1
|
Skotland T, Ekroos K, Llorente A, Sandvig K. Quantitative Lipid Analysis of Extracellular Vesicle Preparations: A Perspective. J Extracell Vesicles 2025; 14:e70049. [PMID: 40091364 PMCID: PMC11911390 DOI: 10.1002/jev2.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Quantitative lipidomic analysis performed by mass spectrometry is required for determination of the lipid content of extracellular vesicles (EVs). Such methods can provide information about the total amount of lipids, the lipid species composition, the purity of EV samples as well as the cellular origin of the EVs. There are, however, many pitfalls when performing lipid analyses. Thus, any non-specialist should collaborate with experts in lipidomics. In addition to many good review articles giving advice about lipid analyses, we recommend the information and guidelines published by the Lipidomic Standard Initiative, an interest group affiliated with the International Lipidomics Society.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University Hospital, The Norwegian Radium HospitalOsloNorway
- Centre for Cancer Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | | | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University Hospital, The Norwegian Radium HospitalOsloNorway
- Centre for Cancer Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
- Department for Mechanical, Electronics and Chemical EngineeringOslo Metropolitan UniversityOsloNorway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University Hospital, The Norwegian Radium HospitalOsloNorway
- Centre for Cancer Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
- Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
2
|
Wang Y, Liu C, Pang J, Li Z, Zhang J, Dong L. The Extra-Tumoral Vaccine Effects of Apoptotic Bodies in the Advancement of Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410503. [PMID: 39871756 PMCID: PMC11878267 DOI: 10.1002/smll.202410503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The induction of apoptosis in tumor cells is a common target for the development of anti-tumor therapies; however, these therapies still leave patients at increased risk of disease recurrence. For example, apoptotic tumor cells can promote tumor growth and immune evasion via the secretion of metabolites, apoptotic extracellular vesicles, and induction of pro-tumorigenic macrophages. This paradox of apoptosis induction and the pro-tumorigenic effects of tumor cell apoptosis has begged the question of whether apoptosis is a suitable cancer therapy, and led to further explorations into other immunogenic cell death-based approaches. However, these strategies still face multiple challenges, the most critical of which is the tumor microenvironment. Contrary to the promotion of immune tolerance mediated by apoptotic tumor cells, apoptotic bodies with enriched tumor-related antigens have demonstrated great immunogenic potential, as evidenced by their ability to initiate systemic T-cell immune responses. These characteristics indicate that apoptotic body-based therapies could be ideal "in situ" extra-tumoral tumor vaccine candidates for the treatment of cancers, and further address the current issues with apoptosis-based or immunotherapy treatments. Although not yet tested clinically, apoptotic body-based vaccines have the potential to better treatment strategies and patient outcomes in the future.
Collapse
Affiliation(s)
- Yulian Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Chunyan Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiayun Pang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhenjiang Li
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- Chemistry and Biomedicine Innovative CenterNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
3
|
Huang W, Han G, Wang D, Zhu Y, Wang H, Liu Z, Uvdal K, Geng J, Hu Z, Zhang R, Zhang Z. Lipophilicity Modulation of Fluorescent Probes for In Situ Imaging of Cellular Microvesicle Dynamics. J Am Chem Soc 2025; 147:4147-4158. [PMID: 39749720 DOI: 10.1021/jacs.4c13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-Cn, with n ranging from 1 to 18) that feature varying aliphatic side chains (CnH2n+1). Through in situ cell imaging and analysis, we found that IC-Cn location is highly related to their lipophilicities and the phospholipid layer hydrophobic microenvironments in cellular compartments. In detail, IC-C1 and IC-C2 specifically localize MVs both inside and outside cells. In contrast, IC-C3, IC-C4, and IC-C5 label cellular MVs and mitochondria but with distinct fluorescence lifetimes. Using these probes strategically, we have discovered that, in addition to the biogenesis of MVs from plasma membranes and damaged mitochondria, newly formed MVs can undergo fusion and fission processes. Moreover, mitochondria-derived MVs, beyond being released from parent cells, can fuse with lysosomes to facilitate the removal of dysfunctional mitochondria. The work not only provides new insights into MV physiology but also inspires the design strategies for probes used in specific labeling in cell studies.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yingzhong Zhu
- School of Materials and Chemical Engineering, Chuzhou University, Chu Zhou, Anhui 239000, China
| | - Hui Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Junlong Geng
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
4
|
Ma X, Peng L, Zhu X, Chu T, Yang C, Zhou B, Sun X, Gao T, Zhang M, Chen P, Chen H. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2025; 30:422-445. [PMID: 39522104 DOI: 10.1007/s10495-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) serve as critical mediators of intercellular communication, encompassing exosomes, microvesicles, and apoptotic vesicles that play significant roles in diverse physiological and pathological contexts. Numerous studies have demonstrated that EVs derived from mesenchymal stem cells (MSC-EVs) play a pivotal role in facilitating tissue and organ repair, alleviating inflammation and apoptosis, enhancing the proliferation of endogenous stem cells within tissues and organs, and modulating immune function-these functions have been extensively utilized in clinical applications. The precise classification, isolation, and identification of MSC-EVs are essential for their clinical applications. This article provides a comprehensive overview of the biological properties of EVs, emphasizing both their advantages and limitations in isolation and identification methodologies. Additionally, we summarize the protein markers associated with MSC-EVs, emphasizing their significance in the treatment of various diseases. Finally, this article addresses the current challenges and dilemmas in developing clinical applications for MSC-EVs, aiming to offer valuable insights for future research.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lanwei Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Changcheng Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiangwei Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China.
| |
Collapse
|
5
|
Hsueh W, Wu Y, Weng M, Liu S, Santavanond JP, Liu Y, Lin C, Lai C, Lu Y, Hsu JY, Gao H, Lee J, Wei S, Lyu P, Poon IKH, Hsieh H, Chiu Y. Novel Naphthyridones Targeting Pannexin 1 for Colitis Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411538. [PMID: 39739600 PMCID: PMC11831487 DOI: 10.1002/advs.202411538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Indexed: 01/02/2025]
Abstract
Pannexin 1 (PANX1) forms cell-surface channels capable of releasing signaling metabolites for diverse patho-physiological processes. While inhibiting dysregulated PANX1 has been proposed as a therapeutic strategy for many pathological conditions, including inflammatory bowel disease (IBD), low efficacy, or poor specificity of classical PANX1 inhibitors introduces uncertainty for their applications in basic and translational research. Here, hit-to-lead optimization is performed and a naphthyridone, compound 12, is identified as a new PANX1 inhibitor with an IC50 of 0.73 µm that does not affect pannexin-homologous LRRC8/SWELL1 channels. Using structure-activity relationship analysis, mutagenesis, cell thermal shift assays, and molecular docking, it is revealed that compound 12 directly engages PANX1 Trp74 residue. Using a dextran sodium sulfate mouse model of IBD, it is found that compound 12 markedly reduced colitis severity, highlighting new PANX1 inhibitors as a proof-of-concept treatment for IBD. These data describe the mechanism of action for a new PANX1 inhibitor, uncover the binding site for future drug design, and present a targeted strategy for treating IBD.
Collapse
Affiliation(s)
- Wen‐Yun Hsueh
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
| | - Yi‐Ling Wu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Meng‐Tzu Weng
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
- Department of Medical ResearchNational Taiwan University HospitalHsin‐Chu BranchHsinchu302058Taiwan
| | - Shin‐Yun Liu
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
| | - Jascinta P Santavanond
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVIC3086Australia
- Research Centre for Extracellular VesiclesLa Trobe UniversityVIC3086Australia
| | - Yi‐Chung Liu
- Institute of Population Health SciencesNational Health Research InstitutesMiaoli County350401Taiwan
| | - Ching‐I Lin
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
| | - Cheng‐Nong Lai
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Ru Lu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Jing Yin Hsu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hong‐Yu Gao
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Jinq‐Chyi Lee
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
| | - Shu‐Chen Wei
- Department of Internal MedicineNational Taiwan University HospitalTaipei City100229Taiwan
| | - Ping‐Chiang Lyu
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ivan K H Poon
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVIC3086Australia
- Research Centre for Extracellular VesiclesLa Trobe UniversityVIC3086Australia
| | - Hsing‐Pang Hsieh
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
| | - Yu‐Hsin Chiu
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
- Departments of Medical Science, Life Science, and MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| |
Collapse
|
6
|
Mohamedali A, Heng B, Amirkhani A, Krishnamurthy S, Cantor D, Lee PJM, Shin JS, Solomon M, Guillemin GJ, Baker MS, Ahn SB. A Proteomic Examination of Plasma Extracellular Vesicles Across Colorectal Cancer Stages Uncovers Biological Insights That Potentially Improve Prognosis. Cancers (Basel) 2024; 16:4259. [PMID: 39766158 PMCID: PMC11674649 DOI: 10.3390/cancers16244259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recent advancements in understanding plasma extracellular vesicles (EVs) and their role in disease biology have provided additional unique insights into the study of Colorectal Cancer (CRC). METHODS This study aimed to gain biological insights into disease progression from plasma-derived extracellular vesicle proteomic profiles of 80 patients (20 from each CRC stage I-IV) against 20 healthy age- and sex-matched controls using a high-resolution SWATH-MS proteomics with a reproducible centrifugation method to isolate plasma EVs. RESULTS We applied the High-Stringency Human Proteome Project (HPP) guidelines for SWATH-MS analysis, which refined our initial EV protein identification from 1362 proteins (10,993 peptides) to a more reliable and confident subset of 853 proteins (6231 peptides). In early-stage CRC, we identified 11 plasma EV proteins with differential expression between patients and healthy controls (three up-regulated and eight down-regulated), many of which are involved in key cancer hallmarks. Additionally, within the same cohort, we analysed EV proteins associated with tumour recurrence to identify potential prognostic indicators for CRC. A subset of up-regulated proteins associated with extracellular vesicle formation (GDI1, NSF, and TMED9) and the down-regulation of TSG101 suggest that micro-metastasis may have occurred earlier than previously anticipated. DISCUSSION By employing stringent proteomic analysis and a robust SWATH-MS approach, we identified dysregulated EV proteins that potentially indicate early-stage CRC and predict recurrence risk, including proteins involved in metabolism, cytoskeletal remodelling, and immune response. While our findings underline discrepancies with other studies due to differing isolation and stringency parameters, they provide valuable insights into the complexity of the EV proteome, emphasising the need for standardised protocols and larger, well-controlled studies to validate potential biomarkers.
Collapse
Affiliation(s)
- Abidali Mohamedali
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; (A.A.); (D.C.)
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| | - David Cantor
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; (A.A.); (D.C.)
| | - Peter Jun Myung Lee
- Department of Colorectal Surgery RPAH & Institute of Academic Surgery, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia; (P.J.M.L.); (M.S.)
| | - Joo-Shik Shin
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW 2050, Australia;
| | - Michael Solomon
- Department of Colorectal Surgery RPAH & Institute of Academic Surgery, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia; (P.J.M.L.); (M.S.)
| | - Gilles J. Guillemin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor 16680, Indonesia;
| | - Mark S. Baker
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (A.M.); (B.H.); (S.K.); (M.S.B.)
| |
Collapse
|
7
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
9
|
Miao X, Wu X, You W, He K, Chen C, Pathak JL, Zhang Q. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J Transl Med 2024; 22:810. [PMID: 39218900 PMCID: PMC11367938 DOI: 10.1186/s12967-024-05451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs' constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs' tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Miao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaojin Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenran You
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Kaini He
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Hu Z, Qian S, Zhao Q, Lu B, Lu Q, Wang Y, Zhang L, Mao X, Wang D, Cui W, Sun X. Engineering strategies for apoptotic bodies. SMART MEDICINE 2024; 3:e20240005. [PMID: 39420952 PMCID: PMC11425054 DOI: 10.1002/smmd.20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles containing proteins, lipids, nucleic acids, and metabolites secreted by cells under various physiological and pathological conditions that mediate intercellular communication. The main types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are vesicles released during the terminal stages of cellular apoptosis, enriched with diverse biological entities and characterized by distinct morphological features. As a result, ABs possess great potential in fields like disease diagnosis, immunotherapy, regenerative therapy, and drug delivery due to their specificity, targeting capacity, and biocompatibility. However, their therapeutic efficacy is notably heterogeneous, and an overdose can lead to side effects such as accumulation in the liver, spleen, lungs, and gastrointestinal system. Through bioengineering, the properties of ABs can be optimized to enhance drug-loading efficiency, targeting precision, and multifunctionality for clinical implementations. This review focuses on strategies such as transfection, sonication, electroporation, surface engineering, and integration with biomaterials to enable ABs to load cargoes and enhance targeting, providing insights into the engineering of ABs.
Collapse
Affiliation(s)
- Zheyuan Hu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhuan Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danru Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Santavanond JP, Chiu YH, Tixeira R, Liu Z, Yap JKY, Chen KW, Li CL, Lu YR, Roncero-Carol J, Hoijman E, Rutter SF, Shi B, Ryan GF, Hodge AL, Caruso S, Baxter AA, Ozkocak DC, Johnson C, Day ZI, Mayfosh AJ, Hulett MD, Phan TK, Atkin-Smith GK, Poon IKH. The small molecule raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Cell Death Dis 2024; 15:123. [PMID: 38336804 PMCID: PMC10858176 DOI: 10.1038/s41419-024-06513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Discovery of new small molecules that can activate distinct programmed cell death pathway is of significant interest as a research tool and for the development of novel therapeutics for pathological conditions such as cancer and infectious diseases. The small molecule raptinal was discovered as a pro-apoptotic compound that can rapidly trigger apoptosis by promoting the release of cytochrome c from the mitochondria and subsequently activating the intrinsic apoptotic pathway. As raptinal is very effective at inducing apoptosis in a variety of different cell types in vitro and in vivo, it has been used in many studies investigating cell death as well as the clearance of dying cells. While examining raptinal as an apoptosis inducer, we unexpectedly identified that in addition to its pro-apoptotic activities, raptinal can also inhibit the activity of caspase-activated Pannexin 1 (PANX1), a ubiquitously expressed transmembrane channel that regulates many cell death-associated processes. By implementing numerous biochemical, cell biological and electrophysiological approaches, we discovered that raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Surprisingly, raptinal was found to inhibit cleavage-activated PANX1 via a mechanism distinct to other well-described PANX1 inhibitors such as carbenoxolone and trovafloxacin. Furthermore, raptinal also interfered with PANX1-regulated apoptotic processes including the release of the 'find-me' signal ATP, the formation of apoptotic cell-derived extracellular vesicles, as well as NLRP3 inflammasome activation. Taken together, these data identify raptinal as the first compound that can simultaneously induce apoptosis and inhibit PANX1 channels. This has broad implications for the use of raptinal in cell death studies as well as in the development new PANX1 inhibitors.
Collapse
Affiliation(s)
- Jascinta P Santavanond
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Yu-Hsin Chiu
- Departments of Medical Science, Life Science, and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Rochelle Tixeira
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Zonghan Liu
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jeremy K Y Yap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chen-Lu Li
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ru Lu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Joan Roncero-Carol
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Esteban Hoijman
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Stephanie F Rutter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Bo Shi
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma F Ryan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Amy L Hodge
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Sarah Caruso
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Amy A Baxter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Chad Johnson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Zoe I Day
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alyce J Mayfosh
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Thanh K Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medial Research, Parkville, Vic, Australia
| | - Georgia K Atkin-Smith
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medial Research, Parkville, Vic, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Haghjooy Javanmard S, Rafiee L, Bahri Najafi M, Khorsandi D, Hasan A, Vaseghi G, Makvandi P. Microfluidic-based technologies in cancer liquid biopsy: Unveiling the role of horizontal gene transfer (HGT) materials. ENVIRONMENTAL RESEARCH 2023; 238:117083. [PMID: 37690629 DOI: 10.1016/j.envres.2023.117083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Liquid biopsy includes the isolating and analysis of non-solid biological samples enables us to find new ways for molecular profiling, prognostic assessment, and better therapeutic decision-making in cancer patients. Despite the conventional theory of tumor development, a non-vertical transmission of DNA has been reported among cancer cells and between cancer and normal cells. The phenomenon referred to as horizontal gene transfer (HGT) has the ability to amplify the advancement of tumors by disseminating genes that encode molecules conferring benefits to the survival or metastasis of cancer cells. Currently, common liquid biopsy approaches include the analysis of extracellular vesicles (EVs) and tumor-free DNA (tfDNA) derived from primary tumors and their metastatic sites, which are well-known HGT mediators in cancer cells. Current technological and molecular advances expedited the high-throughput and high-sensitive HGT materials analyses by using new technologies, such as microfluidics in liquid biopsies. This review delves into the convergence of microfluidic-based technologies and the investigation of Horizontal Gene Transfer (HGT) materials in cancer liquid biopsy. The integration of microfluidics offers unprecedented advantages such as high sensitivity, rapid analysis, and the ability to analyze rare cell populations. These attributes are instrumental in detecting and characterizing CTCs, circulating nucleic acids, and EVs, which are carriers of genetic cargo that could potentially undergo HGT. The phenomenon of HGT in cancer has raised intriguing questions about its role in driving genomic diversity and acquired drug resistance. By leveraging microfluidic platforms, researchers have been able to capture and analyze individual cells or genetic material with enhanced precision, shedding light on the potential transfer of genetic material between cancer cells and surrounding stromal cells. Furthermore, the application of microfluidics in single-cell sequencing has enabled the elucidation of the genetic changes associated with HGT events, providing insights into the evolution of tumor genomes. This review also discusses the challenges and opportunities in studying HGT materials using microfluidic-based technologies. In conclusion, microfluidic-based technologies have significantly advanced the field of cancer liquid biopsy, enabling the sensitive and accurate detection of HGT materials. As the understanding of HGT's role in tumor evolution and therapy resistance continues to evolve, the synergistic integration of microfluidics and HGT research promises to provide valuable insights into cancer biology, with potential implications for precision oncology and therapeutic strategies.
Collapse
Affiliation(s)
- Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
13
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
14
|
Soleimanifar N, Assadiasl S, Kalateh E, Hassanvand MS, Sadr M, Mojtahedi H, Nadafi K, Nicknam MH, Edalatifard M. Circulating Exosomes and Ambient Air Pollution Exposure in COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2023; 10:412-421. [PMID: 37676651 DOI: 10.15326/jcopdf.2023.0400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by progressive obstruction of airways due to chronic inflammation. Both genetic and environmental components are risk factors for COPD. The most common cause of COPD is smoking. However, evidence suggests that 17% to 38% of COPD patients are nonsmokers, so other factors like air pollution may also play a role. Objective The relationship between serum exosomes and exposure to particulate matter (PM) <2.5 and 10 micrometers (µm) in the residing environment of COPD patients and healthy groups was investigated. The correlation between inflammatory cytokine levels with exosome count was also studied. Methods Peripheral blood samples were taken from 20 COPD patients without a smoking history or a family history of COPD, along with 20 nonsmoker healthy controls. The serum exosomes were counted by flow cytometry using a CD81 marker. The exposure to PM2.5 and PM10 was measured in daily, weekly, and monthly intervals based on the longitudinal measurements of the monitoring stations, and the correlation between exosome count and air pollutants was analyzed. Results The serum CD81+ exosome count in COPD patients was significantly elevated compared to the healthy controls and this was correlated with daily PM10 (P-value=0.02) and monthly PM2.5 (P-value=0.02) exposure. Although interferon-gamma levels of COPD patients were higher than healthy controls, there was no correlation between exosome count and cytokine level. Conclusions Considering the significant relationship between air pollutants and the count of serum exosomes demonstrated in the present study, air pollution might be a considerable risk factor in the progression of airway inflammation.
Collapse
Affiliation(s)
- Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Effat Kalateh
- Thoracic Research Center, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Nadafi
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Maryam Edalatifard
- Thoracic Research Center, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
15
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
16
|
Zhu Y, Chen X, Liao Y. Mesenchymal Stem Cells-Derived Apoptotic Extracellular Vesicles (ApoEVs): Mechanism and Application in Tissue Regeneration. Stem Cells 2023; 41:837-849. [PMID: 37338056 DOI: 10.1093/stmcls/sxad046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are commonly used as a source for cellular therapy owing to their strong immunosuppressive and regenerative effects. However, MSCs undergo extensive apoptosis within a short period after transplantation. During apoptosis, MSCs generate several apoptotic extracellular vesicles (MSCs-ApoEVs). MSCs-ApoEVs are rich in miRNomes, metabolites, and proteomes. They are critical intercellular communication mediators that can exert different regulatory effects on recipient cells. MSCs-ApoEVs have been shown to promote regeneration in the skin, hair, bone, muscle, and vascular system, etc. This review describes the production, release, isolation, and functionality of ApoEVs in detail. Furthermore, we summarize the existing mechanisms of MSCs-ApoEVs used for tissue regeneration and evaluate the possible strategies for their clinical application.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
18
|
Yu L, Zhu G, Zhang Z, Yu Y, Zeng L, Xu Z, Weng J, Xia J, Li J, Pathak JL. Apoptotic bodies: bioactive treasure left behind by the dying cells with robust diagnostic and therapeutic application potentials. J Nanobiotechnology 2023; 21:218. [PMID: 37434199 DOI: 10.1186/s12951-023-01969-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Apoptosis, a form of programmed cell death, is essential for growth and tissue homeostasis. Apoptotic bodies (ApoBDs) are a form of extracellular vesicles (EVs) released by dying cells in the last stage of apoptosis and were previously regarded as debris of dead cells. Recent studies unraveled that ApoBDs are not cell debris but the bioactive treasure left behind by the dying cells with an important role in intercellular communications related to human health and various diseases. Defective clearance of ApoBDs and infected-cells-derived ApoBDs are possible etiology of some diseases. Therefore, it is necessary to explore the function and mechanism of the action of ApoBDs in different physiological and pathological conditions. Recent advances in ApoBDs have elucidated the immunomodulatory, virus removal, vascular protection, tissue regenerative, and disease diagnostic potential of ApoBDs. Moreover, ApoBDs can be used as drug carriers enhancing drug stability, cellular uptake, and targeted therapy efficacy. These reports from the literature indicate that ApoBDs hold promising potential for diagnosis, prognosis, and treatment of various diseases, including cancer, systemic inflammatory diseases, cardiovascular diseases, and tissue regeneration. This review summarizes the recent advances in ApoBDs-related research and discusses the role of ApoBDs in health and diseases as well as the challenges and prospects of ApoBDs-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zidan Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jinlong Weng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Junyi Xia
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jiang Li
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Janak L Pathak
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev 2023:114974. [PMID: 37356623 DOI: 10.1016/j.addr.2023.114974] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular Vesicles (EVs), particularly exosomes, recently exploded into nanomedicine as an emerging drug delivery approach due to their superior biocompatibility, circulating stability, and bioavailability in vivo. However, EV heterogeneity makes molecular targeting precision a critical challenge. Deciphering key molecular drivers for controlling EV tissue targeting specificity is in great need. Artificial intelligence (AI) brings powerful prediction ability for guiding the rational design of engineered EVs in precision control for drug delivery. This review focuses on cutting-edge nano-delivery via integrating large-scale EV data with AI to develop AI-directed EV therapies and illuminate the clinical translation potential. We briefly review the current status of EVs in drug delivery, including the current frontier, limitations, and considerations to advance the field. Subsequently, we detail the future of AI in drug delivery and its impact on precision EV delivery. Our review discusses the current universal challenge of standardization and critical considerations when using AI combined with EVs for precision drug delivery. Finally, we will conclude this review with a perspective on future clinical translation led by a combined effort of AI and EV research.
Collapse
Affiliation(s)
- Zachary F Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Kiley S Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
20
|
Constanzo J, Bouden Y, Godry L, Kotzki PO, Deshayes E, Pouget JP. Immunomodulatory effects of targeted radionuclide therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:105-136. [PMID: 37438015 DOI: 10.1016/bs.ircmb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
It is now clear that conventional radiation therapy can reinstate cell death immunogenicity. Recent preclinical data indicate that targeted radionuclide therapy that irradiate tumors at continuous low dose rate also can elicit immunostimulatory effects and represents a promising strategy to circumvent immune checkpoint inhibitor resistance. In this perspective, we discuss the accumulating preclinical and clinical data suggesting that activation of the immune system through the cGAS-STING axis and the release of extracellular vesicles by irradiated cells, participate to this antitumor immunity. This should need to be considered for adapting clinical practices to state of the art of the radiobiology and to increase targeted radionuclide therapy effectiveness.
Collapse
Affiliation(s)
- J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
| | - Y Bouden
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - L Godry
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - P-O Kotzki
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - E Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - J-P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
21
|
Jiang Y, Lyu Z, Ralahy B, Liu J, Roussel T, Ding L, Tang J, Kosta A, Giorgio S, Tomasini R, Liang XJ, Dusetti N, Iovanna J, Peng L. Dendrimer nanosystems for adaptive tumor-assisted drug delivery via extracellular vesicle hijacking. Proc Natl Acad Sci U S A 2023; 120:e2215308120. [PMID: 36745793 PMCID: PMC9963653 DOI: 10.1073/pnas.2215308120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems (DDSs) that can overcome tumor heterogeneity and achieve deep tumor penetration are challenging to develop yet in high demand for cancer treatment. We report here a DDS based on self-assembling dendrimer nanomicelles for effective and deep tumor penetration via in situ tumor-secreted extracellular vesicles (EVs), an endogenous transport system that evolves with tumor microenvironment. Upon arrival at a tumor, these dendrimer nanomicelles had their payload repackaged by the cells into EVs, which were further transported and internalized by other cells for delivery "in relay." Using pancreatic and colorectal cancer-derived 2D, 3D, and xenograft models, we demonstrated that the in situ-generated EVs mediated intercellular delivery, propagating cargo from cell to cell and deep within the tumor. Our study provides a new perspective on exploiting the intrinsic features of tumors alongside dendrimer supramolecular chemistry to develop smart and effective DDSs to overcome tumor heterogeneity and their evolutive nature thereby improving cancer therapy.
Collapse
Affiliation(s)
- Yifan Jiang
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Zhenbin Lyu
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Brigino Ralahy
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Juan Liu
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, 100190Beijing, China
- University of Chinese Academy of Sciences, 100049Beijing, China
| | - Tom Roussel
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Ling Ding
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Jingjie Tang
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Artemis Kosta
- Aix Marseille Université, CNRS, Mediterranean Institute of Microbiology,FR3479, 13009Marseille, France
| | - Suzanne Giorgio
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Richard Tomasini
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, 100190Beijing, China
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| |
Collapse
|
22
|
Expanding therapeutic strategies for intracellular bacterial infections through conjugates of apoptotic body-antimicrobial peptides. Drug Discov Today 2023; 28:103444. [PMID: 36400344 DOI: 10.1016/j.drudis.2022.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.
Collapse
|
23
|
Marki A, Ley K. The expanding family of neutrophil-derived extracellular vesicles. Immunol Rev 2022; 312:52-60. [PMID: 35665941 PMCID: PMC10111154 DOI: 10.1111/imr.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Neutrophils are immune cells involved in several inflammatory and homeostatic processes. Their capacity to release cargo can be classified based on whether the cargo is released on its own, or in conjunction with plasma membrane structures. Examples of plasma membrane-free secretion modes are degranulation, neutrophil extracellular trap (NET) release, and cytokine release through inflammasome formation. The most studied membrane-covered neutrophil-derived structures are exosomes and ectosomes that are collectively called extracellular vesicles (EV). Apoptotic vesicles are another recognized EV subtype. Over the last decade, additional membrane-covered neutrophil-derived structures were characterized: migratory cytoplasts, migrasomes, and elongated neutrophil-derived structures (ENDS). All these structures are smaller than the neutrophils, cannot reproduce themselves, and thus meet the latest consensus definition of EVs. In this review, we focus on the less well-studied neutrophil EVs: apoptotic vesicles, cytoplasts, migrasomes, and ENDS.
Collapse
Affiliation(s)
- Alex Marki
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Klaus Ley
- La Jolla Institute for Immunology and Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
24
|
Zhou M, Li YJ, Tang YC, Hao XY, Xu WJ, Xiang DX, Wu JY. Apoptotic bodies for advanced drug delivery and therapy. J Control Release 2022; 351:394-406. [PMID: 36167267 DOI: 10.1016/j.jconrel.2022.09.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) have emerged as promising candidates for multiple biomedical applications. Major types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are conferred most properties from parent cells in the final stages of apoptosis. A wide variety of sources and stable morphological features are endowed to ABs by the rigorous apoptotic program. ABs accommodate more functional biomolecules by relying on the larger volume and maintaining their naturalness in circulation. The predominant body surface ratio of ABs facilitates their recognition by recipient cells and is advantageous for interactions with microenvironments. ABs can modulate and alleviate symptoms of numerous diseases for their origins, circulation, and high biocompatibility. In addition, ABs have been emerging in disease diagnosis, immunotherapy, regenerative therapy, and drug delivery. Here, we aim to present a thorough discussion on current knowledge about ABs. Of particular interest, we will summarize the application of AB-based strategies for diagnosis and disease therapy. Perspectives for the development of ABs in biomedical applications are highlighted.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Yu-Cheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Xin-Yan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Wen-Jie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China.
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China.
| |
Collapse
|
25
|
Chen D, Zhao Z, Zhang K, Jin F, Zheng C, Jin Y. Protocol for differential centrifugation-based separation and characterization of apoptotic vesicles derived from human mesenchymal stem cells. STAR Protoc 2022; 3:101695. [PMID: 36129822 PMCID: PMC9494288 DOI: 10.1016/j.xpro.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Apoptotic vesicles (apoVs) are specific extracellular vesicles generated during apoptosis and play important roles in multiple physiological and pathophysiological settings. Here, we present a protocol using differential centrifugation to separate apoVs from human mesenchymal stem cells (MSCs) after induction of apoptosis. We describe how to characterize apoV size and morphology by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), and determination of specific biomarker expression by immunoblotting. Our protocol will be useful for preparing apoVs for further functional analysis. For complete details on the use and execution of this protocol, please refer to Zheng et al. (2021).
Collapse
Affiliation(s)
- Da Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Zixuan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Kai Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China,Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Chenxi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China,Corresponding author
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China,Corresponding author
| |
Collapse
|
26
|
Luo Y, Li Z, Wang X, Wang J, Duan X, Li R, Peng Y, Ye Q, He Y. Characteristics of culture-condition stimulated exosomes or their loaded hydrogels in comparison with other extracellular vesicles or MSC lysates. Front Bioeng Biotechnol 2022; 10:1016833. [PMID: 36185445 PMCID: PMC9523448 DOI: 10.3389/fbioe.2022.1016833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, it has become popular to study the use of extracellular vesicles (EVs) secreted by stem cells to repair damaged tissues or lost cells. Various cell types and physiological fluids release EVs, and they play an important role in cell-to-cell communication. Moreover, EVs have been implicated in important processes, such as immune responses, homeostasis maintenance, coagulation, inflammation, cancer progression, angiogenesis, and antigen presentation. Thus, EVs participate in both physiological and pathological progression. The main classes of EVs include exosomes, microvesicles (MVs), and apoptotic bodies (ApoBDs). Exosomes, which carry a mass of signal molecules such as RNA, DNA, proteins, and lipids, are the most important of these EVs subsets. Currently, exosomes are generating substantial interest in the scientific community. Exosomes loaded hydrogels or under different cultural environments exhibit different properties and functions. Therefore, the exosomes obtained from different sources and conditions are worth reviewing. More importantly, no review article has compared the different EVs, such as exosomes, MVs, ApoBDs, and mesenchymal stem cell (MSC) lysates, which are special soluble substances. The differentiation between EVs and MSC lysates is a logical approach. Accordingly, this review provides an update on the latest progress in studying the roles of culture-condition stimulated exosomes or their loaded hydrogels and the differentiation between exosomes, MVs, ApoBDs, and MSC lysates. Published studies were retrieved from the PubMed® database for review.
Collapse
Affiliation(s)
- Yu Luo
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Li
- Department of Orthodontics, School and Hospital of Stomatology, Nanchang University, Nanchang, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruohan Li
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youjian Peng
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Nanchang University, Nanchang, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
27
|
Zmigrodzka M, Witkowska-Pilaszewicz O, Pingwara R, Pawlak A, Winnicka A. Canine B Cell Lymphoma- and Leukemia-Derived Extracellular Vesicles Moderate Differentiation and Cytokine Production of T and B Cells In Vitro. Int J Mol Sci 2022; 23:ijms23179831. [PMID: 36077229 PMCID: PMC9456052 DOI: 10.3390/ijms23179831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are formed in physiological and pathological conditions by almost all mammalian cells. They are known as submicron “molecules” that transport and horizontally transfer their cargo from maternal cells to donor cells. Moreover, cancer cells produce tumor-derived EVs (TEVs), which are present in blood of patients with solid tumors and those with hematological malignancies. Their role in evading immune system surveillance and induction of immunosuppression in hematological cancer is limited. According to the authors’ best knowledge, there is no information about the impact of TEVs from canine lymphoma (CLBL-1) and leukemia (CLB70) on lymphocytes isolated from peripheral blood mononuclear cells (PBMCs). In conclusion, we demonstrate in in vitro experiments that CLBL-1 EVs and CLB70 EVs are effectively taken up by T and B lymphocytes. TEVs decrease the percentage of B lymphocytes and increase that of T lymphocytes, and change T cells’ phenotype into the effector memory (EM) or terminally differentiated effector memory (TEMRA) subtype after in vitro co-culturing. Moreover, CLBL70 EVs have pro-tumorogenic properties by inhibiting the production of CD8+IL-17+ cells.
Collapse
Affiliation(s)
- Magdalena Zmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, CK Norwida 31, 50-375 Wroclaw, Poland
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| |
Collapse
|
28
|
Shen M, Wu X, Zhu M, Yi X. Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomater Sci 2022; 10:5756-5785. [PMID: 36017968 DOI: 10.1039/d2bm01044e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials have shown significant advantages in cancer theranostics, owing to their enhanced permeability and retention effect in tumors and multi-function integration capability. Biological membranes, which are collected from various cells and their secreted membrane structures, can further be applied to establish membrane-based nanomaterials with perfect biocompatibility, tumor-targeting capacity, immune-stimulatory activity and adjustable versatility for cancer therapy. In this review, according to their source, membranes are divided into four groups: (1) cell membranes; (2) secretory membranes; (3) engineered membranes; and (4) hybrid membranes. First, cell membranes can be extracted from natural cells of the body, tumor tissue cells, and bacteria. Furthermore, secretory membranes mainly refer to exosome, apoptotic body and bacterial outer membrane vesicle, and membranes with specific protein/peptide expression or therapeutic inclusions are obtained from engineered cells. Finally, a hybrid membrane will be constituted by two or more of the abovementioned membranes. These membranes can form drug-carrying nanoparticles themselves or coat multi-functional nanoparticles, further realizing efficient cancer therapy. We summarize the application of various biological membrane-based nanomaterials in cancer therapy and point out their advantages as well as the places that need to be further improved, providing systematic knowledge of this field and a strategy for further optimization.
Collapse
Affiliation(s)
- Mengling Shen
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaojie Wu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Minqian Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
29
|
Carnino JM, Lee H, Smith LC, Sunil VR, Rancourt RC, Vayas K, Cervelli J, Kwok ZH, Ni K, Laskin JD, Jin Y, Laskin DL. Microvesicle-Derived miRNAs Regulate Proinflammatory Macrophage Activation in the Lung Following Ozone Exposure. Toxicol Sci 2022; 187:162-174. [PMID: 35201360 PMCID: PMC9041552 DOI: 10.1093/toxsci/kfac025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ozone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in increases in bronchoalveolar lavage fluid EVs, which were comprised predominantly of microvesicles (MVs). NanoFACS analysis revealed that MVs generated following both air and ozone exposure was largely from CD45+ myeloid cells; these MVs were readily taken up by macrophages. Functionally, MVs from ozone, but not air treated mice, upregulated mRNA expression of inflammatory proteins in macrophages including inducible nitric oxide synthase (iNOS), CXCL-1, CXCL-2, and interleukin (IL)-1β. The miRNA profile of MVs in bronchoalveolar lavage fluid (BALF) was altered after ozone exposure; thus, increases in miR-21, miR-145, miR320a, miR-155, let-7b, miR744, miR181, miR-17, miR-92a, and miR-199a-3p were observed, whereas miR-24-3p and miR-20 were reduced. Ingenuity pathway analysis revealed that these miRNAs regulate pathways that promote inflammatory macrophage activation, and predicted that let-7a-5p/let-7b, miR-24-3p, miR-21-5p, miR-17, and miR-181a-5p are key upstream regulators of inflammatory proteins. After ozone exposure, miR-199a-3p, but not precursor miR-199a-3p, was increased in lung macrophages, indicating that it is derived from MV-mediated delivery. Furthermore, lung macrophage mRNA expression of IL-1β was upregulated after administration of MVs containing miR-199a-3p mimic but downregulated by miR-199a-3p inhibitor. Collectively, these data suggest that MVs generated following ozone exposure contribute to proinflammatory macrophage activation via MV-derived miRNAs including miR-199a-3p. These findings identify a novel pathway regulating macrophage inflammatory responses to inhaled ozone.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Raymond C Rancourt
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jessica Cervelli
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zhi Hao Kwok
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Kareemah Ni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
30
|
Gomez N, James V, Onion D, Fairclough LC. Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review. Respir Res 2022; 23:82. [PMID: 35382831 PMCID: PMC8985325 DOI: 10.1186/s12931-022-01984-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is a common inflammatory disease of the airways characterized by irreversible airflow limitation, ranking the third highest cause of death worldwide. Extracellular vesicles (EVs) are important intercellular communication mediators released by cells into their extracellular environment with the capacity to transfer biological signals. EVs involved in COPD hold great potential to understand disease pathogenesis and identify important biomarkers. This systematic review aims to examine all available research on EVs in the pathogenesis and diagnosis of COPD to identify existing knowledge and support further research within the field. Methods Publications were searched using PubMed and EMBASE with the search terms (Exosomes or extracellular vesicles or microvesicles or microparticles or ectosomes) AND (chronic obstructive pulmonary disease or COPD or emphysema or bronchitis). Results Initial search yielded 512 papers of which 142 were manually selected for review and 43 were eligible for analyses. The studies were divided into groups according to the role of EVs in pathogenesis, EV origin and cargo, their role in COPD exacerbations and their diagnostic utility. EVs were found to be involved in the mechanism of pathogenesis of COPD, derived from various cell types, as well as containing modified levels of miRNAs. EVs also varied according to the pathophysiological status of disease, therefore presenting a possible method for COPD diagnosis and progress monitoring. Conclusion The current findings show the limited but good quality research looking at the role of EVs in COPD, demonstrating the need for more studies to better define and provide further insight into the functional characteristics of EV in COPD pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01984-0.
Collapse
Affiliation(s)
- Nancy Gomez
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK
| | - Victoria James
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - David Onion
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK.
| |
Collapse
|
31
|
Need for more focus on lipid species in studies of biological and model membranes. Prog Lipid Res 2022; 86:101160. [DOI: 10.1016/j.plipres.2022.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
32
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes Engineering and Their Roles as Therapy Delivery Tools, Therapeutic Targets, and Biomarkers. Int J Mol Sci 2021; 22:9543. [PMID: 34502452 PMCID: PMC8431173 DOI: 10.3390/ijms22179543] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are becoming increasingly important therapeutic biomaterials for use in a variety of therapeutic applications due to their unique characteristics, especially due to the ineffectiveness and cytotoxicity of some existing therapies and synthetic therapeutic nanocarriers. They are highly promising as carriers of drugs, genes, and other therapeutic agents that can be incorporated into their interior or onto their surface through various modification techniques to improve their targeting abilities. In addition, they are biocompatible, safe, and stable. The review focuses on different types of exosomes and methods of their preparation, including the incorporation of different kinds of cargo, especially for drug delivery purposes. In particular, their importance and effectiveness as delivery vehicles of various therapeutic agents for a variety of therapeutic applications, including different diseases and disorders such as cancer treatment, cardiovascular and neurodegenerative diseases, are emphasized. Administration routes of exosomes into the body are also included. A novelty in the article is the emphasis on global companies that are already successfully developing and testing such therapeutic biomaterials, with a focus on the most influential ones. Moreover, a comparison of the advantages and disadvantages of the various methods of exosome production is summarized for the first time.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
33
|
Unleashing the therapeutic potential of apoptotic bodies. Biochem Soc Trans 2021; 48:2079-2088. [PMID: 32869835 PMCID: PMC7609033 DOI: 10.1042/bst20200225] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs), membrane-bound vesicles that are naturally released by cells, have emerged as new therapeutic opportunities. EVs, particularly exosomes and microvesicles, can transfer effector molecules and elicit potent responses in recipient cells, making them attractive therapeutic targets and drug delivery platforms. Furthermore, containing predictive biomarkers and often being dysregulated in various disease settings, these EVs are being exploited for diagnostic purposes. In contrast, the therapeutic application of apoptotic bodies (ApoBDs), a distinct type of EVs released by cells undergoing a form of programmed cell death called apoptosis, has been largely unexplored. Recent studies have shed light on ApoBD biogenesis and functions, promisingly implicating their therapeutic potential. In this review, we discuss many strategies to develop ApoBD-based therapies as well as highlight their advantages and challenges, thereby positioning ApoBD for potential EV-based therapy.
Collapse
|
34
|
Melwani PK, Balla MMS, S N, Padwal M, Chaurasia RK, Basu B, Ghosh A, Pandey BN. Integrated transcriptomic and proteomic analysis of microplasts derived from macrophage-conditioned medium-treated MCF-7 breast cancer cells. FEBS Lett 2021; 595:1844-1860. [PMID: 33993482 DOI: 10.1002/1873-3468.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022]
Abstract
Microplasts are large extracellular vesicles originating from migratory, invasive, and metastatic cancer cells. Here, to gain insight into the role of microplasts in cancer progression, we performed a proteomic and transcriptomic characterization of microplasts isolated from MCF-7 breast cancer cells treated with macrophage-conditioned medium. These cells were found to be viable, highly migratory, and metabolically active, indicating that microplasts derived from these cells are not apoptotic bodies. Transcriptomic/proteomic analyses identified 10273 mRNAs and 821 proteins in microplasts. Interestingly, 377 microplast mRNAs coded for corresponding microplast proteins. Microplast mRNAs and proteins were mainly associated with binding and catalytic activities. Microplasts showed enrichment of mRNAs involved in transcription regulation and proteins involved in processes such as cell-cell adhesion and translation. Pathway analysis showed enrichment of ribosomes and carbon metabolism. These results suggest a close resemblance between microplasts and parent cells, with mRNA and protein cargo relevant in intercellular signaling.
Collapse
Affiliation(s)
- Pooja Kamal Melwani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | | | - Nishad S
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Padwal
- Homi Bhabha National Institute, Mumbai, India.,Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rajesh Kumar Chaurasia
- Homi Bhabha National Institute, Mumbai, India.,Radiation Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhakti Basu
- Homi Bhabha National Institute, Mumbai, India.,Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Anu Ghosh
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
35
|
Pontejo SM, Murphy PM. Chemokines act as phosphatidylserine-bound "find-me" signals in apoptotic cell clearance. PLoS Biol 2021; 19:e3001259. [PMID: 34038417 PMCID: PMC8213124 DOI: 10.1371/journal.pbio.3001259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Removal of apoptotic cells is essential for maintenance of tissue homeostasis. Chemotactic cues termed "find-me" signals attract phagocytes toward apoptotic cells, which selectively expose the anionic phospholipid phosphatidylserine (PS) and other "eat-me" signals to distinguish healthy from apoptotic cells for phagocytosis. Blebs released by apoptotic cells can deliver find-me signals; however, the mechanism is poorly understood. Here, we demonstrate that apoptotic blebs generated in vivo from mouse thymus attract phagocytes using endogenous chemokines bound to the bleb surface. We show that chemokine binding to apoptotic cells is mediated by PS and that high affinity binding of PS and other anionic phospholipids is a general property of many but not all chemokines. Chemokines are positively charged proteins that also bind to anionic glycosaminoglycans (GAGs) on cell surfaces for presentation to leukocyte G protein-coupled receptors (GPCRs). We found that apoptotic cells down-regulate GAGs as they up-regulate PS on the cell surface and that PS-bound chemokines, unlike GAG-bound chemokines, are able to directly activate chemokine receptors. Thus, we conclude that PS-bound chemokines may serve as find-me signals on apoptotic vesicles acting at cognate chemokine receptors on leukocytes.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
36
|
Phan TK, Fonseka P, Tixeira R, Pathan M, Ang CS, Ozkocak DC, Mathivanan S, Poon IKH. Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size. Proteomics 2021; 21:e2000097. [PMID: 33661579 DOI: 10.1002/pmic.202000097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
Apoptotic bodies (ApoBDs), which are large extracellular vesicles exclusively released by apoptotic cells, possess therapeutically exploitable properties including biomolecule loadability and transferability. However, current limited understanding of ApoBD biology has hindered its exploration for clinical use. Particularly, as ApoBD-accompanying cargoes (e.g., nucleic acids and proteins) have major influence on their functionality, further insights into the mechanism of biomolecule sorting into ApoBDs are critical to unleash their therapeutic potential. Previous studies suggested pannexin 1 (PANX1) channel, a negative regulator of ApoBD biogenesis, can modify synaptic vesicle contents. We also reported that trovafloxacin (a PANX1 inhibitor) increases proportion of ApoBDs containing DNA. Therefore, we sought to define the role of PANX1 in regulating the sorting of nuclear content into ApoBDs. Here, using flow cytometry and label-free quantitative proteomic analyses, we showed that targeting PANX1 activity during apoptosis, via either pharmacological inhibition or genetic disruption, resulted in enrichment of both DNA and nuclear proteins in ApoBDs that were unexpectedly smaller in size. Our data suggest that PANX1, besides being a key regulator of ApoBD formation, also functions as a negative regulator of nuclear content packaging and modulator of ApoBD size. Together, our findings provide further insights into ApoBD biology and form a novel conceptual framework for ApoBD-based therapies through pharmacologically manipulating ApoBD contents.
Collapse
Affiliation(s)
- Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Pamali Fonseka
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Rochelle Tixeira
- VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mohashin Pathan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dilara Ceyda Ozkocak
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ivan Ka Ho Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S, Thum T. Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases: Roadmap to the Clinic. Circulation 2021; 143:1426-1449. [PMID: 33819075 PMCID: PMC8021236 DOI: 10.1161/circulationaha.120.049254] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted. The potential of exosomes as effective communicators of biological signaling in myocardial function has previously been investigated, and a recent explosion in exosome research not only underscores their significance in cardiac physiology and pathology, but also draws attention to methodological limitations of studying these extracellular vesicles. In this review, we discuss recent advances and challenges in exosome research with an emphasis on scientific innovations in isolation, identification, and characterization methodologies, and we provide a comprehensive summary of web-based resources available in the field. Importantly, we focus on the biology and function of exosomes, highlighting their fundamental role in cardiovascular pathophysiology to further support potential applications of exosomes as biomarkers and therapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Marta Adamiak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Prabhu Mathiyalagan
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
| | - Sabine Kafert-Kasting
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- REBIRTH Center for Translational Regenerative Medicine (T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| |
Collapse
|
38
|
Halder LD, Babych S, Palme DI, Mansouri-Ghahnavieh E, Ivanov L, Ashonibare V, Langenhorst D, Prusty B, Rambach G, Wich M, Trinks N, Blango MG, Kornitzer D, Terpitz U, Speth C, Jungnickel B, Beyersdorf N, Zipfel PF, Brakhage AA, Skerka C. Candida albicans Induces Cross-Kingdom miRNA Trafficking in Human Monocytes To Promote Fungal Growth. mBio 2021; 13:e0356321. [PMID: 35132877 PMCID: PMC8822622 DOI: 10.1128/mbio.03563-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C. albicans and inducing fungal cell growth by inhibiting translation of the cyclin-dependent kinase inhibitor Sol1. Packaging of hsa-miR-24-3p into monocyte exosomes required binding of fungal soluble β-glucan to complement receptor 3 (CR3) and binding of mannan to Toll-like receptor 4 (TLR4), resulting in receptor colocalization. Together, our in vitro and in vivo findings reveal a novel cross-species evasion mechanism by which C. albicans exploits a human miRNA to promote fungal growth and survival in the host. IMPORTANCE Over the last decade, communication between immune cells by extracellular vesicle-associated miRNAs has emerged as an important regulator of the coordinated immune response. Therefore, a thorough understanding of the conversation occurring via miRNAs, especially during infection, may provide novel insights into both the host reaction to the microbe as well as the microbial response. This study provides evidence that the pathogenic fungus C. albicans communicates with human monocytes and induces the release of a human miRNA that promotes fungal growth. This mechanism represents an unexpected cross-species interaction and implies that an inhibition of specific miRNAs offers new possibilities for the treatment of human fungal infections.
Collapse
Affiliation(s)
- Luke D. Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Svitlana Babych
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Diana I. Palme
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Elham Mansouri-Ghahnavieh
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Lia Ivanov
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Victory Ashonibare
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Daniela Langenhorst
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Bhupesh Prusty
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Melissa Wich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Nora Trinks
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Matthew G. Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| |
Collapse
|
39
|
Banerjee A, Jain SM, S Abrar S, Kumar MM, Mathew C, Pathak S. Sources, isolation strategies and therapeutic outcome of exosomes at a glance. Regen Med 2021; 15:2361-2378. [PMID: 33471558 DOI: 10.2217/rme-2020-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) have attracted great attention due to their known role in facilitating intercellular communication in a diverse range of cellular processes. In the 30 years since the discovery of exosomes, a class of EV, they have gone from being considered a cellular waste disposal mechanism to an important aspect of cell-to-cell communication. The exponential interest in exosomes in recent years is due to their key role in health and disease and their potential clinical application in therapy and diagnosis. This review aims to provide an updated picture of the sources, isolation methods, therapeutic outcomes and current application of EVs, in particular exosomes.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital & Research Institute (CHRI), Chennai 603103, India
| | - Samatha M Jain
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital & Research Institute (CHRI), Chennai 603103, India
| | - Syed S Abrar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital & Research Institute (CHRI), Chennai 603103, India
| | - Makalakshmi M Kumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital & Research Institute (CHRI), Chennai 603103, India
| | - Christina Mathew
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital & Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital & Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
40
|
Nicolás-Ávila JÁ, Sánchez-Diaz M, Hidalgo A. Isolation of exophers from cardiomyocyte-reporter mouse strains by fluorescence-activated cell sorting. STAR Protoc 2021; 2:100286. [PMID: 33490991 PMCID: PMC7811054 DOI: 10.1016/j.xpro.2020.100286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cardiac exophers are membrane-bound extracellular vesicles released by cardiomyocytes with varied content and an average diameter of 3.5 μm. Here, we provide a detailed protocol to enable the identification and purification of cardiomyocyte-derived exophers by using fluorescence-activated cell sorting for downstream cellular and molecular analysis. This protocol requires the use of mouse strains expressing fluorescent proteins in cardiomyocytes. For complete details on the use and execution of this protocol, please refer to Nicolás-Ávila et al. (2020). Optimized protocol for exopher isolation from cardiomyocytes using FACS Isolated exophers are suitable for downstream cellular and molecular analysis Includes sample preparation and gating strategy for exopher identification
Collapse
Affiliation(s)
| | - María Sánchez-Diaz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| |
Collapse
|
41
|
Osteoclast-derived apoptotic bodies couple bone resorption and formation in bone remodeling. Bone Res 2021; 9:5. [PMID: 33431863 PMCID: PMC7801485 DOI: 10.1038/s41413-020-00121-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Bone remodeling is precisely coordinated by bone resorption and formation. Apoptotic osteoclasts generate large amounts of apoptotic bodies (ABs) marking the end of the bone resorption phase, whereas the functions of osteoclast-derived ABs remain largely unknown. Here, we identified the molecular profile of ABs derived from osteoclasts at distinct differentiation stages and investigated their corresponding functions. ABs were isolated from apoptotic bone marrow macrophages, preosteoclasts, and mature osteoclasts induced by staurosporine. Proteomic signature analysis with liquid chromatography-tandem mass spectrometry suggested marked protein cargo differences among the different ABs. Further bioinformatic analysis showed that the proteomic signatures of the ABs were highly similar to those of their parental cells. Functionally, pOC-ABs induced endothelial progenitor cell differentiation and increased CD31hiEmcnhi endothelial cell formation in a murine bone defect model via their PDGF-BB cargo. mOC-ABs induced osteogenic differentiation of mesenchymal stem cells and facilitated osteogenesis via RANKL reverse signaling. In summary, we mapped the detailed proteomic landscapes of ABs derived from osteoclasts and showed that their potential biological roles are important in coupling bone formation with resorption during bone remodeling.
Collapse
|
42
|
Abstract
In the final stages of apoptosis, apoptotic cells can generate a variety of membrane-bound vesicles known as apoptotic extracellular vesicles (ApoEVs). Apoptotic bodies (ApoBDs), a major subset of ApoEVs, are formed through a process termed apoptotic cell disassembly characterised by a series of tightly regulated morphological steps including plasma membrane blebbing, apoptotic membrane protrusion formation and fragmentation into ApoBDs. To better characterise the properties of ApoBDs and elucidate their function, a number of methods including differential centrifugation, filtration and fluorescence-activated cell sorting were developed to isolate ApoBDs. Furthermore, it has become increasingly clear that ApoBD formation can contribute to various biological processes such as apoptotic cell clearance and intercellular communication. Together, recent literature demonstrates that apoptotic cell disassembly and thus, ApoBD formation, is an important process downstream of apoptotic cell death. In this chapter, we discuss the current understandings of the molecular mechanisms involved in regulating apoptotic cell disassembly, techniques for ApoBD isolation, and the functional roles of ApoBDs in physiological and pathological settings.
Collapse
|
43
|
Atkin-Smith GK, Miles MA, Tixeira R, Lay FT, Duan M, Hawkins CJ, Phan TK, Paone S, Mathivanan S, Hulett MD, Chen W, Poon IKH. Plexin B2 Is a Regulator of Monocyte Apoptotic Cell Disassembly. Cell Rep 2020; 29:1821-1831.e3. [PMID: 31722200 DOI: 10.1016/j.celrep.2019.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Billions of cells undergo apoptosis daily and often fragment into small, membrane-bound extracellular vesicles termed apoptotic bodies (ApoBDs). We demonstrate that apoptotic monocytes undergo a highly coordinated disassembly process and form long, beaded protrusions (coined as beaded apoptopodia), which fragment to release ApoBDs. Here, we find that the protein plexin B2 (PlexB2), a transmembrane receptor that regulates axonal guidance in neurons, is enriched in the ApoBDs of THP1 monocytes and is a caspase 3/7 substrate. To determine whether PlexB2 is involved in the disassembly of apoptotic monocytes, we generate PlexB2-deficient THP1 monocytes and demonstrate that lack of PlexB2 impairs the formation of beaded apoptopodia and ApoBDs. Consequently, the loss of PlexB2 in apoptotic THP1 monocytes impairs their uptake by both professional and non-professional phagocytes. Altogether, these data identify PlexB2 as a positive regulator of apoptotic monocyte disassembly and demonstrate the importance of this process in apoptotic cell clearance.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
44
|
Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R, Castejón-Vega B, Pun-García A, Través PG, Bonzón-Kulichenko E, García-Marqués F, Cussó L, A-González N, González-Guerra A, Roche-Molina M, Martin-Salamanca S, Crainiciuc G, Guzmán G, Larrazabal J, Herrero-Galán E, Alegre-Cebollada J, Lemke G, Rothlin CV, Jimenez-Borreguero LJ, Reyes G, Castrillo A, Desco M, Muñoz-Cánoves P, Ibáñez B, Torres M, Ng LG, Priori SG, Bueno H, Vázquez J, Cordero MD, Bernal JA, Enríquez JA, Hidalgo A. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020; 183:94-109.e23. [PMID: 32937105 DOI: 10.1016/j.cell.2020.08.031] [Citation(s) in RCA: 462] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- José A Nicolás-Ávila
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Ana V Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades respiratorias (CIBERES), Madrid 28029, Spain
| | | | - María Sánchez-Díaz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Elena Díaz-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Demetrio J Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrea Rubio-Ponce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Jackson LiangYao Li
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Juan A Quintana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | | | - Andrés Pun-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Paqui G Través
- Molecular Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Elena Bonzón-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | | | - Lorena Cussó
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid 28911, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid 28009, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
| | - Noelia A-González
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Institute of Immunology, University of Muenster, Muenster 48149, Germany
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | - Georgiana Crainiciuc
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Gabriela Guzmán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Hospital Universitario La Paz, IdIPaz, Madrid 28046, Spain
| | - Jagoba Larrazabal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | - Greg Lemke
- Molecular Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Luis Jesús Jimenez-Borreguero
- CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain; Hospital Universitario de La Princesa, Madrid 28006, Spain
| | | | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid 28029, Spain; Unidad de Biomedicina IIBM-Universidad de las Palmas de Gran Canaria (ULPGC) (Unidad Asociada al CSIC), Las Palmas 35001, Spain; Instituto Universitario de Investigaciónes Biomédicas y Sanitarias, ULPGC, Las Palmas 35016, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid 28911, Spain
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Department of Experimental & Health Sciences, Universitat Pompeu Fabra, CIBERNED, Barcelona 08003, Spain; ICREA, Barcelona 08908, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain; IIS- Fundación Jiménez Díaz Hospital, Madrid 28040, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Lai Guan Ng
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Silvia G Priori
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Molecular Cardiology, ICS-Maugeri IRCCS, Pavia 27100, Italy; Department of Molecular Medicine, University of Pavia, Pavia 2700, Italy
| | - Héctor Bueno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Mario D Cordero
- Oral Medicine Department, University of Sevilla, Seville 41009, Spain; Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR) y la Universidad Europea del Atlántico (UNEATLANTICO), Seville 41009, Spain; Fundación Universitaria Iberoamericana (FUNIBER), Barcelona 08005, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - José A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de fragilidad y envejecimiento saludable (CIBERFES), Madrid 28029, Spain.
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain.
| |
Collapse
|
45
|
Mir B, Goettsch C. Extracellular Vesicles as Delivery Vehicles of Specific Cellular Cargo. Cells 2020; 9:cells9071601. [PMID: 32630649 PMCID: PMC7407641 DOI: 10.3390/cells9071601] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) mediate cell-to-cell communication via the transfer of biomolecules locally and systemically between organs. It has been elucidated that the specific EV cargo load is fundamental for cellular response upon EV delivery. Therefore, revealing the specific molecular machinery that functionally regulates the precise EV cargo intracellularly is of importance in understanding the role of EVs in physiology and pathophysiology and conveying therapeutic use. The purpose of this review is to summarize recent findings on the general rules, as well as specific modulator motifs governing EV cargo loading. Finally, we address available information on potential therapeutic strategies to alter cargo loading.
Collapse
|
46
|
Wiest EF, Zubair AC. Challenges of manufacturing mesenchymal stromal cell-derived extracellular vesicles in regenerative medicine. Cytotherapy 2020; 22:606-612. [PMID: 32532592 DOI: 10.1016/j.jcyt.2020.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
The field of regenerative medicine has expanded greatly in the past decade, with more than 1000 current clinical trials involving mesenchymal stromal cell (MSC) treatment. Multiple recent publications have demonstrated that the beneficial effects from MSCs are not simply due to engraftment into the target organ as classically thought but rather are largely attributable to the release of paracrine factors including cytokines, growth factors and extracellular vesicles (EVs). These EVs contain miRNAs, free fatty acids and proteins that promote regeneration, proliferation and cell function and improve inflammation. Although EVs have shown promising results in animal studies, there are many obstacles to the manufacturing of EVs for clinical applications. This review discusses challenges associated with the manufacturing of clinical-grade EVs in regard to identity, purity, reproducibility, sterility, storage, potency and safety. We discuss currently employed methods and approaches for developing clinical Good Manufacturing Practices (GMP)-grade EVs and the limitations for each. We further discuss the best approaches to overcome the current hurdles in developing clinical GMP-grade EVs.
Collapse
Affiliation(s)
- Elani F Wiest
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, Florida, USA.
| |
Collapse
|
47
|
Ma Q, Liang M, Limjunyawong N, Dan Y, Xing J, Li J, Xu J, Dou C. Osteoclast-derived apoptotic bodies show extended biological effects of parental cell in promoting bone defect healing. Theranostics 2020; 10:6825-6838. [PMID: 32550906 PMCID: PMC7295057 DOI: 10.7150/thno.45170] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/03/2020] [Indexed: 01/08/2023] Open
Abstract
Apoptotic bodies (ABs) traditionally considered as garbage bags that enclose residual components of dead cells are gaining increasing attentions due to their potential roles in intercellular communications. In bone turn over, at the end of bone resorption phase, most osteoclasts undergo apoptosis, generating large amounts of ABs. However, it remains unclear of the role of osteoclast-derived ABs in bone remodeling. Methods: Staurosporine (STS) was used to apoptotic induction and differential centrifugation was used to isolate ABs. Western blotting, flowcytometry and Transmission electron microscopy (TEM) were performed for ABs identification, while whole transcriptome of ABs from osteoclasts at different stages was detected by RNA-seq. VENN analysis and gene set enrichment analysis (GSEA) were performed to compare the profile similarities between ABs and parental cells. In vitro efficacy of ABs on angiogenesis and osteogenesis were evaluated by tube formation assay and ALP staining. In vivo, calvarial defect mice model was used to assess the effects of ABs-modified decalcified bone matrix (DBM) scaffolds on angiogenesis and osteogenesis. Results: Here we mapped the whole transcriptome paralleled with small RNA profiling of osteoclast derived ABs at distinct differentiation stages. Whole transcriptome analysis revealed significant differences in RNA signatures among the ABs generated from osteoclasts at different stages. By comparing with parental osteoclast RNA profiles, we found that the transcriptome of ABs exhibited high similarities with the corresponding parental cells. Functionally, in vitro and in vivo studies showed that similar with the parental cells, pOC-ABs potentiated endothelial progenitor cell proliferation and differentiation, whereas mOC-ABs promoted osteogenic differentiation. The inherited biological effects of ABs were shown mediated by several enriched lncRNAs of which the interference abolished AB functions. Conclusions: Our study revealed the total RNA profiles of osteoclast derived ABs and demonstrated their biological functions. Both gene set and functional analysis indicated that osteoclast derived ABs are biologically similar with the parental cells suggesting their bridging role in osteoclast-osteoblast coupling in bone remodeling.
Collapse
|
48
|
Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Krüger T, Westermann M, Palme DI, Rambach G, Beyersdorf N, Speth C, Jacobsen ID, Kniemeyer O, Jungnickel B, Zipfel PF, Skerka C. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun 2020; 11:2331. [PMID: 32393780 PMCID: PMC7214408 DOI: 10.1038/s41467-020-16241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-β1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble β-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-β1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-β1 to the TGF-β receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-β1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-β1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.
Collapse
Affiliation(s)
- Luke D Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Emeraldo A H Jo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Mohammad Z Hasan
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Marta Ferreira-Gomes
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, University Hospital Jena, 07743, Jena, Germany
| | - Diana I Palme
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, 97070, Würzburg, Germany
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.
| |
Collapse
|
49
|
Atkin-Smith GK, Duan M, Zanker DJ, Loh L, Nguyen THO, Koutsakos M, Nguyen T, Jiang X, Carrera J, Phan TK, Liu C, Paone S, Oveissi S, Hodge AL, Baxter AA, Kedzierska K, Mackenzie JM, Hulett MD, Bilsel P, Chen W, Poon IKH. Monocyte apoptotic bodies are vehicles for influenza A virus propagation. Commun Biol 2020; 3:223. [PMID: 32385344 PMCID: PMC7210108 DOI: 10.1038/s42003-020-0955-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
The disassembly of apoptotic cells into small membrane-bound vesicles termed apoptotic bodies (ApoBDs) is a hallmark of apoptosis; however, the functional significance of this process is not well defined. We recently discovered a new membrane protrusion (termed beaded apoptopodia) generated by apoptotic monocytes which fragments to release an abundance of ApoBDs. To investigate the function of apoptotic monocyte disassembly, we used influenza A virus (IAV) infection as a proof-of-concept model, as IAV commonly infects monocytes in physiological settings. We show that ApoBDs generated from IAV-infected monocytes contained IAV mRNA, protein and virions and consequently, could facilitate viral propagation in vitro and in vivo, and induce a robust antiviral immune response. We also identified an antipsychotic, Haloperidol, as an unexpected inhibitor of monocyte cell disassembly which could impair ApoBD-mediated viral propagation under in vitro conditions. Together, this study reveals a previously unrecognised function of apoptotic monocyte disassembly in the pathogenesis of IAV infections.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Damien J Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Tien Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xiangrui Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Julio Carrera
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Chuanxin Liu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy L Hodge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Pamuk Bilsel
- FluGen, 597 Science Drive, Madison, WI, 53711, USA
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
50
|
Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments. Biosens Bioelectron 2020; 155:112113. [DOI: 10.1016/j.bios.2020.112113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|