1
|
Jiang R, Tian Y, Yuan X, Guo F. Regulation of pre-dawn arousal in Drosophila by a pair of trissinergic descending neurons of the visual and circadian networks. Curr Biol 2025; 35:1750-1764.e3. [PMID: 40107265 DOI: 10.1016/j.cub.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/21/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Circadian neurons form a complex neural network that generates circadian oscillations. How the circadian neural network transmits circadian signals to other brain regions, thereby regulating the activity patterns in fruit flies, is not well known. Using the FlyWire database, we identified a cluster of descending neurons, DNp27, which is densely connected with key circadian neurons and the visual circuit, projecting extensively across the brain. DNp27 receives excitatory inputs from the circadian neurons DN3s at night and photo-inhibitory signals predominantly during the day, resulting in calcium oscillations that peak in the early morning and dip at dusk. Experimental manipulation of DNp27 revealed its role in activity regulation: artificial activation of DNp27 decreased flies' activity, while ablation or silencing led to an advance in the morning anticipatory peak. Similar alterations in the morning peak were observed following pan-neuronal knockdown of either Trissin or TrissinR, suggesting the involvement of this neuropeptide signaling pathway in DNp27 function. Moreover, neural circuitry and connectivity analyses indicate that DNp27 may regulate circadian neurons via extra-clock electrical oscillators (xCEOs). Lastly, we found that DNp27 modulates arousal thresholds by inhibiting light-responsive activity in the central brain, thereby promoting sleep stability, particularly in the pre-dawn period. Together, these findings suggest that DNp27 plays a crucial role in maintaining stable sleep patterns.
Collapse
Affiliation(s)
- Ruihan Jiang
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yue Tian
- Department of Neurology of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xin Yuan
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Fang Guo
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Jones JD, Holder BL, Montgomery AC, McAdams CV, He E, Burns AE, Eiken KR, Vogt A, Velarde AI, Elder AJ, McEllin JA, Dissel S. The dorsal fan-shaped body is a neurochemically heterogeneous sleep-regulating center in Drosophila. PLoS Biol 2025; 23:e3003014. [PMID: 40138668 DOI: 10.1371/journal.pbio.3003014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/03/2025] [Accepted: 01/13/2025] [Indexed: 03/29/2025] Open
Abstract
Sleep is a behavior that is conserved throughout the animal kingdom. Yet, despite extensive studies in humans and animal models, the exact function or functions of sleep remain(s) unknown. A complicating factor in trying to elucidate the function of sleep is the complexity and multiplicity of neuronal circuits that are involved in sleep regulation. It is conceivable that distinct sleep-regulating circuits are only involved in specific aspects of sleep and may underlie different sleep functions. Thus, it would be beneficial to assess the contribution of individual circuits in sleep's putative functions. The intricacy of the mammalian brain makes this task extremely difficult. However, the fruit fly Drosophila melanogaster, with its simpler brain organization, available connectomics, and unparalleled genetics, offers the opportunity to interrogate individual sleep-regulating centers. In Drosophila, neurons projecting to the dorsal fan-shaped body (dFB) have been proposed to be key regulators of sleep, particularly sleep homeostasis. We recently demonstrated that the most widely used genetic tool to manipulate dFB neurons, the 23E10-GAL4 driver, expresses in 2 sleep-regulating neurons (VNC-SP neurons) located in the ventral nerve cord (VNC), the fly analog of the vertebrate spinal cord. Since most data supporting a role for the dFB in sleep regulation have been obtained using 23E10-GAL4, it is unclear whether the sleep phenotypes reported in these studies are caused by dFB neurons or VNC-SP cells. A recent publication replicated our finding that 23E10-GAL4 contains sleep-promoting neurons in the VNC. However, it also proposed that the dFB is not involved in sleep regulation at all, but this suggestion was made using genetic tools that are not dFB-specific and a very mild sleep deprivation protocol. In this study, using a newly created dFB-specific genetic driver line, we demonstrate that optogenetic activation of the majority of 23E10-GAL4 dFB neurons promotes sleep and that these neurons are involved in sleep homeostasis. We also show that dFB neurons require stronger stimulation than VNC-SP cells to promote sleep. In addition, we demonstrate that dFB-induced sleep can consolidate short-term memory (STM) into long-term memory (LTM), suggesting that the benefit of sleep on memory is not circuit-specific. Finally, we show that dFB neurons are neurochemically heterogeneous and can be divided in 3 populations. Most dFB neurons express both glutamate and acetylcholine, while a minority of cells expresses only one of these 2 neurotransmitters. Importantly, dFB neurons do not express GABA, as previously suggested. Using neurotransmitter-specific dFB tools, our data also points at cholinergic dFB neurons as particularly potent at regulating sleep and sleep homeostasis.
Collapse
Affiliation(s)
- Joseph D Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L Holder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Andrew C Montgomery
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Chloe V McAdams
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Emily He
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Anna E Burns
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Kiran R Eiken
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alex Vogt
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Adriana I Velarde
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alexandra J Elder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jennifer A McEllin
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Stephane Dissel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
3
|
Yadav SR, Gáliková M, Klepsatel P. Temperature-dependent sleep patterns in Drosophila. J Therm Biol 2025; 127:104026. [PMID: 39700683 DOI: 10.1016/j.jtherbio.2024.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Sleep is a fundamental physiological process conserved through evolution, from worms to humans. Understanding how temperature influences sleep is essential for comprehending the complexities of animal behavior, physiology, and their adaptations to thermal environments. This study explores the impact of temperature on sleep behavior and patterns in Drosophila melanogaster. Through a comprehensive analysis, we assessed how temperatures during development and adulthood affect sleep duration and fragmentation. Our results show that exposure to non-optimal temperatures increases overall sleep duration, primarily by extending daytime sleep. Sleep patterns were also substantially modulated by developmental temperature. Flies that developed at 29 °C exhibited longer sleep durations compared to those that developed at either 19 °C or 25 °C. In general, sleep was more prevalent than wakefulness under most conditions, particularly at non-optimal temperatures. At intermediate temperatures, sleep became more fragmented and episodes shorter. The interplay between sleep and wakefulness varied depending on both population and developmental temperature. Developmental and adult temperatures also influenced sleep latency, the time it takes to fall asleep. Interestingly, the impact of temperature on daytime sleep latency differed among populations, whereas nighttime sleep latency consistently increased with temperature for all groups. Flies that developed at 29 °C showed shorter sleep latencies than those from other temperatures, both during the day and night. Finally, a strong negative correlation was observed between total sleep duration and daily locomotor activity across all groups and temperatures. These findings underscore the critical role of environmental temperature in regulating sleep behavior in Drosophila, with potential implications for understanding temperature-dependent sleep mechanisms in other organisms.
Collapse
Affiliation(s)
- Sanjay Ramnarayan Yadav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| |
Collapse
|
4
|
Sekiguchi M, Reinhard N, Fukuda A, Katoh S, Rieger D, Helfrich-Förster C, Yoshii T. A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN 1p) of Drosophila melanogaster Can Control Morning and Evening Activity. J Biol Rhythms 2024; 39:463-483. [PMID: 39082442 DOI: 10.1177/07487304241263130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons.
Collapse
Affiliation(s)
- Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shun Katoh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Meyerhof GT, Easwaran S, Bontempo AE, Montell C, Montell DJ. Altered circadian rhythm, sleep, and rhodopsin 7-dependent shade preference during diapause in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2400964121. [PMID: 38917005 PMCID: PMC11228485 DOI: 10.1073/pnas.2400964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
To survive adverse environments, many animals enter a dormant state such as hibernation, dauer, or diapause. Various Drosophila species undergo adult reproductive diapause in response to cool temperatures and/or short day-length. While flies are less active during diapause, it is unclear how adverse environmental conditions affect circadian rhythms and sleep. Here we show that in diapause-inducing cool temperatures, Drosophila melanogaster exhibit altered circadian activity profiles, including severely reduced morning activity and an advanced evening activity peak. Consequently, the flies have a single activity peak at a time similar to when nondiapausing flies take a siesta. Temperatures ≤15 °C, rather than photoperiod, primarily drive this behavior. At cool temperatures, flies rapidly enter a deep-sleep state that lacks the sleep cycles of flies at higher temperatures and require high levels of stimulation for arousal. Furthermore, we show that at 25 °C, flies prefer to siesta in the shade, a preference that is virtually eliminated at 10 °C. Resting in the shade is driven by an aversion to blue light that is sensed by Rhodopsin 7 outside of the eyes. Flies at 10 °C show neuronal markers of elevated sleep pressure, including increased expression of Bruchpilot and elevated Ca2+ in the R5 ellipsoid body neurons. Therefore, sleep pressure might overcome blue light aversion. Thus, at the same temperatures that cause reproductive arrest, preserve germline stem cells, and extend lifespan, D. melanogaster are prone to deep sleep and exhibit dramatically altered, yet rhythmic, daily activity patterns.
Collapse
Affiliation(s)
- Geoff T. Meyerhof
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Sreesankar Easwaran
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Angela E. Bontempo
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Denise J. Montell
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| |
Collapse
|
6
|
Li H, Li Z, Yuan X, Tian Y, Ye W, Zeng P, Li XM, Guo F. Dynamic encoding of temperature in the central circadian circuit coordinates physiological activities. Nat Commun 2024; 15:2834. [PMID: 38565846 PMCID: PMC10987497 DOI: 10.1038/s41467-024-47278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.
Collapse
Affiliation(s)
- Hailiang Li
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyi Li
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xin Yuan
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Tian
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Ye
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Pengyu Zeng
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Guo
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Anna G, John M, Kannan NN. miR-277 regulates the phase of circadian activity-rest rhythm in Drosophila melanogaster. Front Physiol 2023; 14:1082866. [PMID: 38089472 PMCID: PMC10714010 DOI: 10.3389/fphys.2023.1082866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/07/2023] [Indexed: 12/30/2023] Open
Abstract
Circadian clocks temporally organize behaviour and physiology of organisms with a rhythmicity of about 24 h. In Drosophila, the circadian clock is composed of mainly four clock genes: period (per), timeless (tim), Clock (Clk) and cycle (cyc) which constitutes the transcription-translation feedback loop. The circadian clock is further regulated via post-transcriptional and post-translational mechanisms among which microRNAs (miRNAs) are well known post-transcriptional regulatory molecules. Here, we identified and characterized the role of miRNA-277 (miR-277) expressed in the clock neurons in regulating the circadian rhythm. Downregulation of miR-277 in the pacemaker neurons expressing circadian neuropeptide, pigment dispersing factor (PDF) advanced the phase of the morning activity peak under 12 h light: 12 h dark cycles (LD) at lower light intensities and these flies exhibited less robust rhythms compared to the controls under constant darkness. In addition, downregulation of miR-277 in the PDF expressing neurons abolished the Clk gene transcript oscillation under LD. Our study points to the potential role of miR-277 in fine tuning the Clk expression and in maintaining the phase of the circadian rhythm in Drosophila.
Collapse
Affiliation(s)
| | | | - Nisha N. Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala, India
| |
Collapse
|
8
|
Goda T, Umezaki Y, Hamada FN. Molecular and Neural Mechanisms of Temperature Preference Rhythm in Drosophila melanogaster. J Biol Rhythms 2023; 38:326-340. [PMID: 37222551 PMCID: PMC10330063 DOI: 10.1177/07487304231171624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Temperature influences animal physiology and behavior. Animals must set an appropriate body temperature to maintain homeostasis and maximize survival. Mammals set their body temperatures using metabolic and behavioral strategies. The daily fluctuation in body temperature is called the body temperature rhythm (BTR). For example, human body temperature increases during wakefulness and decreases during sleep. BTR is controlled by the circadian clock, is closely linked with metabolism and sleep, and entrains peripheral clocks located in the liver and lungs. However, the underlying mechanisms of BTR are largely unclear. In contrast to mammals, small ectotherms, such as Drosophila, control their body temperatures by choosing appropriate environmental temperatures. The preferred temperature of Drosophila increases during the day and decreases at night; this pattern is referred to as the temperature preference rhythm (TPR). As flies are small ectotherms, their body temperature is close to that of the surrounding environment. Thus, Drosophila TPR produces BTR, which exhibits a pattern similar to that of human BTR. In this review, we summarize the regulatory mechanisms of TPR, including recent studies that describe neuronal circuits relaying ambient temperature information to dorsal neurons (DNs). The neuropeptide diuretic hormone 31 (DH31) and its receptor (DH31R) regulate TPR, and a mammalian homolog of DH31R, the calcitonin receptor (CALCR), also plays an important role in mouse BTR regulation. In addition, both fly TPR and mammalian BTR are separately regulated from another clock output, locomotor activity rhythms. These findings suggest that the fundamental mechanisms of BTR regulation may be conserved between mammals and flies. Furthermore, we discuss the relationships between TPR and other physiological functions, such as sleep. The dissection of the regulatory mechanisms of Drosophila TPR could facilitate an understanding of mammalian BTR and the interaction between BTR and sleep regulation.
Collapse
Affiliation(s)
- Tadahiro Goda
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Yujiro Umezaki
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Fumika N. Hamada
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| |
Collapse
|
9
|
Jones JD, Holder BL, Eiken KR, Vogt A, Velarde AI, Elder AJ, McEllin JA, Dissel S. Regulation of sleep by cholinergic neurons located outside the central brain in Drosophila. PLoS Biol 2023; 21:e3002012. [PMID: 36862736 PMCID: PMC10013921 DOI: 10.1371/journal.pbio.3002012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/14/2023] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Sleep is a complex and plastic behavior regulated by multiple brain regions and influenced by numerous internal and external stimuli. Thus, to fully uncover the function(s) of sleep, cellular resolution of sleep-regulating neurons needs to be achieved. Doing so will help to unequivocally assign a role or function to a given neuron or group of neurons in sleep behavior. In the Drosophila brain, neurons projecting to the dorsal fan-shaped body (dFB) have emerged as a key sleep-regulating area. To dissect the contribution of individual dFB neurons to sleep, we undertook an intersectional Split-GAL4 genetic screen focusing on cells contained within the 23E10-GAL4 driver, the most widely used tool to manipulate dFB neurons. In this study, we demonstrate that 23E10-GAL4 expresses in neurons outside the dFB and in the fly equivalent of the spinal cord, the ventral nerve cord (VNC). Furthermore, we show that 2 VNC cholinergic neurons strongly contribute to the sleep-promoting capacity of the 23E10-GAL4 driver under baseline conditions. However, in contrast to other 23E10-GAL4 neurons, silencing these VNC cells does not block sleep homeostasis. Thus, our data demonstrate that the 23E10-GAL4 driver contains at least 2 different types of sleep-regulating neurons controlling distinct aspects of sleep behavior.
Collapse
Affiliation(s)
- Joseph D. Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L. Holder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Kiran R. Eiken
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alex Vogt
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Adriana I. Velarde
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alexandra J. Elder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jennifer A. McEllin
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Stephane Dissel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
10
|
Giesecke A, Johnstone PS, Lamaze A, Landskron J, Atay E, Chen KF, Wolf E, Top D, Stanewsky R. A novel period mutation implicating nuclear export in temperature compensation of the Drosophila circadian clock. Curr Biol 2023; 33:336-350.e5. [PMID: 36584676 DOI: 10.1016/j.cub.2022.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Circadian clocks are self-sustained molecular oscillators controlling daily changes of behavioral activity and physiology. For functional reliability and precision, the frequency of these molecular oscillations must be stable at different environmental temperatures, known as "temperature compensation." Despite being an intrinsic property of all circadian clocks, this phenomenon is not well understood at the molecular level. Here, we use behavioral and molecular approaches to characterize a novel mutation in the period (per) clock gene of Drosophila melanogaster, which alters a predicted nuclear export signal (NES) of the PER protein and affects temperature compensation. We show that this new perI530A allele leads to progressively longer behavioral periods and clock oscillations with increasing temperature in both clock neurons and peripheral clock cells. While the mutant PERI530A protein shows normal circadian fluctuations and post-translational modifications at cool temperatures, increasing temperatures lead to both severe amplitude dampening and hypophosphorylation of PERI530A. We further show that PERI530A displays reduced repressor activity at warmer temperatures, presumably because it cannot inactivate the transcription factor CLOCK (CLK), indicated by temperature-dependent altered CLK post-translational modification in perI530A flies. With increasing temperatures, nuclear accumulation of PERI530A within clock neurons is increased, suggesting that wild-type PER is exported out of the nucleus at warm temperatures. Downregulating the nuclear export factor CRM1 also leads to temperature-dependent changes of behavioral rhythms, suggesting that the PER NES and the nuclear export of clock proteins play an important role in temperature compensation of the Drosophila circadian clock.
Collapse
Affiliation(s)
- Astrid Giesecke
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Peter S Johnstone
- Department of Biochemistry and Molecular Biology and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Angelique Lamaze
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Johannes Landskron
- Centre for Molecular Medicine Norway, University of Oslo, 0318 Oslo, Norway
| | - Ezgi Atay
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Ko-Fan Chen
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Eva Wolf
- Johannes Gutenberg University (JGU) and Institute of Molecular Biology (IMB) Mainz, 55128 Mainz, Germany
| | - Deniz Top
- Department of Biochemistry and Molecular Biology and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
| |
Collapse
|
11
|
Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles. PLoS Genet 2022; 18:e1010487. [PMID: 36367867 PMCID: PMC9683589 DOI: 10.1371/journal.pgen.1010487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/23/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Proper timing of rhythmic locomotor behavior is the consequence of integrating environmental conditions and internal time dictated by the circadian clock. Rhythmic environmental input like daily light and temperature changes (called Zeitgeber) reset the molecular clock and entrain it to the environmental time zone the organism lives in. Furthermore, depending on the absolute temperature or light intensity, flies exhibit their main locomotor activity at different times of day, i.e., environmental input not only entrains the circadian clock but also determines the phase of a certain behavior. To understand how the brain clock can distinguish between (or integrate) an entraining Zeitgeber and environmental effects on activity phase, we attempted to entrain the clock with a Zeitgeber different from the environmental input used for phasing the behavior. 150 clock neurons in the Drosophila melanogaster brain control different aspects of the daily activity rhythms and are organized in various clusters. During regular 12 h light: 12 h dark cycles at constant mild temperature (LD 25°C, LD being the Zeitgeber), so called morning oscillator (MO) neurons control the increase of locomotor activity just before lights-on, while evening oscillator (EO) neurons regulate the activity increase at the end of the day, a few hours before lights-off. Here, using 12 h: 12 h 25°C:16°C temperature cycles as Zeitgeber, we attempted to look at the impact of light on phasing locomotor behavior. While in constant light and 25°C:16°C temperature cycles (LLTC), flies show an unimodal locomotor activity peak in the evening, during the same temperature cycle, but in the absence of light (DDTC), the phase of the activity peak is shifted to the morning. Here, we show that the EO is necessary for synchronized behavior in LLTC but not for entraining the molecular clock of the other clock neuronal groups, while the MO controls synchronized morning activity in DDTC. Interestingly, our data suggest that the influence of the EO on the synchronization increases depending on the length of the photoperiod (constant light vs 12 h of light). Hence, our results show that effects of different environmental cues on clock entrainment and activity phase can be separated, allowing to decipher their integration by the circadian clock. “If a clock is to provide information involved in controlling important functions, then clearly it must be reasonably reliable” said Colin Pittendrigh, one of the chronobiology pioneers in 1954. The circadian clock allows organisms to synchronize with their ecological niche. For this, the circadian clock uses rhythmic environmental parameters (Zeitgeber), the main ones being light and temperature. Hence, Colin Pittendrigh posted a still unresolved enigma in chronobiology. How can a clock be reliable when its resetting depends on environmental fluctuations that are not so reliable? Both, light and temperature vary a lot on a day-to-day basis, and animals respond to these variations depending on the time of day. Here, we propose a new model where the molecular clock resets to environmental cycles in a robust and independent manner, while the underlying neuronal oscillatory network switches its balance towards specific oscillators depending on the environmental condition thereby leading to distinct behavioral adaptation. To proof this proposed dogma in fruit flies, using temperature cycles as Zeitgeber, we demonstrate a light-induced switch of the network balance. Hence, we supply a foundation that in the future will help to understand how animals use their circadian clock to adapt their behavior to environmental changes.
Collapse
|
12
|
Abstract
Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.
Collapse
|
13
|
Delventhal R, Barber AF. Sensory integration: Time and temperature regulate fly siesta. Curr Biol 2022; 32:R1020-R1022. [PMID: 36220091 DOI: 10.1016/j.cub.2022.08.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Temperatures outside the preferred range require flies to acutely adjust their behavior. A new study finds that heat-sensing neurons provide input to fly circadian clock neurons to extend the daytime siesta, allowing flies to sleep through excessive daytime heat.
Collapse
Affiliation(s)
- Rebecca Delventhal
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL 60045, USA
| | - Annika F Barber
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, 190 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Alpert MH, Gil H, Para A, Gallio M. A thermometer circuit for hot temperature adjusts Drosophila behavior to persistent heat. Curr Biol 2022; 32:4079-4087.e4. [PMID: 35981537 PMCID: PMC9529852 DOI: 10.1016/j.cub.2022.07.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Small poikilotherms such as the fruit fly Drosophila depend on absolute temperature measurements to identify external conditions that are above (hot) or below (cold) their preferred range and to react accordingly. Hot and cold temperatures have a different impact on fly activity and sleep, but the circuits and mechanisms that adjust behavior to specific thermal conditions are not well understood. Here, we use patch-clamp electrophysiology to show that internal thermosensory neurons located within the fly head capsule (the AC neurons1) function as a thermometer active in the hot range. ACs exhibit sustained firing rates that scale with absolute temperature-but only for temperatures above the fly's preferred ∼25°C (i.e., "hot" temperature). We identify ACs in the fly brain connectome and demonstrate that they target a single class of circadian neurons, the LPNs.2 LPNs receive excitatory drive from ACs and respond robustly to hot stimuli, but their responses do not exclusively rely on ACs. Instead, LPNs receive independent drive from thermosensory neurons of the fly antenna via a new class of second-order projection neurons (TPN-IV). Finally, we show that silencing LPNs blocks the restructuring of daytime "siesta" sleep, which normally occurs in response to persistent heat. Our previous work described a distinct thermometer circuit for cold temperature.3 Together, the results demonstrate that the fly nervous system separately encodes and relays absolute hot and cold temperature information, show how patterns of sleep and activity can be adapted to specific temperature conditions, and illustrate how persistent drive from sensory pathways can impact behavior on extended temporal scales.
Collapse
Affiliation(s)
- Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Hamin Gil
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Homma S, Murata A, Ikegami M, Kobayashi M, Yamazaki M, Ikeda K, Daimon T, Numata H, Mizoguchi A, Shiomi K. Circadian Clock Genes Regulate Temperature-Dependent Diapause Induction in Silkworm Bombyx mori. Front Physiol 2022; 13:863380. [PMID: 35574475 PMCID: PMC9091332 DOI: 10.3389/fphys.2022.863380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
The bivoltine strain of the domestic silkworm, Bombyx mori, exhibits a facultative diapause phenotype that is determined by maternal environmental conditions during embryonic and larval development. Although a recent study implicated a circadian clock gene period (per) in circadian rhythms and photoperiod-induced diapause, the roles of other core feedback loop genes, including timeless (tim), Clock (Clk), cycle (cyc), and cryptochrome2 (cry2), have to be clarified yet. Therefore, the aim of this study was to elucidate the roles of circadian clock genes in temperature-dependent diapause induction. To achieve this, per, tim, Clk, cyc, and cry2 knockout (KO) mutants were generated, and the percentages of diapause and non-diapause eggs were determined. The results show that per, tim, Clk, cyc, and cry2 regulated temperature-induced diapause by acting upstream of cerebral γ-aminobutyric acid (GABA)ergic and diapause hormone signaling pathways. Moreover, the temporal expression of the clock genes in wild-type (wt) silkworms was significantly different from that of thermosensitive transient receptor potential ankyrin 1 (TRPA1) KO mutants during embryonic development. Overall, the findings of this study provide target genes for regulating temperature-dependent diapause induction in silkworms.
Collapse
Affiliation(s)
- Satoshi Homma
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Akihisa Murata
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masato Ikegami
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Kento Ikeda
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
16
|
Lamaze A, Chen C, Leleux S, Xu M, George R, Stanewsky R. A natural timeless polymorphism allowing circadian clock synchronization in "white nights". Nat Commun 2022; 13:1724. [PMID: 35361756 PMCID: PMC8971440 DOI: 10.1038/s41467-022-29293-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Daily temporal organisation offers a fitness advantage and is determined by an interplay between environmental rhythms and circadian clocks. While light:dark cycles robustly synchronise circadian clocks, it is not clear how animals experiencing only weak environmental cues deal with this problem. Like humans, Drosophila originate in sub-Saharan Africa and spread North up to the polar circle, experiencing long summer days or even constant light (LL). LL disrupts clock function, due to constant activation of CRYPTOCHROME, which induces degradation of the clock protein TIMELESS (TIM), but temperature cycles are able to overcome these deleterious effects of LL. We show here that for this to occur a recently evolved natural timeless allele (ls-tim) is required, encoding the less light-sensitive L-TIM in addition to S-TIM, the only form encoded by the ancient s-tim allele. We show that only ls-tim flies can synchronise their behaviour to semi-natural conditions typical for Northern European summers, suggesting that this functional gain is driving the Northward ls-tim spread. The genus Drosophila originate in subSaharan Africa and spread North up to the polar circle where they experience long days in the summer or even constant light. Here, the authors show that a form of the TIMELESS protein enables flies to synchronise their behavioural activity to long summer days
Collapse
Affiliation(s)
- Angelique Lamaze
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| | - Solene Leleux
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Min Xu
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Rebekah George
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
| |
Collapse
|
17
|
Lamaze A, Chen C, Leleux S, Xu M, George R, Stanewsky R. A natural timeless polymorphism allowing circadian clock synchronization in "white nights". Nat Commun 2022; 13:1724. [PMID: 35361756 PMCID: PMC8971440 DOI: 10.1038/s41467-022-29293-6|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/08/2022] [Indexed: 06/19/2023] Open
Abstract
Daily temporal organisation offers a fitness advantage and is determined by an interplay between environmental rhythms and circadian clocks. While light:dark cycles robustly synchronise circadian clocks, it is not clear how animals experiencing only weak environmental cues deal with this problem. Like humans, Drosophila originate in sub-Saharan Africa and spread North up to the polar circle, experiencing long summer days or even constant light (LL). LL disrupts clock function, due to constant activation of CRYPTOCHROME, which induces degradation of the clock protein TIMELESS (TIM), but temperature cycles are able to overcome these deleterious effects of LL. We show here that for this to occur a recently evolved natural timeless allele (ls-tim) is required, encoding the less light-sensitive L-TIM in addition to S-TIM, the only form encoded by the ancient s-tim allele. We show that only ls-tim flies can synchronise their behaviour to semi-natural conditions typical for Northern European summers, suggesting that this functional gain is driving the Northward ls-tim spread.
Collapse
Affiliation(s)
- Angelique Lamaze
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| | - Solene Leleux
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Min Xu
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Rebekah George
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
| |
Collapse
|
18
|
Iyengar AS, Kulkarni R, Sheeba V. Under warm ambient conditions, Drosophila melanogaster suppresses nighttime activity via the neuropeptide pigment dispersing factor. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12802. [PMID: 35285135 PMCID: PMC9744560 DOI: 10.1111/gbb.12802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Rhythmic locomotor behaviour of flies is controlled by an endogenous time-keeping mechanism, the circadian clock, and is influenced by environmental temperatures. Flies inherently prefer cool temperatures around 25°C, and under such conditions, time their locomotor activity to occur at dawn and dusk. Under relatively warmer conditions such as 30°C, flies shift their activity into the night, advancing their morning activity bout into the early morning, before lights-ON, and delaying their evening activity into early night. The molecular basis for such temperature-dependent behavioural modulation has been associated with core circadian clock genes, but the neuronal basis is not yet clear. Under relatively cool temperatures such as 25°C, the role of the circadian pacemaker ventrolateral neurons (LNvs), along with a major neuropeptide secreted by them, pigment dispersing factor (PDF), has been showed in regulating various aspects of locomotor activity rhythms. However, the role of the LNvs and PDF in warm temperature-mediated behavioural modulation has not been explored. We show here that flies lacking proper PDF signalling or the LNvs altogether, cannot suppress their locomotor activity resulting in loss of sleep during the middle of the night, and thus describe a novel role for PDF signalling and the LNvs in behavioural modulation under warm ambient conditions. In a rapidly warming world, such behavioural plasticity may enable organisms to respond to harsh temperatures in the environment.
Collapse
Affiliation(s)
- Aishwariya Srikala Iyengar
- Chronobiology and Behavioural Neurogenetics LaboratoryNeuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Rutvij Kulkarni
- Chronobiology and Behavioural Neurogenetics LaboratoryNeuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics LaboratoryNeuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
19
|
Mechanosensory Stimulation via Nanchung Expressing Neurons Can Induce Daytime Sleep in Drosophila. J Neurosci 2021; 41:9403-9418. [PMID: 34635540 DOI: 10.1523/jneurosci.0400-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
The neuronal and genetic bases of sleep, a phenomenon considered crucial for well-being of organisms, has been under investigation using the model organism Drosophila melanogaster Although sleep is a state where sensory threshold for arousal is greater, it is known that certain kinds of repetitive sensory stimuli, such as rocking, can indeed promote sleep in humans. Here we report that orbital motion-aided mechanosensory stimulation promotes sleep of male and female Drosophila, independent of the circadian clock, but controlled by the homeostatic system. Mechanosensory receptor nanchung (Nan)-expressing neurons in the chordotonal organs mediate this sleep induction: flies in which these neurons are either silenced or ablated display significantly reduced sleep induction on mechanosensory stimulation. Transient activation of the Nan-expressing neurons also enhances sleep levels, confirming the role of these neurons in sleep induction. We also reveal that certain regions of the antennal mechanosensory and motor center in the brain are involved in conveying information from the mechanosensory structures to the sleep centers. Thus, we show, for the first time, that a circadian clock-independent pathway originating from peripherally distributed mechanosensors can promote daytime sleep of flies Drosophila melanogaster SIGNIFICANCE STATEMENT Our tendency to fall asleep in moving vehicles or the practice of rocking infants to sleep suggests that slow rhythmic movement can induce sleep, although we do not understand the mechanistic basis of this phenomenon. We find that gentle orbital motion can induce behavioral quiescence even in flies, a highly genetically tractable system for sleep studies. We demonstrate that this is indeed true sleep based on its rapid reversibility by sensory stimulation, enhanced arousal threshold, and homeostatic control. Furthermore, we demonstrate that mechanosensory neurons expressing a TRPV channel nanchung, located in the antennae and chordotonal organs, mediate orbital motion-induced sleep by communicating with antennal mechanosensory motor centers, which in turn may project to sleep centers in the brain.
Collapse
|
20
|
Nallasivan MP, Haussmann IU, Civetta A, Soller M. Channel nuclear pore protein 54 directs sexual differentiation and neuronal wiring of female reproductive behaviors in Drosophila. BMC Biol 2021; 19:226. [PMID: 34666772 PMCID: PMC8527774 DOI: 10.1186/s12915-021-01154-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Female reproductive behaviors and physiology change profoundly after mating. The control of pregnancy-associated changes in physiology and behaviors are largely hard-wired into the brain to guarantee reproductive success, yet the gene expression programs that direct neuronal differentiation and circuit wiring at the end of the sex determination pathway in response to mating are largely unknown. In Drosophila, the post-mating response induced by male-derived sex-peptide in females is a well-established model to elucidate how complex innate behaviors are hard-wired into the brain. Here, we use a genetic approach to further characterize the molecular and cellular architecture of the sex-peptide response in Drosophila females. Results Screening for mutations that affect the sensitivity to sex-peptide, we identified the channel nuclear pore protein Nup54 gene as an essential component for mediating the sex-peptide response, with viable mutant alleles leading to the inability of laying eggs and reducing receptivity upon sex-peptide exposure. Nup54 directs correct wiring of eight adult brain neurons that express pickpocket and are required for egg-laying, while additional channel Nups also mediate sexual differentiation. Consistent with links of Nups to speciation, the Nup54 promoter is a hot spot for rapid evolution and promoter variants alter nucleo-cytoplasmic shuttling. Conclusions These results implicate nuclear pore functionality to neuronal wiring underlying the sex-peptide response and sexual differentiation as a response to sexual conflict arising from male-derived sex-peptide to direct the female post-mating response. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01154-6.
Collapse
Affiliation(s)
- Mohanakarthik P Nallasivan
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
21
|
Metabolic control of daily locomotor activity mediated by tachykinin in Drosophila. Commun Biol 2021; 4:693. [PMID: 34099879 PMCID: PMC8184744 DOI: 10.1038/s42003-021-02219-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolism influences locomotor behaviors, but the understanding of neural curcuit control for that is limited. Under standard light-dark cycles, Drosophila exhibits bimodal morning (M) and evening (E) locomotor activities that are controlled by clock neurons. Here, we showed that a high-nutrient diet progressively extended M activity but not E activity. Drosophila tachykinin (DTk) and Tachykinin-like receptor at 86C (TkR86C)-mediated signaling was required for the extension of M activity. DTk neurons were anatomically and functionally connected to the posterior dorsal neuron 1s (DN1ps) in the clock neuronal network. The activation of DTk neurons reduced intracellular Ca2+ levels in DN1ps suggesting an inhibitory connection. The contacts between DN1ps and DTk neurons increased gradually over time in flies fed a high-sucrose diet, consistent with the locomotor behavior. DN1ps have been implicated in integrating environmental sensory inputs (e.g., light and temperature) to control daily locomotor behavior. This study revealed that DN1ps also coordinated nutrient information through DTk signaling to shape daily locomotor behavior. Lee and colleagues report the effect of a high-sucrose diet on Drosophila locomotor activity via DTk-TkR86C neuropeptide signalling. This signalling pattern appears to involve a circadian element, with pacemaker neuron involvement having a possible time-of-day effect on locomotor behaviour.
Collapse
|
22
|
Abstract
Circadian clocks are biochemical time-keeping machines that synchronize animal behavior and physiology with planetary rhythms. In Drosophila, the core components of the clock comprise a transcription/translation feedback loop and are expressed in seven neuronal clusters in the brain. Although it is increasingly evident that the clocks in each of the neuronal clusters are regulated differently, how these clocks communicate with each other across the circadian neuronal network is less clear. Here, we review the latest evidence that describes the physical connectivity of the circadian neuronal network . Using small ventral lateral neurons as a starting point, we summarize how one clock may communicate with another, highlighting the signaling pathways that are both upstream and downstream of these clocks. We propose that additional efforts are required to understand how temporal information generated in each circadian neuron is integrated across a neuronal circuit to regulate rhythmic behavior.
Collapse
Affiliation(s)
- Myra Ahmad
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Deniz Top
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 2021; 31:2075-2087.e6. [PMID: 33740429 DOI: 10.1016/j.cub.2021.02.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavior that is modulated by many environmental factors. Ambient temperature shifting usually occurs during climatic or seasonal change or travel from high-latitude area to low-latitude area that affects animal physiology. Increasing ambient temperature modulates sleep in both humans and Drosophila. Although several thermosensory molecules and neurons have been identified, the neural mechanisms that integrate temperature sensation into the sleep neural circuit remain poorly understood. Here, we reveal that prolonged increasing of ambient temperature induces a reversible sleep reduction and impaired sleep consolidation in Drosophila via activating the internal thermosensory anterior cells (ACs). ACs form synaptic contacts with a subset of posterior dorsal neuron 1 (DN1p) neurons and release acetylcholine to promote wakefulness. Furthermore, we identify that this subset of DN1ps promotes wakefulness by releasing CNMamide (CNMa) neuropeptides to inhibit the Dh44-positive pars intercerebralis (PI) neurons through CNMa receptors. Our study demonstrates that the AC-DN1p-PI neural circuit is responsible for integrating thermosensory inputs into the sleep neural circuit. Moreover, we identify the CNMa signaling pathway as a newly recognized wakefulness-promoting DN1 pathway.
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226021, China.
| |
Collapse
|
24
|
Hsu CT, Choi JTY, Sehgal A. Manipulations of the olfactory circuit highlight the role of sensory stimulation in regulating sleep amount. Sleep 2021; 44:zsaa265. [PMID: 33313876 PMCID: PMC8343592 DOI: 10.1093/sleep/zsaa265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
STUDY OBJECTIVES While wake duration is a major sleep driver, an important question is if wake quality also contributes to controlling sleep. In particular, we sought to determine whether changes in sensory stimulation affect sleep in Drosophila. As Drosophila rely heavily on their sense of smell, we focused on manipulating olfactory input and the olfactory sensory pathway. METHODS Sensory deprivation was first performed by removing antennae or applying glue to antennae. We then measured sleep in response to neural activation, via expression of the thermally gated cation channel TRPA1, or inhibition, via expression of the inward rectifying potassium channel KIR2.1, of subpopulations of neurons in the olfactory pathway. Genetically restricting manipulations to adult animals prevented developmental effects. RESULTS We find that olfactory deprivation reduces sleep, largely independently of mushroom bodies that integrate olfactory signals for memory consolidation and have previously been implicated in sleep. However, specific neurons in the lateral horn, the other third-order target of olfactory input, affect sleep. Also, activation of inhibitory second-order projection neurons increases sleep. No single neuronal population in the olfactory processing pathway was found to bidirectionally regulate sleep, and reduced sleep in response to olfactory deprivation may be masked by temperature changes. CONCLUSIONS These findings demonstrate that Drosophila sleep is sensitive to sensory stimulation, and identify novel sleep-regulating neurons in the olfactory circuit. Scaling of signals across the circuit may explain the lack of bidirectional effects when neuronal activity is manipulated. We propose that olfactory inputs act through specific circuit components to modulate sleep in flies.
Collapse
Affiliation(s)
- Cynthia T Hsu
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Juliana Tsz Yan Choi
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Putker M, Wong DCS, Seinkmane E, Rzechorzek NM, Zeng A, Hoyle NP, Chesham JE, Edwards MD, Feeney KA, Fischer R, Peschel N, Chen K, Vanden Oever M, Edgar RS, Selby CP, Sancar A, O’Neill JS. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping. EMBO J 2021; 40:e106745. [PMID: 33491228 PMCID: PMC8013833 DOI: 10.15252/embj.2020106745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are a pervasive property of mammalian cells, tissues and behaviour, ensuring physiological adaptation to solar time. Models of cellular timekeeping revolve around transcriptional feedback repression, whereby CLOCK and BMAL1 activate the expression of PERIOD (PER) and CRYPTOCHROME (CRY), which in turn repress CLOCK/BMAL1 activity. CRY proteins are therefore considered essential components of the cellular clock mechanism, supported by behavioural arrhythmicity of CRY-deficient (CKO) mice under constant conditions. Challenging this interpretation, we find locomotor rhythms in adult CKO mice under specific environmental conditions and circadian rhythms in cellular PER2 levels when CRY is absent. CRY-less oscillations are variable in their expression and have shorter periods than wild-type controls. Importantly, we find classic circadian hallmarks such as temperature compensation and period determination by CK1δ/ε activity to be maintained. In the absence of CRY-mediated feedback repression and rhythmic Per2 transcription, PER2 protein rhythms are sustained for several cycles, accompanied by circadian variation in protein stability. We suggest that, whereas circadian transcriptional feedback imparts robustness and functionality onto biological clocks, the core timekeeping mechanism is post-translational.
Collapse
Affiliation(s)
| | | | | | | | - Aiwei Zeng
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | | - Mathew D Edwards
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
UCL Sainsbury Wellcome Centre for Neural Circuits and BehaviourLondonUK
| | | | | | | | - Ko‐Fan Chen
- Institute of NeurologyUniversity College LondonLondonUK
- Present address:
Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | | | | | - Christopher P Selby
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Aziz Sancar
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNCUSA
| | | |
Collapse
|
26
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
27
|
Blue light insertion at night is involved in sleep and arousal-promoting response delays and depressive-like emotion in mice. Biosci Rep 2021; 41:227923. [PMID: 33624794 PMCID: PMC7938454 DOI: 10.1042/bsr20204033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Light plays a direct crucial role in the switch between sleep and arousal and the regulation of physiology and behaviour, such as circadian rhythms and emotional change. Artificial lights, which are different from natural light sources with a continuous light spectrum, are composed of three single-colour lights and are increasingly applied in modern society. However, in vivo research on the mechanisms of blue light-regulated sleep and arousal is still insufficient. In this work, we detected the effects of inserting white or blue light for 1 h during the dark period on the wheel-running activity and sucrose preference of C57 mice. The results showed that blue light could induce delays in sleep and arousal-promoting responses. Furthermore, this lighting pattern, including blue light alone, induced depressive-like emotions. The c-fos expression in the blue light group was significantly higher in the arcuate hypothalamic nucleus (Arc) and significantly lower in the cingulate cortex (Cg) and anterior part of the paraventricular thalamic nucleus (PVA) than in the white light group. Compared with the white light group, the phospho-ERK expression in the paraventricular hypothalamic nucleus (PVN) and PVA was lower in the blue light group. These molecular changes indicated that certain brain regions are involved in blue light-induced response processes. This study may provide useful information to explore the specific mechanism of special light-regulated physiological function.
Collapse
|
28
|
George R, Stanewsky R. Peripheral Sensory Organs Contribute to Temperature Synchronization of the Circadian Clock in Drosophila melanogaster. Front Physiol 2021; 12:622545. [PMID: 33603678 PMCID: PMC7884628 DOI: 10.3389/fphys.2021.622545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks are cell-autonomous endogenous oscillators, generated and maintained by self-sustained 24-h rhythms of clock gene expression. In the fruit fly Drosophila melanogaster, these daily rhythms of gene expression regulate the activity of approximately 150 clock neurons in the fly brain, which are responsible for driving the daily rest/activity cycles of these insects. Despite their endogenous character, circadian clocks communicate with the environment in order to synchronize their self-sustained molecular oscillations and neuronal activity rhythms (internal time) with the daily changes of light and temperature dictated by the Earth's rotation around its axis (external time). Light and temperature changes are reliable time cues (Zeitgeber) used by many organisms to synchronize their circadian clock to the external time. In Drosophila, both light and temperature fluctuations robustly synchronize the circadian clock in the absence of the other Zeitgeber. The complex mechanisms for synchronization to the daily light-dark cycles are understood with impressive detail. In contrast, our knowledge about how the daily temperature fluctuations synchronize the fly clock is rather limited. Whereas light synchronization relies on peripheral and clock-cell autonomous photoreceptors, temperature input to the clock appears to rely mainly on sensory cells located in the peripheral nervous system of the fly. Recent studies suggest that sensory structures located in body and head appendages are able to detect temperature fluctuations and to signal this information to the brain clock. This review will summarize these studies and their implications about the mechanisms underlying temperature synchronization.
Collapse
Affiliation(s)
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
29
|
Marguerite NT, Bernard J, Harrison DA, Harris D, Cooper RL. Effect of Temperature on Heart Rate for Phaenicia sericata and Drosophila melanogaster with Altered Expression of the TrpA1 Receptors. INSECTS 2021; 12:38. [PMID: 33418937 PMCID: PMC7825143 DOI: 10.3390/insects12010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
The transient receptor potential (TrpA-ankyrin) receptor has been linked to pathological conditions in cardiac function in mammals. To better understand the function of the TrpA1 in regulation of the heart, a Drosophila melanogaster model was used to express TrpA1 in heart and body wall muscles. Heartbeat of in intact larvae as well as hearts in situ, devoid of hormonal and neural input, indicate that strong over-expression of TrpA1 in larvae at 30 or 37 °C stopped the heart from beating, but in a diastolic state. Cardiac function recovered upon cooling after short exposure to high temperature. Parental control larvae (UAS-TrpA1) increased heart rate transiently at 30 and 37 °C but slowed at 37 °C within 3 min for in-situ preparations, while in-vivo larvae maintained a constant heart rate. The in-situ preparations maintained an elevated rate at 30 °C. The heartbeat in the TrpA1-expressing strains could not be revived at 37 °C with serotonin. Thus, TrpA1 activation may have allowed enough Ca2+ influx to activate K(Ca) channels into a form of diastolic stasis. TrpA1 activation in body wall muscle confirmed a depolarization of membrane. In contrast, blowfly Phaenicia sericata larvae increased heartbeat at 30 and 37 °C, demonstrating greater cardiac thermotolerance.
Collapse
Affiliation(s)
- Nicole T. Marguerite
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Jate Bernard
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | - Douglas A. Harrison
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| | | | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (N.T.M.); (J.B.); (D.A.H.)
| |
Collapse
|
30
|
Dissel S. Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Front Physiol 2020; 11:533. [PMID: 32547415 PMCID: PMC7270326 DOI: 10.3389/fphys.2020.00533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Humans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage. Among the many possible functions of sleep, the relationship between sleep, and cognition has received a lot of support. We have all experienced the negative cognitive effects associated with a night of sleep deprivation. These can include increased emotional reactivity, poor judgment, deficit in attention, impairment in learning and memory, and obviously increase in daytime sleepiness. Furthermore, many neurological diseases like Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep disorder can exacerbate the progression of the neurological disease. Thus, it is clear that sleep plays an important role for many brain functions. In particular, sleep has been shown to play a positive role in the consolidation of long-term memory while sleep deprivation negatively impacts learning and memory. Importantly, sleep is a behavior that is adapted to an individual’s need and influenced by many external and internal stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in the brain at the level of synaptic connections between neurons and neuronal plasticity influences sleep. Understanding how sleep is modulated by internal and external stimuli and how sleep can modulate memory and plasticity is a key question in neuroscience. In order to address this question, several animal models have been developed. Among them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved to be extremely valuable. In addition to sleep, Drosophila has been shown to be an excellent model to study many complex behaviors, including learning, and memory. This review describes our current knowledge of the relationship between sleep, plasticity, and memory using the fly model.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
31
|
Alpert MH, Frank DD, Kaspi E, Flourakis M, Zaharieva EE, Allada R, Para A, Gallio M. A Circuit Encoding Absolute Cold Temperature in Drosophila. Curr Biol 2020; 30:2275-2288.e5. [PMID: 32442464 DOI: 10.1016/j.cub.2020.04.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
Animals react to environmental changes over timescales ranging from seconds to days and weeks. An important question is how sensory stimuli are parsed into neural signals operating over such diverse temporal scales. Here, we uncover a specialized circuit, from sensory neurons to higher brain centers, that processes information about long-lasting, absolute cold temperature in Drosophila. We identify second-order thermosensory projection neurons (TPN-IIs) exhibiting sustained firing that scales with absolute temperature. Strikingly, this activity only appears below the species-specific, preferred temperature for D. melanogaster (∼25°C). We trace the inputs and outputs of TPN-IIs and find that they are embedded in a cold "thermometer" circuit that provides powerful and persistent inhibition to brain centers involved in regulating sleep and activity. Our results demonstrate that the fly nervous system selectively encodes and relays absolute temperature information and illustrate a sensory mechanism that allows animals to adapt behavior specifically to cold conditions on the timescale of hours to days.
Collapse
Affiliation(s)
- Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Dominic D Frank
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Evan Kaspi
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Matthieu Flourakis
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
32
|
Kim JH, Ki Y, Lee H, Hur MS, Baik B, Hur JH, Nam D, Lim C. The voltage-gated potassium channel Shaker promotes sleep via thermosensitive GABA transmission. Commun Biol 2020; 3:174. [PMID: 32296133 PMCID: PMC7160125 DOI: 10.1038/s42003-020-0902-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Genes and neural circuits coordinately regulate animal sleep. However, it remains elusive how these endogenous factors shape sleep upon environmental changes. Here, we demonstrate that Shaker (Sh)-expressing GABAergic neurons projecting onto dorsal fan-shaped body (dFSB) regulate temperature-adaptive sleep behaviors in Drosophila. Loss of Sh function suppressed sleep at low temperature whereas light and high temperature cooperatively gated Sh effects on sleep. Sh depletion in GABAergic neurons partially phenocopied Sh mutants. Furthermore, the ionotropic GABA receptor, Resistant to dieldrin (Rdl), in dFSB neurons acted downstream of Sh and antagonized its sleep-promoting effects. In fact, Rdl inhibited the intracellular cAMP signaling of constitutively active dopaminergic synapses onto dFSB at low temperature. High temperature silenced GABAergic synapses onto dFSB, thereby potentiating the wake-promoting dopamine transmission. We propose that temperature-dependent switching between these two synaptic transmission modalities may adaptively tune the neural property of dFSB neurons to temperature shifts and reorganize sleep architecture for animal fitness. Ji-hyung Kim and Yoonhee Ki et al. show that low temperatures suppress sleep in Drosophila by increasing GABA transmission in Shaker-expressing GABAergic neurons projecting onto the dorsal fan-shaped body, while high temperatures potentiate dopamine-induced arousal by reducing GABA transmission. This study highlights a role for Shaker in sleep modulation via a temperature-dependent switch in GABA signaling.
Collapse
Affiliation(s)
- Ji-Hyung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoonhee Ki
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Moon Seong Hur
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Bukyung Baik
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST Optical Biomed Imaging Center, UNIST, Ulsan, 44919, Republic of Korea
| | - Dougu Nam
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
33
|
Lamaze A, Stanewsky R. DN1p or the "Fluffy" Cerberus of Clock Outputs. Front Physiol 2020; 10:1540. [PMID: 31969832 PMCID: PMC6960142 DOI: 10.3389/fphys.2019.01540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster is a powerful genetic model to study the circadian clock. Recently, three drosophilists received the Nobel Prize for their intensive past and current work on the molecular clockwork (Nobel Prize 2017). The Drosophila brain clock is composed of about 150 clock neurons distributed along the lateral and dorsal regions of the protocerebrum. These clock neurons control the timing of locomotor behaviors. In standard light-dark (LD) conditions (12-12 h and constant 25°C), flies present a bi-modal locomotor activity pattern controlled by the clock. Flies increase their movement just before the light-transitions, and these behaviors are therefore defined as anticipatory. Two neuronal oscillators control the morning and evening anticipation. Knowing that the molecular clock cycles in phase in all clock neurons in the brain in LD, how can we explain the presence of two behavioral activity peaks separated by 12 h? According to one model, the molecular clock cycles in phase in all clock neurons, but the neuronal activity cycles with a distinct phase in the morning and evening oscillators. An alternative model takes the environmental condition into consideration. One group of clock neurons, the dorso-posterior clock neurons DN1p, drive two peaks of locomotor activity in LD even though their neuronal activity cycles with the same phase (late night/early morning). Interestingly, the locomotor outputs they control differ in their sensitivity to light and temperature. Hence, they must drive outputs to different neuropil regions in the brain, which also receive different inputs. Since 2010 and the presentation of the first specific DN1p manipulations, many studies have been performed to understand the role of this group of neurons in controlling locomotor behaviors. Hence, we review what we know about this heterogeneous group of clock neurons and discuss the second model to explain how clock neurons that oscillate with the same phase can drive behaviors at different times of the day.
Collapse
Affiliation(s)
- Angélique Lamaze
- Institut für Neuro und Verhaltensbiologie, Westfälische Wilhelms University, Münster, Germany
| | | |
Collapse
|
34
|
Daytime colour preference in Drosophila depends on the circadian clock and TRP channels. Nature 2019; 574:108-111. [DOI: 10.1038/s41586-019-1571-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/28/2019] [Indexed: 11/08/2022]
|
35
|
Beckwith EJ, French AS. Sleep in Drosophila and Its Context. Front Physiol 2019; 10:1167. [PMID: 31572216 PMCID: PMC6749028 DOI: 10.3389/fphys.2019.01167] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
A prominent idea emerging from the study of sleep is that this key behavioural state is regulated in a complex fashion by ecologically and physiologically relevant environmental factors. This concept implies that sleep, as a behaviour, is plastic and can be regulated by external agents and changes in internal state. Drosophila melanogaster constitutes a resourceful model system to study behaviour. In the year 2000, the utility of the fly to study sleep was realised, and has since extensively contributed to this exciting field. At the centre of this review, we will discuss studies showing that temperature, food availability/quality, and interactions with conspecifics can regulate sleep. Indeed the relationship can be reciprocal and sleep perturbation can also affect feeding and social interaction. In particular, different environmental temperatures as well as gradual changes in temperature regulate when, and how much flies sleep. Moreover, the satiation/starvation status of an individual dictates the balance between sleep and foraging. Nutritional composition of diet also has a direct impact on sleep amount and its fragmentation. Likewise, aggression between males, courtship, sexual arousal, mating, and interactions within large groups of animals has an acute and long-lasting effect on sleep amount and quality. Importantly, the genes and neuronal circuits that relay information about the external environment and internal state to sleep centres are starting to be elucidated in the fly and are the focus of this review. In conclusion, sleep, as with most behaviours, needs the full commitment of the individual, preventing participation in other vital activities. A vast array of behaviours that are modulated by external and internal factors compete with the need to sleep and thus have a significant role in regulating it.
Collapse
Affiliation(s)
- Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alice S French
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Roessingh S, Rosing M, Marunova M, Ogueta M, George R, Lamaze A, Stanewsky R. Temperature synchronization of the Drosophila circadian clock protein PERIOD is controlled by the TRPA channel PYREXIA. Commun Biol 2019; 2:246. [PMID: 31286063 PMCID: PMC6602953 DOI: 10.1038/s42003-019-0497-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/08/2019] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks are endogenous molecular oscillators that temporally organize behavioral activity thereby contributing to the fitness of organisms. To synchronize the fly circadian clock with the daily fluctuations of light and temperature, these environmental cues are sensed both via brain clock neurons, and by light and temperature sensors located in the peripheral nervous system. Here we demonstrate that the TRPA channel PYREXIA (PYX) is required for temperature synchronization of the key circadian clock protein PERIOD. We observe a molecular synchronization defect explaining the previously reported defects of pyx mutants in behavioral temperature synchronization. Surprisingly, surgical ablation of pyx-mutant antennae partially rescues behavioral synchronization, indicating that antennal temperature signals are modulated by PYX function to synchronize clock neurons in the brain. Our results suggest that PYX protects antennal neurons from faulty signaling that would otherwise interfere with temperature synchronization of the circadian clock neurons in the brain.
Collapse
Affiliation(s)
- Sanne Roessingh
- Department of Cell and Developmental Biology, University College London, London, WC1E 6DE UK
| | - Mechthild Rosing
- Institute for Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster, D-48149 Germany
| | - Martina Marunova
- Department of Cell and Developmental Biology, University College London, London, WC1E 6DE UK
| | - Maite Ogueta
- Institute for Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster, D-48149 Germany
| | - Rebekah George
- Institute for Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster, D-48149 Germany
| | - Angelique Lamaze
- Institute for Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster, D-48149 Germany
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, University College London, London, WC1E 6DE UK
- Institute for Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster, D-48149 Germany
| |
Collapse
|
37
|
Baik LS, Recinos Y, Chevez JA, Au DD, Holmes TC. Multiple Phototransduction Inputs Integrate to Mediate UV Light-evoked Avoidance/Attraction Behavior in Drosophila. J Biol Rhythms 2019; 34:391-400. [PMID: 31140349 DOI: 10.1177/0748730419847339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Short-wavelength light guides many behaviors that are crucial for an insect's survival. In Drosophila melanogaster, short-wavelength light induces both attraction and avoidance behaviors. How light cues evoke two opposite valences of behavioral responses remains unclear. Here, we comprehensively examine the effects of (1) light intensity, (2) timing of light (duration of exposure, circadian time of day), and (3) phototransduction mechanisms processing light information that determine avoidance versus attraction behavior assayed at high spatiotemporal resolution in Drosophila. External opsin-based photoreceptors signal for attraction behavior in response to low-intensity ultraviolet (UV) light. In contrast, the cell-autonomous neuronal photoreceptors, CRYPTOCHROME (CRY) and RHODOPSIN 7 (RH7), signal avoidance responses to high-intensity UV light. In addition to binary attraction versus avoidance behavioral responses to UV light, flies show distinct clock-dependent spatial preference within a light environment coded by different light input channels.
Collapse
Affiliation(s)
- Lisa Soyeon Baik
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California
| | - Yocelyn Recinos
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California
| | - Joshua A Chevez
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California
| | - David D Au
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California
| |
Collapse
|
38
|
An inexpensive air stream temperature controller and its use to facilitate temperature-controlled behavior in Drosophila. Biotechniques 2019; 66:159-161. [PMID: 30869545 DOI: 10.2144/btn-2018-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Controlling the environment of an organism has many biologically relevant applications. Temperature-dependent inducible biological reagents have proven invaluable for elucidating signaling cascades and dissection of neural circuits. Here we develop a simple and affordable system for rapidly changing temperature in a chamber housing adult Drosophila melanogaster. Utilizing flies expressing the temperature-inducible channel dTrpA1 in dopaminergic neurons we show rapid and reproducible changes in locomotor behavior. This device should have wide application to temperature-modulated biological reagents.
Collapse
|
39
|
Chen KF, Lowe S, Lamaze A, Krätschmer P, Jepson J. Neurocalcin regulates nighttime sleep and arousal in Drosophila. eLife 2019; 8:e38114. [PMID: 30865587 PMCID: PMC6415939 DOI: 10.7554/elife.38114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
Sleep-like states in diverse organisms can be separated into distinct stages, each with a characteristic arousal threshold. However, the molecular pathways underlying different sleep stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during both day and night, with night sleep associated with higher arousal thresholds compared to day sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in promoting sleep during the night but not the day by suppressing nocturnal arousal and hyperactivity. We show that both circadian and light-sensing pathways define the temporal window in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing synaptic release from a dispersed wake-promoting neural network and demonstrate that the mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance the understanding of how sleep stages are genetically defined.
Collapse
Affiliation(s)
- Ko-Fan Chen
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - Simon Lowe
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - Angélique Lamaze
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - Patrick Krätschmer
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - James Jepson
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
40
|
Lamaze A, Krätschmer P, Chen KF, Lowe S, Jepson JE. A Wake-Promoting Circadian Output Circuit in Drosophila. Curr Biol 2018; 28:3098-3105.e3. [DOI: 10.1016/j.cub.2018.07.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/24/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022]
|
41
|
Cantarelli M, Marin B, Quintana A, Earnshaw M, Court R, Gleeson P, Dura-Bernal S, Silver RA, Idili G. Geppetto: a reusable modular open platform for exploring neuroscience data and models. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0380. [PMID: 30201843 PMCID: PMC6158222 DOI: 10.1098/rstb.2017.0380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
Geppetto is an open-source platform that provides generic middleware infrastructure for building both online and desktop tools for visualizing neuroscience models and data and managing simulations. Geppetto underpins a number of neuroscience applications, including Open Source Brain (OSB), Virtual Fly Brain (VFB), NEURON-UI and NetPyNE-UI. OSB is used by researchers to create and visualize computational neuroscience models described in NeuroML and simulate them through the browser. VFB is the reference hub for Drosophila melanogaster neural anatomy and imaging data including neuropil, segmented neurons, microscopy stacks and gene expression pattern data. Geppetto is also being used to build a new user interface for NEURON, a widely used neuronal simulation environment, and for NetPyNE, a Python package for network modelling using NEURON. Geppetto defines domain agnostic abstractions used by all these applications to represent their models and data and offers a set of modules and components to integrate, visualize and control simulations in a highly accessible way. The platform comprises a backend which can connect to external data sources, model repositories and simulators together with a highly customizable frontend. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.
Collapse
Affiliation(s)
- Matteo Cantarelli
- OpenWorm Foundation, USA .,MetaCell Limited, UK.,Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Boris Marin
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK.,Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Adrian Quintana
- MetaCell Limited, UK.,Department of Neuroscience, Physiology and Pharmacology, University College London, UK.,EyeSeeTea Limited, UK
| | - Matt Earnshaw
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Robert Court
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Padraig Gleeson
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | | | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | | |
Collapse
|
42
|
Soto-Padilla A, Ruijsink R, Sibon OCM, van Rijn H, Billeter JC. Thermosensory perception regulates speed of movement in response to temperature changes in Drosophila melanogaster. ACTA ACUST UNITED AC 2018; 221:jeb.174151. [PMID: 29650755 DOI: 10.1242/jeb.174151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Temperature influences the physiology and behavior of all organisms. For ectotherms, which lack central temperature regulation, temperature adaptation requires sheltering from or moving to a heat source. As temperature constrains the rate of metabolic reactions, it can directly affect ectotherm physiology and thus behavioral performance. This direct effect is particularly relevant for insects, as their small bodies readily equilibrate with ambient temperature. In fact, models of enzyme kinetics applied to insect behavior predict performance at different temperatures suggesting that thermal physiology governs behavior. However, insects also possess thermosensory neurons critical for locating preferred temperatures, showing cognitive control. This suggests that temperature-related behavior can emerge directly from a physiological effect, indirectly as a consequence of thermosensory processing, or through a combination of both. To separate the roles of thermal physiology and cognitive control, we developed an arena that allows fast temperature changes in time and space, and in which animals' movements are automatically quantified. We exposed wild-type Drosophila melanogaster and thermosensory receptor mutants to a dynamic temperature environment and tracked their movements. The locomotor speed of wild-type flies closely matched models of enzyme kinetics, but the behavior of thermosensory mutants did not. Mutations in thermosensory receptor gene dTrpA1 (Transient Receptor Potential A1) expressed in the brain resulted in a complete lack of response to temperature changes, while mutations in peripheral thermosensory receptor gene Gr28b(D) resulted in a diminished response. We conclude that flies react to temperature through cognitive control, informed by interactions between various thermosensory neurons, the behavioral output of which resembles models of enzyme kinetics.
Collapse
Affiliation(s)
- Andrea Soto-Padilla
- Groningen Institute for Evolutionary Life Sciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands.,Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rick Ruijsink
- Ruijsink Dynamic Engineering, Keizerstraat 57, 2801NK Gouda, The Netherlands
| | - Ody C M Sibon
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hedderik van Rijn
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands
| |
Collapse
|
43
|
Chen C, Xu M, Anantaprakorn Y, Rosing M, Stanewsky R. nocte Is Required for Integrating Light and Temperature Inputs in Circadian Clock Neurons of Drosophila. Curr Biol 2018; 28:1595-1605.e3. [PMID: 29754901 DOI: 10.1016/j.cub.2018.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/26/2022]
Abstract
Circadian clocks organize biological processes to occur at optimized times of day and thereby contribute to overall fitness. While the regular daily changes of environmental light and temperature synchronize circadian clocks, extreme external conditions can bypass the temporal constraints dictated by the clock. Despite advanced knowledge about how the daily light-dark changes synchronize the clock, relatively little is known with regard to how the daily temperature changes influence daily timing and how temperature and light signals are integrated. In Drosophila, a network of ∼150 brain clock neurons exhibit 24-hr oscillations of clock gene expression to regulate daily activity and sleep. We show here that a temperature input pathway from peripheral sensory organs, which depends on the gene nocte, targets specific subsets of these clock neurons to synchronize molecular and behavioral rhythms to temperature cycles. Strikingly, while nocte1 mutant flies synchronize normally to light-dark cycles at constant temperatures, the combined presence of light-dark and temperature cycles inhibits synchronization. nocte1 flies exhibit altered siesta sleep, suggesting that the sleep-regulating clock neurons are an important target for nocte-dependent temperature input, which dominates a parallel light input into these cells. In conclusion, we reveal a nocte-dependent temperature input pathway to central clock neurons and show that this pathway and its target neurons are important for the integration of sensory light and temperature information in order to temporally regulate activity and sleep during daily light and temperature cycles.
Collapse
Affiliation(s)
- Chenghao Chen
- Department of Cell and Developmental Biology, University College London, London, UK; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Min Xu
- Department of Cell and Developmental Biology, University College London, London, UK; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yuto Anantaprakorn
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mechthild Rosing
- Institute for Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, University College London, London, UK; Institute for Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
44
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
45
|
Piechura JR, Amarnath K, O'Shea EK. Natural changes in light interact with circadian regulation at promoters to control gene expression in cyanobacteria. eLife 2017; 6:32032. [PMID: 29239721 PMCID: PMC5785211 DOI: 10.7554/elife.32032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light. Living things face daily, predictable challenges due to the regular day and night cycle imposed by the Earth’s rotation. Many of them have evolved an internal ‘circadian’ clock to anticipate daily changes in the environment. However, nature can also change in unpredictable ways, and in order to survive, organisms must account for both the time of day stipulated by their clocks and changes in their present environment. For example, cyanobacteria depend on the sun for survival and must cope with light variations throughout the day and the absence of light at nighttime. Circadian clocks are made up of specific genes and their proteins. Most of what we know about how these clocks control the behavior of an organism comes from experiments performed under constant conditions. Previous research has shown that under such circumstances, the circadian clock of cyanobacteria periodically turns on a set of genes every 24 hours via a protein called RpaA. However, to understand how cyanobacteria use this clock, we must know how it works in a fluctuating environment. To test this, Piechura, Amarnath and O’Shea measured the activation of genes in cyanobacteria that had been exposed to changes in light mimicking those in nature. Compared to constant conditions, fluctuating light drastically changed the timing of activation of circadian genes. When light decreased – as it would in nature during sunset or if a cloud blocks the sun – the circadian genes were activated. Changes in light did not change the ‘ticking’ of the clock, but did affect the ability of RpaA to turn on circadian genes. Moreover, the activity of a second protein called RpaB increased when light decreased and the genes were activated. Thus, cyanobacteria switch on circadian genes as the sun is setting or during unexpected shade, likely through RpaA and RpaB, to help them survive without light. This study shows that circadian clocks activate genes differently in the real world compared to unnatural, constant conditions. This may prompt scientists to think carefully about how an organism’s natural environment can affect its inner workings. A next step will be to see how else light affects circadian gene levels. A deeper understanding of how cyanobacteria control their genes in a natural environment will be useful for scientists who engineer these organisms to produce biofuels from sunlight.
Collapse
Affiliation(s)
- Joseph Robert Piechura
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Kapil Amarnath
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Erin K O'Shea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
46
|
The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature. Int J Mol Sci 2017; 18:ijms18102028. [PMID: 28972543 PMCID: PMC5666710 DOI: 10.3390/ijms18102028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022] Open
Abstract
trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster. Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour.
Collapse
|
47
|
Beckwith EJ, Geissmann Q, French AS, Gilestro GF. Regulation of sleep homeostasis by sexual arousal. eLife 2017; 6:27445. [PMID: 28893376 PMCID: PMC5630259 DOI: 10.7554/elife.27445] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/28/2017] [Indexed: 11/13/2022] Open
Abstract
In all animals, sleep pressure is under continuous tight regulation. It is universally accepted that this regulation arises from a two-process model, integrating both a circadian and a homeostatic controller. Here we explore the role of environmental social signals as a third, parallel controller of sleep homeostasis and sleep pressure. We show that, in Drosophila melanogaster males, sleep pressure after sleep deprivation can be counteracted by raising their sexual arousal, either by engaging the flies with prolonged courtship activity or merely by exposing them to female pheromones.
Collapse
Affiliation(s)
- Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Quentin Geissmann
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alice S French
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Giorgio F Gilestro
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|