1
|
Fernández-Villa D, Herraiz A, de Wit K, Herranz F, Aguilar MR, Rojo L. Design of tunable hyaluronic acid and O'-carboxymethyl chitosan formulations for the minimally invasive delivery of multifunctional therapies targeting rheumatoid arthritis. Carbohydr Polym 2025; 349:123018. [PMID: 39638525 DOI: 10.1016/j.carbpol.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The development of injectable, dual-component formulations based on natural-based polysaccharides is a promising strategy for the localized treatment of rheumatoid arthritis (RA). In the present study, biomimetic formulations consisting of aldehyde-functionalized hyaluronic acid (AHA) and O-carboxymethyl chitosan (OCC) were developed, presenting rapid in situ gelation rates and finely tunable physicochemical properties. These two properties allowed for the controlled delivery of anti-inflammatory, antioxidant, and pro-regenerative agents (i.e., strontium-methotrexate (SrMTX) and europium-tannic acid nanocomplexes (EuTA NCs), making them suitable for application in in vivo RA-models. Biological analyses demonstrated the system's cytocompatibility and its ability to modulate the activity of human articular chondrocytes at the secretome level and scavenge nitric oxide (NO). Moreover, the loaded cargoes not only extended the anti-inflammatory properties of the formulation but also the radiolabeling of EuTA NCs with 68Ga allowed the visualization of the gel by positron emission tomography (PET). Overall, this work presents the design and in vitro evaluation of an easily modulable polymeric system that allows the in situ release of a multifunctional therapy with promising perspectives for RA treatment.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Aitor Herraiz
- Instituto de Química Médica (IQM), CSIC, 28006 Madrid, Spain.
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica (IQM), CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Hirose Y, Fujita C, Hyoudou T, Inoue E, Inoue H. Skin Rejuvenation Using Autologous Cultured Fibroblast Grafting. Cureus 2024; 16:e75405. [PMID: 39781128 PMCID: PMC11710863 DOI: 10.7759/cureus.75405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Recently, autologous cultured fibroblast and platelet-rich plasma (PRP) therapies have been attempted for skin rejuvenation. Unlike PRP, grafted fibroblasts not only produce connective tissue but also influence the surrounding environment through a paracrine effect. Fibroblast-derived cytokines interact with and are modulated by neighboring tissue-constituting cells. In this study, we aimed to perform autologous fibroblast therapy and examine its effectiveness for skin rejuvenation through patient and doctor evaluations. METHODS Eighty-eight patients (5 males and 83 females) were followed up three months after grafting. All cases had a chief complaint of age-related skin atrophy. 1x108 cells of autologous cultured dermal fibroblasts were administered to each face. The patient and doctors evaluated the treatment's effects at one and three months. RESULTS One-month post-treatment, 60.3% of the patients rated the treatment as effective, while the doctors evaluated 79.5% as effective. Due to these findings, we assessed the efficacy of the eighty-eight patients at three months by the last observation carried forward (LOCF). The results showed that 75% and 92%, respectively, had effective patient and doctor assessments. The effects of fibroblast treatment were more effective after three months. CONCLUSION Fibroblast grafting was more effective at three months than one month and was extremely effective in improving skin texture, such as sagging, firmness, and wrinkles, without the symptoms of large depressions. There was a natural improvement more than hyaluronic acid injection.
Collapse
Affiliation(s)
| | - Chiharu Fujita
- Regenerative Medicine, Laboratory of Cell Applied Technologies Co., Tokyo, JPN
| | | | - Eisuke Inoue
- Medical Statistics, Showa University Research Administration Center, Tokyo, JPN
| | - Hajime Inoue
- Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki, JPN
- Regenerative Medicine, Ginza Yoshie Clinic, Tokyo, JPN
| |
Collapse
|
3
|
Egunov OA, Afanasiev SA, Kondratieva DS, Muslimova EF, Stepanov IV, Grishin AS, Mikheeva ER, Boshchenko AA. Experimental Study of Products Based on Biocompatible Polymer Material from Methacrylic Oligomers as a Potential Barrier for Preventing Adhesions in Cardiac Surgery. Bull Exp Biol Med 2024:10.1007/s10517-024-06300-y. [PMID: 39585594 DOI: 10.1007/s10517-024-06300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 11/26/2024]
Abstract
The effectiveness and safety of two types of samples based on a biocompatible polymer material made of methacrylic oligomers (Reperen) as a potential antiadhesion pericardial barrier were evaluated in in vitro and in vivo experiments. Two kinds of samples, reinforced with a polyamide mesh and without reinforcement, were used. In in vitro experiments, no adhesion and aggregation of human fibroblasts to the test samples were detected. In in vivo experiments, the samples implanted to rats into the thigh muscles were easily separated from the surrounding tissues 1, 2, and 3 weeks after implantation, being weakly fixed only in the area of the edges. Histological examination at week 2 after implantation revealed no differences between the experimental and control groups. At week 1 and 3, fibrosis and inflammation were more pronounced in animals of the control group (with simulated implantation). The properties demonstrated by both samples of Reperen barriers (with and without polyamide mesh reinforcement) in vivo and in vitro allow considering them as a potential antiadhesion pericardial barrier for clinical use.
Collapse
Affiliation(s)
- O A Egunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia.
| | - S A Afanasiev
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - D S Kondratieva
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - E F Muslimova
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - I V Stepanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | | | | - A A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
4
|
Zhao Y, Li X, Sun N, Mao Y, Ma T, Liu X, Cheng T, Shao X, Zhang H, Huang X, Li J, Huang N, Wang H. Injectable Double Crosslinked Hydrogel-Polypropylene Composite Mesh for Repairing Full-Thickness Abdominal Wall Defects. Adv Healthc Mater 2024; 13:e2304489. [PMID: 38433421 DOI: 10.1002/adhm.202304489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Abdominal wall defects are common clinical diseases, and mesh repair is the standard treatment method. The most commonly used polypropylene (PP) mesh in clinical practice has the advantages of good mechanical properties, stable performance, and effective tissue integration effect. However, direct contact between abdominal viscera and PP mesh can lead to severe abdominal adhesions. To prevent this, the development of a hydrogel-PP composite mesh with anti-adhesive properties may be an effective measure. Herein, biofunctional hydrogel loaded with rosmarinic acid is developed by modifying chitosan and Pluronic F127, which possesses suitable physical and chemical properties and commendable in vitro biocompatibility. In the repair of full-thickness abdominal wall defects in rats, hydrogels are injected onto the surface of PP mesh and applied to intraperitoneal repair. The results indicate that the use of hydrogel-PP composite mesh can alleviate abdominal adhesions resulting from traditional PP mesh implantation by decreasing local inflammatory response, reducing oxidative stress, and regulating the fibrinolytic system. Combined with the tissue integration ability of PP mesh, hydrogel-PP composite mesh has great potential for repairing full-thickness abdominal wall defects.
Collapse
Affiliation(s)
- Yixin Zhao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaopei Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ni Sun
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yan Mao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Teng Ma
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Xiangping Liu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Tao Cheng
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Xiangyu Shao
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Haifeng Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xianggang Huang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junsheng Li
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Ningping Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
5
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hemoadhican-Based Bioabsorbable Hydrogel for Preventing Postoperative Adhesions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17267-17284. [PMID: 38556996 DOI: 10.1021/acsami.4c01088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Postoperative peritoneal adhesions are a prevalent clinical issue following abdominal and pelvic surgery, frequently resulting in heightened personal and societal health burdens. Traditional biomedical barriers offer limited benefits because of practical challenges for doctors and their incompatibility with laparoscopic surgery. Hydrogel materials, represented by hyaluronic acid gels, are receiving increasing attention. However, existing antiadhesive gels still have limited effectiveness or carry the risk of complications in clinical applications. Herein, we developed a novel hydrogel using polysaccharide hemoadhican (HD) as the base material and polyethylene glycol diglycidyl ether (PEGDE) as the cross-linking agent. The HD hydrogels exhibit appropriate mechanical properties, injectability, and excellent cytocompatibility. We demonstrate resistance to protein adsorption and L929 fibroblast cell adhesion to the HD hydrogel. The biodegradability and efficacy against peritoneal adhesion are further evaluated in C57BL/6 mice. Our results suggest a potential strategy for anti-postoperative tissue adhesion barrier biomaterials.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Metem V, Thonglam J, Juncheed K, Khangkhamano M, Kwanyuang A, Meesane J. Tissue-mimicking composite barrier membranes to prevent abdominal adhesion formation after surgery. J Mech Behav Biomed Mater 2024; 152:106417. [PMID: 38281440 DOI: 10.1016/j.jmbbm.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Postoperative abdominal adhesions often occur after abdominal surgery; barrier membranes which mimic peritoneal tissue can be constructed to prevent abdominal adhesions. To this end, silk fibroin (SF) sheets were coated with polyvinyl alcohol (PVA) and agarose (AGA) at PVA:AGA ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 to create a composite anti-adhesive barrier and allow us to identify a suitable coating ratio. The membranes were characterized in terms of their molecular organization, structure, and morphology using Fourier transform Infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM), respectively. The physical and mechanical properties of the membranes and their biological performance (i.e., fibroblast proliferation and invasion) were tested in vitro. Each membrane showed both smooth and rough surface characteristics. Membranes coated with PVA:AGA at ratios of 100:0, 70:30, 50:50, and 30:70 exhibited more -OH and amide III moieties than those coated with 0:100 PVA:AGA, which consequently affected structural organization, degradation, and fibroblast viability. The 0:100 PVA:AGA-coated degraded the fastest. Barrier membranes coated with 100:0 and 70:30 PVA: AGA demonstrated reduced fibroblast proliferation and attachment. The membrane coated with 70:30 PVA:AGA exhibited a stable appearance, and did not curl under wet conditions. Therefore, SF sheets coated with 70:30 PVA:AGA show promise as anti-adhesive barrier membranes for further development.
Collapse
Affiliation(s)
- Varistha Metem
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jutakan Thonglam
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Kantida Juncheed
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Matthana Khangkhamano
- Department of Mine and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Atichart Kwanyuang
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
7
|
Luo W, Jiang Y, Liu J, Sun B, Gao X, Algharib SA, Guo D, Wei J, Wei Y. Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N,O-carboxymethyl chitosan composite nanogels against Staphylococcus epidermidis. J Vet Sci 2024; 25:e30. [PMID: 38568831 PMCID: PMC10990912 DOI: 10.4142/jvs.23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. OBJECTIVES Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. METHODS The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. RESULTS Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. CONCLUSIONS This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.
Collapse
Affiliation(s)
- Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Yongtao Jiang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar 843300, China
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 610000, China
| | - Beibei Sun
- Instrumental Analysis Center, Tarim University, Alar 843300, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jie Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830000, China.
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830000, China.
| |
Collapse
|
8
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
9
|
Luo W, Jiang Y, Liu J, Ju M, Algharib SA, Dawood AS. On-demand release of enrofloxacin-loaded chitosan oligosaccharide-oxidized hyaluronic acid composite nanogels for infected wound healing. Int J Biol Macromol 2023; 253:127248. [PMID: 37802431 DOI: 10.1016/j.ijbiomac.2023.127248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
In this study, enrofloxacin (ENR) was encapsulated by oxidized hyaluronic acid (OHA) containing aldehyde groups and chitosan oligosaccharide (COS) containing amino groups through Schiff's base reaction to achieve on-demand release in the micro-environment (pH 5.5 and HAase) of bacterial-infected wounds (Escherichia coli and Staphylococcus aureus). The formation mechanism, physicochemical characterization, responsive release performance, in vitro and in vivo antimicrobial activities, and in vivo regeneration in full-thickness wounds in a bacterial-infected mouse model of the ENR nanogels were systematically studied. According to the single-factor experiment and Design-Expert software, the optimized formula was 3.8 mg/ml COS, 0.5 mg/ml OHA, and 0.3 mg/ml ENR, respectively. The mean particle diameter, polydispersity index, zeta potential, loading capacity, and encapsulation efficiency were 35.6 ± 1.7 nm, -6.7 ± 0.5 mV, 0.25 ± 0.02, 30.4 % ± 1.3 %, and 76.3 % ± 2.6 %, respectively. The appearance, optical microscopy images, SEM, TEM, PXRD, and FTIR showed that the ENR nanogels were successfully prepared. The ENR nanogels exhibited obvious pH and HAase-responsiveness by swelling ratios and in vitro release and had stronger antibacterial activity with time-dependent and concentration-dependent effects, as well as accelerating infected wound healing. In vitro and in vivo biosafety studies suggested the great promise of ENR nanogels as biocompatible wound dressings for infected wounds.
Collapse
Affiliation(s)
- Wanhe Luo
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China.
| | - Yongtao Jiang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jinhuan Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Mujie Ju
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt; National Reference Laboratory of Veterinary Drug Residues (HZAU), MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ali Sobhy Dawood
- Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt; National Reference Laboratory of Veterinary Drug Residues (HZAU), MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
10
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
11
|
Sirovy M, Odlozilova S, Kotek J, Zajak J, Paral J. Current options for the prevention of postoperative intra-abdominal adhesions. Asian J Surg 2023; 47:S1015-9584(23)01613-5. [PMID: 39492273 DOI: 10.1016/j.asjsur.2023.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024] Open
Abstract
Postoperative adhesions are the most common cause of morbidity after abdominal and pelvic surgery. The clinical manifestations of postoperative adhesions can manifest within a few weeks or even several years after the surgery. They result from peritoneal irritation caused by surgical trauma or intra-abdominal infection. Normal peritoneal healing relies on the balance between fibrin deposition and its degradation. In this paper-using information derived from the Medline, PubMed, and ScienceDirect databases-we briefly summarize the pathogenesis of postoperative intra-abdominal adhesions and various strategies for possible prevention.
Collapse
Affiliation(s)
- Miroslav Sirovy
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic.
| | - Sarka Odlozilova
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| | - Jiri Kotek
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| | - Jan Zajak
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| | - Jiri Paral
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Erdi M, Sandler A, Kofinas P. Polymer nanomaterials for use as adjuvant surgical tools. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1889. [PMID: 37044114 PMCID: PMC10524211 DOI: 10.1002/wnan.1889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Materials employed in the treatment of conditions encountered in surgical and clinical practice frequently face barriers in translation to application. Shortcomings can be generalized through their reduced mechanical stability, difficulty in handling, and inability to conform or adhere to complex tissue surfaces. To overcome an amalgam of challenges, research has sought the utilization of polymer-derived nanomaterials deposited in various fashions and formulations to improve the application and outcomes of surgical and clinical interventions. Clinically prevalent applications include topical wound dressings, tissue adhesives, surgical sealants, hemostats, and adhesion barriers, all of which have displayed the potential to act as superior alternatives to current materials used in surgical procedures. In this review, emphasis will be placed not only on applications, but also on various design strategies employed in fabrication. This review is designed to provide a broad and thought-provoking understanding of nanomaterials as adjuvant tools for the assisted treatment of pathologies prevalent in surgery. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Anthony Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, DC, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
13
|
Lehká K, Starigazdová J, Mrázek J, Nešporová K, Šimek M, Pavlík V, Chmelař J, Čepa M, Barrios-Llerena ME, Kocurková A, Kriváková E, Koukalová L, Kubala L, Velebný V. An in vitro model that mimics the foreign body response in the peritoneum: Study of the bioadhesive properties of HA-based materials. Carbohydr Polym 2023; 310:120701. [PMID: 36925239 DOI: 10.1016/j.carbpol.2023.120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
A cascade of reactions known as the foreign body response (FBR) follows the implantation of biomaterials leading to the formation of a fibrotic capsule around the implant and subsequent health complications. The severity of the FBR is driven mostly by the physicochemical characteristics of implanted material, the method and place of implantation, and the degree of immune system activation. Here we present an in vitro model for assessing new materials with respect to their potential to induce a FBR in the peritoneum. The model is based on evaluating protein sorption and cell adhesion on the implanted material. We tested our model on the free-standing films prepared from hyaluronan derivatives with different hydrophobicity, swelling ratio, and rate of solubilization. The proteomic analysis of films incubated in the mouse peritoneum showed that the presence of fibrinogen was driving the cell adhesion. Neither the film surface hydrophobicity/hydrophilicity nor the quantity of adsorbed proteins were decisive for the induction of the long-term cell adhesion leading to the FBR, while the dissolution rate of the material proved to be a crucial factor. Our model thus helps determine the probability of a FBR to materials implanted in the peritoneum while limiting the need for in vivo animal testing.
Collapse
Affiliation(s)
- Kateřina Lehká
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jana Starigazdová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jiří Mrázek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Matěj Šimek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Martin Čepa
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Anna Kocurková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Eva Kriváková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Ludmila Koukalová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Lukáš Kubala
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
14
|
The Controlled Release and Prevention of Abdominal Adhesion of Tannic Acid and Mitomycin C-Loaded Thermosensitive Gel. Polymers (Basel) 2023; 15:polym15040975. [PMID: 36850258 PMCID: PMC9966773 DOI: 10.3390/polym15040975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Postoperative abdominal adhesion is one of the most common complications after abdominal surgery. A single drug or physical barrier treatment does not achieve the ideal anti-adhesion effect. We developed a thermosensitive hydrogel (PPH hydrogel) consisting of poloxamer 407 (P407), poloxamer (P188), and hydroxypropyl methylcellulose (HPMC) co-blended. An injectable thermosensitive TA/MMC-PPH hydrogel was obtained by loading tannic acid (TA) with an anti-inflammatory effect and mitomycin C (MMC), which inhibits fibroblast migration or proliferation. The optimal prescriptions of PPH hydrogels with a suitable gelling time (63 s) at 37 °C was 20% (w/v) P407, 18% (w/v) P188, and 0.5% (w/v) HPMC. The scanning electron microscopy (SEM) revealed that the PPH hydrogel had a three-dimensional mesh structure, which was favorable for drug encapsulation. The PPH hydrogel had a suitable gelation temperature of 33 °C, a high gel strength, and complicated viscosity at 37 °C, according to the rheological analysis. In vitro release studies have shown that the PPH hydrogel could delay the release of TA and MMC and conform to the first-order release rate. Anti-adhesion tests performed on rats in vivo revealed that TA/MMC-PPH hydrogel significantly reduced the risk of postoperative adhesion. In conclusion, the TA/MMC-PPH hydrogel prepared in this study showed an excellent performance in both controlled drug release and anti-adhesive effects. It can be used as a protocol to prevent or reduce postoperative abdominal adhesion.
Collapse
|
15
|
Yan Y, Ren P, Wu Q, Zhang T. Precise Design of Alginate Hydrogels Crosslinked with Microgels for Diabetic Wound Healing. Biomolecules 2022; 12:1582. [PMID: 36358932 PMCID: PMC9687833 DOI: 10.3390/biom12111582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
Alginate hydrogel has received great attention in diabetic wound healing. However, the limited tunability of the ionic crosslinking method prevents the delicate management of physical properties in response to diverse wound conditions. We addressed this issue by using a microgel particle (fabricated by zinc ions and coordinated through the complex of carboxymethyl chitosan and aldehyde hyaluronic acid) as a novel crosslinker. Then the cation was introduced as a second crosslinker to create a double crosslinked network. The method leads to the precise regulation of the hydrogel characters, including the biodegradation rate and the controlled release rate of the drug. As a result, the optimized hydrogels facilitated the live-cell infiltration in vitro and boosted the tissue regeneration of diabetic wounds in vivo. The results indicated that the addition of the microgel as a new crosslinker created flexibility during the construction of the alginate hydrogel, adapting for diverse applications during diabetic-induced wound therapy.
Collapse
Affiliation(s)
- Yishu Yan
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Panpan Ren
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Qingqing Wu
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Corporation Limited, Jinan 250101, China
| |
Collapse
|
16
|
Dalbaşı E, Tüzün A, Arserim NB, Özcan F, Dogan E, Çetin A. Preventive effect of fucoxanthin administration on intra-abdominal adhesion: An experimental animal study. ULUS TRAVMA ACIL CER 2022; 28:743-750. [PMID: 35652863 PMCID: PMC10443003 DOI: 10.14744/tjtes.2021.04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/21/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The most common cause of intra-abdominal adhesion (IAA) is previous abdominal surgery and mortality. IAA can cause serious complications such as chronic abdominal pain, ileus, and infertility. Approximately 3% of all laparotomies are related to adhesions. IAA reduces the quality of life of the patient, causes morbidity, and increases health expenditures. In this study, we aimed to investigate the preventive effect of fucoxanthin (Fx) on IAA in the intra-abdominal surgical adhesion model that experimentally created in rats. METHODS This study used 21 Sprague-Dawley rats divided into three groups. After anesthesia, the abdomen was opened, the cecum and right abdominal wall were damaged with a sterile toothbrush until petechiae bleeding was seen. No additional action was taken to the control group. In the sham group, 5 cc saline solution was released into the peritoneum before the abdomen was closed. In the Fx group, 35 mg/kg Fx was instilled intraperitoneally and the abdomen was closed. On the 21st post-operative day, all subjects were anesthetized with standard anesthesia. Macroscopic adhesions were quantitatively evaluated according to the Mazuji classifica-tion. The cecum anterior wall and parietal peritoneum were excised for pathological sampling. A pathologist, unaware of the groups, evaluated inflammation, fibroblastic activity, and vascular proliferation. In addition, serum tumor necrosis factor-alpha (TNF-α) and interleukin-10 levels were measured. RESULTS No rat was lost during the study period. Congenital adhesion was not observed in any of the subjects at the first laparo-tomy. Adhesion was significantly less macroscopically in the Fx group compared to the control and sham group (p<0.001 and p<0.001). Fibroblastic activity was found to be significantly less in the Fx group compared to the sham and control groups (p<0.001 and p<0.001). Vascular proliferation was found to be significantly less in the Fx group than in the sham and control groups (p<0.001 and p<0.001). The inflammation score was significantly lower in the Fx group compared to the other two groups (p<0.001 and p<0.001). The inflam-mation score in the sham group was lower than the control group and was statistically significant (p<0.001). TNF-α level was found to be statistically significantly lower in the Fx group compared to the sham and control groups (p<0.001 and p<0.001). CONCLUSION As a result of experimental study, we can say that Fx is effective in preventing IAAs and decreases the level of TNF-α, a pro-inflammatory cytokine.
Collapse
Affiliation(s)
- Erkan Dalbaşı
- Department of General Surgery, Memorial Hospital, Diyarbakır-Turkey
| | - Abidin Tüzün
- Department of General Surgery, Health Sciences University, Gazi Yaşargil Training and Research Hospital, Diyarbakır-Turkey
| | - Neval Berrin Arserim
- Department of Microbiology, Dicle University Faculty of Veterinary Medicine, Diyarbakır-Turkey
| | - Filiz Özcan
- Department Fisheries and Diseases, Dicle University Faculty of Veterinary Medicine, Diyarbakır-Turkey
| | - Elif Dogan
- Department of Biochemistry, Dicle University Faculty of Veterinary Medicine, Diyarbakır-Turkey
| | - Alpay Çetin
- Department of Pathology, Health Sciences University, Gazi Yaşargil Training and Research Hospital, Diyarbakır-Turkey
| |
Collapse
|
17
|
Xiong YH, Zhang L, Xiu Z, Yu B, Duan S, Xu FJ. Derma-like antibacterial polysaccharide gel dressings for wound care. Acta Biomater 2022; 148:119-132. [DOI: 10.1016/j.actbio.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023]
|
18
|
miR-16-5p Is a Novel Mediator of Venous Smooth Muscle Phenotypic Switching. J Cardiovasc Transl Res 2022; 15:876-889. [PMID: 35501542 PMCID: PMC9622564 DOI: 10.1007/s12265-022-10208-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Vein graft failure after coronary artery bypass grafting (CABG) is primarily caused by intimal hyperplasia, which results from the phenotypic switching of venous smooth muscle cells (SMCs). This study investigates the role and underlying mechanism of miR-16-5p in the phenotypic switching of venous SMCs. In rats, neointimal thickness and area increased over time within 28 days after CABG, as did the time-dependent miR-16-5p downregulation and SMC phenotypic switching. Platelet-derived growth factor-BB-induced miR-16-5p downregulation in HSVSMCs was accompanied by and substantially linked with alterations in phenotypic switching indicators. Furthermore, miR-16-5p overexpression increased SMCs differentiation marker expression while suppressing HSVSMCs proliferation and migration and drastically inhibiting neointimal development in vein grafts. The miR-16-5p inhibited zyxin expression, which was necessary for HSVSMCs phenotypic switching. The miR-16-5p/zyxin axis is a novel, potentially therapeutic target for preventing and treating venous graft intimal hyperplasia.
Collapse
|
19
|
Mao Y, Xu Z, He Z, Wang J, Zhu Z. Wet-adhesive materials of oral and maxillofacial region: From design to application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Trimethyl chitosan postoperative irrigation solution modulates inflammatory cytokines related to adhesion formation. Carbohydr Polym 2022; 288:119380. [DOI: 10.1016/j.carbpol.2022.119380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
|
21
|
Yan Y, Wu Q, Ren P, Liu Q, Zhang N, Ji Y, Liu J. Zinc ions coordinated carboxymethyl chitosan-hyaluronic acid microgel for pulmonary drug delivery. Int J Biol Macromol 2021; 193:1043-1049. [PMID: 34800517 DOI: 10.1016/j.ijbiomac.2021.11.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Microgel affords a porous and swollen microstructure for the establishment of pulmonary delivery system with sustained released properties. Here, we report a microgel (with the diameter around 4 μm) prepared with a precipitation method, synthesized by coordinating Zn2+ to the Schiff base cross-linked carboxymethyl chitosan and glycol split hyaluronate. The microgel has shown well swollen and pH sensitive behaviors, high safety and biocompatibility in vitro. Besides, the biomaterial could escape from macrophage phagocytosis, a key factor contribute to quick drug clearance in the lung after co-incubated with RAW 264.7 cells. In consist with this, the bovine serum albumin loaded in the microgel showed sustained release behavior in 24 h in vitro; meanwhile, the drug had a retention time up to 36 h in the lung and followed by clearance in ICR mice through pulmonary administration. Thus, our microgel platform provides a promising candidate for pulmonary drug delivery systems with controlled release rate.
Collapse
Affiliation(s)
- Yishu Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Qingqing Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Panpan Ren
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiuyi Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, CA 92093, United States
| | - Jingxian Liu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, People's Republic of China
| |
Collapse
|
22
|
Williams DF. Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact Mater 2021; 10:306-322. [PMID: 34901548 PMCID: PMC8636667 DOI: 10.1016/j.bioactmat.2021.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
This essay analyzes the scientific evidence that forms the basis of bioactive materials, covering the fundamental understanding of bioactivity phenomena and correlation with the mechanisms of biocompatibility of biomaterials. This is a detailed assessment of performance in areas such as bone-induction, cell adhesion, immunomodulation, thrombogenicity and antimicrobial behavior. Bioactivity is the modulation of biological activity by characteristics of the interfacial region that incorporates the material surface and the immediate local host tissue. Although the term ‘bioactive material’ is widely used and has a well understood general meaning, it would be useful now to concentrate on this interfacial region, considered as ‘the bioactivity zone’. Bioactivity phenomena are either due to topographical/micromechanical characteristics, or to biologically active species that are presented in the bioactivity zone. Examples of topographical/micromechanical effects are the modulation of the osteoblast – osteoclast balance, nanotopographical regulation of cell adhesion, and bactericidal nanostructures. Regulation of bioactivity by biologically active species include their influence, especially of metal ions, on signaling pathways in bone formation, the role of cell adhesion molecules and bioactive peptides in cell attachment, macrophage polarization by immunoregulatory molecules and antimicrobial peptides. While much experimental data exists to demonstrate the potential of such phenomena, there are considerable barriers to their effective clinical translation. This essay shows that there is solid scientific evidence of the existence of bioactivity mechanisms that are associated with some types of biomaterials, especially when the material is modified in a manner designed to specifically induce that activity.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine, 391 Technology Way. Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
23
|
Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo A, Vázquez-Lasa B, San Román J. Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112515. [PMID: 34857294 DOI: 10.1016/j.msec.2021.112515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain; INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
24
|
Ren Z, Ke T, Ling Q, Zhao L, Gu H. Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydr Polym 2021; 273:118533. [PMID: 34560946 DOI: 10.1016/j.carbpol.2021.118533] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/01/2023]
Abstract
A sensor used to monitor tissue deformation requires good flexibility, stretchability, self-adhesion, cyto-compatibility, and antibacterial property. Here, we prepared hydrogel sensor based on O-carboxymethyl chitosan (O-CMCS) and poly(vinyl alcohol) (PVA) for monitoring human and organ motions. Based on the host-guest complexing of poly(β-cyclodextrin) with diamantane, a cross-linker containing multiple aldehyde groups was prepared for cross-linking with O-CMCS through Schiff base linkages. Borax was used as the second cross-linker to cross-link PVA through dynamic borate ester bonds. Carbon nanotubes (CNTs) were added into the hydrogels to improve their electrical conductivity and mechanical properties. The obtained hydrogel exhibited rapid self-healing ability with healing efficiency as high as 97%-103% (in 15 s), good adhesion to human skin and wet organ, good antibacterial property, cyto-compatibility, and stretchability. Furthermore, the hydrogel sensor can monitor the respiratory movement of porcine lungs and the beating of rat hearts.
Collapse
Affiliation(s)
- Zhijun Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Tao Ke
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
25
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Cai Z, Tang Y, Wei Y, Wang P, Zhang H. Physically Cross-Linked Hyaluronan-Based Ultrasoft Cryogel Prepared by Freeze-Thaw Technique as a Barrier for Prevention of Postoperative Adhesions. Biomacromolecules 2021; 22:4967-4979. [PMID: 34499463 DOI: 10.1021/acs.biomac.1c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Postsurgical peritoneal adhesions are a common and serious postoperative complication after various peritoneal surgeries, such as pelvic and abdominal surgery. Various studies have shown that peritoneal adhesions can be minimized or prevented by physical anti-adhesion barriers, including membranes, knits, and hydrogels. Hydrogels have attracted great attention in preventing peritoneal adhesions because the dimensional architecture of hydrogels is similar to that of the native extracellular matrix. However, chemical cross-linkers had to be used in the preparation of chemical hydrogels, which may have problems in cytotoxicity or unwanted side effects. This fact prompts us to create alternative cross-linking methods for the development of biocompatible hydrogels as physical barriers. Herein, we report a physically cross-linked flexible hyaluronan (HA) cryogel prepared via a freeze-thaw technique as a novel anti-adhesion biomaterial for completely preventing postsurgical peritoneal adhesions. In vitro studies demonstrated that this physically cross-linked HA cryogel exhibited excellent biocompatibility, the inherently desirable biocompatibility and functionality of HA being integrally retained as much as possible. Intriguingly, the rheological properties and appropriate biodegradability of the cryogels were readily tailored and tunable by way of the gelation process. In vivo assessments suggested that the cryogel, as a physical barrier, satisfactorily prevented fibroblast penetration and attachment between the injured tissues and nearby normal organs. Furthermore, the molecular mechanism studies revealed that the HA cryogel could prevent peritoneal adhesion by inhibiting inflammatory response and modulation of the fibrinolytic system. Our results show that HA ultrasoft cryogel is a promising clinical candidate for prolonged adhesion prevention.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanmei Tang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P. R. China.,National Center for Stomatology, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, P. R. China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
27
|
Fujita M, Policastro GM, Burdick A, Lam HT, Ungerleider JL, Braden RL, Huang D, Osborn KG, Omens JH, Madani MM, Christman KL. Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat Commun 2021; 12:3764. [PMID: 34145265 PMCID: PMC8213776 DOI: 10.1038/s41467-021-24104-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/02/2021] [Indexed: 11/12/2022] Open
Abstract
Post-surgical cardiac adhesions represent a significant problem during routine cardiothoracic procedures. This fibrous tissue can impair heart function and inhibit surgical access in reoperation procedures. Here, we propose a hydrogel barrier composed of oxime crosslinked poly(ethylene glycol) (PEG) with the inclusion of a catechol (Cat) group to improve retention on the heart for pericardial adhesion prevention. This three component system is comprised of aldehyde (Ald), aminooxy (AO), and Cat functionalized PEG mixed to form the final gel (Ald-AO-Cat). Ald-AO-Cat has favorable mechanical properties, degradation kinetics, and minimal swelling, as well as superior tissue retention compared to an initial Ald-AO gel formulation. We show that the material is cytocompatible, resists cell adhesion, and led to a reduction in the severity of adhesions in an in vivo rat model. We further show feasibility in a pilot porcine study. The Ald-AO-Cat hydrogel barrier may therefore serve as a promising solution for preventing post-surgical cardiac adhesions.
Collapse
Affiliation(s)
- Masaki Fujita
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Gina M Policastro
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Austin Burdick
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Hillary T Lam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jessica L Ungerleider
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Rebecca L Braden
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Diane Huang
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Kent G Osborn
- Division of Comparative Pathology and Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Michael M Madani
- Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, San Diego, CA, USA
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
28
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
29
|
Chandel AKS, Shimizu A, Hasegawa K, Ito T. Advancement of Biomaterial-Based Postoperative Adhesion Barriers. Macromol Biosci 2021; 21:e2000395. [PMID: 33463888 DOI: 10.1002/mabi.202000395] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Indexed: 01/16/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a prevalent incidence that generally happens during the healing process of traumatized tissues. It causes multiple severe complications such as intestinal obstruction, chronic abdominal pain, and female infertility. To prevent PPA, several antiadhesion materials and drug delivery systems composed of biomaterials are used clinically, and clinical antiadhesive is one of the important applications nowadays. In addition to several commercially available materials, like film, spray, injectable hydrogel, powder, or solution type have been energetically studied based on natural and synthetic biomaterials such as alginate, hyaluronan, cellulose, starch, chondroitin sulfate, polyethylene glycol, polylactic acid, etc. Moreover, many kinds of animal adhesion models, such as cecum abrasion models and unitary horn models, are developed to evaluate new materials' efficacy. A new animal adhesion model based on hepatectomy and conventional animal adhesion models is recently developed and a new adhesion barrier by this new model is also developed. In summary, many kinds of materials and animal models are studied; thus, it is quite important to overview this field's current progress. Here, PPA is reviewed in terms of the species of biomaterials and animal models and several problems to be solved to develop better antiadhesion materials in the future are discussed.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
30
|
Stapleton LM, Lucian HJ, Grosskopf AK, Smith AAA, Totherow KP, Woo YJ, Appel EA. Dynamic Hydrogels for Prevention of Post‐Operative Peritoneal Adhesions. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Haley J. Lucian
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Abigail K. Grosskopf
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | - Anton A. A. Smith
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | | | - Y. Joseph Woo
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Eric A. Appel
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
- ChEM‐H Institute Stanford University Stanford CA 94305 USA
- Department of Pediatrics (Endocrinology) Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
31
|
Mizuno Y, Watanabe S, Taguchi T. Tissue-sealing and anti-adhesion properties of an in situ hydrogel of hydrophobically-modified Alaska pollock-derived gelatin. Int J Biol Macromol 2020; 163:2365-2373. [DOI: 10.1016/j.ijbiomac.2020.09.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
|
32
|
Hong SY, Tran TVT, Kang HJ, Tripathi G, Lee BT, Bae SH. Synthesis and characterization of biphasic calcium phosphate laden thiolated hyaluronic acid hydrogel based scaffold: physical and in-vitro biocompatibility evaluations. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:337-354. [PMID: 33026287 DOI: 10.1080/09205063.2020.1833816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study focused on the combination of biphasic calcium phosphate (BCP) nanoparticles into the modified hyaluronic acid based injectable hydrogels for bone tissue engineering. Self-cross-linked thiolated hyaluronic acid (HA-HS) injectable hydrogels loaded with biphasic calcium phosphate (BCP) nanoparticles were prepared by disulfide cross-linking to mimic the extracellular matrix as a potential material for bone treatment. Varying concentration of HA-HS ranging between 1 and 5w/v% was tested to optimize the optimum concentration and were further modified with varying BCP concentrations for final optimization. Physico-chemical characterizations of the prepared hydrogel such as SEM, EDS, FT-IR, and XRD confirmed that the BCP has effectively loaded and distributed homogeneously in the HA-HS hydrogel. The results showed that the 3% (w/v) HA-HS hydrogel exhibits the appropriate properties for injectable hydrogel system such as gelation times, swelling rate and in vitro degradation behavior among all tested concentrations. Cell viability and cell proliferation using osteoblast cells (MC3T3-E1) demonstrated that the BCP laden modified hydrogel are biocompatible in vitro. In light of the encouraging results obtained, BCP laden HA-HS hydrogels might offer the potential to be used as injectable hydrogel in bone tissue engineering.
Collapse
Affiliation(s)
- Suk Young Hong
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Tuong Van Thi Tran
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hoe Jin Kang
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Garima Tripathi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Sang Ho Bae
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
33
|
Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, San Román J. 3D Printing of a Reactive Hydrogel Bio-Ink Using a Static Mixing Tool. Polymers (Basel) 2020; 12:E1986. [PMID: 32878273 PMCID: PMC7564821 DOI: 10.3390/polym12091986] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogel-based bio-inks have recently attracted more attention for 3D printing applications in tissue engineering due to their remarkable intrinsic properties, such as a cell supporting environment. However, their usually weak mechanical properties lead to poor printability and low stability of the obtained structures. To obtain good shape fidelity, current approaches based on extrusion printing use high viscosity solutions, which can compromise cell viability. This paper presents a novel bio-printing methodology based on a dual-syringe system with a static mixing tool that allows in situ crosslinking of a two-component hydrogel-based ink in the presence of living cells. The reactive hydrogel system consists of carboxymethyl chitosan (CMCh) and partially oxidized hyaluronic acid (HAox) that undergo fast self-covalent crosslinking via Schiff base formation. This new approach allows us to use low viscosity solutions since in situ gelation provides the appropriate structural integrity to maintain the printed shape. The proposed bio-ink formulation was optimized to match crosslinking kinetics with the printing process and multi-layered 3D bio-printed scaffolds were successfully obtained. Printed scaffolds showed moderate swelling, good biocompatibility with embedded cells, and were mechanically stable after 14 days of the cell culture. We envision that this straightforward, powerful, and generalizable printing approach can be used for a wide range of materials, growth factors, or cell types, to be employed for soft tissue regeneration.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (M.P.-B.); (J.S.R.)
- CIBER’s Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | | | - Aránzazu del Campo
- INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; (M.K.W.-B.); (A.d.C.)
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (M.P.-B.); (J.S.R.)
- CIBER’s Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (M.P.-B.); (J.S.R.)
- CIBER’s Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
34
|
Gökçelli U, Ercan UK, İlhan E, Argon A, Çukur E, Üreyen O. Prevention of Peritoneal Adhesions by Non-Thermal Dielectric Barrier Discharge Plasma Treatment on Mouse Model: A Proof of Concept Study. J INVEST SURG 2020; 33:605-614. [PMID: 30644787 DOI: 10.1080/08941939.2018.1550542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purposes: Formation of peritoneal adhesions is a common consequence of abdominopelvic surgeries and remarkably increases the mortality and morbidity. Moreover, peritoneal adhesions linked to chronic abdominopelvic pain and infertility in women. Various attempts for prevention of peritoneal adhesions were reported. However, these methods either remain insufficient to prevent formation of peritoneal adhesions or carry some practical limitations and thus, there is a need for novel techniques that could effectively decrease the formation of peritoneal adhesions. The aim of the present prospective, randomized, controlled, and single blinded study was to evaluate the effect of non-thermal atmospheric plasma (NTAP) treatment on prevention of peritoneal adhesions. Materials and Methods: Sixteen male CD-1 mice were randomly divided into two groups: control and plasma. Excisional and abrasion adhesion models were generated on the peritoneal side wall and cecum, respectively. Ten days after creating adhesion models, mice were sacrificed and adhesion formations were evaluated macroscopically using Knightly's and Linsky's grading systems to assess the intensity and extent of adhesions, respectively. Zühlke's grading system was used for microscopic assessment of adhesions. Results: The mean scores for peritoneum and cecum in control group according to Knightly's grading system were determined as 3.3 and 2.6, respectively. In NTAP-treated group, Knightly's score was determined as 1.6 and 0.5 for peritoneum and cecum, respectively. NTAP treatment reduced Linsky's score from 3.8 to 1.3 and 2.1 to 1.1 on peritoneum and cecum. Finally, in microscopic evaluation, NTAP treatment reduced Zühlke's score from 3.4 to 1.5 and 2.6 to 1.3 for peritoneum and cecum, respectively. Conclusions: The results of the present proof of concept study suggest that NTAP could be a novel method to reduce and/or prevent the formation of peritoneal adhesions after abdominopelvic surgeries.
Collapse
Affiliation(s)
- Uğur Gökçelli
- Department of General Surgery, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Enver İlhan
- Department of General Surgery, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| | - Asuman Argon
- Department of Pathology, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| | - Elif Çukur
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Orhan Üreyen
- Department of General Surgery, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| |
Collapse
|
35
|
Rottenstreich M, Rotem R, Hirsch A, Farkash R, Rottenstreich A, Sela HY, Samueloff A, Grisaru-Granovsky S. The use of absorbable adhesion barriers to reduce the incidence of intraperitoneal adhesions at repeat cesarean delivery. Arch Gynecol Obstet 2020; 302:101-108. [PMID: 32415470 DOI: 10.1007/s00404-020-05591-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We aimed to evaluate the effect of an absorbable adhesion barrier (oxidized regenerated cellulose) for the prevention of peritoneal adhesions in women undergoing repeat cesarean delivery (CD). METHODS This is a retrospective, single center study that included all women who underwent two consecutive CDs, 2011-2018. Women in whom an absorbable adhesion barrier (oxidized regenerated cellulose) was placed at the time of the initial CD (index CD) were compared to women in whom no such barrier was placed. The association between absorbable adhesion barrier placement at index CD and the presence of intraperitoneal adhesions at subsequent CD was assessed. Factors evaluated included intraperitoneal adhesion severity, time from skin incision to newborn delivery and total duration of surgery. RESULTS We identified 2125 women that met the inclusion criteria. They were divided into two groups; those in whom an absorbable adhesion barrier was placed at index CD and those in whom no such absorbable barrier was placed. 161 (7.6%) had an absorbable adhesion barrier placed at index CD. At the time of index CD, the rate of intra-peritoneal adhesions was 34.8% in the absorbable adhesion barrier group vs 26.5% in the group without the absorbable adhesion barrier (p = 0.02). At the time of subsequent CD, the rate of intraperitoneal adhesions was 39.8% in the absorbable adhesion barrier group vs 46% in the group without the absorbable adhesion barrier (p = 0.13). Notably, the use of an absorbable adhesion barrier lowered the mean increase in adhesions rate 0.05 ± 0.55 vs 0.20 ± 0.55 (p < 0.01). Absorbable adhesion barrier placement at index CD was found to be independently associated with a lower rate of intraperitoneal adhesions at subsequent CD, aOR 0.67 (0.47-0.96). Overall, absorbable adhesion barrier placement at index CD was associated with a shorter mean duration of subsequent surgery (min), 37.7 ± 18.9 vs. 42.7 ± 27.1 (p = 0.02). CONCLUSION Absorbable adhesion barrier placement is associated with reduction in intraperitoneal adhesions and duration of surgery in subsequent CD.
Collapse
Affiliation(s)
- Misgav Rottenstreich
- Department of Obstetrics and Gynecology, 12 Bayit Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 91031, Jerusalem, Israel.,Department of Nursing, Jerusalem College of Technology, Jerusalem, Israel
| | - Reut Rotem
- Department of Obstetrics and Gynecology, 12 Bayit Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 91031, Jerusalem, Israel.
| | - Ayala Hirsch
- Department of Obstetrics and Gynecology, 12 Bayit Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 91031, Jerusalem, Israel
| | - Rivka Farkash
- Department of Obstetrics and Gynecology, 12 Bayit Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 91031, Jerusalem, Israel
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hen Y Sela
- Department of Obstetrics and Gynecology, 12 Bayit Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 91031, Jerusalem, Israel
| | - Arnon Samueloff
- Department of Obstetrics and Gynecology, 12 Bayit Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 91031, Jerusalem, Israel
| | - Sorina Grisaru-Granovsky
- Department of Obstetrics and Gynecology, 12 Bayit Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 91031, Jerusalem, Israel
| |
Collapse
|
36
|
Berkesoglu M, Karabulut YY, Yildirim DD, Turkmenoglu OM, Dirlik MM. Topical Application of High-Dose Mesna Prevents Adhesion Formation: An Experimental Animal Study. J Surg Res 2020; 251:152-158. [PMID: 32145558 DOI: 10.1016/j.jss.2020.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/29/2019] [Accepted: 01/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adhesion formation is a common complication of abdominal surgeries. Mesna is a drug with fibrinolytic properties which has been used in surgical field to facilitate tissue dissection. The aim of this experimental animal study was to investigate the effect of mesna on prevention of intra-abdominal adhesion in rats. MATERIALS AND METHODS Twenty-eight Wistar albino rats were used in the study. To create abdominal adhesion, cecum was abraded in all rats. No additional surgical procedure was performed other than adhesion in group 1 (only adhesion). In the other groups, rats were treated topically by administering 0.9% saline (group 2), 40 mg/kg mesna (group 3), and 400 mg/kg mesna (group 4). All rats were sacrificed on postoperative 21st day. Histopathological and macroscopic evaluations of adhesion formation were performed. RESULTS Quantity of adhesion scores (P = 0.022), severity of adhesion scores (P = 0.041), total adhesion scores (P = 0.023), and histopathological adhesion grading scores (P < 0.001) were reduced by 400 mg/kg mesna. CONCLUSIONS This is the first study for mesna on prevention of abdominal adhesion formation in rats. We concluded that dose-dependent reduction of adhesion was achieved by mesna. With future studies, topical administration of mesna during open abdominal surgeries may be used to prevent adhesion formation.
Collapse
Affiliation(s)
- Mustafa Berkesoglu
- Department of General Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey.
| | | | - Didem Derici Yildirim
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ozgur M Turkmenoglu
- Department of General Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Musa M Dirlik
- Department of General Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
37
|
Hu W, Zhang Z, Zhu L, Wen Y, Zhang T, Ren P, Wang F, Ji Z. Combination of Polypropylene Mesh and in Situ Injectable Mussel-Inspired Hydrogel in Laparoscopic Hernia Repair for Preventing Post-Surgical Adhesions in the Piglet Model. ACS Biomater Sci Eng 2020; 6:1735-1743. [PMID: 33455390 DOI: 10.1021/acsbiomaterials.9b01333] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polypropylene (PP) mesh has been used successfully for a long time in clinical practice as an impressive prosthesis for ventral hernia repair. To utilize a physical barrier for separating mesh from viscera is a general approach for preventing adhesions in clinical practice. However, a serious abdominal adhesion between the mesh and viscera can possibly occur post-hernia, especially with the small intestine; this can lead to a series of complications, such as chronic pain, intestinal obstruction, and fistula. Thus, determining how to prevent abdominal adhesions between the mesh and viscera is still an urgent clinical problem. In this study, a dopamine-functionalized polysaccharide derivative (oxidized-carboxymethylcellulose-g-dopamine, OCMC-DA) was synthesized; this was blended with carboxymethylchitosan (CMCS) to form a hydrogel (OCMC-DA/CMCS) in situ at the appropriate time. The physical and chemical properties of the hydrogel were characterized successfully, and its excellent biocompatibility was presented by the in vitro cell test. The combination of this hydrogel and PP mesh was used in laparoscopic surgery for repairing the abdominal wall defect, where the hydrogel could become fixed in situ on the PP mesh to form an anti-adhesion gel-mesh. The results showed that the gel-mesh could prevent abdominal adhesions effectively in the piglet model. Moreover, the histology and immunohistochemical staining proved that the gel-mesh could effectively alleviate the inflammation reaction and deposition of collagen around the mesh, and it did not disturb the integration between mesh and abdominal wall. Thus, the gel-mesh has superior tissue compatibility.
Collapse
Affiliation(s)
- Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Science, China West Normal University, Nanchong 637009, China
| | - Zhigang Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Long Zhu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yazhou Wen
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Faming Wang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhenling Ji
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
38
|
Prevention of postoperative peritoneal adhesions in rats with sidewall defect-bowel abrasions using metal ion-crosslinked N-succinyl chitosan hydrogels. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Kumar BYS, Isloor AM, Kumar GCM, Inamuddin, Asiri AM. Nanohydroxyapatite Reinforced Chitosan Composite Hydrogel with Tunable Mechanical and Biological Properties for Cartilage Regeneration. Sci Rep 2019; 9:15957. [PMID: 31685836 PMCID: PMC6828803 DOI: 10.1038/s41598-019-52042-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023] Open
Abstract
With the continuous quest of developing hydrogel for cartilage regeneration with superior mechanobiological properties are still becoming a challenge. Chitosan (CS) hydrogels are the promising implant materials due to an analogous character of the soft tissue; however, their low mechanical strength and durability together with its lack of integrity with surrounding tissues hinder the load-bearing application. This can be solved by developing a composite chitosan hydrogel reinforced with Hydroxyapatite Nanorods (HANr). The objective of this work is to develop and characterize (physically, chemically, mechanically and biologically) the composite hydrogels loaded with different concentration of hydroxyapatite nanorod. The concentration of hydroxyapatite in the composite hydrogel was optimized and it was found that, reinforcement modifies the hydrogel network by promoting the secondary crosslinking. The compression strength could reach 1.62 ± 0.02 MPa with a significant deformation of 32% and exhibits time-dependent, rapid self-recoverable and fatigue resistant behavior based on the cyclic loading-unloading compression test. The storage modulus value can reach nearly 10 kPa which is needed for the proposed application. Besides, composite hydrogels show an excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus bacteria's and Candida albicans fungi and their cytocompatibility towards L929 mouse fibroblasts provide a potential pathway to developing a composite hydrogel for cartilage regeneration.
Collapse
Affiliation(s)
- B Y Santosh Kumar
- Polymer Composites Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Arun M Isloor
- Membrane Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India.
| | - G C Mohan Kumar
- Polymer Composites Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India.
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
40
|
Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion. Carbohydr Polym 2019; 229:115552. [PMID: 31826495 DOI: 10.1016/j.carbpol.2019.115552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
The complications from surgery associated peritoneal adhesion can be alleviated by combination of physical isolation and pharmaceutical treatment. This work aims to develop thermo-sensitive hydrogel barrier by combining mitomycin C (MMC) with modified tempo oxidized nanocellulose (cTOCN) through EDC/NHS-chemical conjugation followed by integration with methyl cellulose (MC). The MMC was successfully combined with cTOCN and ensured controlled release of MMC from hydrogel throughout 14 days. Amount of MC (1.5, 2.5, 3.5% w/v) was proportional to gelation time and inversely proportional to degradation of hydrogel. The optimized hydrogel (C2.5T1M0.2) needed only 30 s for thermoreversible sol-gel (4℃-37℃) phenomenon and did not show in vitro fibroblast cells toxicity as well as ensured complete adhesion prevention efficacy, reperitonealization in rat side wall-cecal abrasion model. Overall, the developed C2.5T1M0.2 thermo-gel advances state-of-the-art in view of cytocompatibility, mechanical stability, optimum degradation, good injectability, sustain drug release from surgical sites, and satisfactory de novo anti-adhesion capacity.
Collapse
|
41
|
Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol 2019; 137:853-869. [DOI: 10.1016/j.ijbiomac.2019.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
42
|
Stapleton LM, Steele AN, Wang H, Lopez Hernandez H, Yu AC, Paulsen MJ, Smith AAA, Roth GA, Thakore AD, Lucian HJ, Totherow KP, Baker SW, Tada Y, Farry JM, Eskandari A, Hironaka CE, Jaatinen KJ, Williams KM, Bergamasco H, Marschel C, Chadwick B, Grady F, Ma M, Appel EA, Woo YJ. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat Biomed Eng 2019; 3:611-620. [DOI: 10.1038/s41551-019-0442-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/08/2019] [Indexed: 01/24/2023]
|
43
|
Puertas-Bartolomé M, Benito-Garzón L, Fung S, Kohn J, Vázquez-Lasa B, San Román J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110040. [PMID: 31546368 DOI: 10.1016/j.msec.2019.110040] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Chronic wounds are particularly difficult to heal and constitute an important global health care problem. Some key factors that make chronic wounds challenging to heal are attributed to the incessant release of free radicals, which activate the inflammatory system and impair the repair of the wound. Intrinsic characteristics of hydrogels are beneficial for wound healing, but the effective control of free radical levels in the wound and subsequent inflammation is still a challenge. Catechol, the key molecule responsible for the mechanism of adhesion of mussels, has been proven to be an excellent radical scavenger and anti-inflammatory agent. Our approach in this work lies in the preparation of a hybrid system combining the beneficial properties of hydrogels and catechol for its application as a bioactive wound dressing to assist in the treatment of chronic wounds. The hydrogel backbone is obtained through a self-covalent crosslinking between chitosan (Ch) and oxidized hyaluronic acid (HAox) in the presence of a synthetic catechol terpolymer, which is subsequently coordinated to Fe to obtain an interpenetrated polymer network (IPN). The structural analysis, catechol release profiles, in vitro biological behavior and in vivo performance of the IPN are analyzed and compared with the semi-IPN (without Fe) and the Ch/HAox crosslinked hydrogels as controls. Catechol-containing hydrogels present high tissue adhesion strength under wet conditions, support growth, migration and proliferation of hBMSCs, protect cells against oxidative stress damage induce by ROS, and promote down-regulation of the pro-inflammatory cytokine IL-1β. Furthermore, in vivo experiments reveal their biocompatibility and stability, and histological studies indicate normal inflammatory responses and faster vascularization, highlighting the performance of the IPN system. The novel IPN design also allows for the in situ controlled and sustained delivery of catechol. Therefore, the developed IPN is a suitable ECM-mimic platform with high cell affinity and bioactive functionalities that, together with the controlled catechol release, will enhance the tissue regeneration process and has a great potential for its application as wound dressing.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain
| | | | - Stephanie Fung
- Rutgers University, New Jersey Center for Biomaterials, 08854 Piscataway, NJ, USA
| | - Joachim Kohn
- Rutgers University, New Jersey Center for Biomaterials, 08854 Piscataway, NJ, USA
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain
| |
Collapse
|
44
|
Internal surgical use of biodegradable carbohydrate polymers. Warning for a conscious and proper use of oxidized regenerated cellulose. Carbohydr Polym 2019; 216:213-216. [DOI: 10.1016/j.carbpol.2019.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 11/19/2022]
|
45
|
Nguyen NTP, Nguyen LVH, Tran NMP, Nguyen DT, Nguyen TNT, Tran HA, Dang NNT, Vo TV, Nguyen TH. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109670. [PMID: 31349450 DOI: 10.1016/j.msec.2019.04.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/30/2019] [Accepted: 04/14/2019] [Indexed: 11/19/2022]
Abstract
The purpose of this research is to investigate the effect of different oxidation degrees and volume ratios of components on the physical properties and biocompatibility of an in situ cross-linking chitosan-hyaluronic acid-based hydrogel for skin wound healing applications. Carboxymethyl groups (-CH2COOH) were introduced to the polymer chain of chitosan, producing N,O - Carboxymethyl Chitosan (NOCC). Hyaluronic acid was oxidized to obtain aldehyde hyaluronic acid (AHA) with three oxidation degrees (AHA40, AHA50 and AHA60). The gelation was induced by forming Schiff base linkage between aldehyde groups of AHA and amino groups of NOCC. Then, the polysaccharide derivatives were combined at three NOCC:AHA volume ratios (3:7, 5:5 and 7:3) to form composite hydrogels without using any additional cross-linker. FT-IR analysis, surface morphology observation and wettability test, in vitro degradation test and rheological analysis were carried out to characterize the hydrogels. Additionally, in vitro cytotoxicity and in vivo wound healing evaluations were also conducted to study the biocompatibility of the composite. Our findings showed that when increasing the volume of NOCC, the homogeneity and hydrophobicity of the resulting hydrogels were also improved and their pore walls became thicker, leading to slower degradation rate. On the other hand, when raising the oxidation degree of AHA, the hydrophilicity of the gels decreased and less time was required to form the gel matrix. Besides, the obtained in vitro and in vivo results indicated that lower oxidation degree of AHA supports cell proliferation, cell attachment and wound healing process better. It is also concluded that NOCC-AHA40 5:5 hydrogel is most suitable for skin wound healing applications since it possesses superior morphology with high uniformity, favorable pore size and suitable density along with appropriate wettability. The NOCC-AHA gel matrix is expected to be used as a delivery system for other factors and employed as an effective bio-glue in further tissue engineering applications.
Collapse
Affiliation(s)
- Nghi Thi-Phuong Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Long Vuong-Hoang Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Nam Minh-Phuong Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Dat Tan Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Tien Ngoc-Thuy Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Hien Anh Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Nhi Ngoc-Thao Dang
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Thi-Hiep Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam.
| |
Collapse
|
46
|
Qiao H, Jia J, Chen W, Di B, Scherman OA, Hu C. Magnetic Regulation of Thermo-Chemotherapy from a Cucurbit[7]uril-Crosslinked Hybrid Hydrogel. Adv Healthc Mater 2019; 8:e1801458. [PMID: 30548830 DOI: 10.1002/adhm.201801458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 12/27/2022]
Abstract
The fabrication, characterization, and therapy efficiency of a noncovalent-bonded hydrogel network, which is assembled by utilizing cucurbit[7]uril as a supramolecular linker to "stick" superparamagnetic γ-Fe2 O3 nanoparticles onto the polymer backbone of catechol-functionalized chitosan are described. The unique barrel-shaped structure of cucurbit[7]uril not only facilitates host-guest recognition with the catechol derivatives, but also forms robust electrostatic interactions between its carbonyl portals and the γ-Fe2 O3 nanoparticles in a supramolecular manner, which leaves the physical and chemical properties of the nanoparticles intact. The γ-Fe2 O3 nanoparticles display vibrational movement and heat generation under an alternating magnetic field, endowing the formed hybrid supramolecular hydrogel with both thermo- and chemotherapy modalities, which are demonstrated both in vitro and in vivo. Here, a facile strategy is introduced to construct noncovalent interactions between a polymer matrix and the incorporated nanoparticles, which is amendable to a wide range of biomedical and industrial applications.
Collapse
Affiliation(s)
- Haishi Qiao
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| | - Jing Jia
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical University Nanjing 210009 China
| | - Wei Chen
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| | - Bin Di
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical University Nanjing 210009 China
| | - Oren A. Scherman
- Melville Laboratory for Polymer SynthesisDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Chi Hu
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
47
|
|
48
|
Guo L, Qin S. Studies on preparations and properties of drug-eluting embolization microspheres made from oxidated alginate and carboxymethyl chitosan. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1517346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Li Guo
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, P. R. China
| | - Shaoxiong Qin
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, P. R. China
| |
Collapse
|
49
|
Seo JY, Lee B, Kang TW, Noh JH, Kim MJ, Ji YB, Ju HJ, Min BH, Kim MS. Electrostatically Interactive Injectable Hydrogels for Drug Delivery. Tissue Eng Regen Med 2018; 15:513-520. [PMID: 30603575 PMCID: PMC6171702 DOI: 10.1007/s13770-018-0146-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/15/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Several injectable hydrogels have been developed extensively for a broad range of biomedical applications. Injectable hydrogels forming in situ through the change in external stimuli have the distinct properties of easy management and minimal invasiveness, and thus provide the advantage of bypassing surgical procedures for administration resulting in better patient compliance. METHODS The injectable in situ-forming hydrogels can be formed irreversibly or reversibly under physiological stimuli. Among several external stimuli that induce formation of hydrogels in situ, in this review, we focused on the electrostatic interactions as the most simple and interesting stimulus. RESULTS Currently, numerous polyelectrolytes have been reported as potential electrostatically interactive in situ-forming hydrogels. In this review, a comprehensive overview of the rapidly developing electrostatically interactive in situ-forming hydrogels, which are produced by various anionic and cationic polyelectrolytes such as chitosan, celluloses, and alginates, has been outlined and summarized. Further, their biomedical applications have also been discussed. CONCLUSION The review concludes with perspectives on the future of electrostatically interactive in situ-forming hydrogels.
Collapse
Affiliation(s)
- Ji Young Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Min Ju Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
- Cell Therapy Center, Ajou University Medical Center, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| |
Collapse
|
50
|
Chen CH, Kuo CY, Chen SH, Mao SH, Chang CY, Shalumon KT, Chen JP. Thermosensitive Injectable Hydrogel for Simultaneous Intraperitoneal Delivery of Doxorubicin and Prevention of Peritoneal Adhesion. Int J Mol Sci 2018; 19:1373. [PMID: 29734717 PMCID: PMC5983626 DOI: 10.3390/ijms19051373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 01/04/2023] Open
Abstract
To improve intraperitoneal chemotherapy and to prevent postsurgical peritoneal adhesion, we aimed to develop a drug delivery strategy for controlled release of a chemotherapeutic drug from the intraperitoneally injected thermosensitive poly(N-isopropylacrylamide)-based hydrogel (HACPN), which is also endowed with peritoneal anti-adhesion properties. Anticancer drug doxorubicin (DOX) was loaded into the hydrogel (HACPN-DOX) to investigate the chemotherapeutic and adhesion barrier effects in vivo. A burst release followed by sustained release of DOX from HACPN-DOX was found due to gradual degradation of the hydrogel. Cell culture studies demonstrated the cytotoxicity of released DOX toward CT-26 mouse colon carcinoma cells in vitro. Using peritoneal carcinomatosis animal model in BALB/c mice with intraperitoneally injected CT-26 cells, animals treated with HACPN-DOX revealed the best antitumor efficacy judging from tumor weight and volume, survival rate, and bioluminescence signal intensity when compared with treatment with free DOX at the same drug dosage. HACPN (or HACPN-DOX) also significantly reduced the risk of postoperative peritoneal adhesion, which was generated by sidewall defect-cecum abrasion in tumor-bearing BALB/c mice, from gross and histology analyses. This study could create a paradigm to combine controlled drug release with barrier function in a single drug-loaded injectable hydrogel to enhance the intraperitoneal chemotherapeutic efficacy while simultaneously preventing postsurgical adhesion.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Shih-Hsien Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Shih-Hsuan Mao
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chih-Yen Chang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - K T Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|