1
|
Sharma S, Basak SK, Das S, Alone DP. Characterisation of the role played by ELMO1, GPR141 and the intergenic polymorphism rs918980 in Fuchs' dystrophy in the Indian population. FEBS Open Bio 2025; 15:822-835. [PMID: 39967558 PMCID: PMC12051025 DOI: 10.1002/2211-5463.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is the most common type of primary corneal dystrophy and can result in corneal transplantation. Here, we investigated the genetic association of SNP rs918980 (A>G) with FECD and the role of its surrounding genes ELMO1 and GPR141. First, 128 patients and 379 controls were genotyped by Sanger sequencing. Our results show that rs918980 is significantly associated with FECD in the Indian population. Furthermore, in silico analysis suggested that rs918980 and its surrounding 150 bp region could regulate the transcriptional activities of nearby genes. Thus, we assessed whether ELMO1 and GPR141 were differentially expressed in FECD patients and in the corneal tissue of a UVA-induced FECD mice model. Both genes were significantly upregulated and western blots studies concluded that protein levels of ELMO1 and GPR141 were also higher in the corneal endothelium of the UVA-exposed eye compared to the control eye. Taken together, our results suggest that ELMO1 and GPR141 might play a significant role in FECD progression. However, further studies are required to better characterize the possible role of rs918980 and its nearby region in the regulation of ELMO1 and GPR141.
Collapse
Affiliation(s)
- Susmita Sharma
- School of Biological SciencesNational Institute of Science Education and Research (NISER) BhubaneswarKhurdaIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| | | | | | - Debasmita Pankaj Alone
- School of Biological SciencesNational Institute of Science Education and Research (NISER) BhubaneswarKhurdaIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| |
Collapse
|
2
|
Moretto L, Girardi E, Vieira ACM, Brondani LDA, Lemos NE, Canani LH, Fiegenbaum M, Dieter C, Crispim D. The rs3844492/ARHGAP22 and rs741301/ELMO1 polymorphisms are associated with changes in laboratory markers of renal damage among patients with type 2 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 69:e240167. [PMID: 40271977 PMCID: PMC12017629 DOI: 10.20945/2359-4292-2024-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/05/2024] [Indexed: 04/25/2025]
Abstract
OBJECTIVE To investigate the association between the rs3844492/ARHGAP22 and rs741301/ELMO1 polymorphisms and diabetic kidney disease in patients with type 2 diabetes mellitus. METHODS The sample consisted of 740 patients with type 2 diabetes mellitus and diabetic kidney disease (cases) and 303 patients with type 2 diabetes mellitus, but no diabetic kidney disease (controls). The genotyping of the polymorphisms was conducted using real-time polymerase chain reaction with Taqman probes. RESULTS The frequency of the rs3844492/ARHGAP22 G/G genotype was 16.8% in the control group and 15.7% in cases (p = 0.069). After adjusting for covariables, the presence of the G allele was associated with risk for diabetic kidney disease (OR = 1.435, 95% CI 1.023 - 2.011; p = 0.036), as well as with a decreased estimated glomerular filtration rate (p = 0.012) and elevated creatinine levels (p = 0.009). No difference was observed in the rs741301/ELMO1 genotype frequencies between groups (p = 0.800). However, the presence of the C allele appears to be associated with higher creatinine levels in patients with type 2 diabetes mellitus (p = 0.064). CONCLUSION The rs3844492/ARHGAP22 and rs741301/ELMO1 polymorphisms are associated with alterations in renal function markers among patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Luciane Moretto
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Eliandra Girardi
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Anna Carolina Meireles Vieira
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Letícia de Almeida Brondani
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Unidade de Pesquisa Laboratorial, Centro de Pesquisa Experimental
Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Natália Emerim Lemos
- Departamento de Bioquímica, Instituto de Química,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luís Henrique Canani
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Marilu Fiegenbaum
- Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Cristine Dieter
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
3
|
Martínez-Nava Y, Ogaz-Escarpita MC, Reza-López SA, Leal-Berumen I. Diabetic kidney disease and polymorphisms of the ELMO1 and AGTR1 genes: Systematic review. Nefrologia 2025; 45:194-213. [PMID: 40038011 DOI: 10.1016/j.nefroe.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the main complications of diabetes, the main cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD) worldwide. The etiopathogenesis of DKD is complex and multifactorial; recently, genetic susceptibility has gained relevance since certain ethnicities, such as Native Americans and Mexican Americans, have a higher risk of developing this disease. Numerous studies have described that single nucleotide polymorphisms (SNPs), including those for ELMO1 and AGTR1 genes, could be associated with DKD. OBJECTIVE To carry out a systematic review of the scientific literature on the association of SNPs of the ELMO1 and AGTR1 gene with DKD in adult patients with type 2 diabetes mellitus (T2D). METHODS Systematic review in PubMed, Google Scholar, Worldwide Science, and Science Direct databases. The selection of publications was carried out following the guidelines proposed by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta Analyses). Original articles that reported results in the adult population with T2D were included. Information about the allelic and genotypic frequencies of the SNPs and their association with DKD was obtained. RESULTS The polymorphisms most frequently associated with a DKD higher risk were rs741301, rs1345365, and rs10951509 for the ELMO1 gene, whereas the rs5186 and rs388915 for the AGTR1 gene. CONCLUSION The risk of developing DKD depends on several factors, including the genetic susceptibility conferred by the ELMO1 and AGTR1 gene polymorphisms, without ignoring the patient's lifestyle and environmental factors. The studies about these polymorphisms' association with DKD will allow a better understanding of non-modifiable risk factors for developing this disease and recognize the differences between different studied ethnicities, which would allow faster detection of patients with T2D susceptible to developing DKD, become early markers of kidney damage, as well as implementing preventive strategies on the most susceptible ethnicities.
Collapse
Affiliation(s)
- Yuliana Martínez-Nava
- Laboratorio de Biología Molecular, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico; Departamento de Medicina Interna, Hospital General de Zona no. 6, Benito Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - María Camila Ogaz-Escarpita
- Laboratorio de Biología Molecular, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico
| | - Sandra Alicia Reza-López
- Laboratorio de Embriología, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico
| | - Irene Leal-Berumen
- Laboratorio de Biología Molecular, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico.
| |
Collapse
|
4
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
5
|
Ott H, Bennewitz K, Zhang X, Prianichnikova M, Sticht C, Poschet G, Kroll J. Sodium thiosulfate treatment rescues hyperglycaemia-induced pronephros damage in zebrafish by upregulating nitric oxide signalling. J Physiol 2024. [PMID: 39264236 DOI: 10.1113/jp286398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Sodium thiosulfate (STS) is gaining increasing attention in research for its potential therapeutic applications across a spectrum of disease processes beyond its current uses. However, the precise mechanisms of action remain incompletely understood. We investigated the efficacy of STS in treating hyperglycaemia-induced pronephros damage in zebrafish to gain further insight into the underlying mechanisms. Hyperglycaemia was induced in zebrafish by suppressing the pdx1 transcription factor, which plays a crucial role in maintaining physiological pancreatic function. STS was administered by introducing it into the medium of zebrafish larvae. The pronephros structure was analysed at 48 h post-fertilization. Metabolomic profiling and RNA sequencing were conducted on groups exposed to various experimental conditions. Our findings reveal a downregulation of nitric oxide (NO) signalling in zebrafish with a knocked-down pdx1 gene, both metabolomically and transcriptionally. Notably, treatment with STS led to a compensatory upregulation of the NO signalling, ultimately resulting in the rescue of the pronephros structure. Our study provides compelling evidence that targeting NO metabolism by the administration of STS offers a promising strategy for addressing hyperglycaemia-induced organ damage. These findings underscore the potential of STS as a promising therapeutic agent for diabetic complications and warrant further investigation of its clinical applications. KEY POINTS: Sodium thiosulfate (STS) is increasingly drawing attention in research for its potential therapeutic applications across a spectrum of disease processes. Here, we demonstrate that STS treatment rescues hyperglycaemia-induced pronephros damage in zebrafish. We identified upregulation of nitric oxide signalling as the major driver behind STS-mediated rescue. Our data suggest that STS offers a promising strategy for addressing hyperglycaemia-induced organ damage, including diabetic nephropathy.
Collapse
Affiliation(s)
- Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xin Zhang
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mariia Prianichnikova
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Barry A, McNulty MT, Jia X, Gupta Y, Debiec H, Luo Y, Nagano C, Horinouchi T, Jung S, Colucci M, Ahram DF, Mitrotti A, Sinha A, Teeninga N, Jin G, Shril S, Caridi G, Bodria M, Lim TY, Westland R, Zanoni F, Marasa M, Turudic D, Giordano M, Gesualdo L, Magistroni R, Pisani I, Fiaccadori E, Reiterova J, Maringhini S, Morello W, Montini G, Weng PL, Scolari F, Saraga M, Tasic V, Santoro D, van Wijk JAE, Milošević D, Kawai Y, Kiryluk K, Pollak MR, Gharavi A, Lin F, Simœs E Silva AC, Loos RJF, Kenny EE, Schreuder MF, Zurowska A, Dossier C, Ariceta G, Drozynska-Duklas M, Hogan J, Jankauskiene A, Hildebrandt F, Prikhodina L, Song K, Bagga A, Cheong H, Ghiggeri GM, Vachvanichsanong P, Nozu K, Lee D, Vivarelli M, Raychaudhuri S, Tokunaga K, Sanna-Cherchi S, Ronco P, Iijima K, Sampson MG. Multi-population genome-wide association study implicates immune and non-immune factors in pediatric steroid-sensitive nephrotic syndrome. Nat Commun 2023; 14:2481. [PMID: 37120605 PMCID: PMC10148875 DOI: 10.1038/s41467-023-37985-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/10/2023] [Indexed: 05/01/2023] Open
Abstract
Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations.
Collapse
Affiliation(s)
- Alexandra Barry
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle T McNulty
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoyuan Jia
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hanna Debiec
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherde Médicale, Unité Mixte de Rechereche, S 1155, Paris, France
| | - Yang Luo
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - China Nagano
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Dina F Ahram
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Aditi Sinha
- Department of Pediatrics, AIIMS, New Delhi, India
| | - Nynke Teeninga
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gina Jin
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gianluca Caridi
- Laboratory on Molecular Nephrology, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Monica Bodria
- Department of Nephrology and Renal Transplantation, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Rik Westland
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Transplantation, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniel Turudic
- Department of Pediatric Nephrology, Dialysis and Transplantation, Clinical Hospital Hospital Center Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Mario Giordano
- Division of Nephrology and Pediatric Dialysis, Bari Polyclinic Giovanni XXIII Children's Hospital, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Riccardo Magistroni
- Department of Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Pisani
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Jana Reiterova
- Department of Nephrology, Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | | | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Patricia L Weng
- Department of Pediatric Nephrology, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, CA, USA
| | - Francesco Scolari
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Division of Nephrology and Dialysis, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Marijan Saraga
- Department of Pediatrics, University of Split, Split, Croatia
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Domenica Santoro
- Division of Nephrology and Dialysis Unit, University of Messina, Sicily, Italy
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Danko Milošević
- Department of Pediatric Nephrology, Dialysis and Transplantation, Clinical Hospital Hospital Center Zagreb, University of Zagreb Medical School, Zagreb, Croatia
- Croatian Academy of Medical Sciences, Praska 2/III p.p. 27, 10000, Zagreb, Croatia
| | - Yosuke Kawai
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Martin R Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pediatric, Division of Pediatric Nephrology, Columbia University Irving Medical Center New York-Presbyterian Morgan Stanley Children's Hospital in New York, New York, NY, USA
| | - Ali Gharavi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Fangmin Lin
- Department of Pediatric, Division of Pediatric Nephrology, Columbia University Irving Medical Center New York-Presbyterian Morgan Stanley Children's Hospital in New York, New York, NY, USA
| | - Ana Cristina Simœs E Silva
- Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aleksandra Zurowska
- Department of Pediatrics, Nephrology and Hypertension, Medical University Gdansk, Gdansk, Poland
| | - Claire Dossier
- AP-HP, Pediatric Nephrology Department, Hôpital Robert-Debré, Paris, France
| | - Gema Ariceta
- Pediatric Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Julien Hogan
- AP-HP, Pediatric Nephrology Department, Hôpital Robert-Debré, Paris, France
| | - Augustina Jankauskiene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Larisa Prikhodina
- Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Taldomskava St, 2, Moscow, Russia
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea
| | - Arvind Bagga
- Department of Pediatrics, AIIMS, New Delhi, India
| | - Hae Cheong
- Department of Pediatrics, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170 beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14068, Korea
| | - Gian Marco Ghiggeri
- Department of Nephrology and Renal Transplantation, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Prayong Vachvanichsanong
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Dongwon Lee
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Marina Vivarelli
- Division of Nephrology, and Dialysis, Department of Pediatric Subspecialities, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester, Manchester, UK
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherde Médicale, Unité Mixte de Rechereche, S 1155, Paris, France
- Department of Nephrology, Centre Hospitalier du Mans, Le Mans, France
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Matthew G Sampson
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
8
|
Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Vet Sci 2022; 9:vetsci9070312. [PMID: 35878329 PMCID: PMC9323928 DOI: 10.3390/vetsci9070312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Diabetes is a chronic metabolic disease characterized by high blood glucose levels (hyperglycemia). Type 2 diabetes mellitus (T2DM) and its complications are a worldwide public health problem, affecting people from all developed and developing countries. Hyperglycemia can cause damage to the vascular system and dysfunction of organs, such as the kidneys, heart, retina of the eyes, and nerves. Diabetic nephropathy (DN) is one of the most severe micro-vascular complications, which can lead to ESRD (end-stage renal disease). Zebrafish are ideal for wide-scale analysis or screening, due to their small size, quick growth, transparent embryos, vast number of offspring, and gene similarity with humans, which combine to make zebrafish an ideal model for diabetes. The readily available tools for gene editing using morpholinos or CRISPR/Cas9, as well as chemical/drug therapy by microinjection or skin absorption, enable zebrafish diabetes mellitus models to be established in a number of ways. In this review, we emphasize the physiological and pathological processes relating to micro-vascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish. This study specifies the benefits and drawbacks and future perspective of using zebrafish as a disease model. Abstract Diabetes mellitus (DM) is a complicated metabolic illness that has had a worldwide impact and placed an unsustainable load on both developed and developing countries’ health care systems. According to the International Diabetes Federation, roughly 537 million individuals had diabetes in 2021, with type 2 diabetes mellitus accounting for the majority of cases (T2DM). T2DM is a chronic illness defined by insufficient insulin production from pancreatic islet cells. T2DM generates various micro and macrovascular problems, with diabetic nephropathy (DN) being one of the most serious microvascular consequences, and which can lead to end-stage renal disease. The zebrafish (Danio rerio) has set the way for its future as a disease model organism. As numerous essential developmental processes, such as glucose metabolism and reactive metabolite production pathways, have been identified in zebrafish that are comparable to those seen in humans, it is a good model for studying diabetes and its consequences. It also has many benefits over other vertebrate models, including the permeability of its embryos to small compounds, disease-driven therapeutic target selection, in vivo validation, and deconstruction of biological networks. The organism can also be utilized to investigate and understand the genetic abnormalities linked to the onset of diabetes problems. Zebrafish may be used to examine and visualize the growth, morphology, and function of organs under normal physiological and diabetic settings. The zebrafish has become one of the most useful models for studying DN, especially when combined with genetic alterations and/or mutant or transgenic fish lines. The significant advancements of CRISPR and next-generation sequencing technology for disease modelling in zebrafish, as well as developments in molecular and nano technologies, have advanced the understanding of the molecular mechanisms of several human diseases, including DN. In this review, we emphasize the physiological and pathological processes relating to microvascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish.
Collapse
|
9
|
Tocci S, Ibeawuchi SR, Das S, Sayed IM. Role of ELMO1 in inflammation and cancer-clinical implications. Cell Oncol (Dordr) 2022; 45:505-525. [PMID: 35668246 DOI: 10.1007/s13402-022-00680-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Engulfment and cell motility protein 1 (ELMO1) is a key protein for innate immunity since it is required for the clearance of apoptotic cells and pathogenic bacteria as well as for the control of inflammatory responses. ELMO1, through binding with Dock180 and activation of the Rac1 signaling pathway, plays a significant role in cellular shaping and motility. Rac-mediated actin cytoskeletal rearrangement is essential for bacterial phagocytosis, but also plays a crucial role in processes such as cancer cell invasion and metastasis. While the role of ELMO1 in bacterial infection and inflammatory responses is well established, its implication in cancer is not widely explored yet. Molecular changes or epigenetic alterations such as DNA methylation, which ultimately leads to alterations in gene expression and deregulation of cellular signaling, has been reported for ELMO1 in different cancer types. CONCLUSIONS In this review, we provide an updated and comprehensive summary of the roles of ELMO1 in infection, inflammatory diseases and cancer. We highlight the possible mechanisms regulated by ELMO1 that are relevant for cancer development and progression and provide insight into the possible use of ELMO1 as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Stefania Tocci
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA. .,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
10
|
Xue R, Wang Y, Wang T, Lyu M, Mo G, Fan X, Li J, Yen K, Yu S, Liu Q, Xu J. Functional Verification of Novel ELMO1 Variants by Live Imaging in Zebrafish. Front Cell Dev Biol 2021; 9:723804. [PMID: 34993193 PMCID: PMC8724260 DOI: 10.3389/fcell.2021.723804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
ELMO1 (Engulfment and Cell Motility1) is a gene involved in regulating cell motility through the ELMO1-DOCK2-RAC complex. Contrary to DOCK2 (Dedicator of Cytokinesis 2) deficiency, which has been reported to be associated with immunodeficiency diseases, variants of ELMO1 have been associated with autoimmune diseases, such as diabetes and rheumatoid arthritis (RA). To explore the function of ELMO1 in immune cells and to verify the functions of novel ELMO1 variants in vivo, we established a zebrafish elmo1 mutant model. Live imaging revealed that, similar to mammals, the motility of neutrophils and T-cells was largely attenuated in zebrafish mutants. Consequently, the response of neutrophils to injury or bacterial infection was significantly reduced in the mutants. Furthermore, the reduced mobility of neutrophils could be rescued by the expression of constitutively activated Rac proteins, suggesting that zebrafish elmo1 mutant functions via a conserved mechanism. With this mutant, three novel human ELMO1 variants were transiently and specifically expressed in zebrafish neutrophils. Two variants, p.E90K (c.268G>A) and p.D194G (c.581A>G), could efficiently recover the motility defect of neutrophils in the elmo1 mutant; however, the p.R354X (c.1060C>T) variant failed to rescue the mutant. Based on those results, we identified that zebrafish elmo1 plays conserved roles in cell motility, similar to higher vertebrates. Using the transient-expression assay, zebrafish elmo1 mutants could serve as an effective model for human variant verification in vivo.
Collapse
Affiliation(s)
- Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | - Mei Lyu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guiling Mo
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Xijie Fan
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Jianchao Li
- Laboratory of Molecular and Structural Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Shihui Yu
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Jin Xu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| |
Collapse
|
11
|
Animal models of diabetic microvascular complications: Relevance to clinical features. Biomed Pharmacother 2021; 145:112305. [PMID: 34872802 DOI: 10.1016/j.biopha.2021.112305] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes has become more common in recent years worldwide, and this growth is projected to continue in the future. The primary concern with diabetes is developing various complications, which significantly contribute to the disease's mortality and morbidity. Over time, the condition progresses from the pre-diabetic to the diabetic stage and then to the development of complications. Years and enormous resources are required to evaluate pharmacological interventions to prevent or delay the progression of disease or complications in humans. Appropriate screening models are required to gain a better understanding of both pathogenesis and potential therapeutic agents. Different species of animals are used to evaluate the pharmacological potentials and study the pathogenesis of the disease. Animal models are essential for research because they represent most of the structural, functional, and biochemical characteristics of human diseases. An ideal screening model should mimic the pathogenesis of the disease with identifiable characteristics. A thorough understanding of animal models is required for the experimental design to select an appropriate model. Each animal model has certain advantages and limitations. The present manuscript describes the animal models and their diagnostic characteristics to evaluate microvascular diabetic complications.
Collapse
|
12
|
The Zebrafish Model to Understand Epigenetics in Renal Diseases. Int J Mol Sci 2021; 22:ijms22179152. [PMID: 34502062 PMCID: PMC8431166 DOI: 10.3390/ijms22179152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic modifications are able to alter gene expression and include DNA methylation, different histone variants, and post-transcriptional modifications (PTMs), such as acetylation or phosphorylation, and through short/long RNAs, respectively. In this review, we focus on current knowledge concerning epigenetic modifications in gene regulation. We describe different forms of epigenetic modifications and explain how epigenetic changes can be detected. The relevance of epigenetics in renal diseases is highlighted with multiple examples and the use of the zebrafish model to study glomerular diseases in general and epigenetics in renal diseases in particular is discussed. We end with an outlook on how to use epigenetic modifications as a therapeutic target for different diseases. Here, the zebrafish model can be employed as a high-throughput screening tool not only to discover epigenetic alterations contributing to disease, but also to test novel substances that change epigenetic signatures in vivo. Therefore, the zebrafish model harbors the opportunity to find novel pathogenic pathways allowing a pre-selection of potential targets and compounds to be tested for renal diseases.
Collapse
|
13
|
Hashemi E, Dehghanbanadaki H, Baharanchi AA, Forouzanfar K, Kakaei A, Mohammadi SM, Zeidi S, Razi F. WT1 and ACE mRNAs of blood extracellular vesicle as biomarkers of diabetic nephropathy. J Transl Med 2021; 19:299. [PMID: 34246281 PMCID: PMC8272332 DOI: 10.1186/s12967-021-02964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Diabetic nephropathy (DN) has an increasing global prevalence with excessive health expenditure and burden. Exosomal mRNAs regulate intercellular communications and participate in the pathogenesis of various disorders like DN. This study aimed to assess the expression levels of ACE, ELMO1, and WT1 mRNAs in the blood extracellular vesicles (EVs) of DN patients and diabetic patients without nephropathy (DM group) in comparison to healthy controls and investigate their correlations with the severity of DN. Methods The performed investigation is a cross-sectional study of 256 participants including 103 DN patients, 100 DM patients, and 53 healthy controls. The quantification of WT1, ACE, and ELMO1 mRNAs in the blood EVs were executed using qRT-PCR. The ROC analysis was performed to determine the diagnostic accuracy of mRNAs. Results DN patients had significantly higher expressed WT1 mRNA (1.70-fold change) and lower expressed ACE mRNA (0.55-fold change) in the blood EVs compared to DM patients and controls. ELMO1 mRNA was not expressed in EVs of any groups. A positive correlation between WT1 mRNA level and urine Alb/Cr ratio (r = 0.602, p < 0.001) and a negative correlation between ACE mRNA expression and urine Alb/Cr ratio within DN patients (r = − 0.474, p < 0.001) was identified. The accuracy of WT1 mRNA and 1/ACE mRNA for predicting incipient DN was 0.63 (95% CI 0.55, 0.72) and 0.62 (95% CI 0.54, 0.71), and for predicting overt DN was 0.83 (95% CI 0.74, 0.92) and 0.75 (95% CI 0.66, 0.83), respectively. Conclusions WT1 and ACE mRNAs level in blood EVs were predictors for early diagnosis of DN therefore their quantifications might be used to determine the severity of albuminuria and glomerular injuries. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02964-6.
Collapse
Affiliation(s)
- Ehsan Hashemi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965-16, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abbasi Baharanchi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965-16, Tehran, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical SciencesInstitute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mohammadi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Zeidi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Omar TA, Zewain SK, Ghonaim MM, Refaat KA, Abou-Elela DH. Role of engulfment and cell motility 1 (ELMO1) gene polymorphism in development of diabetic kidney disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00167-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diabetic kidney disease (DKD) is a progressive kidney disease that affects diabetic patients irrespective of glycemic state or hypertension. Therefore, early detection of DKD is of critical importance. Many genome-wide association studies have identified the engulfment and cell motility 1 (ELMO1) gene as a genetic marker linked to DKD. This study aimed to investigate the association between ELMO1 rs741301 gene polymorphism and the development of DKD among Egyptian patients with type 2 diabetes mellitus (T2DM). Allele and genotype frequencies were investigated in 304 subjects by real-time PCR allelic discrimination assay: 100 DKD patients, 102 diabetic patients without DKD, and 102 healthy controls.
Results
GG genotype of ELMO1 (rs741301) SNP and its allele frequencies were significantly high in all diabetic patients. GG genotype had an odds ratio (OR) of 6.095 and 95% confidence interval (CI) of 2.456–15.125, p < 0.001, while the frequent allele G had an OR of 2.366 and 95% CI of 1.450–3.859, p = 0.001. No significant difference was observed between T2DM without DKD and DKD.
Conclusion
Our results could not establish an association between the ELMO1 rs741301 variant and the progression of DKD.
Collapse
|
15
|
Zhou B, Guo M, Hao X, Lou B, Liu J, She J. Altered exosomal microRNA profiles in bronchoalveolar lavage fluid can mediate metabolism in patients with Acinetobacter baumannii ventilator-associated pneumonia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1561. [PMID: 33437760 PMCID: PMC7791224 DOI: 10.21037/atm-20-2375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Ventilator-associated pneumonia (VAP) is a major public health problem and is most commonly caused by Acinetobacter baumannii (Ab) infection. In our study, we investigated the profiles of exosomal microRNAs (miRNAs) extracted from the bronchoalveolar lavage fluid (BALF) and serum of patients with Acinetobacter baumannii ventilator-associated pneumonia (Ab-VAP). We also examined the serum metabolomic profiles of these patients. Our aim was to study the associations between lung tissue-derived exosomal miRNAs and changes in global metabolism in patients with Ab-VAP. Methods Consecutively sampled patients admitted to an intensive care unit (ICU) for pulmonary infection treatment were enrolled in this study. Demographic information and biochemical measurements were collected. Serum samples were obtained following overnight fasting on admission. Bronchoscopies were performed and BALF samples were collected from each patient. Exosomes were extracted using kits from System Biosciences (SBI) and miRNA sequencing was performed. Non-targeted metabolomics were used to express metabolic profiles. Results We found significant changes in the miRNA profiles of patients with Ab-VAP; these changes occurred in both BALF exosomal miRNA and serum exosomal miRNA. Gene Ontology analysis further identified the function of miRNA in system metabolism. Serum metabolomic profiles and ratios of biological significance were found to be differentially regulated in Ab-VAP patients. This differential regulation was correlated with the differential expression of miRNAs. Conclusions Our data summarizes the dysregulation of serum metabolism and exosomal miRNA excretion that occurs in Ab-VAP patients. The correlation found between BALF exosomal miRNA and dysregulated metabolism, as indicated by the irregular expression of metabolites in the cellular metabolic pathway, highlights potential biomarkers for the diagnosis and treatment of Ab infection.
Collapse
Affiliation(s)
- Bo Zhou
- Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manyun Guo
- Cardiovascular Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiang Hao
- Cardiovascular Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bowen Lou
- Cardiovascular Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junhui Liu
- Diagnostic Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianqing She
- Cardiovascular Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Bayoumy NMK, El-Shabrawi MM, Leheta OF, Abo El-Ela AEDM, Omar HH. Association of ELMO1 gene polymorphism and diabetic nephropathy among Egyptian patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 2020; 36:e3299. [PMID: 32043290 DOI: 10.1002/dmrr.3299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetic nephropathy (DN) is the most common cause of end stage renal failure or even death among patients with type 2 diabetes mellitus. Genetic predisposition is widely studied among these patients to identify manageable aspects of the disease pathogenesis. This study was carried out to test the association of engulfment and cell motility 1 (ELMO1) gene polymorphism with DN among Egyptians. ELMO1 is required for phagocytosis of apoptotic cells and cell motility. METHODS This case-control study was conducted on type 2 diabetic patients who attended Suez Canal University Hospital, Egypt, between November 2016 and October 2017. Peripheral blood was collected from 200 diabetic patients (without nephropathy), 200 patients with DN, and 100 healthy controls for DNA extraction. The single nucleotide polymorphism of ELMO1 (rs741301) was genotyped using real-time polymerase chain reaction and the allele discrimination technique. RESULTS GG genotype was significantly associated with DN (odds ratio [OR] = 2.7; 95% confidence interval [CI]: 1.4-5.3) (P = .016). The OR for the high-risk allele (G) was 1.9 with 95% CI from 1.5 to 2.9 (P < .001). CONCLUSION ELMO1 gene (rs741301) polymorphism is a candidate variant in the predisposition to DN.
Collapse
Affiliation(s)
- Nervana M K Bayoumy
- Physiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Shabrawi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ola F Leheta
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Alaa El-Din M Abo El-Ela
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hamdy H Omar
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Łuczkowska K, Rogińska D, Ulańczyk Z, Paczkowska E, Schmidt CA, Machaliński B. Molecular Mechanisms of Bortezomib Action: Novel Evidence for the miRNA-mRNA Interaction Involvement. Int J Mol Sci 2020; 21:E350. [PMID: 31948068 PMCID: PMC6981510 DOI: 10.3390/ijms21010350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Bortezomib is an anti-tumor agent, which inhibits 26S proteasome degrading ubiquitinated proteins. While apoptotic transcription-associated activation in response to bortezomib has been suggested, mechanisms related to its influence on post-transcriptional gene silencing mediated regulation by non-coding RNAs remain not fully elucidated. In the present study, we examined changes in global gene and miRNA expression and analyzed the identified miRNA-mRNA interactions after bortezomib exposure in human neuroblastoma cells to define pathways affected by this agent in this type of cells. Cell viability assays were performed to assess cytotoxicity of bortezomib. Global gene and miRNA expression profiles of neuroblastoma cells after 24-h incubation with bortezomib were determined using genome-wide RNA and miRNA microarray technology. Obtained results were then confirmed by qRT-PCR and Western blot. Further bioinformatical analysis was performed to identify affected biological processes and pathways. In total, 719 genes and 28 miRNAs were downregulated, and 319 genes and 61 miRNAs were upregulated in neuroblastoma cells treated with bortezomib. Possible interactions between dysregulated miRNA/mRNA, which could be linked to bortezomib-induced neurotoxicity, affect neurogenesis, cellular calcium transport, and neuron death. Bortezomib might exert toxic effects on neuroblastoma cells and regulate miRNA-mRNA interactions influencing vital cellular functions. Further studies on the role of specific miRNA-mRNA interactions are needed to elucidate mechanisms of bortezomib action.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Christian Andreas Schmidt
- Department of Internal Medicine C-Haematology, and Oncology, Stem Cell Transplantation, Palliative Care, University Hospital Greifswald, Ernst-Moritz-Arndt University, 17489 Greifswald, Germany;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| |
Collapse
|
18
|
Mikdache A, Fontenas L, Albadri S, Revenu C, Loisel-Duwattez J, Lesport E, Degerny C, Del Bene F, Tawk M. Elmo1 function, linked to Rac1 activity, regulates peripheral neuronal numbers and myelination in zebrafish. Cell Mol Life Sci 2020; 77:161-177. [PMID: 31161284 PMCID: PMC11104998 DOI: 10.1007/s00018-019-03167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Peripheral nervous system development involves a tight coordination of neuronal birth and death and a substantial remodelling of the myelinating glia cytoskeleton to achieve myelin wrapping of its projecting axons. However, how these processes are coordinated through time is still not understood. We have identified engulfment and cell motility 1, Elmo1, as a novel component that regulates (i) neuronal numbers within the Posterior Lateral Line ganglion and (ii) radial sorting of axons by Schwann cells (SC) and myelination in the PLL system in zebrafish. Our results show that neuronal and myelination defects observed in elmo1 mutant are rescued through small GTPase Rac1 activation. Inhibiting macrophage development leads to a decrease in neuronal numbers, while peripheral myelination is intact. However, elmo1 mutants do not show defective macrophage activity, suggesting a role for Elmo1 in PLLg neuronal development and SC myelination independent of macrophages. Forcing early Elmo1 and Rac1 expression specifically within SCs rescues elmo1-/- myelination defects, highlighting an autonomous role for Elmo1 and Rac1 in radial sorting of axons by SCs and myelination. This uncovers a previously unknown function of Elmo1 that regulates fundamental aspects of PNS development.
Collapse
Affiliation(s)
- Aya Mikdache
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | - Laura Fontenas
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Shahad Albadri
- Institut Curie, PSL Research University, 75005, Paris, France
| | - Celine Revenu
- Institut Curie, PSL Research University, 75005, Paris, France
| | - Julien Loisel-Duwattez
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | - Emilie Lesport
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | - Cindy Degerny
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France
| | | | - Marcel Tawk
- U1195, Inserm, University Paris Sud, University Paris-Saclay, 94276, Le Kremlin Bicêtre, France.
| |
Collapse
|
19
|
Schmöhl F, Peters V, Schmitt CP, Poschet G, Büttner M, Li X, Weigand T, Poth T, Volk N, Morgenstern J, Fleming T, Nawroth PP, Kroll J. CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications. Cell Mol Life Sci 2019; 76:4551-4568. [PMID: 31073745 PMCID: PMC11105213 DOI: 10.1007/s00018-019-03127-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1-/- zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1-/- zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala-His and Ser-His. Under diabetic conditions increased carnosine levels in CNDP1-/- embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.
Collapse
Affiliation(s)
- Felix Schmöhl
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Verena Peters
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Claus Peter Schmitt
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Michael Büttner
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Xiaogang Li
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Tim Weigand
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Im Neuenheimer Feld 410, F02 Room 02.414-02.434, 69120, Heidelberg, Germany
| | - Jens Kroll
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
20
|
She J, Wu Y, Lou B, Lodd E, Klems A, Schmoehl F, Yuan Z, Noble FL, Kroll J. Genetic compensation by epob in pronephros development in epoa mutant zebrafish. Cell Cycle 2019; 18:2683-2696. [PMID: 31451030 DOI: 10.1080/15384101.2019.1656019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Zebrafish erythropoietin a (epoa) is a well characterized regulator of red blood cell formation. Recent morpholino mediated knockdown data have also identified epoa being essential for physiological pronephros development in zebrafish, which is driven by blocking apoptosis in developing kidneys. Yet, zebrafish mutants for epoa have not been described so far. In order to compare a transient knockdown vs. permanent knockout for epoa in zebrafish on pronephros development, we used CRISPR/Cas9 technology to generate epoa knockout zebrafish mutants and we performed structural and functional studies on pronephros development. In contrast to epoa morphants, epoa-/- zebrafish mutants showed normal pronephros structure; however, a previously uncharacterized gene in zebrafish, named epob, was identified and upregulated in epoa-/- mutants. epob knockdown altered pronephros development, which was further aggravated in epoa-/- mutants. Likewise, epoa and epob morphants regulated similar and differential gene signatures related to kidney development in zebrafish. In conclusion, stable loss of epoa during embryonic development can be compensated by epob leading to phenotypical discrepancies in epoa knockdown and knockout zebrafish embryos.
Collapse
Affiliation(s)
- Jianqing She
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Yue Wu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Bowen Lou
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Elisabeth Lodd
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Alina Klems
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO) & Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany
| | - Felix Schmoehl
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO) & Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| |
Collapse
|
21
|
Gu HF. Genetic and Epigenetic Studies in Diabetic Kidney Disease. Front Genet 2019; 10:507. [PMID: 31231424 PMCID: PMC6566106 DOI: 10.3389/fgene.2019.00507] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease is a worldwide health crisis, while diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease (ESRD). DKD is a microvascular complication and occurs in 30–40% of diabetes patients. Epidemiological investigations and clinical observations on the familial clustering and heritability in DKD have highlighted an underlying genetic susceptibility. Furthermore, DKD is a progressive and long-term diabetic complication, in which epigenetic effects and environmental factors interact with an individual’s genetic background. In recent years, researchers have undertaken genetic and epigenetic studies of DKD in order to better understand its molecular mechanisms. In this review, clinical material, research approaches and experimental designs that have been used for genetic and epigenetic studies of DKD are described. Current information from genetic and epigenetic studies of DKD and ESRD in patients with diabetes, including the approaches of genome-wide association study (GWAS) or epigenome-wide association study (EWAS) and candidate gene association analyses, are summarized. Further investigation of molecular defects in DKD with new approaches such as next generation sequencing analysis and phenome-wide association study (PheWAS) is also discussed.
Collapse
Affiliation(s)
- Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Outtandy P, Russell C, Kleta R, Bockenhauer D. Zebrafish as a model for kidney function and disease. Pediatr Nephrol 2019; 34:751-762. [PMID: 29502161 PMCID: PMC6424945 DOI: 10.1007/s00467-018-3921-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease.
Collapse
Affiliation(s)
- Priya Outtandy
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Robert Kleta
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK.
| | - Detlef Bockenhauer
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
23
|
Gupta MK, Vadde R. Identification and characterization of differentially expressed genes in Type 2 Diabetes using in silico approach. Comput Biol Chem 2019; 79:24-35. [PMID: 30708140 DOI: 10.1016/j.compbiolchem.2019.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is clinically characterized by hyperglycemia. Though many studies have been done to understand the mechanism of Type 2 Diabetes (T2D), however, the complete network of diabetes and its associated disorders through polygenic involvement is still under debate. The present study designed to re-analyze publicly available T2D related microarray raw datasets present in GEO database and T2D genes information present in GWAS catalog for screening out differentially expressed genes (DEGs) and identify key hub genes associated with T2D. T2D related microarray data downloaded from Gene Expression Omnibus (GEO) database and re-analysis performed with in house R packages scripts for background correction, normalization and identification of DEGs in T2D. Also retrieved T2D related DEGs information from GWAS catalog. Both DEGs lists were grouped after removal of overlapping genes. These screened DEGs were utilized further for identification and characterization of key hub genes in T2D and its associated diseases using STRING, WebGestalt and Panther databases. Computational analysis reveal that out of 99 identified key hub gene candidates from 348 DEGs, only four genes (CCL2, ELMO1, VEGFA and TCF7L2) along with FOS playing key role in causing T2D and its associated disorders, like nephropathy, neuropathy, rheumatoid arthritis and cancer via p53 or Wnt signaling pathways. MIR-29, and MAZ_Q6 are identified potential target microRNA and TF along with probable drugs alprostadil, collagenase and dinoprostone for the key hub gene candidates. The results suggest that identified key DEGs may play promising roles in prevention of diabetes.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India.
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India.
| |
Collapse
|
24
|
Yahya MJ, Ismail PB, Nordin NB, Akim ABM, Yusuf WSBM, Adam NLB, Yusoff MJ. Association of CCL2, CCR5, ELMO1, and IL8 Polymorphism with Diabetic Nephropathy in Malaysian Type 2 Diabetic Patients. Int J Chronic Dis 2019; 2019:2053015. [PMID: 30713847 PMCID: PMC6333004 DOI: 10.1155/2019/2053015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
The unique variants or biomarkers of individuals help to understand the pathogenesis as well as the potential risk of individuals or patients to diabetic nephropathy (DN). The aim of this study was to investigate the association of a genetic polymorphism of monocyte chemoattractant protein-1 (CCL2-rs3917887), chemokine receptor 5 (CCR5-rs1799987), engulfment and cell mortality (ELMO1-rs74130), and interleukin-8 (IL8-rs4073) with the development of DN among Malaysian type 2 diabetes mellitus (T2DM) patients. More than one thousand diabetic patients were examined and a total of 652 T2DM patients were tested comprising 227 Malays (nonnephrotic=96 and nephrotic=131), 203 Chinese (nonnephrotic=95 and nephrotic=108), and 222 Indians (nonnephrotic=136 and nephrotic=86). DNA Sequenom mass ARRAY was employed to identify polymorphisms in CCL2, CCR5, ELMO1, and IL8 genes. DNA was extracted from the secondary blood samples taken from the T2DM patients. The alleles and genotypes were tested using four genetic models and the best mode of inheritance was chosen. CCR5 rs1799987 (G>A) showed strong association with the development of diabetic nephropathy only among the Chinese with OR=6.71 (2.55-17.68) 95% CI while IL8 rs4073 (T>A) showed association with nephropathy only among the Indians with OR=1.57 (0.66-3.71) 95% CI. The additive model was the best model for the mode of inheritance of all the genes. The contribution of genetic variants differs across ethnic groups or background. Further studies which involve environmental risk factors should be taken into consideration.
Collapse
Affiliation(s)
- Mohd Jokha Yahya
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Patimah binti Ismail
- Department of Human Development and Growth, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Norshariza binti Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Abdah binti Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | | | - Noor Lita binti Adam
- Department of Medicine (Endocrinology & Nephrology), Hospital Tuanku Ja'afar, Malaysia
| | - Maryam Jamielah Yusoff
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
25
|
Gong P, Chen S, Zhang L, Hu Y, Gu A, Zhang J, Wang Y. RhoG-ELMO1-RAC1 is involved in phagocytosis suppressed by mono-butyl phthalate in TM4 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35440-35450. [PMID: 30350139 DOI: 10.1007/s11356-018-3503-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butyl phthalate (DBP) is one of the most dominant phthalate esters and is ubiquitous in the environment. Male reproductive toxicity of DBP and its active metabolite mono-butyl phthalate (MBP) has been demonstrated in in vivo and in vitro studies. The objective of this study was to explore the roles of RhoG-ELMO1-RAC1 in phagocytosis disrupted by MBP in TM4 cells. Mouse Sertoli cell lines (TM4 cells) were maintained and treated by various levels of MBP (1, 10, and 100 μM) for 24 h. Then, cells were harvested for further experiments. Phagocytic capacity of TM4 cells was detected by flow cytometry, immunofluorescence, and oil red O staining. RAC1 activity (GTP-RAC1) was measured by RAC1 pull-down assay. Expression of mRNA and protein related to phagocytosis including ELMO1, RhoG, and RAC1 was analyzed by qRT-PCR and Western blots, respectively. MBP inhibited phagocytosis of TM4 cells and downregulated GTP-RAC1 expression and movement to membrane markedly. Furthermore, ELMO1 protein expression was downregulated in a dose-dependent manner after MBP treatments. Additionally, expression of proteins relating to phagocytosis, including RhoG and GTP-RAC1, was decreased significantly, but expression of total-RAC1 remained unchanged. GTP-RAC1 expression increased dramatically after TM4 cells were transfected with ELMO1 or RhoG plasmid, but restored under co-treatments with MBP and ELMO1/RhoG plasmid. This study suggests that MBP can reduce the phagocytosis of Sertoli cells through RhoG-ELMO1-RAC1 pathway.
Collapse
Affiliation(s)
- Pan Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Lulu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yanhui Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
26
|
Wei L, Xiao Y, Li L, Xiong X, Han Y, Zhu X, Sun L. The Susceptibility Genes in Diabetic Nephropathy. KIDNEY DISEASES 2018; 4:226-237. [PMID: 30574499 DOI: 10.1159/000492633] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Background Diabetes mellitus (DM) poses a severe threat to global public health. Diabetic nephropathy (DN) is one of the most common complications of diabetes and the leading cause of end-stage renal disease (ESRD). Approximately 30-40% of DM patients in the world progress to ESRD, which emphasizes the effect of genetic factors on DN. Family clustering also supports the important role of hereditary factors in DN and ESRD. Therefore, a large number of genetic studies have been carried out to identify susceptibility genes in different diabetic cohorts. Extensive susceptibility genes of DN and ESRD have not been identified until recently. Summary and Key Messages Some of these associated genes function as pivotal regulators in the pathogenesis of DN, such as those related to glycometabolism and lipid metabolism. However, the functions of most of these genes remain unclear. In this article, we review several susceptibility genes according to their genetic functions to make it easier to determine their exact effect on DN and to provide a better understanding of the advancements from genetic studies. However, several challenges associated with investigating the genetic factors of DN still exist. For instance, it is difficult to determine whether these variants affect the expression of the protein they encode or other cytokines. More efforts should be made to determine how these genes influence the progression of DN. In addition, many results could not be replicated among races, suggesting that the association between genetic polymorphisms and DN is race-specific. Therefore, large, well-designed studies involving more relevant variables and ethnic groups and more relevant functional studies are urgently needed. These studies may be beneficial and retard the progression of DN by early intervention, especially for patients who carry certain risk alleles or genotypes.
Collapse
Affiliation(s)
- Ling Wei
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofen Xiong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yachun Han
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018; 7:cells7090130. [PMID: 30200518 PMCID: PMC6162634 DOI: 10.3390/cells7090130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11628 Cairo, Egypt.
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter A de Witte
- Laboratory for Molecular Bio-Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Burns DT, Donkervoort S, Müller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, Bell SK, AlFaifi AY, Monies D, Millan F, Retterer K, Dyack S, MacKay S, Morales-Gonzalez S, Giunta M, Munro B, Hudson G, Scavina M, Baker L, Massini TC, Lek M, Hu Y, Ezzo D, AlKuraya FS, Kang PB, Griffin H, Foley AR, Schuelke M, Horvath R, Bönnemann CG. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 2018; 102:858-873. [PMID: 29727687 PMCID: PMC5986733 DOI: 10.1016/j.ajhg.2018.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161∗). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies.
Collapse
|
29
|
Wiggenhauser LM, Kohl K, Dietrich N, Hammes HP, Kroll J. Studying Diabetes Through the Eyes of a Fish: Microdissection, Visualization, and Analysis of the Adult tg(fli:EGFP) Zebrafish Retinal Vasculature. J Vis Exp 2017. [PMID: 29364210 PMCID: PMC5908402 DOI: 10.3791/56674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness among middle-aged adults. The rising prevalence of diabetes worldwide will make the prevention of diabetic microvascular complications one of the key research fields of the next decades. Specialized, targeted therapy and novel therapeutic drugs are needed to manage the increasing number of patients at risk of vision-loss. The zebrafish is an established animal model for developmental research questions with increasing relevance for modeling metabolic multifactorial disease processes. The advantages of the species allow for optimal visualization and high throughput drug screening approaches, combined with the strong ability to knock out genes of interest. Here, we describe a protocol which will allow easy analysis of the adult tg(fli:EGFP) zebrafish retinal vasculature as a fast read-out in settings of long-term vascular pathologies linked to neoangiogenesis or vessel damage. This is achieved via dissection of the zebrafish retina and whole-mounting of the tissue. Visualization of the exposed vessels is then achieved via confocal microscopy of the green EGFP reporter expressed in the adult retinal vasculature. Correct handling of the tissue will lead to better outcomes and less internal vessel breakage to assure the visualization of the unaltered vascular structure. The method can be utilized in zebrafish models of retinal vasculopathy linked to changes in the vessel architecture as well as neoangiogenesis.
Collapse
Affiliation(s)
- Lucas Moritz Wiggenhauser
- Department of Vascular Biology and Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University
| | - Katharina Kohl
- V. Medical Clinic, Medical Faculty Mannheim, Heidelberg University
| | - Nadine Dietrich
- V. Medical Clinic, Medical Faculty Mannheim, Heidelberg University
| | | | - Jens Kroll
- Department of Vascular Biology and Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University;
| |
Collapse
|
30
|
She J, Yuan Z, Wu Y, Chen J, Kroll J. Targeting erythropoietin protects against proteinuria in type 2 diabetic patients and in zebrafish. Mol Metab 2017; 8:189-202. [PMID: 29203238 PMCID: PMC5985015 DOI: 10.1016/j.molmet.2017.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Objective Adult human kidneys produce erythropoietin (EPO), which regulates red blood cell formation; however, whether EPO also functions directly on kidney development and controls diabetic kidney disease remains unknown. Here we analyzed the role of EPO in kidney development and under hyperglycemic conditions in zebrafish and in humans. Methods Diabetic patients and respective controls were enrolled in two cohorts. Serum EPO level and urine protein change upon human EPO administration were then analyzed. Transient knockdown and permanent knockout of EPO and EPOR in renal TG(WT1B:EGFP) zebrafish were established using the morpholino technology and CRISPR/Cas9 technology. Zebrafish embryos were phenotypically analyzed using fluorescence microscopy, and functional assays were carried out with the help of TexasRed labeled 70 kDa Dextran. Apoptosis was determined using the TUNEL assay and Annexin V staining, and caspase inhibitor zVADfmk was used for rescue experiments. Results In type 2 diabetic patients, serum EPO level decreased with the duration of diabetes, which was linked to reduced kidney function. Human recombinant EPO supplementation ameliorated proteinuria in diabetic nephropathy patients. In zebrafish, loss-of-function studies for EPO and EPOR, showed morphological and functional alterations within the pronephros, adversely affecting pronephric structure, leading to slit diaphragm dysfunction by increasing apoptosis within the pronephros. Induction of hyperglycemia in zebrafish embryos induced pronephros alterations which were further worsened upon silencing of EPO expression. Conclusions EPO was identified as a direct renal protective factor, promoting renal embryonic development and protecting kidneys from hyperglycemia induced nephropathy. EPO exhibited renal protective and proteinuria ameliorating function in type 2 DM patients and in hyperglycemic zebrafish embryos. Enhanced co-expression of EPO and EPOR was identified in both glomeruli and tubuli of DN patients. EPO and its receptor directly regulate physiological kidney development via repressing apoptosis.
Collapse
Affiliation(s)
- Jianqing She
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 710048 Xi'an, People's Republic of China; Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 710048 Xi'an, People's Republic of China
| | - Yue Wu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 710048 Xi'an, People's Republic of China
| | - Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
31
|
Eve AMJ, Smith JC. Knockdown of Laminin gamma-3 (Lamc3) impairs motoneuron guidance in the zebrafish embryo. Wellcome Open Res 2017; 2:111. [PMID: 29417095 PMCID: PMC5785718 DOI: 10.12688/wellcomeopenres.12394.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Background: Previous work in the zebrafish embryo has shown that laminin γ-3 ( lamc3) is enriched in endothelial cells marked by expression of fli1a, but the role of Lamc3 has been unknown. Methods: We use antisense morpholino oligonucleotides, and CRISPR/Cas9 mutagenesis of F0 embryos, to create zebrafish embryos in which lamc3 expression is compromised. Transgenic imaging, immunofluorescence, and in situ hybridisation reveal that Lamc3 loss-of-function affects the development of muscle pioneers, endothelial cells, and motoneurons. Results: Lamc3 is enriched in endothelial cells during zebrafish development, but it is also expressed by other tissues. Depletion of Lamc3 by use of antisense morpholino oligonucleotides perturbs formation of the parachordal chain and subsequently the thoracic duct, but Lamc3 is not required for sprouting of the cardinal vein. F0 embryos in which lamc3 expression is perturbed by a CRISPR/Cas9 approach also fail to form a parachordal chain, but we were unable to establish a stable lamc3 null line. Lamc3 is dispensable for muscle pioneer specification and for the expression of netrin-1a in these cells. Lamc3 knockdown causes netrin-1a up-regulation in the neural tube and there is increased Netrin-1 protein throughout the trunk of the embryo. Axonal guidance of rostral primary motoneurons is defective in Lamc3 knockdown embryos. Conclusions: We suggest that knockdown of Lamc3 perturbs migration of rostral primary motoneurons at the level of the horizontal myoseptum, indicating that laminin γ3 plays a role in motoneuron guidance.
Collapse
Affiliation(s)
- Alexander M. J. Eve
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - James C. Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
32
|
Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms. Int J Mol Sci 2017; 18:ijms18092002. [PMID: 28925940 PMCID: PMC5618651 DOI: 10.3390/ijms18092002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today's medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.
Collapse
|