1
|
Larsson M, Balk L, Dahlgren E, Vryonidis E, Lindqvist D. Liquid Chromatography Mass Spectrometric Method and a Fluorometric 96 Well Plate Assay for Determination of Thiamine in Salmonid Eggs. ACS OMEGA 2024; 9:41703-41710. [PMID: 39398146 PMCID: PMC11465547 DOI: 10.1021/acsomega.4c05862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Thiamine deficiency is a large contributor to reduced reproduction success among salmonids throughout the northern hemisphere. In Scandinavia, this reproduction disorder is known as M74; while in North America, it is known as early mortality syndrome (EMS). The disorder fluctuates in magnitude from year to year. During years with high prevalence of the disorder, salmonid hatcheries that stock various aquatic systems to maintain the population size experience difficulties filling their quotas without thiamine treatment of alevins. The disorder is monitored both by observing the survival rate and by measuring the thiamine content of prefertilized eggs in the hatcheries. Here, a simple extraction procedure is presented, which allows for quantitative determination of the various phosphorylated forms of thiamine using liquid chromatography mass spectrometry but also allows for extraction in 96 deep-well plates and measurement of the total thiamine content using fluorescence monitoring with a plate reader, following oxidation of thiamine to thiochrome. The latter procedure could also be integrated into a highly portal system where the thiochrome is determined using the DeNovix QFX analyzer. The newly developed extraction procedure and cleanup method for fluorescence measurement represent the most versatile and simple methods to date for monitoring of thiamine in salmonid eggs. The methods produced accurate and precise data with quantification limits below the limit where the deficiency causes 100% lethality.
Collapse
Affiliation(s)
- Manne Larsson
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
- Department
of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agriculture, SE-178 93 Drottningholm, Sweden
| | - Lennart Balk
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elin Dahlgren
- Department
of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agriculture, SE-178 93 Drottningholm, Sweden
| | - Efstathios Vryonidis
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Dennis Lindqvist
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Edwards KA, Randall EA, Wolfe PC, Kraft CE, Angert ER. Pre-analytical challenges from adsorptive losses associated with thiamine analysis. Sci Rep 2024; 14:10269. [PMID: 38704450 PMCID: PMC11069560 DOI: 10.1038/s41598-024-60910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Thiamine (vitamin B1) is an essential vitamin serving in its diphosphate form as a cofactor for enzymes in the citric acid cycle and pentose-phosphate pathways. Its concentration reported in the pM and nM range in environmental and clinical analyses prompted our consideration of the components used in pre-analytical processing, including the selection of filters, filter apparatuses, and sample vials. The seemingly innocuous use of glass fiber filters, glass filter flasks, and glass vials, ubiquitous in laboratory analysis of clinical and environmental samples, led to marked thiamine losses. 19.3 nM thiamine was recovered from a 100 nM standard following storage in glass autosampler vials and only 1 nM of thiamine was obtained in the filtrate of a 100 nM thiamine stock passed through a borosilicate glass fiber filter. We further observed a significant shift towards phosphorylated derivatives of thiamine when an equimolar mixture of thiamine, thiamine monophosphate, and thiamine diphosphate was stored in glass (most notably non-silanized glass, where a reduction of 54% of the thiamine peak area was observed) versus polypropylene autosampler vials. The selective losses of thiamine could lead to errors in interpreting the distribution of phosphorylated species in samples. Further, some loss of phosphorylated thiamine derivatives selectively to amber glass vials was observed relative to other glass vials. Our results suggest the use of polymeric filters (including nylon and cellulose acetate) and storage container materials (including polycarbonate and polypropylene) for thiamine handling. Losses to cellulose nitrate and polyethersulfone filters were far less substantial than to glass fiber filters, but were still notable given the low concentrations expected in samples. Thiamine losses were negated when thiamine was stored diluted in trichloroacetic acid or as thiochrome formed in situ, both of which are common practices, but not ubiquitous, in thiamine sample preparation.
Collapse
Affiliation(s)
- Katie A Edwards
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA.
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Eileen A Randall
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Patricia C Wolfe
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Clifford E Kraft
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Todisco V, Fridolfsson E, Axén C, Dahlgren E, Ejsmond MJ, Hauber MM, Hindar K, Tibblin P, Zöttl M, Söderberg L, Hylander S. Thiamin dynamics during the adult life cycle of Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2024; 104:807-824. [PMID: 37823583 DOI: 10.1111/jfb.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Thiamin is an essential water-soluble B vitamin known for its wide range of metabolic functions and antioxidant properties. Over the past decades, reproductive failures induced by thiamin deficiency have been observed in several salmonid species worldwide, but it is unclear why this micronutrient deficiency arises. Few studies have compared thiamin concentrations in systems of salmonid populations with or without documented thiamin deficiency. Moreover, it is not well known whether and how thiamin concentration changes during the marine feeding phase and the spawning migration. Therefore, samples of Atlantic salmon (Salmo salar) were collected when actively feeding in the open Baltic Sea, after the sea migration to natal rivers, after river migration, and during the spawning period. To compare populations of Baltic salmon with systems without documented thiamin deficiency, a population of landlocked salmon located in Lake Vänern (Sweden) was sampled as well as salmon from Norwegian rivers draining into the North Atlantic Ocean. Results showed the highest mean thiamin concentrations in Lake Vänern salmon, followed by North Atlantic, and the lowest in Baltic populations. Therefore, salmon in the Baltic Sea seem to be consistently more constrained by thiamin than those in other systems. Condition factor and body length had little to no effect on thiamin concentrations in all systems, suggesting that there is no relation between the body condition of salmon and thiamin deficiency. In our large spatiotemporal comparison of salmon populations, thiamin concentrations declined toward spawning in all studied systems, suggesting that the reduction in thiamin concentration arises as a natural consequence of starvation rather than to be related to thiamin deficiency in the system. These results suggest that factors affecting accumulation during the marine feeding phase are key for understanding the thiamin deficiency in salmonids.
Collapse
Affiliation(s)
- Vittoria Todisco
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Charlotte Axén
- Section for Fish, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Elin Dahlgren
- Institution of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Maciej J Ejsmond
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Institute of Environmental Science, Jagiellonian University, Cracow, Poland
| | - Marc M Hauber
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Petter Tibblin
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Markus Zöttl
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Linda Söderberg
- Institution of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Suffridge CP, Shannon KC, Matthews H, Johnson RC, Jeffres C, Mantua N, Ward AE, Holmes E, Kindopp J, Aidoo M, Colwell FS. Connecting thiamine availability to the microbial community composition in Chinook salmon spawning habitats of the Sacramento River basin. Appl Environ Microbiol 2024; 90:e0176023. [PMID: 38084986 PMCID: PMC10807462 DOI: 10.1128/aem.01760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 01/25/2024] Open
Abstract
Thiamine deficiency complex (TDC) is a major emerging threat to global populations of culturally and economically important populations of salmonids. Salmonid eggs and embryos can assimilate exogenous thiamine, and evidence suggests that microbial communities in benthic environments can produce substantial amounts of thiamine. We therefore hypothesize that natural dissolved pools of thiamine exist in the surface water and hyporheic zones of riverine habitats where salmonids with TDC migrate, spawn, and begin their lives. To examine the relationship between dissolved thiamine-related compounds (dTRCs) and their microbial source, we determined the concentrations of these metabolites and the compositions of microbial communities in surface and hyporheic waters of the Sacramento River, California and its tributaries. Here we determine that all dTRCs are present in femto-picomolar concentrations in a range of critically important salmon spawning habitats. We observed that thiamine concentrations in the Sacramento River system are orders of magnitude lower than those of marine waters, indicating substantial differences in thiamine cycling between these two environments. Our data suggest that the hyporheic zone is likely the source of thiamine to the overlying surface water. Temporal variations in dTRC concentrations were observed where the highest concentrations existed when Chinook salmon were actively spawning. Significant correlations were seen between the richness of microbial taxa and dTRC concentrations, particularly in the hyporheic zone, which would influence the conditions where embryonic salmon incubate. Together, these results indicate a connection between microbial communities in freshwater habitats and the availability of thiamine to spawning TDC-impacted California Central Valley Chinook salmon.IMPORTANCEPacific salmon are keystone species with considerable economic importance and immeasurable cultural significance to Pacific Northwest indigenous peoples. Thiamine deficiency complex has recently been diagnosed as an emerging threat to the health and stability of multiple populations of salmonids ranging from California to Alaska. Microbial biosynthesis is the major source of thiamine in marine and aquatic environments. Despite this importance, the concentrations of thiamine and the identities of the microbial communities that cycle it are largely unknown. Here we investigate microbial communities and their relationship to thiamine in Chinook salmon spawning habitats in California's Sacramento River system to gain an understanding of how thiamine availability impacts salmonids suffering from thiamine deficiency complex.
Collapse
Affiliation(s)
| | - Kelly C. Shannon
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - H. Matthews
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - R. C. Johnson
- Fisheries Ecology Division, NOAA Fisheries, Southwest Fisheries Science Center, Santa Cruz, California, USA
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - C. Jeffres
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - N. Mantua
- Fisheries Ecology Division, NOAA Fisheries, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - A. E. Ward
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - E. Holmes
- University of California, Center for Watershed Sciences, Davis, California, USA
- California Department of Water Resources, West Sacramento, California, USA
| | - J. Kindopp
- California Department of Water Resources, Division of Integrated Science and Engineering, Oroville, California, USA
| | - M. Aidoo
- Bronx Community College, Bronx, New York, USA
| | - F. S. Colwell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Rowland FE, Richter CA, Tillitt DE, Walters DM. Evolutionary and ecological correlates of thiaminase in fishes. Sci Rep 2023; 13:18147. [PMID: 37875540 PMCID: PMC10598016 DOI: 10.1038/s41598-023-44654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
Thiamine (vitamin B1) is required by all living organisms in multiple metabolic pathways. It is scarce in natural systems, and deficiency can lead to reproductive failure, neurological issues, and death. One major cause of thiamine deficiency is an overreliance on diet items containing the enzyme thiaminase. Thiaminase activity has been noted in many prey fishes and linked to cohort failure in salmonid predators that eat prey fish with thiaminase activity, yet it is generally unknown whether evolutionary history, fish traits, and/or environmental conditions lead to production of thiaminase. We conducted literature and GenBank BLAST sequence searches to collect thiaminase activity data and sequence homology data in expressed protein sequences for 300 freshwater and marine fishes. We then tested whether presence or absence of thiaminase could be predicted by evolutionary relationships, trophic level, omega-3 fatty acid concentrations, habitat, climate, invasive potential, and body size. There was no evolutionary relationship with thiaminase activity. It first appears in Class Actinoptergyii (bony ray-finned fishes) and is present across the entire Actinoptergyii phylogeny in both primitive and derived fish orders. Instead, ecological factors explained the most variation in thiaminase: fishes were more likely to express thiaminase if they fed closer to the base of the food web, were high in polyunsaturated fatty acids, lived in freshwater, and were from tropical climates. These data provide a foundation for understanding sources of thiaminase leading to thiamine deficiency in fisheries and other organisms, including humans that eat uncooked fish.
Collapse
Affiliation(s)
- Freya E Rowland
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA.
| | - Catherine A Richter
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| | - David M Walters
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| |
Collapse
|
6
|
Paerl RW, Curtis NP, Bittner MJ, Cohn MR, Gifford SM, Bannon CC, Rowland E, Bertrand EM. Use and detection of a vitamin B1 degradation product yields new views of the marine B1 cycle and plankton metabolite exchange. mBio 2023; 14:e0006123. [PMID: 37377416 PMCID: PMC10470507 DOI: 10.1128/mbio.00061-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin B1 (thiamin) is a vital nutrient for most cells in nature, including marine plankton. Early and recent experiments show that B1 degradation products instead of B1 can support the growth of marine bacterioplankton and phytoplankton. However, the use and occurrence of some degradation products remains uninvestigated, namely N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), which has been a focus of plant oxidative stress research. We investigated the relevance of FAMP in the ocean. Experiments and global ocean meta-omic data indicate that eukaryotic phytoplankton, including picoeukaryotes and harmful algal bloom species, use FAMP while bacterioplankton appear more likely to use deformylated FAMP, 4-amino-5-aminomethyl-2-methylpyrimidine. Measurements of FAMP in seawater and biomass revealed that it occurs at picomolar concentrations in the surface ocean, heterotrophic bacterial cultures produce FAMP in the dark-indicating non-photodegradation of B1 by cells, and B1-requiring (auxotrophic) picoeukaryotic phytoplankton produce intracellular FAMP. Our results require an expansion of thinking about vitamin degradation in the sea, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as generation (dark degradation-likely via oxidation), turnover (plankton uptake), and exchange of the compound within the networks of plankton. IMPORTANCE Results of this collaborative study newly show that a vitamin B1 degradation product, N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), can be used by diverse marine microbes (bacteria and phytoplankton) to meet their vitamin B1 demands instead of B1 and that FAMP occurs in the surface ocean. FAMP has not yet been accounted for in the ocean and its use likely enables cells to avoid B1 growth deficiency. Additionally, we show FAMP is formed in and out of cells without solar irradiance-a commonly considered route of vitamin degradation in the sea and nature. Altogether, the results expand thinking about oceanic vitamin degradation, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as its generation (dark degradation-likely via oxidation), turnover (plankton uptake), and exchange within networks of plankton.
Collapse
Affiliation(s)
- Ryan W. Paerl
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Nathaniel P. Curtis
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Meriel J. Bittner
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Melanie R. Cohn
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott M. Gifford
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin M. Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Schostak T, Millan IS, Jani A, Johnson RJ. Thiamine deficiency: a commonly unrecognised but easily treatable condition. Postgrad Med J 2023; 99:844-848. [PMID: 37125640 PMCID: PMC10398819 DOI: 10.1136/pmj-2022-141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/20/2022] [Indexed: 11/04/2022]
Abstract
Thiamine is present in many foods and is well recognised as an essential nutrient critical for energy metabolism. While thiamine deficiency is commonly recognised in alcoholism, it can present in many other settings where it is often not considered and goes unrecognised. One challenging aspect to diagnosis is that it may have varied metabolic, neurological and cardiac presentations. Here we present an overview of the disorder, focusing on the multiple causes and clinical presentations. Interestingly, thiamine deficiency is likely increasing in frequency, especially among wildlife, where it is linked with changing environments and climate change. Thiamine deficiency should be considered whenever neurological or cardiological disease of unknown aetiology presents, especially in any patient presenting with lactic acidosis.
Collapse
Affiliation(s)
- Tritia Schostak
- Division of Nephrology, Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Iňigo San Millan
- Division of Endocrinology, Department of Medicine, University of Colorado—Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alkesh Jani
- Division of Nephrology, Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Richard Joseph Johnson
- Division of Nephrology, Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Endocrinology, Department of Medicine, University of Colorado—Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Howard KG, von Biela V. Adult spawners: A critical period for subarctic Chinook salmon in a changing climate. GLOBAL CHANGE BIOLOGY 2023; 29:1759-1773. [PMID: 36661402 DOI: 10.1111/gcb.16610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 01/08/2023] [Indexed: 05/28/2023]
Abstract
Concurrent, distribution-wide abundance declines of some Pacific salmon species, including Chinook salmon (Oncorhynchus tshawytscha), highlights the need to understand how vulnerability at different life stages to climate stressors affects population dynamics and fisheries sustainability. Yukon River Chinook salmon stocks are among the largest subarctic populations, near the northernmost extent of the species range. Existing research suggests that Yukon River Chinook salmon population dynamics are largely driven by factors occurring between the adult spawner life stage and their offspring's first summer at sea (second year post-hatching). However, specific mechanisms sustaining chronic poor productivity are unknown, and there is a tremendous sense of urgency to understand causes, as declines of these stocks have taken a serious toll on commercial, recreational, and indigenous subsistence fisheries. Therefore, we leveraged multiple existing datasets spanning parent and juvenile stages of life history in freshwater and marine habitats. We analyzed environmental data in association with the production of offspring that survive to the marine juvenile stage (juveniles per spawner). These analyses suggest more than 45% of the variability in the production of juvenile Chinook salmon is associated with river temperatures or water discharge levels during the parent spawning migration. Over the past two decades, parents that experienced warmer water temperatures and lower discharge in the mainstem Yukon River produced fewer juveniles per spawning adult. We propose the adult spawner life stage as a critical period regulating population dynamics. We also propose a conceptual model that can explain associations between population dynamics and climate stressors using independent data focused on marine nutrition and freshwater heat stress. It is sobering to consider that some of the northernmost Pacific salmon habitats may already be unfavorable to these cold-water species. Our findings have immediate implications, given the common assumption that northern ranges of Pacific salmon offer refugia from climate stressors.
Collapse
Affiliation(s)
| | - Vanessa von Biela
- U.S. Geological Survey Alaska Science Center, Anchorage, Alaska, USA
| |
Collapse
|
9
|
Fridolfsson E, Majaneva S, Hylander S. Limited effects of macro-nutrient ratios on thiamin content and transfer in phytoplankton and copepods. JOURNAL OF PLANKTON RESEARCH 2023; 45:360-371. [PMID: 37012974 PMCID: PMC10066808 DOI: 10.1093/plankt/fbad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/08/2023] [Indexed: 06/19/2023]
Abstract
Vitamin B1 (thiamin) is primarily produced by bacteria, phytoplankton and fungi in aquatic food webs and transferred to higher trophic levels by ingestion. However, much remains unknown regarding the dynamics this water-soluble, essential micronutrient; e.g. how it relates to macronutrients (carbon, nitrogen and phosphorous). Nutrient limitation has been found to be related to periods of thiamin deficiency as well as in models. Hence, thiamin transfer to copepods from three phytoplankton species from different taxa was investigated, along with the effect of various nutrient regimes on thiamin content. Nutrient levels did not affect thiamin content of phytoplankton nor the transfer to copepods. Instead, phytoplankton displayed species-specific thiamin and macronutrient contents and whilst a higher thiamin content in the prey lead to higher levels in copepods, the transfer was lower for Skeletonema compared to Dunaliella and Rhodomonas. In all, thiamin transfer to copepods is not only dependent on thiamin content of the prey, but also the edibility and/or digestibility is of importance. Thiamin is essential for all organisms, and this study offers insights into the limited effect of macronutrients on the dynamics and transfer of thiamin in the aquatic food webs.
Collapse
Affiliation(s)
| | | | - Samuel Hylander
- Department of Biology and Environmental Sciences, Centre for Ecology and Evolution in Microbial model Systems – EEMiS, Linnaeus University, Kalmar SE-39182, Sweden
| |
Collapse
|
10
|
Rasmussen JA, Kiilerich P, Madhun AS, Waagbø R, Lock EJR, Madsen L, Gilbert MTP, Kristiansen K, Limborg MT. Co-diversification of an intestinal Mycoplasma and its salmonid host. THE ISME JOURNAL 2023; 17:682-692. [PMID: 36807409 PMCID: PMC10119124 DOI: 10.1038/s41396-023-01379-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Pia Kiilerich
- Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | | | - Rune Waagbø
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Reed AN, Rowland FE, Krajcik JA, Tillitt DE. Thiamine Supplementation Improves Survival and Body Condition of Hatchery-Reared Steelhead ( Oncorhynchus mykiss) in Oregon. Vet Sci 2023; 10:vetsci10020156. [PMID: 36851459 PMCID: PMC9959435 DOI: 10.3390/vetsci10020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Early rearing of steelhead (Oncorhynchus mykiss) in Oregon hatcheries is often problematic; fry can become emaciated and die during the period between hatch and first feed. Thiamine (vitamin B1) deficiency has caused early mortality in salmonids; however, the thiamine status of Oregon's steelhead populations is unknown, to date. Of the 26 egg samples from three Oregon hatcheries in 2019, 20 (77%) had thiamine levels < 10 nmol/g, and 13 of those samples (50%) had levels <6.5 nmol/g, suggesting the thiamine deficiency of adult, female steelhead. To investigate if thiamine deficiency was causally related to fry survival, females were injected with buffered thiamine HCl 50 mg/kg prior to spawning; additionally, a subset of eggs were supplemented via bath treatment with thiamine mononitrate (1000 ppm) at spawning. Cumulative fry mortality at 8 weeks post-hatch from thiamine-injected females was 2.9% compared to 13.8% mortality of fry without thiamine supplementation. Fry treated only with the thiamine via bath as eggs had a mortality rate of 6.9%. There were no additional improvements for the survival of fry from injected females that also received a thiamine bath. Furthermore, condition factors were greater in thiamine-supplemented fry than in those that received no thiamine. These data identify thiamine deficiency in Oregon steelhead and suggest supplementation with thiamine can mitigate early rearing mortality.
Collapse
Affiliation(s)
- Aimee N. Reed
- Oregon Department of Fish and Wildlife, Fish Health Services, OSU 226 Nash Hall, Corvallis, OR 97331, USA
- Correspondence:
| | - Freya E. Rowland
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd., Columbia, MO 65201, USA
| | - Jennifer A. Krajcik
- Oregon Department of Fish and Wildlife, Oregon Hatchery Research Center, 2457 E. Fall Creek Rd., Alsea, OR 97324, USA
| | - Donald E. Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd., Columbia, MO 65201, USA
| |
Collapse
|
12
|
Richter CA, Evans AN, Heppell SA, Zajicek JL, Tillitt DE. Genetic basis of thiaminase I activity in a vertebrate, zebrafish Danio rerio. Sci Rep 2023; 13:698. [PMID: 36639393 PMCID: PMC9839694 DOI: 10.1038/s41598-023-27612-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Thiamine (vitamin B1) metabolism is an important driver of human and animal health and ecological functioning. Some organisms, including species of ferns, mollusks, and fish, contain thiamine-degrading enzymes known as thiaminases, and consumption of these organisms can lead to thiamine deficiency in the consumer. Consumption of fish containing thiaminase has led to elevated mortality and recruitment failure in farmed animals and wild salmonine populations around the world. In the North American Great Lakes, consumption of the non-native prey fish alewife (Alosa pseudoharengus) by native lake trout (Salvelinus namaycush) led to thiamine deficiency in the trout, contributed to elevated fry mortality, and impeded natural population recruitment. Several thiaminases have been genetically characterized in bacteria and unicellular eukaryotes, and the source of thiaminase in multicellular organisms has been hypothesized to be gut microflora. In an unexpected discovery, we identified thiaminase I genes in zebrafish (Danio rerio) with homology to bacterial tenA thiaminase II. The biochemical activity of zebrafish thiaminase I (GenBank NP_001314821.1) was confirmed in a recombinant system. Genes homologous to the zebrafish tenA-like thiaminase I were identified in many animals, including common carp (Cyprinus carpio), zebra mussel (Dreissena polymorpha) and alewife. Thus, the source of thiaminase I in alewife impacting lake trout populations is likely to be de novo synthesis.
Collapse
Affiliation(s)
- Catherine A Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA.
| | - Allison N Evans
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, 97331, USA.,Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Scott A Heppell
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - James L Zajicek
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA
| |
Collapse
|
13
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
14
|
Gudowska A, Drobniak SM. Diet modulates behaviour in house sparrows: insights into possible hormone-mediated mechanisms. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Happel A, Pike J, Czesny S, Rinchard J. An empirical test of fatty acid based diet estimation models. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Alrubaye HS, Kohl KD. Abundance and Compositions of B-Vitamin-Producing Microbes in the Mammalian Gut Vary Based on Feeding Strategies. mSystems 2021; 6:e0031321. [PMID: 34463576 DOI: 10.1128/msystems.00313-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Mammals maintain close associations with gut microbes that provide numerous nutritional benefits, including vitamin synthesis. While most mammals obtain sufficient vitamins from their diets, deficiencies in various B vitamins (biotin, cobalamin, riboflavin, thiamine, etc.) are reported in captive animals. Biomedical and agricultural research has shown that gut microbes are capable of synthesizing B vitamins and assisting with host vitamin homeostasis. However, we have a poor understanding of distribution and abundance of B-vitamin synthesis across mammalian hosts. Here, we leveraged a publicly available metagenomic data set from 39 mammalian species and used MG-RAST to compare the abundance and composition of B-vitamin-synthesizing microbes across mammalian feeding strategies. We predicted that herbivores would have the highest abundance of genes associated with vitamin synthesis, as plant material is often low in B vitamins. However, this hypothesis was not supported. Instead, we found that relative abundances of genes associated with cobalamin and thiamine synthesis were significantly enriched in carnivorous mammals. The taxonomic community structure of microbes predicted to be involved in B-vitamin synthesis also varied significantly based on host feeding strategy. For example, the genus Acinetobacter primarily contributed to predicted biotin synthesis in carnivores but was not predicted to contribute to biotin synthesis in herbivores or omnivores. Given that B vitamins cannot be stored within the body, we hypothesize that microbial synthesis of B vitamins could be important for wild carnivores that regularly experience periods of fasting. Overall, these results shed light on the distribution and abundance of microbial B-vitamin synthesis across mammalian groups, with potential implications for captive animals. IMPORTANCE Microbial communities offer numerous physiological services to their hosts, but we still have a poor understanding of how these functions are structured across mammalian species. Specifically, our understanding of processes of vitamin synthesis across animals is severely limited. Here, we compared the abundance of genes associated with the synthesis of B vitamins and the taxonomic composition of the microbes containing these genes. We found that herbivores, omnivores, and carnivores harbor distinct communities of microbes that putatively conduct vitamin synthesis. Additionally, carnivores exhibited the highest abundance of genes associated with synthesis of specific B vitamins, cobalamin and thiamine. These data uncover the potential importance of microbes in the vitamin homeostasis of various mammals, especially carnivorous mammals. These findings have implications for understanding the microbial interactions that contribute to the nutritional requirements of animals held in captivity.
Collapse
Affiliation(s)
- Hisham S Alrubaye
- Department of Biological Sciences, University of Pittsburghgrid.21925.3d, Pittsburgh, Pennsylvania, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburghgrid.21925.3d, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Thiamine deficiency in rats affects thiamine metabolism possibly through the formation of oxidized thiamine pyrophosphate. Biochim Biophys Acta Gen Subj 2021; 1865:129980. [PMID: 34390792 DOI: 10.1016/j.bbagen.2021.129980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thiamine deficiency (TD) has a number of features in common with the neurodegenerative diseases development and close relationship between TD and oxidative stress (OS) has been repeatedly reported in the literature. The aim of this study is to understand how alimentary TD, accompanied by OS, affects the expression and level of two thiamine metabolism proteins in rat brain, namely, thiamine transporter 1 (THTR1) and thiamine pyrophosphokinase (TPK1), and what factors are responsible for the observed changes. METHODS The effects of OS caused by TD on the THTR1and TPK1 expression in rat cortex, cerebellum and hippocampus were examined. The levels of active and oxidized forms of ThDP (enzymatically measured) in the blood and brain, ROS and SH-groups in the brain were also analyzed. RESULTS TD increased the expression of THTR1 and protein level in all studied regions. In contrast, expression of TPK1 was depressed. TD-induced OS led to the accumulation of ThDP oxidized inactive form (ThDPox) in the blood and brain. In vitro reduction of ThDPox by dithiothreitol regenerates active ThDP suggesting that ThDPox is in disulfide form. A single high-dose thiamine administration to TD animals had no effect on THTR1 expression, partly raised TPK1 mRNA and protein levels, but is unable to normalize TPK1 enzyme activity. Brain and blood ThDP levels were increased in these conditions, but ThDPox was not decreased. GENERAL SIGNIFICANCE It is likely, that the accumulation of ThDPox in tissue could be seen as a potential marker of neurocellular dysfunction and thiamine metabolic state.
Collapse
|
18
|
Weichert FG, Axén C, Förlin L, Inostroza PA, Kammann U, Welling A, Sturve J, Asker N. A multi-biomarker study on Atlantic salmon (Salmo salar L.) affected by the emerging Red Skin Disease in the Baltic Sea. JOURNAL OF FISH DISEASES 2021; 44:429-440. [PMID: 33103251 PMCID: PMC7984219 DOI: 10.1111/jfd.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
For half a decade, the Atlantic salmon in the Baltic Sea has been facing severe health issues. Clinical signs like haemorrhage, erosions and ulcerative/necrotic skin conditions in returning adults have been reported from different Swedish rivers. These primary disease signs precede a secondary, terminal fungal infection. As initial investigations of the disease did not provide conclusive answers regarding the pathogenesis, this study was initiated to gain insight into a possible link between this so-called Red Skin Disease and anthropogenic influences. Therefore, returning salmon were caught in rivers along the Swedish coast and different tissues were sampled. The focus was put on the measurements of a battery of biomarkers as well as biochemical and haematological parameters, which were analysed using multivariate statistics. The main findings were a severe osmotic haemodilution, an immune response and an alteration of the carbohydrate metabolism in diseased fish. Furthermore, oxidative stress does not seem to be a likely factor in the pathogenesis. Concluding, certain changes in physiological parameters were shown to be indicative for the disease patterns, while others were ruled out as significant factors. Thus, this study contributes to the understanding of the Red Skin Disease and may act as a hypothesis generator for future studies.
Collapse
Affiliation(s)
- Fabian G. Weichert
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Charlotte Axén
- Swedish National Veterinary Institute (SVA)UppsalaSweden
| | - Lars Förlin
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Pedro A. Inostroza
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | | | | | - Joachim Sturve
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Noomi Asker
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
19
|
Spooner DE, Honeyfield DC, Boggs K, Shull D, Wertz T, Sweet S. An Assessment of the Thiamine Status of Smallmouth Bass (Micropterus dolomieu) in the Susquehanna River Watershed. Northeast Nat (Steuben) 2020. [DOI: 10.1656/045.027.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Daniel E. Spooner
- Department of Biology, Lock Haven University, 301 W. Church Street, Lock Haven, PA 17745
| | - Dale C. Honeyfield
- United States Geological Survey, Northern Appalachian Research Branch, 176 Straight Run Road, Wellsboro, PA 16901
| | - Kristin Boggs
- United States Geological Survey, Northern Appalachian Research Branch, 176 Straight Run Road, Wellsboro, PA 16901
| | - Dustin Shull
- Department of Environmental Protection, Bureau of Clean Water, Rachel Carson Building, Harrisburg, PA 17105
| | - Tim Wertz
- Department of Environmental Protection, Bureau of Clean Water, Rachel Carson Building, Harrisburg, PA 17105
| | - Stephanie Sweet
- United States Geological Survey, Northern Appalachian Research Branch, 176 Straight Run Road, Wellsboro, PA 16901
| |
Collapse
|
20
|
Ma NL, Hansen M, Roland Therkildsen O, Kjær Christensen T, Skjold Tjørnløv R, Garbus SE, Lyngs P, Peng W, Lam SS, Kirstine Havnsøe Krogh A, Andersen-Ranberg E, Søndergaard J, Rigét FF, Dietz R, Sonne C. Body mass, mercury exposure, biochemistry and untargeted metabolomics of incubating common eiders (Somateria mollissima) in three Baltic colonies. ENVIRONMENT INTERNATIONAL 2020; 142:105866. [PMID: 32590281 DOI: 10.1016/j.envint.2020.105866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The Baltic/Wadden Sea Flyway of common eiders has declined over the past three decades. Multiple factors such as contaminant exposure, global warming, hunting, white-tailed eagle predation, decreased agricultural eutrophication and infectious diseases have been suggested to explain the decline. We collected information on body mass, mercury (Hg) concentration, biochemistry and untargeted metabolomics of incubating birds in two colonies in the Danish Straits (Hov Røn, n = 100; Agersø, n = 29) and in one colony in the Baltic proper (Christiansø, n = 23) to look into their metabolisms and energy balance. Body mass was available from early and late incubation for Hov Røn and Christiansø, showing a significant decline (25-30%) in both colonies with late body mass at Christiansø being the lowest. Whole blood concentrations of total mercury Hg were significantly higher in birds at Christiansø in the east compared to Hov Røn in the west. All birds in the three colonies had Hg concentrations in the range of ≤1.0 μg/g ww, which indicates that the risk of effects on reproduction is in the no to low risk category for wild birds. Among the biochemical measures, glucose, fructosamine, amylase, albumin and protein decreased significantly from early to late incubation at Hov Røn and Christiansø, reflecting long-term fastening as supported by the decline in body mass. Untargeted metabolomics performed on Christiansø eiders revealed presence of 8,433 plasma metabolites. Of these, 3,179 metabolites changed significantly (log2-fold change ≥1, p ≤ 0.05) from the early to late incubation. For example, smaller peptides and vitamin B2 (riboflavin) were significantly down-regulated while 11-deoxycorticosterone and palmitoylcarnitine were significantly upregulated. These results show that cumulative stress including fasting during incubation affect the eiders' biochemical profile and energy metabolism and that this may be most pronounced for the Christiansø colony in the Baltic proper. This amplify the events of temperature increases and food web changes caused by global warming that eventually accelerate the loss in body weight. Future studies should examine the relationship between body condition, temperature and reproductive outcomes and include mapping of food web contaminant, energy and nutrient content to better understand, manage and conserve the populations.
Collapse
Affiliation(s)
- Nyuk Ling Ma
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Martin Hansen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | - Rune Skjold Tjørnløv
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Peter Lyngs
- Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Anne Kirstine Havnsøe Krogh
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark.
| | - Emilie Andersen-Ranberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark.
| | - Jens Søndergaard
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Frank F Rigét
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Rune Dietz
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
21
|
Fridolfsson E, Lindehoff E, Legrand C, Hylander S. Species-specific content of thiamin (vitamin B 1) in phytoplankton and the transfer to copepods. JOURNAL OF PLANKTON RESEARCH 2020; 42:274-285. [PMID: 32494089 PMCID: PMC7252500 DOI: 10.1093/plankt/fbaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Thiamin (vitamin B1) is primarily produced by bacteria and phytoplankton in aquatic food webs and transferred by ingestion to higher trophic levels. However, much remains unknown regarding production, content and transfer of this water-soluble, essential micronutrient. Hence, the thiamin content of six phytoplankton species from different taxa was investigated, along with the effect of thiamin amendment on thiamin content. Furthermore, thiamin transfer to copepods was estimated in feeding experiments. Prey type, not phytoplankton thiamin content per se, was the most important factor for the transfer of thiamin, as it was lowest from filamentous Cyanophyceae and highest from more easily ingested prey like Dunaliella tertiolecta and Rhodomonas salina. Cyanophyceae had the highest thiamin content of the investigated species, eightfold higher than the lowest. Phytoplankton varied in thiamin content related to the supply of thiamin, where thiamin addition enabled higher thiamin content in some species, while copepod thiamin content was less variable. In all, thiamin transfer is not only dependent on the prey thiamin content, but also the edibility and/or digestibility is of importance. Thiamin is essential for all organisms, and this study constitutes an important building block to understanding the dynamics and transfer of thiamin in the aquatic food web.
Collapse
Affiliation(s)
- Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| | - Elin Lindehoff
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| |
Collapse
|
22
|
Deficiency syndromes in top predators associated with large-scale changes in the Baltic Sea ecosystem. PLoS One 2020; 15:e0227714. [PMID: 31917814 PMCID: PMC6952091 DOI: 10.1371/journal.pone.0227714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
Vitamin B1 (thiamin) deficiency is an issue periodically affecting a wide range of taxa worldwide. In aquatic pelagic systems, thiamin is mainly produced by bacteria and phytoplankton and is transferred to fish and birds via zooplankton, but there is no general consensus on when or why this transfer is disrupted. We focus on the occurrence in salmon (Salmo salar) of a thiamin deficiency syndrome (M74), the incidence of which is highly correlated among populations derived from different spawning rivers. Here, we show that M74 in salmon is associated with certain large-scale abiotic changes in the main common feeding area of salmon in the southern Baltic Sea. Years with high M74 incidence were characterized by stagnant periods with relatively low salinity and phosphate and silicate concentrations but high total nitrogen. Consequently, there were major changes in phytoplankton and zooplankton, with, e.g., increased abundances of Cryptophyceae, Dinophyceae, Diatomophyceae and Euglenophyceae and Acartia spp. during high M74 incidence years. The prey fish communities also had increased stocks of both herring and sprat in these years. Overall, this suggests important changes in the entire food web structure and nutritional pathways in the common feeding period during high M74 incidence years. Previous research has emphasized the importance of the abundance of planktivorous fish for the occurrence of M74. By using this 27-year time series, we expand this analysis to the entire ecosystem and discuss potential mechanisms inducing thiamin deficiency in salmon.
Collapse
|
23
|
Engelhardt J, Frisell O, Gustavsson H, Hansson T, Sjöberg R, Collier TK, Balk L. Severe thiamine deficiency in eastern Baltic cod (Gadus morhua). PLoS One 2020; 15:e0227201. [PMID: 31895939 PMCID: PMC6939936 DOI: 10.1371/journal.pone.0227201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/14/2019] [Indexed: 11/23/2022] Open
Abstract
The eastern Baltic cod (Gadus morhua) population has been decreasing in the Baltic Sea for at least 30 years. Condition indices of the Baltic cod have decreased, and previous studies have suggested that this might be due to overfishing, predation, lower dissolved oxygen or changes in salinity. However, numerous studies from the Baltic Sea have demonstrated an ongoing thiamine deficiency in several animal classes, both invertebrates and vertebrates. The thiamine status of the eastern Baltic cod was investigated to determine if thiamine deficiency might be a factor in ongoing population declines. Thiamine concentrations were determined by chemical analyses of thiamine, thiamine monophosphate and thiamine diphosphate (combined SumT) in the liver using high performance liquid chromatography. Biochemical analyses measured the activity of the thiamine diphosphate-dependent enzyme transketolase to determine the proportion of apoenzymes in both liver and brain tissue. These biochemical analyses showed that 77% of the cod were thiamine deficient in the liver, of which 13% had a severe thiamine deficiency (i.e. 25% transketolase enzymes lacked thiamine diphosphate). The brain tissue of 77% of the cod showed thiamine deficiency, of which 64% showed severe thiamine deficiency. The thiamine deficiency biomarkers were investigated to find correlations to different biological parameters, such as length, weight, otolith weight, age (annuli counting) and different organ weights. The results suggested that thiamine deficiency increased with age. The SumT concentration ranged between 2.4–24 nmol/g in the liver, where the specimens with heavier otoliths had lower values of SumT (P = 0.0031). Of the cod sampled, only 2% of the specimens had a Fulton’s condition factor indicating a healthy specimen, and 49% had a condition factor below 0.8, indicating poor health status. These results, showing a severe thiamine deficiency in eastern Baltic cod from the only known area where spawning presently occurs for this species, are of grave concern.
Collapse
Affiliation(s)
- Josefin Engelhardt
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail: (JE); (LB)
| | - Oscar Frisell
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Hanna Gustavsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tomas Hansson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Rajlie Sjöberg
- Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Tracy K. Collier
- Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States of America
| | - Lennart Balk
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail: (JE); (LB)
| |
Collapse
|
24
|
Harder AM, Willoughby JR, Ardren WR, Christie MR. Among-family variation in survival and gene expression uncovers adaptive genetic variation in a threatened fish. Mol Ecol 2019; 29:1035-1049. [PMID: 31837181 DOI: 10.1111/mec.15334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022]
Abstract
Variation in among-family transcriptional responses to different environmental conditions can help to identify adaptive genetic variation, even prior to a selective event. Coupling differential gene expression with formal survival analyses allows for the disentanglement of treatment effects, required for understanding how individuals plastically respond to environmental stressors, from the adaptive genetic variation responsible for differential survival. We combined these two approaches to investigate responses to an emerging conservation issue, thiamine (vitamin B1 ) deficiency, in a threatened population of Atlantic salmon (Salmo salar). Thiamine is an essential vitamin that is increasingly limited in many ecosystems. In Lake Champlain, Atlantic salmon cannot acquire thiamine in sufficient quantities to support natural reproduction; fertilized eggs must be reared in hatcheries and treated with supplemental thiamine. We evaluated transcriptional responses (via RNA sequencing) to thiamine treatment across families and found 3,616 genes differentially expressed between control (no supplemental thiamine) and treatment individuals. Fewer genes changed expression equally across families (i.e., additively) than exhibited genotype × environment interactions in response to thiamine. Differentially expressed genes were related to known physiological effects of thiamine deficiency, including oxidative stress, cardiovascular irregularities and neurological abnormalities. We also identified 1,446 putatively adaptive genes that were strongly associated with among-family survival in the absence of thiamine treatment, many of which related to neurogenesis and visual perception. Our results highlight the utility of coupling RNA sequencing with formal survival analyses to identify candidate genes that underlie the among-family variation in survival required for an adaptive response to natural selection.
Collapse
Affiliation(s)
- Avril M Harder
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Janna R Willoughby
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.,School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | | | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Edwards KA, Randall EA, Tu-Maung N, Sannino DR, Feder S, Angert ER, Kraft CE. Periplasmic binding protein-based magnetic isolation and detection of thiamine in complex biological matrices. Talanta 2019; 205:120168. [PMID: 31450459 DOI: 10.1016/j.talanta.2019.120168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 11/19/2022]
Abstract
Deficiencies in thiamine (vitamin B1) cause a host of neurological and reproductive impairments yielding morbidity and mortality across environmental and clinical realms. In a technique analogous to immunomagnetic separation, we introduce the use of thiamine periplasmic binding protein (TBP)-conjugated magnetic beads to isolate thiamine from complex matrices. TBP expressed in Escherichia coli is highly specific to thiamine and provides an alternative to antibodies for this non-immunogenic target. After incubation with the sample and removal of unbound matrix constituents, thiamine is simultaneously released and converted to its fluorescent oxidation product thiochrome by alkaline potassium ferricyanide. Subsequent measurement of fluorescence at thiochrome-specific wavelengths provides a second layer of specificity for the detection of thiamine. Thiamine could be quantified at concentrations as low as 5 nM ranging up to 240 nM. Within, we apply this technique to selectively capture and quantify thiamine in complex salmonid fish egg and tissue matrices. Our results showed no measurable non-specific binding to the beads by endogenous fluorophores in the fish egg matrix. Thiamine levels as low as 0.2 nmol/g of fish egg can be detected using this approach, which is sufficient to assess deficiencies causing morbidity and mortality in fish that occur at 1.0 nmol/g of egg. This practical method may find application in other resource limited settings for clinical, food, or dietary supplement analyses.
Collapse
Affiliation(s)
- Katie A Edwards
- Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY, 14853, USA; Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, 14853, USA; Department of Pharmaceutical Sciences, PO Box 6000, Binghamton University, Binghamton, NY, 13902, USA.
| | - Eileen A Randall
- Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole Tu-Maung
- Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David R Sannino
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Seth Feder
- Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Clifford E Kraft
- Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
26
|
Ejsmond MJ, Blackburn N, Fridolfsson E, Haecky P, Andersson A, Casini M, Belgrano A, Hylander S. Modeling vitamin B 1 transfer to consumers in the aquatic food web. Sci Rep 2019; 9:10045. [PMID: 31296876 PMCID: PMC6624374 DOI: 10.1038/s41598-019-46422-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Vitamin B1 is an essential exogenous micronutrient for animals. Mass death and reproductive failure in top aquatic consumers caused by vitamin B1 deficiency is an emerging conservation issue in Northern hemisphere aquatic ecosystems. We present for the first time a model that identifies conditions responsible for the constrained flow of vitamin B1 from unicellular organisms to planktivorous fishes. The flow of vitamin B1 through the food web is constrained under anthropogenic pressures of increased nutrient input and, driven by climatic change, increased light attenuation by dissolved substances transported to marine coastal systems. Fishing pressure on piscivorous fish, through increased abundance of planktivorous fish that overexploit mesozooplankton, may further constrain vitamin B1 flow from producers to consumers. We also found that key ecological contributors to the constrained flow of vitamin B1 are a low mesozooplankton biomass, picoalgae prevailing among primary producers and low fluctuations of population numbers of planktonic organisms.
Collapse
Affiliation(s)
- M J Ejsmond
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| | - N Blackburn
- BIORAS, Hejreskovvej 18B, Copenhagen, Denmark
| | - E Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - P Haecky
- BIORAS, Hejreskovvej 18B, Copenhagen, Denmark
| | - A Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden
- Umeå Marine Sciences Centre, SE-905 71, Hörnefors, Sweden
| | - M Casini
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 45330, Lysekil, Sweden
| | - A Belgrano
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 45330, Lysekil, Sweden
- Swedish Institute for the Marine Environment (SIME), University of Gothenburg, Box 260, SE-405 30, Gothenburg, Sweden
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
27
|
Lehnert SJ, Kess T, Bentzen P, Kent MP, Lien S, Gilbey J, Clément M, Jeffery NW, Waples RS, Bradbury IR. Genomic signatures and correlates of widespread population declines in salmon. Nat Commun 2019; 10:2996. [PMID: 31278264 PMCID: PMC6611788 DOI: 10.1038/s41467-019-10972-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Global losses of biodiversity are occurring at an unprecedented rate, but causes are often unidentified. Genomic data provide an opportunity to isolate drivers of change and even predict future vulnerabilities. Atlantic salmon (Salmo salar) populations have declined range-wide, but factors responsible are poorly understood. Here, we reconstruct changes in effective population size (Ne) in recent decades for 172 range-wide populations using a linkage-based method. Across the North Atlantic, Ne has significantly declined in >60% of populations and declines are consistently temperature-associated. We identify significant polygenic associations with decline, involving genomic regions related to metabolic, developmental, and physiological processes. These regions exhibit changes in presumably adaptive diversity in declining populations consistent with contemporary shifts in body size and phenology. Genomic signatures of widespread population decline and associated risk scores allow direct and potentially predictive links between population fitness and genotype, highlighting the power of genomic resources to assess population vulnerability.
Collapse
Affiliation(s)
- S J Lehnert
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 E White Hills Rd, St. John's, Newfoundland, A1C 5X1, Canada.
| | - T Kess
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 E White Hills Rd, St. John's, Newfoundland, A1C 5X1, Canada
| | - P Bentzen
- Biology Department, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| | - M P Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - S Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - J Gilbey
- Marine Scotland Science, Freshwater Fisheries Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - M Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, 155 Ridge Rd, St. John's, NL, A1C 5R3, Canada
- Labrador Institute, Memorial University of Newfoundland, 219 Hamilton River Rd, Happy Valley-Goose Bay, NL, A0P 1E0, Canada
| | - N W Jeffery
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Dr, Dartmouth, NS, B2Y 4A2, Canada
| | - R S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - I R Bradbury
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 E White Hills Rd, St. John's, Newfoundland, A1C 5X1, Canada
- Biology Department, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
28
|
Chi X, Mueller-Navarra DC, Hylander S, Sommer U, Javidpour J. Food quality matters: Interplay among food quality, food quantity and temperature affecting life history traits of Aurelia aurita (Cnidaria: Scyphozoa) polyps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1280-1288. [PMID: 30625657 DOI: 10.1016/j.scitotenv.2018.11.469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Understanding the interaction between organisms' life history traits and environmental factors is an essential task in ecology. In spite of the increasing appreciation of jellyfish as an important component in marine ecosystem, there are still considerable gaps in understanding how the phase transition from the benthic polyp to the pelagic medusa stage is influenced by multiple environmental factors, including nutrition. To investigate survival, growth, and phase transition of Aurelia aurita polyps, we designed a factorial experiment manipulating food quantity (20μg C, 5μg C and 1.5μg C polyp-1 every other day), food quality (Artemia salina and two dietary manipulated Acartia tonsa), and temperature (13°C, 20°C, and 27°C). Temperature was the key factor determining phase transition of polyps and negatively affecting their survival rate and growth at 27°C, which reflected a summer heatwave scenario. Furthermore, at polyps' optimum tolerance temperature (20°C) in our study, budding reproduction benefits from high food concentrations. Interestingly, polyps fed with food containing high level highly unsaturated fatty acid (HUFA) were able to compensate for physiological stress caused by the extreme temperature, and could enhance budding reproduction at optimum temperature. Moreover, benthic-pelagic coupling (strobilation) was determined by temperature but affected significantly by food conditions. Mild temperature together with optimum food conditions contributes to inducing more polyps, which may potentially bring about great ephyrae recruitments during overwintering. In contrast, heatwave events can potentially regulate plankton community structure accompanied by changes of nutritional conditions of primary and secondary producers and thus, negatively affect the population dynamics of polyps. We suggest a novel polyp tolerance curve, which can help to understand jellyfish population dynamics in different seasons and ecosystems. This sets up a baseline for understanding how anticipated global warming and food conditions may affect the population size of benthic polyps and consequently pelagic medusae.
Collapse
Affiliation(s)
- Xupeng Chi
- Experimental Ecology (Food Webs), GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems- EEMiS, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Ulrich Sommer
- Experimental Ecology (Food Webs), GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jamileh Javidpour
- Experimental Ecology (Food Webs), GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany; Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
29
|
News Feature: Deadly deficiency at the heart of an environmental mystery. Proc Natl Acad Sci U S A 2018; 115:10532-10536. [PMID: 30327388 DOI: 10.1073/pnas.1815080115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Prevalent reliance of bacterioplankton on exogenous vitamin B1 and precursor availability. Proc Natl Acad Sci U S A 2018; 115:E10447-E10456. [PMID: 30322929 DOI: 10.1073/pnas.1806425115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vitamin B1 (B1 herein) is a vital enzyme cofactor required by virtually all cells, including bacterioplankton, which strongly influence aquatic biogeochemistry and productivity and modulate climate on Earth. Intriguingly, bacterioplankton can be de novo B1 synthesizers or B1 auxotrophs, which cannot synthesize B1 de novo and require exogenous B1 or B1 precursors to survive. Recent isolate-based work suggests select abundant bacterioplankton are B1 auxotrophs, but direct evidence of B1 auxotrophy among natural communities is scant. In addition, it is entirely unknown if bulk bacterioplankton growth is ever B1-limited. We show by surveying for B1-related genes in estuarine, marine, and freshwater metagenomes and metagenome-assembled genomes (MAGs) that most naturally occurring bacterioplankton are B1 auxotrophs. Pyrimidine B1-auxotrophic bacterioplankton numerically dominated metagenomes, but multiple other B1-auxotrophic types and distinct uptake and B1-salvaging strategies were also identified, including dual (pyrimidine and thiazole) and intact B1 auxotrophs that have received little prior consideration. Time-series metagenomes from the Baltic Sea revealed pronounced shifts in the prevalence of multiple B1-auxotrophic types and in the B1-uptake and B1-salvaging strategies over time. Complementarily, we documented B1/precursor limitation of bacterioplankton production in three of five nutrient-amendment experiments at the same time-series station, specifically when intact B1 concentrations were ≤3.7 pM, based on bioassays with a genetically engineered Vibrio anguillarum B1-auxotrophic strain. Collectively, the data presented highlight the prevalent reliance of bacterioplankton on exogenous B1/precursors and on the bioavailability of the micronutrients as an overlooked factor that could influence bacterioplankton growth and succession and thereby the cycling of nutrients and energy in aquatic systems.
Collapse
|
31
|
Welch DW, Futia MH, Rinchard J, Teffer AK, Miller KM, Hinch SG, Honeyfield DC. Thiamine Levels in Muscle and Eggs of Adult Pacific Salmon from the Fraser River, British Columbia. JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:191-200. [PMID: 29799640 DOI: 10.1002/aah.10024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Multiple species and stocks of Pacific salmon Oncorhynchus spp. have experienced large declines in the number of returning adults over a wide region of the Pacific Northwest due to poor marine survival (low smolt-to-adult survival rates). One possible explanation for reduced survival is thiamine deficiency. Thiamine (vitamin B1 ) is an essential vitamin with an integral role in many metabolic processes, and thiamine deficiency is an important cause of salmonid mortality in the Baltic Sea and in the Laurentian Great Lakes. To assess this possibility, we (1) compared muscle thiamine content over time in a holding experiment using Fraser River (British Columbia) Sockeye Salmon O. nerka to establish whether adults that died during the holding period had lower thiamine levels than survivors, (2) measured infectious loads of multiple pathogens in held fish, and (3) measured egg thiamine content from four species of Pacific salmon collected on Fraser River spawning grounds. Chinook Salmon O. tshawytscha had the lowest egg thiamine, followed by Sockeye Salmon; however, egg thiamine concentrations were above levels known to cause overt fry mortality. Thiamine vitamers in the muscle of Fraser River adult Sockeye Salmon shifted over a 13-d holding period, with a precipitous decline in thiamine pyrophosphate (the active form of thiamine used in enzyme reactions) in surviving fish. Survivors also carried lower loads of Flavobacterium psychrophilum than fish that died during in the holding period. Although there is no evidence of thiamine deficiency in the adults studied, questions remain about possible thiamine metabolism-fish pathogen relationships that influence survival.
Collapse
Affiliation(s)
- David W Welch
- Kintama Research Services, Ltd., 4737 Vista View Crescent, Nanaimo, British Columbia, V9V 1N8, Canada
| | - Matthew H Futia
- Department of Environmental Science and Ecology, The College at Brockport-State University of New York, Brockport, New York, 14420, USA
| | - Jacques Rinchard
- Department of Environmental Science and Ecology, The College at Brockport-State University of New York, Brockport, New York, 14420, USA
| | - Amy K Teffer
- Department of Biology, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Kristi M Miller
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Scott G Hinch
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | |
Collapse
|
32
|
Kraft CE, Angert ER. Competition for vitamin B1 (thiamin) structures numerous ecological interactions. QUARTERLY REVIEW OF BIOLOGY 2018; 92:151-68. [PMID: 29562121 DOI: 10.1086/692168] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thiamin (vitamin B1) is a cofactor required for essential biochemical reactions in all living organisms, yet free thiamin is scarce in the environment. The diversity of biochemical pathways involved in the acquisition, degradation, and synthesis of thiamin indicates that organisms have evolved numerous ecological strategies for meeting this nutritional requirement. In this review we synthesize information from multiple disciplines to show how the complex biochemistry of thiamin influences ecological outcomes of interactions between organisms in environments ranging from the open ocean and the Australian outback to the gastrointestinal tract of animals. We highlight population and ecosystem responses to the availability or absence of thiamin. These include widespread mortality of fishes, birds, and mammals, as well as the thiamin-dependent regulation of ocean productivity. Overall, we portray thiamin biochemistry as the foundation for molecularly mediated ecological interactions that influence survival and abundance of a vast array of organisms.
Collapse
|
33
|
Abstract
The microbiota of Drosophila melanogaster has a substantial impact on host physiology and nutrition. Some effects may involve vitamin provisioning, but the relationships between microbe-derived vitamins, diet, and host health remain to be established systematically. We explored the contribution of microbiota in supplying sufficient dietary thiamine (vitamin B1) to support D. melanogaster at different stages of its life cycle. Using chemically defined diets with different levels of available thiamine, we found that the interaction of thiamine concentration and microbiota did not affect the longevity of adult D. melanogaster. Likewise, this interplay did not have an impact on egg production. However, we determined that thiamine availability has a large impact on offspring development, as axenic offspring were unable to develop on a thiamine-free diet. Offspring survived on the diet only when the microbiota was present or added back, demonstrating that the microbiota was able to provide enough thiamine to support host development. Through gnotobiotic studies, we determined that Acetobacter pomorum, a common member of the microbiota, was able to rescue development of larvae raised on the no-thiamine diet. Further, it was the only microbiota member that produced measurable amounts of thiamine when grown on the thiamine-free fly medium. Its close relative Acetobacter pasteurianus also rescued larvae; however, a thiamine auxotrophic mutant strain was unable to support larval growth and development. The results demonstrate that the D. melanogaster microbiota functions to provision thiamine to its host in a low-thiamine environment. There has been a long-standing assumption that the microbiota of animals provides their hosts with essential B vitamins; however, there is not a wealth of empirical evidence supporting this idea, especially for vitamin B1 (thiamine). To determine whether this assumption is true, we used Drosophila melanogaster and chemically defined diets with different thiamine concentrations as a model. We found that the microbiota does provide thiamine to its host, enough to allow the development of flies on a thiamine-free diet. The power of the Drosophila-microbiota system allowed us to determine that one microbiota member in particular, Acetobacter pomorum, is responsible for the thiamine provisioning. Thereby, our study verifies this long-standing hypothesis. Finally, the methods used in this work are applicable for interrogating the underpinnings of other aspects of the tripartite interaction between diet, host, and microbiota.
Collapse
|
34
|
Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells. Biochem Biophys Res Commun 2018; 495:2579-2583. [PMID: 29278699 DOI: 10.1016/j.bbrc.2017.12.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 02/05/2023]
Abstract
Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB.
Collapse
|
35
|
Sutherland WJ, Butchart SH, Connor B, Culshaw C, Dicks LV, Dinsdale J, Doran H, Entwistle AC, Fleishman E, Gibbons DW, Jiang Z, Keim B, Roux XL, Lickorish FA, Markillie P, Monk KA, Mortimer D, Pearce-Higgins JW, Peck LS, Pretty J, Seymour CL, Spalding MD, Tonneijck FH, Gleave RA. A 2018 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity. Trends Ecol Evol 2018; 33:47-58. [DOI: 10.1016/j.tree.2017.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/03/2023]
|
36
|
Mörner T, Hansson T, Carlsson L, Berg AL, Ruiz Muñoz Y, Gustavsson H, Mattsson R, Balk L. Thiamine deficiency impairs common eider (Somateria mollissima) reproduction in the field. Sci Rep 2017; 7:14451. [PMID: 29089512 PMCID: PMC5663945 DOI: 10.1038/s41598-017-13884-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/02/2017] [Indexed: 11/09/2022] Open
Abstract
The Baltic Sea population of the common eider (Somateria mollissima) has declined dramatically during the last two decades. Recently, widespread episodic thiamine (vitamin B1) deficiency has been demonstrated in feral birds and suggested to contribute significantly to declining populations. Here we show that the decline of the common eider population in the Baltic Sea is paralleled by high mortality of the pulli a few days after hatch, owing to thiamine deficiency and probably also thereby associated abnormal behaviour resulting in high gull predation. An experiment with artificially incubated common eider eggs collected in the field revealed that thiamine treatment of pulli had a therapeutic effect on the thiamine status of the brain and prevented death. The mortality was 53% in untreated specimens, whereas it was only 7% in thiamine treated specimens. Inability to dive was also linked to brain damage typical for thiamine deficiency. Our results demonstrate how thiamine deficiency causes a range of symptoms in the common eider pulli, as well as massive die-offs a few days after hatch, which probably are the major explanation of the recent dramatic population declines.
Collapse
Affiliation(s)
- Torsten Mörner
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), SE-75189, Uppsala, Sweden.
| | - Tomas Hansson
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691, Stockholm, Sweden
| | | | - Anna-Lena Berg
- Medical Products Agency, Box 26, SE-75103, Uppsala, Sweden
| | - Yolanda Ruiz Muñoz
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691, Stockholm, Sweden.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Lagoas-Marcosende, ES-36310, Vigo, Spain
| | - Hanna Gustavsson
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691, Stockholm, Sweden
| | | | - Lennart Balk
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|