1
|
Endesfelder S. Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models-A Narrative Review. Antioxidants (Basel) 2024; 13:1076. [PMID: 39334735 PMCID: PMC11429035 DOI: 10.3390/antiox13091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic episodes. Oxidative stress cannot be avoided as a direct reaction and leads to neurological developmental deficits and even a higher prevalence of respiratory diseases in the further development of premature infants. Due to the proven antioxidant effect of caffeine in early use, largely protective effects on clinical outcomes can be observed. This is also impressively observed in experimental studies of caffeine application in oxidative stress-adapted rodent models of damage to the developing brain and lungs. However, caffeine shows undesirable effects outside these oxygen toxicity injury models. This review shows the effects of caffeine in hyperoxic, hypoxic/hypoxic-ischemic, and intermittent hypoxic rodent injury models, but also the negative effects on the rodent organism when caffeine is administered without exogenous oxidative stress. The narrative analysis of caffeine benefits in cerebral and pulmonary preterm infant models supports protective caffeine use but should be given critical consideration when considering caffeine treatment beyond the recommended corrected gestational age.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
2
|
Jia B, Tang L, Liu H, Chen W, Chen Q, Zhong M, Yin A. Potential roles of the interactions between gut microbiota and metabolites in LPS-induced intrauterine inflammation (IUI) and associated preterm birth (PTB). J Transl Med 2024; 22:7. [PMID: 38167140 PMCID: PMC10762855 DOI: 10.1186/s12967-023-04603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in preterm birth (PTB) pathophysiology, increasing the incidence of neurodevelopmental disorders. Gut microbiota and metabolite profile alterations have been reported to be involved in PTB pathophysiology. METHOD AND RESULTS In this study, IUI-exposed PTB mouse model was established and verified by PTB rate and other perinatal adverse reactions; LPS-indued IUI significantly increased the rates of PTB, apoptosis and inflammation in placenta tissue samples. LPS-induced IUI caused no significant differences in species richness and evenness but significantly altered the species abundance distribution. Non-targeted metabolomics analysis indicated that the metabolite profile of the preterm mice was altered, and differential metabolites were associated with signaling pathways including pyruvate metabolism. Furthermore, a significant positive correlation between Parasutterella excrementihominis and S4572761 (Nb-p-coumaroyltryptamine) and Mreference-1264 (pyruvic acid), respectively, was observed. Lastly, pyruvic acid treatment partially improved LPS-induced IUI phenotypes and decreased PTB rates and decreased the apoptosis and inflammation in placenta tissue samples. CONCLUSION This study revealed an association among gut microbiota dysbiosis, metabolite profile alterations, and LPS-induced IUI and PTB in mice models. Our investigation revealed the possible involvement of gut microbiota in the pathophysiology of LPS-induced IUI and PTB, which might be mediated by metabolites such as pyruvic acid. Future studies should be conducted to verify the findings through larger sample-sized animal studies and clinical investigations.
Collapse
Affiliation(s)
- Bei Jia
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Lijun Tang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Huibing Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China
| | - Ailan Yin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Avenue, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
3
|
Park HR, Harris SM, Boldenow E, Aronoff DM, Rea M, Xi C, Loch-Caruso R. The antioxidant N-acetyl cysteine inhibits cytokine and prostaglandin release in human fetal membranes stimulated ex vivo with lipoteichoic acid or live group B streptococcus. Am J Reprod Immunol 2024; 91:e13807. [PMID: 38282602 PMCID: PMC10832889 DOI: 10.1111/aji.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUNDS Infection during pregnancy is a significant public health concern due to the increased risk of adverse birth outcomes. Group B Streptococcus or Streptococcus agalactiae (GBS) stands out as a major bacterial cause of neonatal morbidity and mortality. We aimed to explore the involvement of reactive oxygen species (ROS) and oxidative stress pathways in pro-inflammatory responses within human fetal membrane tissue, the target tissue of acute bacterial chorioamnionitis. METHODS We reanalyzed transcriptomic data from fetal membrane explants inoculated with GBS to assess the impact of GBS on oxidative stress and ROS genes/pathways. We conducted pathway enrichment analysis of transcriptomic data using the Database for Annotation, Visualization and Integrated Discovery (DAVID), a web-based functional annotation/pathway enrichment tool. Subsequently, we conducted ex vivo experiments to test the hypothesis that antioxidant treatment could inhibit pathogen-stimulated inflammatory responses in fetal membranes. RESULTS Using DAVID analysis, we found significant enrichment of pathways related to oxidative stress or ROS in GBS-inoculated human fetal membranes, for example, "Response to Oxidative Stress" (FDR = 0.02) and "Positive Regulation of Reactive Oxygen Species Metabolic Process" (FDR = 2.6*10-4 ). There were 31 significantly changed genes associated with these pathways, most of which were upregulated after GBS inoculation. In ex vivo experiments with choriodecidual membrane explants, our study showed that co-treatment with N-acetylcysteine (NAC) effectively suppressed the release of pro-inflammatory cytokines (IL-6, IL-8, TNF-α) and prostaglandin PGE2, compared to GBS-treated explants (p < .05 compared to GBS-treated samples without NAC co-treatment). Furthermore, NAC treatment inhibited the release of cytokines and PGE2 stimulated by lipoteichoic acid (LTA) and lipopolysaccharide (LPS) in whole membrane explants (p < .05 compared to LTA or LPS-treated samples without NAC co-treatment). CONCLUSIONS Our study sheds light on the potential roles of ROS in governing the innate immune response to GBS infection, offering insights for developing strategies to mitigate GBS-related adverse outcomes.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| | - Erica Boldenow
- Department of Biology, Calvin University, Grand Rapids, MI 49546-4402 USA
| | - David M. Aronoff
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202-3082
| | - Meaghan Rea
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| |
Collapse
|
4
|
Jeon SB, Jeong PS, Kim MJ, Kang HG, Song BS, Kim SU, Cho SK, Sim BW. Enhancement of porcine in vitro embryonic development through luteolin-mediated activation of the Nrf2/Keap1 signaling pathway. J Anim Sci Biotechnol 2023; 14:148. [PMID: 38037099 PMCID: PMC10691000 DOI: 10.1186/s40104-023-00947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Oxidative stress, caused by an imbalance in the production and elimination of intracellular reactive oxygen species (ROS), has been recognized for its detrimental effects on mammalian embryonic development. Luteolin (Lut) has been documented for its protective effects against oxidative stress in various studies. However, its specific role in embryonic development remains unexplored. This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism. RESULTS After undergoing parthenogenetic activation (PA) or in vitro fertilization, embryos supplemented with 0.5 µmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates, with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control. Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control. Moreover, Lut supplementation significantly augmented mitochondrial content and membrane potential. Intriguingly, activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut, leading to the upregulation of antioxidant-related gene transcription levels. To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development, we cultured PA embryos in a medium supplemented with brusatol, with or without the inclusion of Lut. The positive effects of Lut on developmental competence were negated by brusatol treatment. CONCLUSIONS Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence, and offers insight into the mechanisms regulating early embryonic development.
Collapse
Affiliation(s)
- Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Seong-Keun Cho
- Department of Animal Science, Life and Industry Convergence Research Institute (RICRI), College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| |
Collapse
|
5
|
Mishra PK, Kumari R, Bhargava A, Bunkar N, Chauhan P, Tiwari R, Shandilya R, Srivastava RK, Singh RD. Prenatal exposure to environmental pro-oxidants induces mitochondria-mediated epigenetic changes: a cross-sectional pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74133-74149. [PMID: 35633452 DOI: 10.1007/s11356-022-21059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 05/24/2023]
Abstract
Mitochondria play a central role in maintaining cellular and metabolic homeostasis during vital development cycles of foetal growth. Optimal mitochondrial functions are important not only to sustain adequate energy production but also for regulated epigenetic programming. However, these organelles are subtle targets of environmental exposures, and any perturbance in the defined mitochondrial machinery during the developmental stage can lead to the re-programming of the foetal epigenetic landscape. As these modifications can be transferred to subsequent generations, we herein performed a cross-sectional study to have an in-depth understanding of this intricate phenomenon. The study was conducted with two arms: whereas the first group consisted of in utero pro-oxidant exposed individuals and the second group included controls. Our results showed higher levels of oxidative mtDNA damage and associated integrated stress response among the exposed individuals. These disturbances were found to be closely related to the observed discrepancies in mitochondrial biogenesis. The exposed group showed mtDNA hypermethylation and changes in allied mitochondrial functioning. Altered expression of mitomiRs and their respective target genes in the exposed group indicated the possibilities of a disturbed mitochondrial-nuclear cross talk. This was further confirmed by the modified activity of the mitochondrial stress regulators and pro-inflammatory mediators among the exposed group. Importantly, the disturbed DNMT functioning, hypermethylation of nuclear DNA, and higher degree of post-translational histone modifications established the existence of aberrant epigenetic modifications in the exposed individuals. Overall, our results demonstrate the first molecular insights of in utero pro-oxidant exposure associated changes in the mitochondrial-epigenetic axis. Although, our study might not cement an exposure-response relationship for any particular environmental pro-oxidant, but suffice to establish a dogma of mito-epigenetic reprogramming at intrauterine milieu with chronic illness, a hitherto unreported interaction.
Collapse
Affiliation(s)
- Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Radha Dutt Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Meher A. Role of Transcription Factors in the Management of Preterm Birth: Impact on Future Treatment Strategies. Reprod Sci 2022; 30:1408-1420. [PMID: 36131222 DOI: 10.1007/s43032-022-01087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Preterm birth is defined as the birth of a neonate before 37 weeks of gestation and is considered as a leading cause of the under five deaths of neonates. Neonates born preterm are known to have higher perinatal mortality and morbidity with associated risks of low birth weight, respiratory distress syndrome, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, cerebral palsy, and delayed development. India leads the list of countries with the greatest number of preterm births. The studies focusing on the molecular mechanisms related to the etiology of preterm birth have described the role of different transcription factors. With respect to this, transcription factors like peroxisome proliferator activated receptors (PPAR), nuclear factor kappa β (NF-kβ), nuclear erythroid 2-related factor 2 (Nrf2), and progesterone receptor (PR) are known to be associated with preterm labor. All these transcription factors are linked together with a common cascade involving inflammatory processes. Thus, the current review describes the possible cross-talk between these transcription factors and their therapeutic potential to prevent or manage preterm labor.
Collapse
Affiliation(s)
- Akshaya Meher
- Central Research Laboratory, Dr. Vasantrao Pawar Medical College, Hospital and Research Centre, Nashik, Maharashtra, India, 422003.
| |
Collapse
|
7
|
Hong K, Muralimanoharan S, Kwak YT, Mendelson CR. NRF2 Serves a Critical Role in Regulation of Immune Checkpoint Proteins (ICPs) During Trophoblast Differentiation. Endocrinology 2022; 163:bqac070. [PMID: 35596653 PMCID: PMC9197021 DOI: 10.1210/endocr/bqac070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Using cultured human trophoblast stem cells (hTSCs), mid-gestation human trophoblasts in primary culture, and gene-targeted mice, we tested the hypothesis that the multinucleated syncytiotrophoblast (SynT) serves a critical role in pregnancy maintenance through production of key immune modulators/checkpoint proteins (ICPs) under control of the O2-regulated transcription factor, NRF2/NFE2L2. These ICPs potentially act at the maternal-fetal interface to protect the hemiallogeneic fetus from rejection by the maternal immune system. Using cultured hTSCs, we observed that several ICPs involved in the induction and maintenance of immune tolerance were markedly upregulated during differentiation of cytotrophoblasts (CytTs) to SynT. These included HMOX1, kynurenine receptor, aryl hydrocarbon receptor, PD-L1, and GDF15. Intriguingly, NRF2, C/EBPβ, and PPARγ were markedly induced when CytTs fused to form SynT in a 20% O2 environment. Notably, when hTSCs were cultured in a hypoxic (2% O2) environment, SynT fusion and the differentiation-associated induction of NRF2, C/EBPβ, aromatase (CYP19A1; SynT differentiation marker), and ICPs were blocked. NRF2 knockdown also prevented induction of aromatase, C/EBPβ and the previously mentioned ICPs. Chromatin immunoprecipitation-quantitative PCR revealed that temporal induction of the ICPs in hTSCs and mid-gestation human trophoblasts cultured in 20% O2 was associated with increased binding of endogenous NRF2 to putative response elements within their promoters. Moreover, placentas of 12.5 days postcoitum mice with a global Nrf2 knockout manifested decreased mRNA expression of C/ebpβ, Pparγ, Hmox1, aryl hydrocarbon receptor, and Nqo1, another direct downstream target of Nrf2, compared with wild-type mice. Collectively, these compelling findings suggest that O2-regulated NRF2 serves as a key regulator of ICP expression during SynT differentiation.
Collapse
Affiliation(s)
- Kyunghee Hong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | | | - Youn-Tae Kwak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9032, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-8511, USA
- North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| |
Collapse
|
8
|
王 大, 牛 颖, 王 昕, 金 贞. Expression and role of anti-oxidative damage factors in the placenta of preterm infants with premature rupture of membranes. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:71-77. [PMID: 35177179 PMCID: PMC8802395 DOI: 10.7499/j.issn.1008-8830.2108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To study the association of the anti-oxidative damage factors nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) with preterm premature rupture of membranes (PPROM). METHODS A prospective study was conducted. The neonates who were hospitalized in Yanbian Hospital from 2019 to 2020 were enrolled as subjects, among whom there were 30 infants with PPROM, 32 infants with term premature rupture of membranes (TPROM), and 35 full-term infants without premature rupture of membranes (PROM). Hematoxylin and eosin staining was used to observe the inflammatory changes of placental tissue. Immunohistochemical staining was used to measure the expression of Nrf2, HO-1, and NQO1 in placental tissue. Western blot was used to measure the protein expression levels of Nrf2, HO-1, and NQO1 in placental tissue. RESULTS Compared with the PPROM group, the TPROM group and the non-PROM full-term group had significantly higher positive expression rates and relative protein expression levels of Nrf2, HO-1, and NQO1 in placental tissue (P<0.05). There were no significant differences in the positive expression rates and relative protein expression levels of Nrf2, HO-1, and NQO1 in placental tissue between the TPROM and non-PROM full-term groups (P>0.05). CONCLUSIONS The low expression levels of Nrf2, HO-1, and NQO1 in placental tissue may be associated with PPROM, suggesting that anti-oxidative damage is one of the directions to prevent PPROM.
Collapse
|
9
|
Yap YW, Hannan NJ, Wallace EM, Marshall SA. Silencing of Nrf genes in the human placenta as measured by SDS-PAGE and Western Blotting techniques. Placenta 2022; 118:70-74. [PMID: 35045361 DOI: 10.1016/j.placenta.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Nuclear factor erythroid 2-related factor-2 (Nrf2), and the less well characterised proteins Nrf1 and Nrf3, are member of the cap 'n' collar family of transcription factors. Nrf proteins regulate the expression of endogenous antioxidant enzymes and have recently become the targets for various therapeutic treatments. Recently, Nrf proteins have been of particular interest as a target in placental-derived oxidative stress induced pregnancy disorders. Here, we report the presence of Nrf1, Nrf2 and Nrf3 proteins in both human primary trophoblast and human trophoblast choriocarcinoma cell line (BeWo). We also detail the steps taken to successfully silence all Nrf proteins in both human primary trophoblast cells and BeWo via detection of mRNA and protein using quantitative PCR, and SDS-PAGE and Western Blotting respectively.
Collapse
Affiliation(s)
- Yann W Yap
- The Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne & Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Sarah A Marshall
- The Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.
| |
Collapse
|
10
|
Trophoblasts Modulate the Ca 2+ Oscillation and Contraction of Myometrial Smooth Muscle Cells by Small Extracellular Vesicle- (sEV-) Mediated Exporting of miR-25-3p during Premature Labor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8140667. [PMID: 34413928 PMCID: PMC8369173 DOI: 10.1155/2021/8140667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022]
Abstract
The placenta could transmit information to the maternal circulation via the secretion of small extracellular vesicles (sEVs), but little is known about whether and how these sEVs participate in premature labor (PTL). We speculate that miRNA plays an important role in sEV-mediated fetal-maternal information transmission. The present study was aimed at investigating whether the placenta can regulate the contraction of the maternal myometrium via sEV-mediated transmit of miR-25-3p during PTL. The expression of miR-25-3p and its targets Cav3.2 and SERCA2a in clinical samples, cells, and animal specimens was detected. The role of miR-25-3p was observed in the LPS-induced preterm labor mouse model. The sEVs from HTR-8/SVneo cells were characterized by transmission electron microscopy and nanoparticle tracking analysis. The Ca2+ oscillation in HMSMs was analyzed by an intracellular Ca2+ change tracking assay on a confocal microscope. The contraction of HMSMs was detected by a collagen matrix contraction assay. We found that miR-25-3p can directly bind to the 3′UTR of Cav3.2 and SERCA2a. The miR-25-3p level was decreased, and the expression of its targets Cav3.2 and SERCA2a was increased in the placenta and myometrium tissues of PTL patients. Forced upregulation of miR-25-3p reduced the oxidative stress and inflammation responses and the incidence of PTL in LPS-treated mice. The expression of miR-25-3p was not changed in LPS-stimulated human myometrial smooth muscle cells (HMSMs) but was strongly reduced in the trophoblast cell and its sEVs. Additionally, the trophoblast cell line HTR-8/SVneo could transmit miR-25-3p into HMSMs via sEVs. The sEVs derived from LPS-stimulated trophoblasts upregulated the expression of Cav3.2 and SERCA2a and triggered Ca2+ oscillation as well as the contraction of HMSMs; these effects were partially reversed by the overexpression of miR-25-3p in the trophoblasts. Further, the upregulation of miR-25-3p induced changes of Ca2+ oscillation and contraction of HMSMs mediated by sEVs which were also abrogated by the knockdown of miR-25-3p in HMSMs. The results demonstrated that miR-25-3p plays a crucial role in PTL via Cav3.2- and SERCA2a-mediated Ca2+ oscillation and contraction of HMSMs. PTL seems to be related to the decreased exosomal miR-25-3p content transmitted by the trophoblasts under inflammatory conditions.
Collapse
|
11
|
Placental Macrophages Demonstrate Sex-Specific Response to Intrauterine Inflammation and May Serve as a Marker of Perinatal Neuroinflammation. J Reprod Immunol 2021; 147:103360. [PMID: 34390899 DOI: 10.1016/j.jri.2021.103360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Preterm birth (PTB) is considered to be one of the most frequent causes of neonatal death. Prompt and effective measures to predict adverse fetal outcome following PTB are urgently needed. Placenta macrophages are a critical immune cell population during pregnancy, phenotypically divided into M1 and M2 subsets. An established mouse model of intrauterine inflammation (IUI) was applied. Placenta (labyrinth) and corresponding fetal brain were harvested within 24 hours post injection (hpi). Flow cytometry, Western blot, real-time qPCR, and regular histology were utilized to examine the cytokines, macrophage polarization, and sex-specificity. Placental exposure to LPS led to significantly reduced labyrinth thickness compared to PBS-exposed controls as early as 3 hpi, accompanied by apoptosis and necrosis. Pro-inflammatory M1 markers, Il-1β, and iNOS, and anti-inflammatory M2 marker Il-10 increased significantly in placentas exposed to IUI. Analysis of flow cytometry revealed that fetal macrophages (Hofbauer cell, HBCs) were mostly M1-like and that maternal inter-labyrinth macrophages (MIM) were M2-like in their features in IUI. Male fetuses displayed significantly decreased M2-like features in HBCs at 3 and 6 hpi, while female fetuses showed significant increase in M2-like features in MIM at 3 and 6 hpi. Furthermore, there was a significant correlation between the frequency of HBCs and corresponding microglial marker expression at 3 and 6 hpi. Placental macrophages demonstrated sex-specific features in response to IUI. Specifically, HBCs may be a potential biomarker for fetal brain injury at preterm birth.
Collapse
|
12
|
Adding Another Piece to the Puzzle of Why NTM Infections Are Relatively Uncommon despite Their Ubiquitous Nature. mBio 2021; 12:mBio.03577-20. [PMID: 33879587 PMCID: PMC8092311 DOI: 10.1128/mbio.03577-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since nontuberculous mycobacteria (NTM) are pervasive in the environment and NTM infections are relatively uncommon, underlying hereditary or acquired host susceptibility factors should be sought for in most NTM-infected patients. To facilitate identification of underlying risk factors, it is useful to classify NTM disease into skin-soft tissue infections, isolated NTM lung disease, and extrapulmonary viscera-disseminated disease because the latter two categories have unique sets of underlying host risk factors. Since nontuberculous mycobacteria (NTM) are pervasive in the environment and NTM infections are relatively uncommon, underlying hereditary or acquired host susceptibility factors should be sought for in most NTM-infected patients. To facilitate identification of underlying risk factors, it is useful to classify NTM disease into skin-soft tissue infections, isolated NTM lung disease, and extrapulmonary visceral/disseminated disease because the latter two categories have unique sets of underlying host risk factors. Nakajima and coworkers (M. Nakajima, M. Matsuyama, M. Kawaguchi, T. Kiwamoto, et al., mBio 12:e01947-20, 2021, https://doi.org/10.1128/mBio.01947-20) in a recent issue of mBio found that Nrf2 (nuclear factor erythroid 2-related factor 2), a transcription factor that is induced by oxidative stress but induces antioxidant molecules, provides protection against an NTM infection in a murine model. While they showed that Nrf2 induction of Nramp-1 enhanced phagosome-lysosome fusion, we discuss other potential mechanisms by which oxidative stress predisposes to and Nrf2 protects against NTM infections.
Collapse
|
13
|
Singh A, Daemen A, Nickles D, Jeon SM, Foreman O, Sudini K, Gnad F, Lajoie S, Gour N, Mitzner W, Chatterjee S, Choi EJ, Ravishankar B, Rappaport A, Patil N, McCleland M, Johnson L, Acquaah-Mensah G, Gabrielson E, Biswal S, Hatzivassiliou G. NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. Clin Cancer Res 2021; 27:877-888. [PMID: 33077574 PMCID: PMC10867786 DOI: 10.1158/1078-0432.ccr-20-1985] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Stabilization of the transcription factor NRF2 through genomic alterations in KEAP1 and NFE2L2 occurs in a quarter of patients with lung adenocarcinoma and a third of patients with lung squamous cell carcinoma. In lung adenocarcinoma, KEAP1 loss often co-occurs with STK11 loss and KRAS-activating alterations. Despite its prevalence, the impact of NRF2 activation on tumor progression and patient outcomes is not fully defined. EXPERIMENTAL DESIGN We model NRF2 activation, STK11 loss, and KRAS activation in vivo using novel genetically engineered mouse models. Furthermore, we derive a NRF2 activation signature from human non-small cell lung tumors that we use to dissect how these genomic events impact outcomes and immune contexture of participants in the OAK and IMpower131 immunotherapy trials. RESULTS Our in vivo data reveal roles for NRF2 activation in (i) promoting rapid-onset, multifocal intrabronchiolar carcinomas, leading to lethal pulmonary dysfunction, and (ii) decreasing elevated redox stress in KRAS-mutant, STK11-null tumors. In patients with nonsquamous tumors, the NRF2 signature is negatively prognostic independently of STK11 loss. Patients with lung squamous cell carcinoma with low NRF2 signature survive longer when receiving anti-PD-L1 treatment. CONCLUSIONS Our in vivo modeling establishes NRF2 activation as a critical oncogenic driver, cooperating with STK11 loss and KRAS activation to promote aggressive lung adenocarcinoma. In patients, oncogenic events alter the tumor immune contexture, possibly having an impact on treatment responses. Importantly, patients with NRF2-activated nonsquamous or squamous tumors have poor prognosis and show limited response to anti-PD-L1 treatment.
Collapse
Affiliation(s)
- Anju Singh
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Anneleen Daemen
- Oncology Bioinformatics, Genentech Inc., South San Francisco, California.
| | - Dorothee Nickles
- Oncology Bioinformatics, Genentech Inc., South San Francisco, California.
| | - Sang-Min Jeon
- Translational Oncology, Genentech Inc., South San Francisco, California
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Oded Foreman
- Pathology, Genentech Inc., South San Francisco, California
| | - Kuladeep Sudini
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Florian Gnad
- Oncology Bioinformatics, Genentech Inc., South San Francisco, California
| | - Stephane Lajoie
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Naina Gour
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Wayne Mitzner
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Samit Chatterjee
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Eun-Ji Choi
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | | | - Amy Rappaport
- Discovery Oncology, Genentech Inc., South San Francisco, California
| | - Namrata Patil
- Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Mark McCleland
- Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Leisa Johnson
- Discovery Oncology, Genentech Inc., South San Francisco, California
| | - George Acquaah-Mensah
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts
| | - Edward Gabrielson
- Department of Pathology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Shyam Biswal
- Department of Environmental Health Science and Engineering, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | | |
Collapse
|
14
|
Sheller-Miller S, Radnaa E, Yoo JK, Kim E, Choi K, Kim Y, Kim YN, Richardson L, Choi C, Menon R. Exosomal delivery of NF-κB inhibitor delays LPS-induced preterm birth and modulates fetal immune cell profile in mouse models. SCIENCE ADVANCES 2021; 7:eabd3865. [PMID: 33523942 PMCID: PMC10671068 DOI: 10.1126/sciadv.abd3865] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Accumulation of immune cells and activation of the pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is a key feature of preterm birth (PTB) pathophysiology. Reduction of the fetal inflammatory response and NF-κB activation are key strategies to minimize infection-associated PTB. Therefore, we engineered extracellular vesicles (exosomes) to contain an NF-κB inhibitor, termed super-repressor (SR) IκBα. Treatment with SR exosomes (1 × 1010 per intraperitoneal injection) after lipopolysaccharide (LPS) challenge on gestation day 15 (E15) prolonged gestation by over 24 hours (PTB ≤ E18.5) and reduced maternal inflammation (n ≥ 4). Furthermore, using a transgenic model in which fetal tissues express the red fluorescent protein tdTomato while maternal tissues do not, we report that LPS-induced PTB in mice is associated with influx of fetal innate immune cells, not maternal, into feto-maternal uterine tissues. SR packaged in exosomes provides a stable and specific intervention for reducing the inflammatory response associated with PTB.
Collapse
Affiliation(s)
- Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Eunsoo Kim
- ILIAS Biologics, Incorporated, Daejeon, South Korea
| | | | - Youngeun Kim
- ILIAS Biologics, Incorporated, Daejeon, South Korea
| | - Yu Na Kim
- ILIAS Biologics, Incorporated, Daejeon, South Korea
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Chulhee Choi
- ILIAS Biologics, Incorporated, Daejeon, South Korea
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
15
|
Yang X, Yu Y, Zhang C, Zhang Y, Chen Z, Dubois L, Huang HF, Fraser WD, Fan J. The Association Between Isolated Maternal Hypothyroxinemia in Early Pregnancy and Preterm Birth. Thyroid 2020; 30:1724-1731. [PMID: 32434441 DOI: 10.1089/thy.2019.0818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: The association between isolated maternal hypothyroxinemia (IMH) during pregnancy and preterm birth (PTB), especially for subtypes of PTB, is unclear. This study aimed at determining the association between IMH diagnosed in early pregnancy and PTB, with further investigation into various subtypes of PTB. Methods: This study included 41,911 pregnant women (963 with IMH and 40,948 euthyroid women) who underwent first-trimester prenatal screening at the International Peace Maternity and Child Health Hospital (IPMCH) in Shanghai, China between January 2013 and December 2016. PTB was defined as birth before 37 weeks of gestation. PTB was further classified into three clinically relevant groups to investigate the clinical heterogeneity of PTB: (a) preterm birth with premature rupture of membranes (PROM-PTB); (b) spontaneous preterm birth with intact membranes (S-PTB); and (c) medically-induced preterm birth (MI-PTB). The overall and sex-specific effect of IMH on PTB and various subtypes of PTB were estimated by using logistic regression in crude and adjusted models. Results: Pregnant women with IMH had an increased risk of PTB (odds ratio [OR]: 1.32 [95% confidence interval; CI: 1.02-1.70], p = 0.03) compared with women with euthyroid function. The increased risk of PTB is mainly driven by S-PTB (OR: 1.57 [CI: 1.11-2.24], p = 0.01), while women with early pregnancy IMH had no statistically significant increased risk of PROM-PTB and MI-PTB. The effect of IMH on PTB was modified by fetal sex (p-values for interaction = 0.04). More prominent effects were observed in women carrying a female fetus, while no statistically significant effects were found in women carrying a male fetus. Conclusions: This study revealed that pregnant women with IMH in early pregnancy have a higher risk of PTB compared with euthyroid women. The effect of IMH on PTB is mainly driven by S-PTB and is modified by fetal sex.
Collapse
Affiliation(s)
- Xi Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yamei Yu
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Chen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yong Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhirou Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lise Dubois
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - William D Fraser
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du Centre hospitalier Univeritaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | - Jianxia Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
16
|
Suttorp CM, van Rheden REM, van Dijk NWM, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. Heme Oxygenase Protects against Placental Vascular Inflammation and Abortion by the Alarmin Heme in Mice. Int J Mol Sci 2020; 21:ijms21155385. [PMID: 32751152 PMCID: PMC7432719 DOI: 10.3390/ijms21155385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Both infectious as non-infectious inflammation can cause placental dysfunction and pregnancy complications. During the first trimester of human gestation, when palatogenesis takes place, intrauterine hematoma and hemorrhage are common phenomena, causing the release of large amounts of heme, a well-known alarmin. We postulated that exposure of pregnant mice to heme during palatogenesis would initiate oxidative and inflammatory stress, leading to pathological pregnancy, increasing the incidence of palatal clefting and abortion. Both heme oxygenase isoforms (HO-1 and HO-2) break down heme, thereby generating anti-oxidative and -inflammatory products. HO may thus counteract these heme-induced injurious stresses. To test this hypothesis, we administered heme to pregnant CD1 outbred mice at Day E12 by intraperitoneal injection in increasing doses: 30, 75 or 150 μmol/kg body weight (30H, 75H or 150H) in the presence or absence of HO-activity inhibitor SnMP from Day E11. Exposure to heme resulted in a dose-dependent increase in abortion. At 75H half of the fetuses where resorbed, while at 150H all fetuses were aborted. HO-activity protected against heme-induced abortion since inhibition of HO-activity aggravated heme-induced detrimental effects. The fetuses surviving heme administration demonstrated normal palatal fusion. Immunostainings at Day E16 demonstrated higher numbers of ICAM-1 positive blood vessels, macrophages and HO-1 positive cells in placenta after administration of 75H or SnMP + 30H. Summarizing, heme acts as an endogenous “alarmin” during pregnancy in a dose-dependent fashion, while HO-activity protects against heme-induced placental vascular inflammation and abortion.
Collapse
Affiliation(s)
- Christiaan M. Suttorp
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - René E. M. van Rheden
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Natasja W. M. van Dijk
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Maria P. A. C. Helmich
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3010 Bern, Switzerland
- Faculty of Dentistry, Universitas Indonesia, Jakarta ID-10430, Indonesia
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-24-36-18824
| |
Collapse
|
17
|
Matsumaru D, Motohashi H. From germ cells to neonates: the beginning of life and the KEAP1-NRF2 system. J Biochem 2020; 167:133-138. [PMID: 31518425 DOI: 10.1093/jb/mvz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
The Kelch-like ECH-associated protein 1(KEAP1)-NF-E2-related factor 2 (NRF2) system is one of the most studied environmental stress response systems. In the presence of oxidative and electrophilic insults, the thiols of cysteine residues in KEAP1 are modified, and subsequently stabilized NRF2 activates its target genes that are involved in detoxification and cytoprotection. A myriad of recent studies has revealed the broad range of contributions of the KEAP1-NRF2 system to physiological and pathological processes. However, its functions during gametic and embryonic development are still open for investigation. Although oxidative stress is harmful for embryos, Nrf2-/- mice do not show any apparent morphological abnormalities during development, probably because of the compensatory antioxidant functions of NF-E2-related factor 1 (NRF1). It can also be considered that the antioxidant system is essential for protecting germ cells during reproduction. The maturation processes of germ cells in both sexes are affected by Nrf2 mutation. Hence, in this review, we focus on the stress response system related to reproduction and embryonic development through the functions of the KEAP1-NRF2 system.
Collapse
Affiliation(s)
- Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
18
|
Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet Gynecol Sci 2019; 62:199-211. [PMID: 31338337 PMCID: PMC6629986 DOI: 10.5468/ogs.2019.62.4.199] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
A better understanding of the underlying mechanisms by which signals from the fetus initiate human parturition is required. Our recent findings support the core hypothesis that oxidative stress (OS) and cellular senescence of the fetal membranes (amnion and chorion) trigger human parturition. Fetal membrane cell senescence at term is a natural physiological response to OS that occurs as a result of increased metabolic demands by the maturing fetus. Fetal membrane senescence is affected by the activation of the p38 mitogen activated kinase-mediated pathway. Similarly, various risk factors of preterm labor and premature rupture of the membranes also cause OS-induced senescence. Data suggest that fetal cell senescence causes inflammatory senescence-associated secretory phenotype (SASP) release. Besides SASP, high mobility group box 1 and cell-free fetal telomere fragments translocate from the nucleus to the cytosol in senescent cells, where they represent damage-associated molecular pattern markers (DAMPs). In fetal membranes, both SASPs and DAMPs augment fetal cell senescence and an associated ‘sterile’ inflammatory reaction. In senescent cells, DAMPs are encapsulated in extracellular vesicles, specifically exosomes, which are 30–150 nm particles, and propagated to distant sites. Exosomes traffic from the fetus to the maternal side and cause labor-associated inflammatory changes in maternal uterine tissues. Thus, fetal membrane senescence and the inflammation generated from this process functions as a paracrine signaling system during parturition. A better understanding of the premature activation of these signals can provide insights into the mechanisms by which fetal signals initiate preterm parturition.
Collapse
|
19
|
Paquette AG, Brockway HM, Price ND, Muglia LJ. Comparative transcriptomic analysis of human placentae at term and preterm delivery. Biol Reprod 2019; 98:89-101. [PMID: 29228154 PMCID: PMC5803773 DOI: 10.1093/biolre/iox163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
Preterm birth affects 1 out of every 10 infants in the United States, resulting in substantial neonatal morbidity and mortality. Currently, there are few predictive markers and few treatment options to prevent preterm birth. A healthy, functioning placenta is essential to positive pregnancy outcomes. Previous studies have suggested that placental pathology may play a role in preterm birth etiology. Therefore, we tested the hypothesis that preterm placentae may exhibit unique transcriptomic signatures compared to term samples reflective of their abnormal biology leading to this adverse outcome. We aggregated publicly available placental villous microarray data to generate a preterm and term sample dataset (n = 133, 55 preterm placentae and 78 normal term placentae). We identified differentially expressed genes using the linear regression for microarray (LIMMA) package and identified perturbations in known biological networks using Differential Rank Conservation (DIRAC). We identified 129 significantly differentially expressed genes between term and preterm placenta with 96 genes upregulated and 33 genes downregulated (P-value <0.05). Significant changes in gene expression in molecular networks related to Tumor Protein 53 and phosphatidylinositol signaling were identified using DIRAC. We have aggregated a uniformly normalized transcriptomic dataset and have identified novel and established genes and pathways associated with developmental regulation of the placenta and potential preterm birth pathology. These analyses provide a community resource to integrate with other high-dimensional datasets for additional insights in normal placental development and its disruption.
Collapse
Affiliation(s)
| | - Heather M Brockway
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Manuel CR, Charron MJ, Ashby CR, Reznik SE. Saturated and unsaturated fatty acids differentially regulate in vitro and ex vivo placental antioxidant capacity. Am J Reprod Immunol 2018; 80:e12868. [PMID: 29736947 DOI: 10.1111/aji.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Complications from prematurity are the leading cause of death among children under 5 years of age. Although clinical studies have shown a positive correlation between maternal high-fat diet (HFD) and preterm birth (PTB), the underlying mechanisms remain to be elucidated. Furthermore, it remains unclear how fatty acid type influences the effects of bacterial endotoxins. METHOD OF STUDY HTR-8/SVneo trophoblasts were cultured in either 0.5 mmol L-1 palmitic acid (PA) or linoleic acid (LA) in the absence or presence of 100 μg mL-1 of lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Murine placental explants were cultured in either 2 mmol L-1 PA or LA, and cell viability, total antioxidant capacity (TAC), lipid peroxidation, H2 O2 , heme oxygenase-1 (HO-1), and nuclear erythroid 2-related factor 2 (Nrf-2) and nuclear factor-kappa light-chain enhancer of activated B cells (NF-κB) transcription factor activity assays were assessed. RESULTS Palmitic acid significantly (i) increased cell death, (ii) decreased TAC, and (iii) increased lipid peroxidation; but did not significantly increase HO-1. In contrast, LA maintained cell viability and significantly increased TAC and HO-1. In addition, incubating placental explants with PA significantly increased NF-κB activity. Co-incubating cells with PA and LPS or LTA significantly potentiated H2 O2 production and increased lipid peroxidation. Co-incubating cells with PA and LTA synergistically impaired TAC, and LTA decreased TAC more so than LPS. Co-incubation with PA/LA and LPS/LTA decreased HO-1 levels compared to treatment with either fatty acid alone. CONCLUSION Our findings suggest that saturated and unsaturated fats differentially regulate placental viability, antioxidant capacity, and inflammation and the actions of gram-positive and gram-negative endotoxins.
Collapse
Affiliation(s)
- Clarence R Manuel
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Maureen J Charron
- Departments of Biochemistry, Obstetrics & Gynecology and Women's Health and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA.,Departments of Pathology and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|