1
|
Bai HY, Lv XR, Gu HB, Li H, Shan BS. Involvement of miRNA-204 carried by the exosomes of macrophages in the AT2 receptor-mediated improvement of vascular calcification. Cell Mol Life Sci 2025; 82:165. [PMID: 40249512 PMCID: PMC12008085 DOI: 10.1007/s00018-025-05703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Vascular calcification (VC) always has poor cardiovascular outcomes, but it is still difficult to control. Exosomes secreted from activated macrophages can affect VC through microRNAs (miRNAs). Research has suggested that miRNA-204 inhibits VC. We previously demonstrated that angiotensin II type 2 receptor (AT2R) plays an important role in VC; however, its underlying mechanisms are not yet clear. METHODS AND RESULTS Rat aortic smooth muscle cells (RASMCs) and rat alveolar macrophages were cocultured with or without the phosphate and/or AT2R agonist compound 21 (C21). Calcium deposition was assessed by alizarin red staining. Protein expression was assessed by immunofluorescence staining and immunoblot analysis. The level of microRNA-204 was detected via qPCR, and its target mRNA was tested via a luciferase activity assay. C21 treatment improved the additional calcification of RASMCs cocultured with macrophages more than it did those cultured alone. The expression of miRNA-204-5p in exosomes secreted from macrophages markedly increased after C21 treatment. The decrease in the degree of calcification of RASMCs cocultured with macrophages and the expression of BMP-2, OCN, Wnt3a, β-catenin and RUNX2 induced by C21 treatment were significantly weakened after transfection with the miRNA-204-5p inhibitor. RUNX2 mRNA was the target of miRNA-204-5p in RASMCs cocultured with macrophages after C21 treatment. CONCLUSIONS Our results suggested that miRNA-204-5p in exosomes secreted from macrophages was at least partly involved in the AT2 receptor-mediated improvement in VC induced by phosphate through targeting RUNX2 mRNA, inhibiting the Wnt/β-catenin signalling pathway and decreasing the expression of calcification-related proteins.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Exosomes/metabolism
- Exosomes/genetics
- Rats
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Coculture Techniques
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Cells, Cultured
- Male
- Rats, Sprague-Dawley
- Macrophages/metabolism
- Macrophages, Alveolar/metabolism
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Rui Lv
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Bo Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Bao-Shuai Shan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
2
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
3
|
Eun K, Kim AY, Ryu S. Matricellular proteins in immunometabolism and tissue homeostasis. BMB Rep 2024; 57:400-416. [PMID: 38919018 PMCID: PMC11444987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications. [BMB Reports 2024; 57(9): 400-416].
Collapse
Affiliation(s)
- Kyoungjun Eun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Ah Young Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seungjin Ryu
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Natural Medicine, College of Medicine, Hallym Unviersity, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
4
|
Liu YF, Tian Y, Chen XF, Zhang C, Huang L. Role of osteokines in atherosclerosis. Cell Biochem Funct 2024; 42:e4107. [PMID: 39154288 DOI: 10.1002/cbf.4107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Despite their diverse physiologies and roles, the heart, skeletal muscles, and smooth muscles all derive from a common embryonic source as bones. Moreover, bone tissue, skeletal and smooth muscles, and the heart share conserved signaling pathways. The maintenance of skeletal health is precisely regulated by osteocytes, osteoblasts, and osteoclasts through coordinated secretion of bone-derived factors known as osteokines. Increasing evidence suggests the involvement of osteokines in regulating atherosclerotic vascular disease. Therefore, this review aims to examine the evidence for the role of osteokines in atherosclerosis development and progression comprehensively. Specifically discussed are extensively studied osteokines in atherosclerosis such as osteocalcin, osteopontin, osteoprotegerin, and fibroblast growth factor 23. Additionally, we highlighted the effects of exercise on modulating these key regulators derived from bone tissue metabolism. We believe that gaining an enhanced understanding of how osteocalcin contributes to the process of atherosclerosis will enable us to develop targeted and comprehensive therapeutic strategies against diseases associated with its progression.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Xiao-Fang Chen
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liang Huang
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Wang L, Niu X. Immunoregulatory Roles of Osteopontin in Diseases. Nutrients 2024; 16:312. [PMID: 38276550 PMCID: PMC10819284 DOI: 10.3390/nu16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Osteopontin (OPN) is a multifunctional protein that plays a pivotal role in the immune system. It is involved in various biological processes, including cell adhesion, migration and survival. The study of the immunomodulatory effects of OPN is of paramount importance due to its potential therapeutic applications. A comprehensive understanding of how OPN regulates the immune response could pave the way for the development of novel treatments for a multitude of diseases, including autoimmune disorders, infectious diseases and cancer. Therefore, in the following paper, we provide a systematic overview of OPN and its immunoregulatory roles in various diseases, laying the foundation for the development of OPN-based therapies in the future.
Collapse
Affiliation(s)
- Lebei Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
7
|
Tang S, Hu H, Li M, Zhang K, Wu Q, Liu X, Wu L, Yu B, Chen X. OPN promotes pro-inflammatory cytokine expression via ERK/JNK pathway and M1 macrophage polarization in Rosacea. Front Immunol 2024; 14:1285951. [PMID: 38250077 PMCID: PMC10796667 DOI: 10.3389/fimmu.2023.1285951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Rosacea is a chronic inflammatory dermatosis that involves dysregulation of innate and adaptive immune systems. Osteopontin (OPN) is a phosphorylated glycoprotein produced by a broad range of immune cells such as macrophages, keratinocytes, and T cells. However, the role of OPN in rosacea remains to be elucidated. In this study, it was found that OPN expression was significantly upregulated in rosacea patients and LL37-induced rosacea-like skin inflammation. Transcriptome sequencing results indicated that OPN regulated pro-inflammatory cytokines and promoted macrophage polarization towards M1 phenotype in rosacea-like skin inflammation. In vitro, it was demonstrated that intracellular OPN (iOPN) promoted LL37-induced IL1B production through ERK1/2 and JNK pathways in keratinocytes. Moreover, secreted OPN (sOPN) played an important role in keratinocyte-macrophage crosstalk. In conclusion, sOPN and iOPN were identified as key regulators of the innate immune system and played different roles in the pathogenesis of rosacea.
Collapse
Affiliation(s)
- Siyi Tang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Hao Hu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Manhui Li
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Kaoyuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Wu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojuan Liu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Lin Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaofan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Kadoglou NPE, Khattab E, Velidakis N, Gkougkoudi E. The Role of Osteopontin in Atherosclerosis and Its Clinical Manifestations (Atherosclerotic Cardiovascular Diseases)-A Narrative Review. Biomedicines 2023; 11:3178. [PMID: 38137398 PMCID: PMC10740720 DOI: 10.3390/biomedicines11123178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs) are the most common and severe public health problem nowadays. Osteopontin (OPN) is a multifunctional glycoprotein highly expressed at atherosclerotic plaque, which has emerged as a potential biomarker of ASCVDs. OPN may act as an inflammatory mediator and/or a vascular calcification (VC) mediator, contributing to atherosclerosis progression and eventual plaque destabilization. In this article, we discuss the complex role of OPN in ASCVD pathophysiology, since many in vitro and in vivo experimental data indicate that OPN contributes to macrophage activation and differentiation, monocyte infiltration, vascular smooth muscle cell (VSMC) migration and proliferation and lipid core formation within atherosclerotic plaques. Most but not all studies reported that OPN may inhibit atherosclerotic plaque calcification, making it "vulnerable". Regarding clinical evidence, serum OPN levels may become a biomarker of coronary artery disease (CAD) presence and severity. Significantly higher OPN levels have been found in patients with acute coronary syndromes than those with stable CAD. In limited studies of patients with peripheral artery disease, circulating OPN concentrations may be predictive of future major adverse cardiovascular events. Overall, the current literature search suggests the contribution of OPN to atherosclerosis development and progression, but more robust evidence is required.
Collapse
Affiliation(s)
- Nikolaos P. E. Kadoglou
- Medical School, University of Cyprus, 215/6 Old Road Lefkosis-Lemesou, Aglatzia, Nicosia CY 2029, Cyprus; (E.K.); (N.V.); (E.G.)
| | | | | | | |
Collapse
|
9
|
Cicekli I, Saglam D, Takar N. A New Perspective on Metabolic Syndrome with Osteopontin: A Comprehensive Review. Life (Basel) 2023; 13:1608. [PMID: 37511983 PMCID: PMC10381599 DOI: 10.3390/life13071608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic syndrome (MetS) imposes a substantial burden on the healthcare systems and economies of countries and is a major public health concern worldwide. MetS is mainly caused by an imbalance between calorie intake and energy expenditure; however, it is recognized that additional variables, such as chronic inflammation, may have the same predictive potential as insulin resistance or MetS components in the genesis of type 2 diabetes and cardiovascular events. More importantly, the early diagnosis or treatment of MetS may significantly reduce the burden on the health systems of the disease with any prevention or biomarker and should not be underestimated. Osteopontin (OPN), also called secreted phosphoprotein 1, is a soluble protein found mostly in body fluids. Studies suggest that serum OPN levels may be an early and new biomarker to predict metabolic and cardiovascular complications significantly associated with some diseases. This review aims to provide specific insight into the new biomarker OPN in MetS. With this purpose, it is examined the link between the MetS cornerstones and OPN. In addition, the interaction between the microbiota and MetS is predicted to be bidirectional, and the microbiota may act as a bridge in this interaction process. Increased OPN levels may have unfavourable consequences for cardiovascular diseases, diabetes, and obesity, all of which are components of MetS. Further studies are required to evaluate the use of OPN levels as a clinical biomarker risk of MetS.
Collapse
Affiliation(s)
- Ipek Cicekli
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Duygu Saglam
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Nadir Takar
- Department of Family Medicine, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul Provincial Directorate of Health, Istanbul 34865, Turkey
| |
Collapse
|
10
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
11
|
LeMaster C, Pierce SH, Geanes ES, Khanal S, Elliott SS, Scott AB, Louiselle DA, McLennan R, Maulik D, Lewis T, Pastinen T, Bradley T. The cellular and immunological dynamics of early and transitional human milk. Commun Biol 2023; 6:539. [PMID: 37202439 DOI: 10.1038/s42003-023-04910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Human milk is essential for infant nutrition and immunity, providing protection against infections and other immune-mediated diseases during the lactation period and beyond in later childhood. Milk contains a broad range of bioactive factors such as nutrients, hormones, enzymes, immunoglobulins, growth factors, cytokines, and antimicrobial factors, as well as heterogeneous populations of maternal cells. The soluble and cellular components of milk are dynamic over time to meet the needs of the growing infant. In this study, we utilize systems-approaches to define and characterize 62 analytes of the soluble component, including immunoglobulin isotypes, as well as the cellular component of human milk during the first two weeks postpartum from 36 mothers. We identify soluble immune and growth factors that are dynamic over time and could be utilized to classify milk into different phenotypic groups. We identify 24 distinct populations of both epithelial and immune cells by single-cell transcriptome analysis of 128,016 human milk cells. We found that macrophage populations have shifting inflammatory profiles during the first two weeks of lactation. This analysis provides key insights into the soluble and cellular components of human milk and serves as a substantial resource for future studies of human milk.
Collapse
Affiliation(s)
- Cas LeMaster
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Stephen H Pierce
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eric S Geanes
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Santosh Khanal
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Staci S Elliott
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Allison B Scott
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Daniel A Louiselle
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Devika Maulik
- Fetal Health Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Tamorah Lewis
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
12
|
Abstract
Patients with chronic kidney disease (CKD) exhibit tremendously elevated risk for cardiovascular disease, particularly ischemic heart disease, due to premature vascular and cardiac aging and accelerated ectopic calcification. The presence of cardiovascular calcification associates with increased risk in patients with CKD. Disturbed mineral homeostasis and diverse comorbidities in these patients drive increased systemic cardiovascular calcification in different manifestations with diverse clinical consequences, like plaque instability, vessel stiffening, and aortic stenosis. This review outlines the heterogeneity in calcification patterning, including mineral type and location and potential implications on clinical outcomes. The advent of therapeutics currently in clinical trials may reduce CKD-associated morbidity. Development of therapeutics for cardiovascular calcification begins with the premise that less mineral is better. While restoring diseased tissues to a noncalcified homeostasis remains the ultimate goal, in some cases, calcific mineral may play a protective role, such as in atherosclerotic plaques. Therefore, developing treatments for ectopic calcification may require a nuanced approach that considers individual patient risk factors. Here, we discuss the most common cardiac and vascular calcification pathologies observed in CKD, how mineral in these tissues affects function, and the potential outcomes and considerations for therapeutic strategies that seek to disrupt the nucleation and growth of mineral. Finally, we discuss future patient-specific considerations for treating cardiac and vascular calcification in patients with CKD-a population in need of anticalcification therapies.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL (J.D.H.)
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Germany (C.G.)
| |
Collapse
|
13
|
Lin EYH, Xi W, Aggarwal N, Shinohara ML. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol 2023; 35:171-180. [PMID: 36525591 PMCID: PMC10071791 DOI: 10.1093/intimm/dxac060] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional protein, initially identified in osteosarcoma cells with its role of mediating osteoblast adhesion. Later studies revealed that OPN is associated with many inflammatory conditions caused by infections, allergic responses, autoimmunity and tissue damage. Many cell types in the peripheral immune system express OPN with various functions, which could be beneficial or detrimental. Also, more recent studies demonstrated that OPN is highly expressed in the central nervous system (CNS), particularly in microglia during CNS diseases and development. However, understanding of mechanisms underlying OPN's functions in the CNS is still limited. In this review, we focus on peripheral myeloid cells and CNS-resident cells to discuss the expression and functions of OPN.
Collapse
Affiliation(s)
- Elliot Yi-Hsin Lin
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wen Xi
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
14
|
Nε-Carboxymethyl-Lysine Mediates Vascular Calcification in Diabetes Caused by Impaired Osteoclastic Resorption Activity Through NFATc1-GNPTAB. J Cardiovasc Transl Res 2023; 16:233-243. [PMID: 35972719 DOI: 10.1007/s12265-022-10300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Nε-carboxymethyl-lysine (CML) is closely associated with vascular calcification in diabetes. Osteoclasts are the only cells with bone resorption activity that have the potential to reverse calcification. This study aimed to investigate the mechanism of CML in the bone resorption activity of macrophage-derived osteoclasts in diabetic calcified plaques. Macrophage-derived osteoclasts were found to be present in calcified plaques of the anterior tibial artery in patients with diabetic amputation. Furthermore, in vitro studies showed that CML induced the differentiation of macrophages into osteoclasts, although, the bone resorption activity of these macrophage-derived osteoclasts was impaired. CML significantly increased the levels of NFATc1and GNPTAB. In vivo studies showed that there was more calcium deposition and less TRAP was less in the CML group while this effect was reversed after silencing of NFATc1. In conclusion, CML mediates NFATc1-GNPTAB to regulate bone resorption activity of osteoclasts in diabetic calcified plaques. CML promotes macrophage differentiation into osteoclasts, but their function is impaired in diabetic calcified plaques through NFATc1-GNPTAB, which eventually leads to the further progression of vascular calcification in diabetes.
Collapse
|
15
|
Srivastava RK, Sapra L, Mishra PK. Osteometabolism: Metabolic Alterations in Bone Pathologies. Cells 2022; 11:3943. [PMID: 36497201 PMCID: PMC9735555 DOI: 10.3390/cells11233943] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Renewing interest in the study of intermediate metabolism and cellular bioenergetics is brought on by the global increase in the prevalence of metabolic illnesses. Understanding of the mechanisms that integrate energy metabolism in the entire organism has significantly improved with the application of contemporary biochemical tools for quantifying the fuel substrate metabolism with cutting-edge mouse genetic procedures. Several unexpected findings in genetically altered mice have prompted research into the direction of intermediate metabolism of skeletal cells. These findings point to the possibility of novel endocrine connections through which bone cells can convey their energy status to other metabolic control centers. Understanding the expanded function of skeleton system has in turn inspired new lines of research aimed at characterizing the energy needs and bioenergetic characteristics of these bone cells. Bone-forming osteoblast and bone-resorbing osteoclast cells require a constant and large supply of energy substrates such as glucose, fatty acids, glutamine, etc., for their differentiation and functional activity. According to latest research, important developmental signaling pathways in bone cells are connected to bioenergetic programs, which may accommodate variations in energy requirements during their life cycle. The present review article provides a unique perspective of the past and present research in the metabolic characteristics of bone cells along with mechanisms governing energy substrate utilization and bioenergetics. In addition, we discussed the therapeutic inventions which are currently being utilized for the treatment and management of bone-related diseases such as osteoporosis, rheumatoid arthritis (RA), osteogenesis imperfecta (OIM), etc., by modulating the energetics of bone cells. We further emphasized on the role of GUT-associated metabolites (GAMs) such as short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), indole derivates, bile acids, etc., in regulating the energetics of bone cells and their plausible role in maintaining bone health. Emphasis is importantly placed on highlighting knowledge gaps in this novel field of skeletal biology, i.e., "Osteometabolism" (proposed by our group) that need to be further explored to characterize the physiological importance of skeletal cell bioenergetics in the context of human health and bone related metabolic diseases.
Collapse
Affiliation(s)
- Rupesh K. Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | |
Collapse
|
16
|
Zhang X, Zhou X, Huang Z, Fan X, Tan X, Lu C, Yang J. Aldosterone is a possible new stimulating factor for promoting vascular calcification. FRONT BIOSCI-LANDMRK 2021; 26:1052-1063. [PMID: 34856752 DOI: 10.52586/5008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
Background: Aldosterone is an important hormone in the renin-angiotensin-aldosterone system (RAAS), and playing a pivotal role in the development of hypertension, heart failure, and other cardiovascular diseases. Material and method: In this study, the role of the aldosterone in vascular calcification was underwent in rat model compared with other drugs. Vascular calcification, calcium concentration, activity of alkaline phosphatase (ALP), aldosterone, Urotensin II, mineralocorticoid receptor (MR) and Osteopontin (OPN) were detected or confirmed by the von Kossa staining, colorimetric assays, immunohistochemistry and radioimmunoassay, separately. Result: Results revealed that the aldosterone was significantly increased compared calcification + aldosterone group with calcification group, whereas it was notably decreased in calcification + Spironolactone group in the aortic wall. Compared with control group and aldosterone group, calcium content in vascular tissues was increased in calcification group and calcification + aldosterone group. As the immunoreactivity of the MR, OPN, Urotensin II, IL-6, monocyte chemoattractant protein-1, and deposition of collagen in calcification group and aldosterone group, they all were increased slightly, but were significantly increased in calcification + aldosterone group. Conclusion: It is implied that aldosterone may be involved in the development of vascular calcification, however, the mechanism needs to be further studied.
Collapse
Affiliation(s)
- Xusheng Zhang
- Department of Cardiology, The First Central Clinical College of Tianjin Medical University, 300070 Tianjin, China
- Department of Cardiology, Tianjin First Central Hospital, 300070 Tianjin, China
- Department of Cardiology, Longgang People's Hospital of Shenzhen, 518172 Shenzhen, Guangdong, China
| | - Xiaoou Zhou
- Department of Cardiology, Dongguan Kanghua Hospital, 523080 Dongguan, Guangdong, China
| | - Zhanjun Huang
- Department of Cardiology, Longgang People's Hospital of Shenzhen, 518172 Shenzhen, Guangdong, China
| | - Xiaorong Fan
- Department of Cardiology, Longgang People's Hospital of Shenzhen, 518172 Shenzhen, Guangdong, China
| | - Xiaoqing Tan
- Department of Cardiology, Longgang People's Hospital of Shenzhen, 518172 Shenzhen, Guangdong, China
| | - Chengzhi Lu
- Department of Cardiology, The First Central Clinical College of Tianjin Medical University, 300070 Tianjin, China
- Department of Cardiology, Tianjin First Central Hospital, 300070 Tianjin, China
| | - Jianshe Yang
- Department of Cardiology, Longgang People's Hospital of Shenzhen, 518172 Shenzhen, Guangdong, China
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072 Shanghai, China
| |
Collapse
|
17
|
Li H, Yang M. Ligustrazine activate the PPAR-γ pathway and play a protective role in vascular calcification. Vascular 2021; 30:1224-1231. [PMID: 34670463 DOI: 10.1177/17085381211051477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to explore the role of ligustrazine in vascular calcification. METHODS After β-GP stimulation, vascular smooth muscle cells (VSMCs) were detected by Alizarin Red Staing staining. Calcium content and alkaline phosphatase (ALP) activity were detected by intracellular calcium assay kit and ALP assay kit, respectively. The expression of peroxisome proliferation-activated receptor (PPAR-γ) pathway-related proteins was detected by Western blot. PPAR-γ, MSX2, osteopontin (OPN), sclerostin, and BGP were detected by RT-PCR. RESULTS β-GP induced the decreased activity and expression of PPAR-γ and ALP in VSMCs, while ligustrazine activated the expression of PPAR-γ. Through activation of PPAR-γ, ligustrazine decreased β-GP-induced VSMC calcification, decreased the expression of markers of osteogenesis and chondrogenic differentiation, and increased the expression of VSMC markers. CONCLUSION Ligustrazine activates the PPAR-γ pathway and plays a protective role in vascular calcification.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Shanxi Chinese Medical Hospital, Taiyuan, China
| | - Min Yang
- Department of Medical Oncology, The Second Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Hansakon A, Png CW, Zhang Y, Angkasekwinai P. Macrophage-Derived Osteopontin Influences the Amplification of Cryptococcus neoformans-Promoting Type 2 Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 207:2107-2117. [PMID: 34526375 DOI: 10.4049/jimmunol.2100202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
A multifunctional glycoprotein, osteopontin (OPN), can modulate the function of macrophages, resulting in either protective or deleterious effects in various inflammatory diseases and infection in the lungs. Although macrophages play the critical roles in mediating host defenses against cryptococcosis or cryptococcal pathogenesis, the involvement of macrophage-derived OPN in pulmonary infection caused by fungus Cryptococcus has not been elucidated. Thus, our current study aimed to investigate the contribution of OPN to the regulation of host immune response and macrophage function using a mouse model of pulmonary cryptococcosis. We found that OPN was predominantly expressed in alveolar macrophages during C. neoformans infection. Systemic treatment of OPN during C. neoformans infection resulted in an enhanced pulmonary fungal load and an early onset of type 2 inflammation within the lung, as indicated by the increase of pulmonary eosinophil infiltration, type 2 cytokine production, and M2-associated gene expression. Moreover, CRISPR/Cas9-mediated OPN knockout murine macrophages had enhanced ability to clear the intracellular fungus and altered macrophage phenotype from pathogenic M2 to protective M1. Altogether, our data suggested that macrophage-derived OPN contributes to the elaboration of C. neoformans-induced type 2 immune responses and polarization of M2s that promote fungal survival and proliferation within macrophages.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.,Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore; and
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand; .,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
19
|
Waring OJ, Skenteris NT, Biessen EAL, Donners MMPC. Two-faced Janus: The dual role of macrophages in atherosclerotic calcification. Cardiovasc Res 2021; 118:2768-2777. [PMID: 34550346 PMCID: PMC9586561 DOI: 10.1093/cvr/cvab301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Calcification is an independent predictor of atherosclerosis-related cardiovascular events. Microcalcification is linked to inflamed, unstable lesions, in comparison to the fibrotic stable plaque phenotype generally associated with advanced calcification. This paradox relates to recognition that calcification presents in a wide spectrum of manifestations that differentially impact plaque’s fate. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a multifaceted role in disease progression. They crucially control the mineralization process, from microcalcification to the osteoid metaplasia of bone-like tissue. It is a bilateral interaction that weighs heavily on the overall plaque fate but remains rather unexplored. This review highlights current knowledge about macrophage phenotypic changes in relation to and interaction with the calcifying environment. On the one hand, macrophage-led inflammation kickstarts microcalcification through a multitude of interlinked mechanisms, which in turn stimulates phenotypic changes in vascular cell types to drive microcalcification. Macrophages may also modulate the expression/activity of calcification inhibitors and inducers, or eliminate hydroxyapatite nucleation points. Contrarily, direct exposure of macrophages to an early calcifying milieu impacts macrophage phenotype, with repercussions for plaque progression and/or stability. Macrophages surrounding macrocalcification deposits show a more reparative phenotype, modulating extracellular matrix, and expressing osteoclast genes. This phenotypic shift favours gradual displacement of the pro-inflammatory hubs; the lipid necrotic core, by macrocalcification. Parallels to bone metabolism may explain many of these changes to macrophage phenotype, with advanced calcification able to show homeostatic osteoid metaplasia. As the targeted treatment of vascular calcification developing in atherosclerosis is thus far severely lacking, it is crucial to better understand its mechanisms of development.
Collapse
Affiliation(s)
- O J Waring
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - N T Skenteris
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.,Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - E A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, German
| | - M M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
20
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
21
|
Fischer DS, Ansari M, Wagner KI, Jarosch S, Huang Y, Mayr CH, Strunz M, Lang NJ, D'Ippolito E, Hammel M, Mateyka L, Weber S, Wolff LS, Witter K, Fernandez IE, Leuschner G, Milger K, Frankenberger M, Nowak L, Heinig-Menhard K, Koch I, Stoleriu MG, Hilgendorff A, Behr J, Pichlmair A, Schubert B, Theis FJ, Busch DH, Schiller HB, Schober K. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through 'reverse phenotyping'. Nat Commun 2021; 12:4515. [PMID: 34312385 PMCID: PMC8313584 DOI: 10.1038/s41467-021-24730-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 'reverse phenotyping'. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.
Collapse
Affiliation(s)
- David S Fischer
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Meshal Ansari
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Karolin I Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Yiqi Huang
- Institute of Virology, Technische Universität München (TUM), Munich, Germany
| | - Christoph H Mayr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Maximilian Strunz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Niklas J Lang
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Laura Mateyka
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Simone Weber
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Lisa S Wolff
- Institute of Virology, Technische Universität München (TUM), Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics and Molecular Diagnostics, Department of Transfusion Medicine, Cell Therapeutic Agents and Hemostaseology, LMU Munich, Munich, Germany
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Isis E Fernandez
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Gabriela Leuschner
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Marion Frankenberger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Lorenz Nowak
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Katharina Heinig-Menhard
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Ina Koch
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Biobank for pulmonary diseases, Gauting, Germany
- Member of the German Center for Lung Research (DZL), Center for Comprehensive Developmental Care (CDeCLMU), Department of Neonatology, Perinatal Center, Munich, Germany
| | - Mircea G Stoleriu
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Biobank for pulmonary diseases, Gauting, Germany
- Member of the German Center for Lung Research (DZL), Center for Comprehensive Developmental Care (CDeCLMU), Department of Neonatology, Perinatal Center, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technische Universität München (TUM), Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- Focus Group 'Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- Focus Group 'Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- Grosshadern, Hospital of the Ludwig-Maximilians University (LMU), Munich, Germany
| | - Herbert B Schiller
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany.
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Neuherberg, München, Germany.
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.
- Microbiological Institute-Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen, Erlangen, Germany.
| |
Collapse
|
22
|
Osteopontin in Cardiovascular Diseases. Biomolecules 2021; 11:biom11071047. [PMID: 34356671 PMCID: PMC8301767 DOI: 10.3390/biom11071047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.
Collapse
|
23
|
Affiliation(s)
- Linda L Demer
- Departments of Medicine (L.L.D., Y.T.), University of California-Los Angeles.,Physiology (L.L.D., Y.T.), University of California-Los Angeles.,Bioengineering (L.L.D.), University of California-Los Angeles.,Veterans Affairs Greater Los Angeles Healthcare System, California (L.L.D., Y.T.)
| | - Yin Tintut
- Departments of Medicine (L.L.D., Y.T.), University of California-Los Angeles.,Physiology (L.L.D., Y.T.), University of California-Los Angeles.,Orthopedic Surgery (Y.T.), University of California-Los Angeles.,Veterans Affairs Greater Los Angeles Healthcare System, California (L.L.D., Y.T.)
| |
Collapse
|
24
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
25
|
Borsky P, Fiala Z, Andrys C, Beranek M, Hamakova K, Kremlacek J, Malkova A, Svadlakova T, Krejsek J, Palicka V, Rehacek V, Kotingova L, Borska L. C-reactive protein, chemerin, fetuin-A and osteopontin as predictors of cardiovascular risks in persons with psoriasis vulgaris. Physiol Res 2021; 70:383-391. [PMID: 33982577 DOI: 10.33549/physiolres.934654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The study aimed to contribute to understanding the role of CRP, chemerin, fetuin-A and osteopontin and to assess their suitability as biomarkers of early stages of cardiovascular diseases in psoriasis vulgaris. Serum levels measured in 28 patients and 22 controls. Patients: increased levels of CRP (p<0.001), chemerin (p<0.05), osteopontin (p<0.05) and decreased levels of fetuin-A (p<0.05), significant relationships between CRP and fetuin-A (rho=0.530, p<0.01), CRP and chemerin (rho=0.543, p<0.01), CRP and age (rho=0.590, p<0.001), osteopontin and fetuin-A (r=-0.415, p<0.05), chemerin and PASI score (rho=-0.424, p<0.05). We confirmed specific roles of the biomarkers in psoriasis. CRP, fetuin-A and osteopontin could be considered appropriate markers for the detection of early stages of cardiovascular diseases.
Collapse
Affiliation(s)
- P Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiang W, Zhang Z, Li Y, Chen C, Yang H, Lin Q, Hu M, Qin X. The Cell Origin and Role of Osteoclastogenesis and Osteoblastogenesis in Vascular Calcification. Front Cardiovasc Med 2021; 8:639740. [PMID: 33969008 PMCID: PMC8102685 DOI: 10.3389/fcvm.2021.639740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
Arterial calcification refers to the abnormal deposition of calcium salts in the arterial wall, which results in vessel lumen stenosis and vascular remodeling. Studies increasingly show that arterial calcification is a cell mediated, reversible and active regulated process similar to physiological bone mineralization. The osteoblasts and chondrocytes-like cells are present in large numbers in the calcified lesions, and express osteogenic transcription factor and bone matrix proteins that are known to initiate and promote arterial calcification. In addition, osteoclast-like cells have also been detected in calcified arterial walls wherein they possibly inhibit vascular calcification, similar to the catabolic process of bone mineral resorption. Therefore, tilting the balance between osteoblast-like and osteoclast-like cells to the latter maybe a promising therapeutic strategy against vascular calcification. In this review, we have summarized the current findings on the origin and functions of osteoblast-like and osteoclast-like cells in the development and progression of vascular progression, and explored novel therapeutic possibilities.
Collapse
Affiliation(s)
- Wenhong Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhanman Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaodong Li
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuanzhen Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuning Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Hu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Hu W, Zhang L, Dong Y, Tian Z, Chen Y, Dong S. Tumour dormancy in inflammatory microenvironment: A promising therapeutic strategy for cancer-related bone metastasis. Cell Mol Life Sci 2020; 77:5149-5169. [PMID: 32556373 PMCID: PMC11104789 DOI: 10.1007/s00018-020-03572-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a unique feature of malignant tumours. Even bone can become a common colonization site due to the tendency of solid tumours, including breast cancer (BCa) and prostate cancer (PCa), to metastasize to bone. Currently, a previous concept in tumour metabolism called tumour dormancy may be a promising target for antitumour treatment. When disseminated tumour cells (DTCs) metastasize to the bone microenvironment, they form a flexible regulatory network called the "bone-tumour-inflammation network". In this network, bone turnover as well as metabolism, tumour progression, angiogenesis and inflammatory responses are highly unified and coordinated, and a slight shift in this balance can result in the disruption of the microenvironment, uncontrolled inflammatory responses and excessive tumour growth. The purpose of this review is to highlight the regulatory effect of the "bone-tumour-inflammation network" in tumour dormancy. Osteoblast-secreted factors, bone turnover and macrophages are emphasized and occupy in the main part of the review. In addition, the prospective clinical application of tumour dormancy is also discussed, which shows the direction of future research.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lincheng Zhang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yutong Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
28
|
Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019; 8:cells8080815. [PMID: 31382483 PMCID: PMC6721491 DOI: 10.3390/cells8080815] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
The glycoprotein osteopontin (OPN) possesses multiple functions in health and disease. To this end, osteopontin has beneficial roles in wound healing, bone homeostasis, and extracellular matrix (ECM) function. On the contrary, osteopontin can be deleterious for the human body during disease. Indeed, osteopontin is a cardinal mediator of tumor-associated inflammation and facilitates metastasis. The purpose of this review is to highlight the importance of osteopontin in malignant processes, focusing on lung and pleural tumors as examples.
Collapse
Affiliation(s)
- Anne-Sophie Lamort
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece
| | - Ioannis Psallidas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E6BT, UK
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece.
| |
Collapse
|
29
|
Pang X, Gong K, Zhang X, Wu S, Cui Y, Qian BZ. Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol Res 2019; 144:235-244. [PMID: 31028902 DOI: 10.1016/j.phrs.2019.04.030] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Metastasis to bone frequently occurs in majority of patients with advanced breast cancer and prostate cancer, leading to devastating skeletal-related events and substantially reducing the survival of patients. Currently, the crosstalk between tumor cells and the bone stromal compartment was widely investigated for bone metastasis and the resistance to many conventional therapeutic methods. Osteopontin (OPN), also known as SPP1 (secreted phosphoprotein 1), a secreted and chemokine-like glyco-phosphoprotein is involved in tumor progression such as cell proliferation, angiogenesis, and metastasis. The expression of OPN in tumor tissue and plasma has been clinically proved to be correlated to poor prognosis and shortened survival in patients with breast cancer and prostate cancer. This review summarizes the multifaceted roles that OPN plays in bone microenvironment and drug resistance, with emphasis on breast and prostate cancers, via binding to αvβ3 integrin and CD44 receptor and inducing signaling cascades. We further discuss the promising therapeutic strategy for OPN targeting, mainly inhibiting OPN at transcriptional or protein level or blocking it binding to receptor or its downstream signaling pathways. The comprehending of the function of OPN in bone microenvironment is crucial for the development of novel biomarker and potential therapeutic target for the diagnosis and treatment of bone metastasis and against the emergence of drug resistance in advanced cancers.
Collapse
Affiliation(s)
- Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Xiaodan Zhang
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Shiliang Wu
- Department of Urology, Peking University First Hospital, Xicheng District, 10034, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xicheng District, 10034, Beijing, China.
| | - Bin-Zhi Qian
- Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University.University of Edinburgh and MRC Centre for Reproductive Health, 2 Edinburgh Cancer Research UK Centre Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom; Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Haizhu District, 510260, Guangzhou, China.
| |
Collapse
|
30
|
Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc Natl Acad Sci U S A 2019; 116:11988-11996. [PMID: 31138692 PMCID: PMC6575181 DOI: 10.1073/pnas.1821770116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Identifying components of breast milk that influence postnatal development though their effects on the gut microbiota and immune system could provide new therapeutic approaches for childhood undernutrition, including heretofore treatment-refractory linear growth faltering (stunting). Plasma biomarkers of osteoclast-mediated bone resorption and osteoblast-driven bone formation in stunted Bangladeshi children provided evidence for elevated osteoclastic activity. Gnotobiotic mice, colonized with a stunted infant’s gut microbiota, exhibited decreased bone resorption when consuming diets supplemented with a purified bovine oligosaccharide mixture dominated by sialylated structures found in human breast milk. Supplementation decreased osteoclastogenesis while sparing osteoblast activity; the microbiota, intestinal cell populations, and immune mediators contribute to these responses. The influence of milk oligosaccharides on the gut microbiota–bone axis has diagnostic and therapeutic implications. Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting. To characterize interactions among the gut microbiota, human milk oligosaccharides (HMOs), and osteoclast and osteoblast biology, young germ-free mice were colonized with cultured bacterial strains from a 6-mo-old stunted infant and fed a diet mimicking that consumed by the donor population. Adding purified bovine sialylated milk oligosaccharides (S-BMO) with structures similar to those in human milk to this diet increased femoral trabecular bone volume and cortical thickness, reduced osteoclasts and their bone marrow progenitors, and altered regulators of osteoclastogenesis and mediators of Th2 responses. Comparisons of germ-free and colonized mice revealed S-BMO-dependent and microbiota-dependent increases in cecal levels of succinate, increased numbers of small intestinal tuft cells, and evidence for activation of a succinate-induced tuft cell signaling pathway linked to Th2 immune responses. A prominent fucosylated HMO, 2′-fucosyllactose, failed to elicit these changes in bone biology, highlighting the structural specificity of the S-BMO effects. These results underscore the need to further characterize the balance between, and determinants of, osteoclastic and osteoblastic activity in stunted infants/children, and suggest that certain milk oligosaccharides may have therapeutic utility in this setting.
Collapse
|
31
|
Lee GL, Yeh CC, Wu JY, Lin HC, Wang YF, Kuo YY, Hsieh YT, Hsu YJ, Kuo CC. TLR2 Promotes Vascular Smooth Muscle Cell Chondrogenic Differentiation and Consequent Calcification via the Concerted Actions of Osteoprotegerin Suppression and IL-6–Mediated RANKL Induction. Arterioscler Thromb Vasc Biol 2019; 39:432-445. [DOI: 10.1161/atvbaha.118.311874] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective—
Vascular smooth muscle cell (VSMC) transformation to an osteochondrogenic phenotype is an initial step toward arterial calcification, which is highly correlated with cardiovascular disease–related morbidity and mortality. TLR2 (Toll-like receptor 2) plays a pathogenic role in the development of vascular diseases, but its regulation in calcification of arteries and VSMCs remains unclear. We postulate that TLR2-mediated inflammation participates in mediating atherosclerotic arterial calcification and VSMC calcification.
Approach and Results—
We found that
ApoE
−/−
Tlr2
−/−
genotype in mice suppressed high-fat diet–induced atherosclerotic plaques formation during initiation but progressively lost its preventative capacity, compared with
ApoE
−/−
mice. However, TLR2 deficiency prohibited high-fat diet–induced advanced atherosclerotic calcification, chondrogenic metaplasia, and OPG (osteoprotegerin) downregulation in the calcified lesions. Incubation of VSMCs in a calcifying medium revealed that TLR2 agonists significantly increased VSMC calcification and chondrogenic differentiation. Furthermore, TLR2 deficiency suppressed TLR2 agonist–mediated VSMC chondrogenic differentiation and consequent calcification, which were triggered via the concerted actions of IL (interleukin)-6–mediated RANKL (receptor activator of nuclear factor κB ligand) induction and OPG suppression. Inhibition experiments with pharmacological inhibitors demonstrated that IL-6–mediated RANKL induction is signaled by p38 and ERK1/2 (extracellular signal-regulated kinase 1/2) pathways, whereas the OPG is suppressed via NF-κB (nuclear factor κB) dependent signaling mediated by ERK1/2.
Conclusions—
We concluded that on ligand binding, TLR2 activates p38 and ERK1/2 signaling to selectively modulate the upregulation of IL-6–mediated RANKL and downregulation of OPG. These signaling pathways act in concert to induce chondrogenic transdifferentiation of VSMCs, which in turn leads to vascular calcification during the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Guan-Lin Lee
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Chang-Ching Yeh
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (C.-C.Y., Y.-J.H., C.-C.K.)
| | - Jing-Yiing Wu
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Hui-Chen Lin
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Yi-Fu Wang
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Ya-Yi Kuo
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Yi-Ting Hsieh
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Yu-Juei Hsu
- Division of Nephrology and Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan (Y.-J.H)
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (C.-C.Y., Y.-J.H., C.-C.K.)
| | - Cheng-Chin Kuo
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (C.-C.Y., Y.-J.H., C.-C.K.)
- Metabolomic Research Center and Graduate Institute of Basic Medical Science China Medical University Hospital, Taichung, Taiwan (C.-C.K.)
| |
Collapse
|
32
|
Ho CC, Wu WT, Chen YC, Liou SH, Yet SF, Lee CH, Tsai HT, Weng CY, Tsai MH, Lin P. Identification of osteopontin as a biomarker of human exposure to fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:975-985. [PMID: 30682754 DOI: 10.1016/j.envpol.2018.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Ambient particulate matter (PM) exposure is associated with pulmonary and cardiovascular diseases; however, there is scant research linking data on animal and human cells. The objective of this study was to investigate these associations. Vascular remodeling plays a crucial role in both pulmonary and cardiovascular diseases. Therefore, we conducted a transcriptomic analysis using vascular smooth muscle cells (VSMCs) to identify potential regulators or markers of PM exposure. We demonstrated that fine and coarse PM increased VSMC proliferation in mice. We conducted a genome-wide cDNA microarray analysis, followed by a pathway analysis of VSMCs treated with coarse PM for durations of 24, 48, and 72 h. Sixteen genes were discovered to be time-dependently upregulated and involved in VSMC proliferation. Osteopontin (OPN) is indicated as one of the regulators of these upregulated genes. Both fine and coarse PM from industrial and urban areas significantly increased OPN expression in VSMCs and macrophages. Moreover, oropharyngeal instillation of fine and coarse PM for 8 weeks increased the VSMCs in the pulmonary arteries of mice. OPN level was consistently increased in the lung tissues, bronchoalveolar lavage fluid, and serum of mice. Moreover, we analyzed the plasma OPN levels of 72 healthy participants recruited from the studied metropolitan area. Each participant wore a personal PM2.5 sampler to assess their PM2.5 exposure over a 24 h period. Our results indicate that personal exposure to fine PM is positively correlated with plasma OPN level in young adults. The data obtained in this study suggest that exposure to fine and coarse PM may cause pulmonary vascular lesions in humans and that OPN level may be a biomarker of PM exposure in humans.
Collapse
Affiliation(s)
- Chia-Chi Ho
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC; Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan, ROC.
| | - Saou-Hsing Liou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Hui-Ti Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Chen-Yi Weng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Ming-Hsien Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.
| |
Collapse
|
33
|
Luukkonen J, Hilli M, Nakamura M, Ritamo I, Valmu L, Kauppinen K, Tuukkanen J, Lehenkari P. Osteoclasts secrete osteopontin into resorption lacunae during bone resorption. Histochem Cell Biol 2019; 151:475-487. [PMID: 30637455 PMCID: PMC6542781 DOI: 10.1007/s00418-019-01770-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/27/2023]
Abstract
Osteopontin (OPN) is a non-collagenous extracellular sialylated glycoprotein located in bone. It is believed to be one of the key components in osteoclast attachment to bone during resorption. In this study, we characterized OPN and other glycoproteins found in the resorption lacunae to confirm the role of osteoclasts in OPN secretion using electron microscopy and mass spectrometry. Additionally, we examined the glycan epitopes of resorption pits and the effects of different glycan epitopes on the differentiation and function of osteoclasts. Osteoarthritic femoral heads were examined by immunohistochemistry to reveal the presence of OPN in areas of increased bone metabolism in vivo. Our results demonstrate that human osteoclasts secrete OPN into resorption lacunae on native human bone and on carbonated hydroxyapatite devoid of natural OPN. OPN is associated with an elevated bone turnover in osteoarthritic bone under experimental conditions. Our data further confirm that osteoclasts secrete OPN into the resorption pit where it may function as a chemokine for subsequent bone formation. We show that α2,3- and α2,6-linked sialic acids have a role in the process of osteoclast differentiation. OPN is one of the proteins that has both of the above sialic residues, hence we propose that de-sialylation can effect osteoclast differentiation in bone.
Collapse
Affiliation(s)
- Jani Luukkonen
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland.
| | - Meeri Hilli
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| | - Miho Nakamura
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 1010062, Japan
| | - Ilja Ritamo
- Thermo Fisher Scientific Oy, Ratastie 2, 01620, Vantaa, Finland
| | - Leena Valmu
- Thermo Fisher Scientific Oy, Ratastie 2, 01620, Vantaa, Finland
| | - Kyösti Kauppinen
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| | - Petri Lehenkari
- Department of Anatomy and Cell Biology, Cancer Research and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, Aapistie 5, 90014, Oulu, Finland
| |
Collapse
|
34
|
Ngai D, Lino M, Bendeck MP. Cell-Matrix Interactions and Matricrine Signaling in the Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2018; 5:174. [PMID: 30581820 PMCID: PMC6292870 DOI: 10.3389/fcvm.2018.00174] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Carbone F, Montecucco F. Novel cardiovascular risk biomarkers in carotid atherogenesis. Biomark Med 2018; 12:1065-1067. [PMID: 30227729 DOI: 10.2217/bmm-2018-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 10 Largo Benzi, 16132, Genoa, Italy & Center of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
36
|
Yao Q, Liu J, Zhang Z, Li F, Zhang C, Lai B, Xiao L, Wang N. Peroxisome proliferator-activated receptor γ (PPARγ) induces the gene expression of integrin α Vβ 5 to promote macrophage M2 polarization. J Biol Chem 2018; 293:16572-16582. [PMID: 30181212 DOI: 10.1074/jbc.ra118.003161] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and polarizes the macrophages into an anti-inflammatory M2 state. Integrins are transmembrane receptors that drive various cellular functions, including monocyte adhesion and foam cell formation. In this study, we first reported that the expression of integrins αV and β5 was up-regulated by PPARγ activation in RAW264.7 cells and human peripheral blood monocytes. Luciferase reporter and ChIP assay revealed that PPARγ directly bound to the potential PPAR-responsive elements sites in the 5'-flanking regions of both murine and human integrin αV and β5 genes, respectively. In addition, we showed that PPARγ augmented the ligation of integrins αV and β5 Knockdown of integrin αVβ5 by siRNA strategy or treatment with cilengitide, a potent inhibitor of integrin αVβ5, attenuated PPARγ-induced expression of Ym1 (chitinase-like protein 3), Arg1 (Arginase1), Fizz1 (resistin-like molecule RELMα), and other M2 marker genes, suggesting that the heterodimers of integrin αVβ5 were involved in PPARγ-induced M2 polarization. In conclusion, these results provided novel evidence that PPARγ-mediated gene expression and the ensuing ligation of integrins αV and β5 are implicated in macrophage M2 polarization.
Collapse
Affiliation(s)
- Qinyu Yao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China and
| | - Jia Liu
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China and
| | - Zihui Zhang
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China and
| | - Fan Li
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China and
| | - Chao Zhang
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China and
| | - Baochang Lai
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China and
| | - Lei Xiao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China and
| | - Nanping Wang
- the Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
37
|
Rentsendorj A, Sheyn J, Fuchs DT, Daley D, Salumbides BC, Schubloom HE, Hart NJ, Li S, Hayden EY, Teplow DB, Black KL, Koronyo Y, Koronyo-Hamaoui M. A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer's models. Brain Behav Immun 2018; 67:163-180. [PMID: 28860067 PMCID: PMC5865478 DOI: 10.1016/j.bbi.2017.08.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN), a matricellular immunomodulatory cytokine highly expressed by myelomonocytic cells, is known to regulate immune cell migration, communication, and response to brain injury. Enhanced cerebral recruitment of monocytes achieved through glatiramer acetate (GA) immunization or peripheral blood enrichment with bone marrow (BM)-derived CD115+ monocytes (MoBM) curbs amyloid β-protein (Aβ) neuropathology and preserves cognitive function in murine models of Alzheimer's disease (ADtg mice). To elucidate the beneficial mechanisms of these immunomodulatory approaches in AD, we focused on the potential role of OPN in macrophage-mediated Aβ clearance. Here, we found extensive OPN upregulation along with reduction of vascular and parenchymal Aβ burden in cortices and hippocampi of GA-immunized ADtg mice. Treatment combining GA with blood-grafted MoBM further increased OPN levels surrounding residual Aβ plaques. In brains from AD patients and ADtg mice, OPN was also elevated and predominantly expressed by infiltrating GFP+- or Iba1+-CD45high monocyte-derived macrophages engulfing Aβ plaques. Following GA immunization, we detected a significant increase in a subpopulation of inflammatory blood monocytes (CD115+CD11b+Ly6Chigh) expressing OPN, and subsequently, an elevated population of OPN-expressing CD11b+Ly6C+CD45high monocyte/macrophages in the brains of these ADtg mice. Correlogram analyses indicate a strong linear correlation between cerebral OPN levels and macrophage infiltration, as well as a tight inverse relation between OPN and Aβ-plaque burden. In vitro studies corroborate in vivo findings by showing that GA directly upregulates OPN expression in BM-derived macrophages (MФBM). Further, OPN promotes a phenotypic shift that is highly phagocytic (increased uptake of Aβ fibrils and surface scavenger receptors) and anti-inflammatory (altered cell morphology, reduced iNOS, and elevated IL-10 and Aβ-degrading enzyme MMP-9). Inhibition of OPN expression in MФBM, either by siRNA, knockout (KOOPN), or minocycline, impairs uptake of Aβ fibrils and hinders GA's neuroprotective effects on macrophage immunological profile. Addition of human recombinant OPN reverses the impaired Aβ phagocytosis in KOOPN-MФBM. This study demonstrates that OPN has an essential role in modulating macrophage immunological profile and their ability to resist pathogenic forms of Aβ.
Collapse
Affiliation(s)
- Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Brenda C Salumbides
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Hannah E Schubloom
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Nadav J Hart
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Songlin Li
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA; Institute of Life Sciences, Wenzhou University, 276 Xueyuan Middle Rd, Lucheng Qu, Wenzhou Shi, Zhejiang Sheng 325027, China
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, 635 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, 635 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
38
|
Harwani SC. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res 2018; 191:45-63. [PMID: 29172035 PMCID: PMC5733698 DOI: 10.1016/j.trsl.2017.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Sailesh C Harwani
- Department of Internal Medicine, Iowa City, IA; Center for Immunology and Immune Based Diseases, Iowa City, IA; Abboud Cardiovascular Research Center, Iowa City, Io.
| |
Collapse
|
39
|
Yuan H, He J, Zhang G, Zhang D, Kong X, Chen F. Osteoclast stimulatory transmembrane protein induces a phenotypic switch in macrophage polarization suppressing an M1 pro-inflammatory state. Acta Biochim Biophys Sin (Shanghai) 2017; 49:935-944. [PMID: 28981605 DOI: 10.1093/abbs/gmx092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Macrophages are the key cells in metabolic syndrome and are also a risk factor for metabolic disease. Macrophages have different functions and transcriptional profiles, but all are required for maintaining homeostasis. It is well known that macrophages play a key role in inflammation and early atherogenesis, and are present in two phenotypes: pro-inflammatory (M1) and anti-inflammatory (M2). Osteoclast stimulatory transmembrane protein (oc-stamp) is a multiple-pass transmembrane protein; however, its function remains unclear. In this study, we explored the role of oc-stamp in macrophages physiology. The results showed that oc-stamp was notably decreased under LPS and IFN-γ stimulation, while it was increased with IL-4 treatment. Furthermore, oc-stamp induced a phenotypic switch in macrophage polarization, suppressing the M1 pro-inflammatory state in the overexpression group, and promoting the M1 pro-inflammatory state in the knockdown group. Further study revealed that oc-stamp regulated macrophage polarization possibly via STAT6. Taken together, our results are the first to demonstrate that oc-stamp may play an important role in macrophage polarization and inhibit the M1 pro-inflammatory state.
Collapse
Affiliation(s)
- Huimin Yuan
- Department of Endocrinology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, China
| | - Jiangping He
- Department of Endocrinology, Hangzhou Geriatric Hospital, Hangzhou 310022, China
| | - Guangya Zhang
- Department of Endocrinology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, China
| | - Dandan Zhang
- Department of Endocrinology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, China
| | - Xiangxin Kong
- Department of Endocrinology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, China
| | - Fengling Chen
- Department of Endocrinology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, China
| |
Collapse
|