enthusiasm, growth factor-based (mostly anti-VEGF [vascular endothelial growth factor]) antiangiogenic therapies do not sufficiently live up to the expectations in terms of efficiency and patient survival, in part, due to intrinsic and acquired therapy resistance. Tumors cunningly deploy alternative growth factors than the ones targeted by the antiangiogenic therapies to reinstigate angiogenesis or revert to other ways of securing blood flow, independently of the targeted growth factors. In trying to alleviate tissue ischemia and to repair dysfunctional or damaged endothelium, local in-tissue administration of (genes encoding) proangiogenic factors or endothelial (stem) cells harnessing regenerative potential have been explored. Notwithstanding evaluation in clinical trials, these approaches are often hampered by dosing issues and limited half-life or local retention of the administered agents. Here, without intending to provide an all-encompassing historical overview, we focus on some recent advances in understanding endothelial cell behavior in health and disease and identify novel molecular players and concepts that could eventually be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Guy Eelen
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Lucas Treps
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| | - Peter Carmeliet
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| |
Collapse
|
40
|
Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother 2020; 69:1673-1697. [PMID: 32500231 DOI: 10.1007/s00262-020-02616-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) not only facilitates cancer progression from the early formation to distant metastasis, but also it differs itself from time to time alongside the tumor evolution. Tumor-associated macrophages (TAMs), whether as pre-existing tissue-resident macrophages or recruited monocytes, are an inseparable part of this microenvironment. As their parents are broadly classified into a dichotomic, simplistic M1 and M2 subtypes, TAMs also exert paradoxical and diverse phenotypes as they are settled in different regions of TME and receive different microenvironmental signals. Briefly, M1 macrophages induce an inflammatory precancerous niche and flame the early oncogenic mutations, whereas their M2 counterparts are reprogrammed to release various growth factors and providing an immunosuppressive state in TME as long as abetting hypoxic cancer cells to set up a new vasculature. Further, they mediate stromal micro-invasion and co-migrate with invasive cancer cells to invade the vascular wall and neural sheath, while another subtype of TAMs prepares suitable niches much earlier than metastatic cells arrive at the target tissues. Accordingly, at the neoplastic transformation, during the benign-to-malignant transition and through the metastatic cascade, macrophages are involved in shaping the primary, micro-invasive and pre-metastatic TMEs. Whether their behavioral plasticity is derived from distinct genotypes or is fueled by microenvironmental cues, it could define these cells as remarkably interesting therapeutic targets.
Collapse
Affiliation(s)
- Elaheh Nasrollahzadeh
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, VIB, KU Leuven, Louvain, B3000, Belgium
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
41
|
Heterogeneity and chimerism of endothelial cells revealed by single-cell transcriptome in orthotopic liver tumors. Angiogenesis 2020; 23:581-597. [PMID: 32440964 PMCID: PMC7525283 DOI: 10.1007/s10456-020-09727-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
The liver is a common host organ for cancer, either through lesions that arise in liver epithelial cells [e.g., hepatocellular carcinoma (HCC)] or as a site of metastasis by tumors arising in other organs (e.g., colorectal cancer). However, the changes that occur in liver stromal cells in response to cancer have not been fully characterized, nor has it been determined whether the different sources of liver cancer induce distinct stromal changes. Here, we performed single-cell profiling of liver stromal cells from mouse models of induced spontaneous liver cancer or implanted colorectal liver metastases, with a focus on tumor endothelial cells (ECs). While ECs in liver tissue adjacent to cancerous lesions (so-called adjacent normal) corresponded to liver zonation phenotypes, their transcriptomes were also clearly altered by the presence of a tumor. In comparison, tumor EC transcriptomes show stronger similarities to venous than sinusoidal ECs. Further, tumor ECs, independent of tumor origin, formed distinct clusters displaying conserved “tip-like” or “stalk-like” characteristics, similar to ECs from subcutaneous tumors. However, they also carried liver-specific signatures found in normal liver ECs, suggesting an influence of the host organ on tumor ECs. Our results document gene expression signatures in ECs in liver cancer and show that the host organ, and not the site of tumor origin (liver versus colorectal), is a primary determinant of EC phenotype. In addition, primarily in tumors, we further defined a cluster of chimeric cells that expressed both myeloid and endothelial cell markers and might play a role in tumor angiogenesis.
Collapse
|
42
|
Graney PL, Ben-Shaul S, Landau S, Bajpai A, Singh B, Eager J, Cohen A, Levenberg S, Spiller KL. Macrophages of diverse phenotypes drive vascularization of engineered tissues. SCIENCE ADVANCES 2020; 6:eaay6391. [PMID: 32494664 PMCID: PMC7195167 DOI: 10.1126/sciadv.aay6391] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/10/2020] [Indexed: 05/05/2023]
Abstract
Macrophages are key contributors to vascularization, but the mechanisms behind their actions are not understood. Here, we show that diverse macrophage phenotypes have distinct effects on endothelial cell behavior, with resulting effects on vascularization of engineered tissues. In Transwell coculture, proinflammatory M1 macrophages caused endothelial cells to up-regulate genes associated with sprouting angiogenesis, whereas prohealing (M2a), proremodeling (M2c), and anti-inflammatory (M2f) macrophages promoted up-regulation of genes associated with pericyte cell differentiation. In 3D tissue-engineered human blood vessel networks in vitro, short-term exposure (1 day) to M1 macrophages increased vessel formation, while long-term exposure (3 days) caused regression. When human tissue-engineered blood vessel networks were implanted into athymic mice, macrophages expressing markers of both M1 and M2 phenotypes wrapped around and bridged adjacent vessels and formed vessel-like structures themselves. Last, depletion of host macrophages inhibited remodeling of engineered vessels, infiltration of host vessels, and anastomosis with host vessels.
Collapse
Affiliation(s)
- P. L. Graney
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - S. Ben-Shaul
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - S. Landau
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - A. Bajpai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - B. Singh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - J. Eager
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - A. Cohen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - S. Levenberg
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
- Corresponding author. (S.L.); (K.L.S.)
| | - K. L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Corresponding author. (S.L.); (K.L.S.)
| |
Collapse
|
43
|
The oral mucosa: Epithelial professional phagocytes, lymphatics, telocytes, and false telocytes. Ann Anat 2020; 229:151462. [DOI: 10.1016/j.aanat.2020.151462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
|
44
|
Parallels of Resistance between Angiogenesis and Lymphangiogenesis Inhibition in Cancer Therapy. Cells 2020; 9:cells9030762. [PMID: 32244922 PMCID: PMC7140636 DOI: 10.3390/cells9030762] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the primary cause of cancer-related mortality. Cancer cells primarily metastasize via blood and lymphatic vessels to colonize lymph nodes and distant organs, leading to worse prognosis. Thus, strategies to limit blood and lymphatic spread of cancer have been a focal point of cancer research for several decades. Resistance to FDA-approved anti-angiogenic therapies designed to limit blood vessel growth has emerged as a significant clinical challenge. However, there are no FDA-approved drugs that target tumor lymphangiogenesis, despite the consequences of metastasis through the lymphatic system. This review highlights several of the key resistance mechanisms to anti-angiogenic therapy and potential challenges facing anti-lymphangiogenic therapy. Blood and lymphatic vessels are more than just conduits for nutrient, fluid, and cancer cell transport. Recent studies have elucidated how these vasculatures often regulate immune responses. Vessels that are abnormal or compromised by tumor cells can lead to immunosuppression. Therapies designed to improve lymphatic vessel function while limiting metastasis may represent a viable approach to enhance immunotherapy and limit cancer progression.
Collapse
|
45
|
Abstract
Guided by organ-specific signals in both development and disease response, the heterogeneous endothelial cell population is a dynamic member of the vasculature. Functioning as the gatekeeper to fluid, inflammatory cells, oxygen, and nutrients, endothelial cell communication with its local environment is critical. Impairment of endothelial cell-cell communication not only disrupts this signaling process, but also contributes to pathologic disease progression. Expanding our understanding of those processes that mediate endothelial cell-cell communication is an important step in the approach to treatment of disease processes.
Collapse
Affiliation(s)
- Daniel D Lee
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| | - Margaret A Schwarz
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
46
|
Karsch-Bluman A, Benny O. Necrosis in the Tumor Microenvironment and Its Role in Cancer Recurrence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:89-98. [PMID: 32030649 DOI: 10.1007/978-3-030-35727-6_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer recurrence is one of the most imminent problems in the current world of medicine, and it is responsible for most of the cancer-related death rates worldwide. Long-term administration of anticancer cytotoxic drugs may act as a double-edged sword, as necrosis may lead to renewed cancer progression and treatment resistance. The lack of nutrients, coupled with the induced hypoxia, triggers cell death and secretion of signals that affect the tumor niche. Many efforts have been made to better understand the contribution of hypoxia and metabolic stress to cancer progression and resistance, but mostly with respect to inflammation. Here we provide an overview of the direct anticancer effects of necrotic signals, which are not necessarily mediated by inflammation and the role of DAMPs (damage-associated molecular patterns) on the formation of a pro-cancerous environment.
Collapse
Affiliation(s)
- Adi Karsch-Bluman
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
47
|
Kyrgidis A, Yavropoulou MP, Zikos P, Lagoudaki R, Tilaveridis J, Zouloumis L. Changes in peripheral monocyte populations 48-72 hours after subcutaneous denosumab administration in women with osteoporosis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:339-346. [PMID: 32877971 PMCID: PMC7493451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To examine the effect of denosumab administration in the peripheral blood white cell population, to further elucidate a plausible pathophysiological link between denosumab and osteonecrosis of the jaw. METHODS Thirty women with osteoporosis, after denosumab treatment were included. Peripheral blood samples were obtained prior to and 48-72 hours following denosumab administration. Flow cytometry gated at the monocyte population for CD14/CD23/CD123/CD16 stainings were performed. RESULTS We were able to record a number of changes in the monocyte populations between baseline and after denosumab administration. Most importantly, in the monocyte populations we were able to detect statistically significant increased populations of CD14+/CD23+ (p=0.044), CD14-/CD23+ (p=0.044), CD14+/CD123+ (p=0.011), CD14+/CD123- (p=0.011) and CD14-/CD16+ (p=0.028). In contrast, statistically significant decreased populations of CD14-/CD123+ (p=0.034), CD14+/CD16+ (p=0.037) and CD14+/CD16- (p=0.014) were detected. CONCLUSIONS Our results provide evidence supporting the hypothesis that denosumab administration modifies the monocyte mediated immune response in a manner similar to that of bisphosphonates. This may partly explain the trivial immunity changes recorded with denosumab.
Collapse
Affiliation(s)
- Athanassios Kyrgidis
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece,Department of Pharmacology, Clinical Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria P. Yavropoulou
- Endocrinology Unit 1st Propaedeutic Department of Internal Medicine, LAIKO General Hospital of Athens, National and Kapodistrian University of Athens, UOA, Athens, Greece
| | - Petros Zikos
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roza Lagoudaki
- Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Jannis Tilaveridis
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Zouloumis
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
48
|
Gouveia-Fernandes S. Monocytes and Macrophages in Cancer: Unsuspected Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:161-185. [PMID: 32130699 DOI: 10.1007/978-3-030-34025-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The behavior of cancer is undoubtedly affected by stroma. Macrophages belong to this microenvironment and their presence correlates with reduced survival in most cancers. After a tumor-induced "immunoediting", these monocytes/macrophages, originally the first line of defense against tumor cells, undergo a phenotypic switch and become tumor-supportive and immunosuppressive.The influence of these tumor-associated macrophages (TAMs) on cancer is present in all traits of carcinogenesis. These cells participate in tumor initiation and growth, migration, vascularization, invasion and metastasis. Although metastasis is extremely clinically relevant, this step is always reliant on the angiogenic ability of tumors. Therefore, the formation of new blood vessels in tumors assumes particular importance as a limiting step for disease progression.Herein, the once unsuspected roles of macrophages in cancer will be discussed and their importance as a promising strategy to treat this group of diseases will be reminded.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Lopes-Coelho F, Silva F, Gouveia-Fernandes S, Martins C, Lopes N, Domingues G, Brito C, Almeida AM, Pereira SA, Serpa J. Monocytes as Endothelial Progenitor Cells (EPCs), Another Brick in the Wall to Disentangle Tumor Angiogenesis. Cells 2020; 9:cells9010107. [PMID: 31906296 PMCID: PMC7016533 DOI: 10.3390/cells9010107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bone marrow contains endothelial progenitor cells (EPCs) that, upon pro-angiogenic stimuli, migrate and differentiate into endothelial cells (ECs) and contribute to re-endothelialization and neo-vascularization. There are currently no reliable markers to characterize EPCs, leading to their inaccurate identification. In the past, we showed that, in a panel of tumors, some cells on the vessel wall co-expressed CD14 (monocytic marker) and CD31 (EC marker), indicating a putative differentiation route of monocytes into ECs. Herein, we disclosed monocytes as potential EPCs, using in vitro and in vivo models, and also addressed the cancer context. Monocytes acquired the capacity to express ECs markers and were able to be incorporated into blood vessels, contributing to cancer progression, by being incorporated in tumor neo-vasculature. Reactive oxygen species (ROS) push monocytes to EC differentiation, and this phenotype is reverted by cysteine (a scavenger and precursor of glutathione), which indicates that angiogenesis is controlled by the interplay between the oxidative stress and the scavenging capacity of the tumor microenvironment.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Carmo Martins
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Nuno Lopes
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
| | - Germana Domingues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António M Almeida
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Hospital da Luz, Av. Lusíada 100, 1500-650 Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Correspondence: ; Tel.: +350-217-229-800; Fax: +351-217-248-756
| |
Collapse
|
50
|
Du Cheyne C, Tay H, De Spiegelaere W. The complex TIE between macrophages and angiogenesis. Anat Histol Embryol 2019; 49:585-596. [PMID: 31774212 DOI: 10.1111/ahe.12518] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway.
Collapse
Affiliation(s)
- Charis Du Cheyne
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hanna Tay
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|