1
|
Li J, Liu H, Yang P, Zhu F, Shen F, Liang G. Identifying Aberrant 1CM-Related Pathways by Multi-Omics Analysis and Validating Tumor Inhibitory Effect of One-Carbon Donor Betaine in Gastric Cancer. Int J Mol Sci 2025; 26:3841. [PMID: 40332533 PMCID: PMC12027648 DOI: 10.3390/ijms26083841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic reprogramming, a well-established hallmark of gastric carcinogenesis, has been implicated in driving tumor progression. Nevertheless, the precise mechanisms through which these metabolic alterations orchestrate gastric cancer (GC) pathogenesis remain incompletely elucidated. We conducted metabolomic analyses of plasma samples obtained from 334 patients with GC and healthy individuals to identify differential metabolites and metabolic pathways. Transcriptome sequencing was conducted on six pairs of tissues, and a joint analysis of the transcriptome and metabolome was performed. Single-cell sequencing data were acquired and co-analyzed with metabolomics to investigate metabolic abnormalities at the single-cell level. Finally, four representative metabolites selected using Random Forest analysis were subjected to cellular experiments to elucidate the mechanisms through which these metabolites exert their effects. Metabolomic analyses revealed that serine and glycine metabolism, glycolysis, and glutamate metabolism were significantly altered in GC, suggesting that one-carbon metabolism (1CM)-related pathways are aberrantly activated. A combined analysis of the transcriptome, single-cell transcriptome, and metabolomics indicated that pathways related to oxidative phosphorylation, nucleotide metabolism, and amino acid metabolism in epithelial cells were altered in GC. Cellular experiments demonstrated that the one-carbon donor metabolite betaine could inhibit the activity, invasion, and migration of GC cells while activating the phosphorylation of AMPKα. In conclusion, the 1CM-related pathway and the metabolite betaine play significant roles in GC, and the mechanisms through which the one-carbon donor betaine influences GC warrant further investigation.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.L.); (H.L.); (P.Y.)
| | - Huan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.L.); (H.L.); (P.Y.)
| | - Panpan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.L.); (H.L.); (P.Y.)
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Rd, Nanjing 210009, China; (F.Z.); (F.S.)
| | - Fei Shen
- Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Rd, Nanjing 210009, China; (F.Z.); (F.S.)
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.L.); (H.L.); (P.Y.)
| |
Collapse
|
2
|
Chen B, Yuan C, Guo T, Liu J, Lu Z. METTL3 and FTO Regulate Heat Stress Response in Hu Sheep Through Lipid Metabolism via m6A Modification. Animals (Basel) 2025; 15:193. [PMID: 39858193 PMCID: PMC11758659 DOI: 10.3390/ani15020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
In an established hepatocyte lipid deposition heat stress model, the expression levels of METTL3 and FTO were significantly upregulated (p < 0.05), indicating that METTL3 and FTO play important roles in the process of lipid deposition heat stress in hepatocytes. Transcriptome and metabolome analyses showed that lipid deposition heat stress had significant effects on the linoleic acid, linolenic acid, glycerophospholipid, and arachidonic acid metabolic pathways in hepatocytes. After METTL3 knockdown, the m6A methylation level decreased, but the difference was not significant (p > 0.05), the FABP4 and Accα expression levels increased, and the HSP60, HSP70, and HSP110 expression levels decreased significantly. After METTL3 overexpression, the m6A methylation level increased significantly and the expression levels of FABP4, ATGL, Accα, HSP60, HSP70, HSP90, and HSP110 decreased significantly, indicating that the overexpression of METTL3 reduced the expression of heat shock genes by inhibiting the lipid-deposition-related gene expression in an m6A-dependent manner. The m6A methylation level increased significantly after FTO knockdown, while HSP60, HSP110, FABP4, ATGL, and Accα expression levels were significantly reduced. Following FTO overexpression, the m6A methylation level and HSP60, HSP90, and HSP110 expression levels significantly decreased, while the ATGL and Accα expression levels significantly increased. This indicates that the overexpression of FTO promoted the expression of lipid-deposition-related genes in an m6A-dependent manner to reduce the expression of heat shock genes. Transcriptome and metabolome sequencing screened a large number of differential genes and metabolites, and a KEGG enrichment analysis showed that m6A methylation mainly regulated heat stress by affecting the TNF, cAMP, MAPK, lipolysis, and synthesis pathways in hepatocytes. In the lipid deposition heat stress model of preadipocytes, the regulation of gene expression was similar to that in hepatocytes.
Collapse
Affiliation(s)
- Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
3
|
Skagen C, Stevanovic S, Bakke HG, Nyman TA, Stensland M, Kase ET, Horakova O, Rustan AC, Thoresen GH. Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 -/- myotubes. Arch Physiol Biochem 2025:1-10. [PMID: 39781899 DOI: 10.1080/13813455.2024.2449409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from AMPKα2+/+ and AMPKα2-/- mice. Myotubes from AMPKα2-/- mice had lower basal oleic acid and glucose oxidation compared to myotubes from AMPKα2+/+ mice. However, the relative response to mitochondrial uncoupling was increased for oleic acid oxidation. Incorporation of acetate into lipids was also lower in myotubes from AMPKα2-/- mice. Proteomics analysis revealed that AMPKα2-/- myotubes had upregulated pathways related to mitochondrial function and fatty acid oxidation, and decreased pathways related to fatty acid biosynthesis. In conclusion, ablation of AMPKα2 catalytic subunit in skeletal muscle cells resulted in reduced basal oxidation of glucose and fatty acids, however upregulated pathways related to mitochondrial function and fatty acid oxidation and reduced lipid formation.
Collapse
Affiliation(s)
- Christine Skagen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Stanislava Stevanovic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Hege Gilbø Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Norway
| | - Maria Stensland
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology, of the Czech Academy of Sciences, Prague, Czech Republic
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
4
|
Park K, Jung S, Ha JH, Jeong Y. Protaetia brevitarsis Hydrolysate Mitigates Muscle Dysfunction and Ectopic Fat Deposition Triggered by a High-Fat Diet in Mice. Nutrients 2025; 17:213. [PMID: 39861343 PMCID: PMC11767481 DOI: 10.3390/nu17020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a key factor in metabolic syndrome (MetS) development. Consumption of a high-fat diet (HFD) accelerates the onset of obesity and associated metabolic complications. Protaetia brevitarsis (PB) has been traditionally utilized in Korean medicine for its antioxidant, anti-diabetic, anticancer, and hepatoprotective effects. However, specific effects of PB hydrolysate on skeletal muscles have not been fully elucidated. Therefore, this study sought to assess the influence of PB on HFD-induced MetS, focusing on the lipid metabolism and inflammatory responses mediated by AMP-activated protein kinase activation. METHODS To induce obesity, 6-week-old C57BL/6J mice were maintained on an HFD for 8 weeks, after which PB hydrolysate was orally administered for 16 weeks while the HFD regimen was sustained. A glucose tolerance test was conducted orally to evaluate glucose regulation, and forelimb grip strength was assessed upon completion of the experimental period. Histological assessments, serum biochemical analysis, lipid extraction, Western blot analysis, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were performed following euthanasia. RESULTS PB significantly reduced ectopic lipid deposition in skeletal muscles, enhanced muscle strength, and improved insulin sensitivity by increasing fatty acid oxidation via AMP-activated protein kinase/carnitine palmitoyltransferase 1 activation and inhibiting lipogenesis via stearoyl-CoA desaturase 1 gene downregulation. Furthermore, PB alleviated HFD-induced low-grade chronic inflammation by decreasing systemic monocyte chemoattractant protein 1 levels, thereby reducing ectopic fat deposition. CONCLUSIONS This study highlights the potential of PB as a nutraceutical to mitigate MetS in HFD-fed mice.
Collapse
Affiliation(s)
- Kyungeun Park
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Sunyoon Jung
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
5
|
Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol 2024; 12:1500394. [PMID: 39744011 PMCID: PMC11688314 DOI: 10.3389/fcell.2024.1500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Otonari K, Asami Y, Ogata K, Ishihama Y, Futaki S, Imanishi M. Highly sequence-specific, timing-controllable m 6A demethylation by modulating RNA-binding affinity of m 6A erasers. Chem Commun (Camb) 2024; 61:69-72. [PMID: 39499124 DOI: 10.1039/d4cc04070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Recent advancements in tools using programmable RNA binding proteins and m6A-erasers enable sequence-selective and timing-controllable m6A demethylation. However, off-target effects are still a concern. This study addresses the problem by reducing the RNA-binding ability of m6A-erasers. The modulated m6A-erasers achieved sequence-specific and timing-controllable m6A demethylation with minimal off-target activity.
Collapse
Affiliation(s)
- Kenko Otonari
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yuri Asami
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Kosuke Ogata
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
7
|
Chen B, Yuan C, Guo T, Liu J, Yang B, Lu Z. The molecular regulated mechanism of METTL3 and FTO in lipid metabolism of Hu sheep. Genomics 2024; 116:110945. [PMID: 39341298 DOI: 10.1016/j.ygeno.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Balanced lipid metabolism can improve the growth performance and meat quality of livestock. The m6A methylation-related genes METTL3 and FTO play important roles in animal lipid metabolism; however, the mechanism through which they regulate lipid metabolism in sheep is unclear. RESULTS We established lipid deposition models of hepatocytes and preadipocytes in Hu sheep. In the hepatocyte lipid deposition model, the genes expression levels of FABP4, Accα, ATGL and METTL3, METTL14, and FTO-were significantly up-regulated after lipid deposition (P < 0.05). Transcriptomic and metabolomic analyses showed that lipid deposition had a significant effect on MAPK, steroid biosynthesis, and glycerophospholipid metabolism pathway in hepatocytes. The m6A methylation level decreased but the difference was not significant after METTL3 interference, and the expression levels of FABP4 and ATGL increased significantly (P < 0.05); the m6A methylation level significantly increased following METTL3 overexpression, and LPL and ATGL expression levels significantly decreased (P < 0.05), indicating that overexpression of METTL3 inhibited the expression of lipid deposition-related genes in a m6A-dependent manner. The m6A methylation level was significantly increased, ATGL expression was significantly decreased (P < 0.05), and LPL, FABP4, and Accα expression was not significantly changed following FTO interference (P > 0.05); the m6A methylation level was significantly decreased after FTO overexpression, and LPL, FABP4, and ATGL expression was significantly increased (P < 0.05), indicating that FTO overexpression increased the expression of lipid deposition-related genes in a m6A-dependent manner. Transcriptomic and metabolomic analyses showed that m6A methylation modification mainly regulated lipid metabolism through triglyceride metabolism, adipocytokine signaling, MAPK signaling, and fat digestion and absorption in hepatocytes. In the lipid deposition model of preadipocytes, the regulation of gene expression is the same as that in hepatocytes. CONCLUSIONS METTL3 significantly inhibited the expression of lipid deposition-related genes, whereas FTO overexpression promoted lipid deposition. Our study provides a theoretical basis and reference for accurately regulating animal lipid deposition by mastering METTL3 and FTO genes to promote high-quality animal husbandry.
Collapse
Affiliation(s)
- Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
8
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
9
|
Hu H, Li Z, Xie X, Liao Q, Hu Y, Gong C, Gao N, Yang H, Xiao Y, Chen Y. Insights into the role of RNA m 6A modification in the metabolic process and related diseases. Genes Dis 2024; 11:101011. [PMID: 38560499 PMCID: PMC10978549 DOI: 10.1016/j.gendis.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
According to the latest consensus, many traditional diseases are considered metabolic diseases, such as cancer, type 2 diabetes, obesity, and cardiovascular disease. Currently, metabolic diseases are increasingly prevalent because of the ever-improving living standards and have become the leading threat to human health. Multiple therapy methods have been applied to treat these diseases, which improves the quality of life of many patients, but the overall effect is still unsatisfactory. Therefore, intensive research on the metabolic process and the pathogenesis of metabolic diseases is imperative. N6-methyladenosine (m6A) is an important modification of eukaryotic RNAs. It is a critical regulator of gene expression that is involved in different cellular functions and physiological processes. Many studies have indicated that m6A modification regulates the development of many metabolic processes and metabolic diseases. In this review, we summarized recent studies on the role of m6A modification in different metabolic processes and metabolic diseases. Additionally, we highlighted the potential m6A-targeted therapy for metabolic diseases, expecting to facilitate m6A-targeted strategies in the treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | | | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
10
|
Karandashov I, Kachanov A, Dukich M, Ponomareva N, Brezgin S, Lukashev A, Pokrovsky VS, Chulanov V, Kostyusheva A, Kostyushev D. m 6A Methylation in Regulation of Antiviral Innate Immunity. Viruses 2024; 16:601. [PMID: 38675942 PMCID: PMC11054785 DOI: 10.3390/v16040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.
Collapse
Affiliation(s)
- Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Maria Dukich
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Faculty of Virology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Vadim S. Pokrovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Blokhin National Medical Research Center of Oncology, 117198 Moscow, Russia
- Faculty of Biochemistry, RUDN University, 117198 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Biotechnologies, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
11
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
13
|
Song H, Hao Z, Feng H, Li R, Zhang R, Limesand SW, Zhao Y, Chen X. Insulin resistance and dyslipidemia in low-birth-weight goat kids. Front Vet Sci 2024; 11:1370640. [PMID: 38596462 PMCID: PMC11002208 DOI: 10.3389/fvets.2024.1370640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Low birth weight (LBW) impairs the development and health of livestock by affecting postnatal growth performance and metabolic health in adulthood. Previous studies on indigenous goats in southwest China showed that LBW goat kids had higher mortality and morbidity rates, including hepatic dyslipidemia and liver damage. However, the mechanism of insulin resistance affecting lipid metabolism under LBW conditions remains unclear. In this study, we conducted in vivo glucose-insulin metabolic studies, measured biochemical parameters, and analyzed related regulatory pathways. Both glucose tolerance tests and insulin tolerance tests indicated insulin resistance in LBW goat kids compared to controls (p < 0.05). The marker of insulin resistance, homeostasis model assessment (HOMA), was 2.85-fold higher in LBW than in control goats (p < 0.01). Additionally, elevated levels of free fatty acids in both plasma and skeletal muscle were observed in LBW goats compared to normal birth weight (NBW) goats (p < 0.05). Transcriptome analysis revealed impairments in lipid metabolism and insulin signaling in LBW goats. The observed lipid accumulation was associated with the upregulation of genes linked to fatty acid uptake and transport (FABP3), fatty acid oxidation (PPARA), triacylglycerol synthesis (LPIN1 and DGAT1), oxidative stress (ANKRD2), and insulin resistance (PGC1α). Furthermore, the insulin receptor substrate 2 (IRS2) was lower in the liver of LBW goat kids (p < 0.05). While there was no change in insulin function in skeletal muscle, LBW may lead to lipid accumulation in skeletal muscle by interfering with insulin function in the liver. These findings collectively impact the health and growth performance of livestock.
Collapse
Affiliation(s)
- Huihui Song
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Zhuohang Hao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Hehan Feng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Rui Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Ran Zhang
- Yunnan Center for Animal Disease Control and Prevention, Kunming, Yunnan, China
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| | - Xiaochuan Chen
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, China
| |
Collapse
|
14
|
Ren Y, Li Z, Li J, Liang R, Wang Z, Bai Y, Yang Y, Tang Q, Fu Y, Zhang X, Zhang Y, Yu Y, Xiong Y. m 6 A mRNA methylation: Biological features, mechanisms, and therapeutic potentials in type 2 diabetes mellitus. Obes Rev 2023; 24:e13639. [PMID: 37732463 DOI: 10.1111/obr.13639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023]
Abstract
As the most common internal post-transcriptional RNA modification in eukaryotic cells, N6-methyladenosine (m6 A) performs a dynamic and reversible role in a variety of biological processes mediated by methyltransferases (writers), demethylases (erasers), and m6 A binding proteins (readers). M6 A methylation enables transcriptome conversion in different signals that regulate various physiological activities and organ development. Over the past few years, emerging studies have identified that mRNA m6 A regulators defect in β-cell leads to abnormal regulation of the target mRNAs, thereby resulting in β-cell dysfunction and loss of β-cell identity and mass, which are strongly associated with type 2 diabetes mellitus (T2DM) pathogenesis. Also, mRNA m6 A modification has been implicated with insulin resistance in muscles, fat, and liver cells/tissues. In this review, we elaborate on the biological features of m6 A methylation; provide a comprehensive overview of the underlying mechanisms that how it controls β-cell function, identity, and mass as well as insulin resistance; highlight its connections to glucose metabolism and lipid metabolism linking to T2DM; and further discuss its role in diabetes complications and its therapeutic potentials for T2DM diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jiaoyu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Rui Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yiduo Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yafang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Qian Tang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yaolei Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobo Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Zhou J, Zhu Y, Ai D, Zhou M, Li H, Li G, Zheng L, Song J. Advanced glycation end products impair bone marrow mesenchymal stem cells osteogenesis in periodontitis with diabetes via FTO-mediated N 6-methyladenosine modification of sclerostin. J Transl Med 2023; 21:781. [PMID: 37925419 PMCID: PMC10625275 DOI: 10.1186/s12967-023-04630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) and periodontitis are two prevalent diseases with mutual influence. Accumulation of advanced glycation end products (AGEs) in hyperglycemia may impair cell function and worsen periodontal conditions. N6-methyladenosine (m6A) is an important post-transcriptional modification in RNAs that regulates cell fate determinant and progression of diseases. However, whether m6A methylation participates in the process of periodontitis with diabetes is unclear. Thus, we aimed to investigate the effects of AGEs on bone marrow mesenchymal stem cells (BMSCs), elucidate the m6A modification mechanism in diabetes-associated periodontitis. METHODS Periodontitis with diabetes were established by high-fat diet/streptozotocin injection and silk ligation. M6A modifications in alveolar bone were demonstrated by RNA immunoprecipitation sequence. BMSCs treated with AGEs, fat mass and obesity associated (FTO) protein knockdown and sclerostin (SOST) interference were evaluated by quantitative polymerase chain reaction, western blot, immunofluorescence, alkaline phosphatase and Alizarin red S staining. RESULTS Diabetes damaged alveolar bone regeneration was validated in vivo. In vitro experiments showed AGEs inhibited BMSCs osteogenesis and influenced the FTO expression and m6A level in total RNA. FTO knockdown increased the m6A levels and reversed the AGE-induced inhibition of BMSCs differentiation. Mechanically, FTO regulated m6A modification on SOST transcripts, and AGEs affected the binding of FTO to SOST transcripts. FTO knockdown accelerated the degradation of SOST mRNA in presence of AGEs. Interference with SOST expression in AGE-treated BMSCs partially rescued the osteogenesis by activating Wnt Signaling. CONCLUSIONS AGEs impaired BMSCs osteogenesis by regulating SOST in an m6A-dependent manner, presenting a promising method for bone regeneration treatment of periodontitis with diabetes.
Collapse
Affiliation(s)
- Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yanlin Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Guangyue Li
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
16
|
Zhang H, Gu Y, Gang Q, Huang J, Xiao Q, Ha X. N6-methyladenosine RNA modification: an emerging molecule in type 2 diabetes metabolism. Front Endocrinol (Lausanne) 2023; 14:1166756. [PMID: 37484964 PMCID: PMC10360191 DOI: 10.3389/fendo.2023.1166756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with an increasing rate of incidence worldwide. Despite the considerable progress in the prevention and intervention, T2D and its complications cannot be reversed easily after diagnosis, thereby necessitating an in-depth investigation of the pathophysiology. In recent years, the role of epigenetics has been increasingly demonstrated in the disease, of which N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications. Interestingly, patients with T2D show a low m6A abundance. Thus, a comprehensive analysis and understanding of this phenomenon would improve our understanding of the pathophysiology, as well as the search for new biomarkers and therapeutic approaches for T2D. In this review, we systematically introduced the metabolic roles of m6A modification in organs, the metabolic signaling pathways involved, and the effects of clinical drugs on T2D.
Collapse
Affiliation(s)
- Haocheng Zhang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| | - Yan Gu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaojian Gang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Huang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Qian Xiao
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoqin Ha
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Yu B, Liu J, Cai Z, Wang H, Feng X, Zhang T, Ma R, Gu Y, Zhang J. RNA N 6-methyladenosine profiling reveals differentially methylated genes associated with intramuscular fat metabolism during breast muscle development in chicken. Poult Sci 2023; 102:102793. [PMID: 37276703 PMCID: PMC10258505 DOI: 10.1016/j.psj.2023.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intramuscular fat (IMF) is an important indicator for determining meat quality, and IMF deposition during muscle development is regulated by a complex molecular network involving multiple genes. The N6-methyladenosine (m6A) modification of mRNA plays an important regulatory role in muscle adipogenesis. However, the distribution of m6A and its role in IMF metabolism in poultry has not been reported. In the present study, a transcriptome-wide m6A profile was constructed using methylated RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to explore the potential mechanism of regulating IMF deposition in the breast muscle based on the comparative analysis of IMF differences in the breast muscles of 42 (group G), 126 (group S), and 180-days old (group M) Jingyuan chickens. The findings revealed that the IMF content in the breast muscle increased significantly with the increase in the growth days of the Jingyuan chickens (P < 0.05). The m6A peak in the breast muscles of the 3 groups was highly enriched in the coding sequence (CDS) and 3' untranslated regions (3' UTR), which corresponded to the consensus motif RRACH. Moreover, we identified 129, 103, and 162 differentially methylated genes (DMGs) in the breast muscle samples of the G, S, and M groups, respectively. Functional enrichment analyses revealed that DMGs are involved in many physiological activities of muscle fat anabolism. The m6A-induced ferroptosis pathway was identified in breast muscle tissue as a new target for regulating IMF metabolism. In addition, association analysis demonstrated that LMOD2 and its multiple m6A negatively regulated DMGs are potential regulators of IMF differential deposition in muscle. The findings of the present study provide a solid foundation for further investigation into the potential role of m6A modification in regulating chicken fat metabolism.
Collapse
Affiliation(s)
- Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiamin Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
18
|
Wu Z, Lu M, Liu D, Shi Y, Ren J, Wang S, Jing Y, Zhang S, Zhao Q, Li H, Yu Z, Liu Z, Bi S, Wei T, Yang YG, Xiao J, Belmonte JCI, Qu J, Zhang W, Ci W, Liu GH. m 6A epitranscriptomic regulation of tissue homeostasis during primate aging. NATURE AGING 2023:10.1038/s43587-023-00393-2. [PMID: 37118553 DOI: 10.1038/s43587-023-00393-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/03/2023] [Indexed: 04/30/2023]
Abstract
How N6-methyladenosine (m6A), the most abundant mRNA modification, contributes to primate tissue homeostasis and physiological aging remains elusive. Here, we characterize the m6A epitranscriptome across the liver, heart and skeletal muscle in young and old nonhuman primates. Our data reveal a positive correlation between m6A modifications and gene expression homeostasis across tissues as well as tissue-type-specific aging-associated m6A dynamics. Among these tissues, skeletal muscle is the most susceptible to m6A loss in aging and shows a reduction in the m6A methyltransferase METTL3. We further show that METTL3 deficiency in human pluripotent stem cell-derived myotubes leads to senescence and apoptosis, and identify NPNT as a key element downstream of METTL3 involved in myotube homeostasis, whose expression and m6A levels are both decreased in senescent myotubes. Our study provides a resource for elucidating m6A-mediated mechanisms of tissue aging and reveals a METTL3-m6A-NPNT axis counteracting aging-associated skeletal muscle degeneration.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Mingming Lu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Shi
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sheng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhao
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongyu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zihui Yu
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijia Bi
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuo Wei
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Weimin Ci
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
20
|
Tang Z, Sun C, Yan Y, Niu Z, Li Y, Xu X, Zhang J, Wu Y, Li Y, Wang L, Hu C, Li Z, Jiang J, Ying H. Aberrant elevation of FTO levels promotes liver steatosis by decreasing the m6A methylation and increasing the stability of SREBF1 and ChREBP mRNAs. J Mol Cell Biol 2023; 14:6817255. [PMID: 36352530 PMCID: PMC9951264 DOI: 10.1093/jmcb/mjac061] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/23/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies have indicated an association of fat mass and obesity-associated (FTO) with nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide. This study aimed to decipher the complex role of FTO in hepatic lipid metabolism. We found that a decrease in N6-methyladenosine (m6A) RNA methylation in the liver of mice fed with a high-fat diet (HFD) was accompanied by an increase in FTO expression. Overexpression of FTO in the liver promoted triglyceride accumulation by upregulating the expression of lipogenic genes. Mechanistical studies revealed that FTO could stabilize the mRNAs of sterol regulatory element binding transcription factor 1 (SREBF1) and carbohydrate responsive element binding protein (ChREBP), two master lipogenic transcription factors, by demethylating m6A sites. Knockdown of either SREBF1 or ChREBP attenuated the lipogenic effect of FTO, suggesting that they are bona fide effectors for FTO in regulating lipogenesis. Insulin could stimulate FTO transcription through a mechanism involving the action of intranuclear insulin receptor beta, while knockdown of FTO abrogated the lipogenic effect of insulin. Inhibition of FTO by entacapone decreased the expression of SREBF1, ChREBP, and downstream lipogenic genes, ameliorating liver steatosis in HFD-fed mice. Thus, our study established a critical role of FTO in both the insulin-regulated hepatic lipogenesis and the pathogenesis of NAFLD and provided a potential strategy for treating NAFLD.
Collapse
Affiliation(s)
- Zhili Tang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China.,Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai 200031, China
| | - Chao Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China
| | - Ying Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China
| | - Zhoumin Niu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China
| | - Yuying Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China
| | - Xi Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| | - Yuting Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhuoyang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200031, China.,Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| |
Collapse
|
21
|
Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres? J Genet 2023. [DOI: 10.1007/s12041-022-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Nutraceuticals and the Network of Obesity Modulators. Nutrients 2022; 14:nu14235099. [PMID: 36501129 PMCID: PMC9739360 DOI: 10.3390/nu14235099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.
Collapse
|
23
|
Zhang M, Liu J, Yu C, Tang S, Jiang G, Zhang J, Zhang H, Xu J, Xu W. Berberine Regulation of Cellular Oxidative Stress, Apoptosis and Autophagy by Modulation of m 6A mRNA Methylation through Targeting the Camk1db/ERK Pathway in Zebrafish-Hepatocytes. Antioxidants (Basel) 2022; 11:antiox11122370. [PMID: 36552577 PMCID: PMC9774189 DOI: 10.3390/antiox11122370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid deposition zebrafish hepatocytes (ZFL). The results showed that BBR could change the cellular m6A RNA methylation level, increase m6A levels of Camk1db gene transcript and alter Camk1db gene mRNA expression. Via knockdown of the Camk1db gene, Camk1db could promote cellular ERK phosphorylation levels. Berberine regulated the expression level of Camk1db mRNA by altering the M6A RNA methylation of the Camk1db gene, which further affected the synthesis of calmodulin-dependent protein kinase and activated ERK signaling pathway resulting in changes in downstream physiological indicators including ROS production, cell proliferation, apoptosis and autophagy. In conclusion, berberine could regulate cellular oxidative stress, apoptosis and autophagy by mediating Camk1db m6A methylation through the targeting of the Camk1db/ERK pathway in zebrafish-hepatocyte.
Collapse
Affiliation(s)
- Meijuan Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jin Liu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Chengbing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Shangshang Tang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Hongcai Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jianxiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Weina Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
24
|
Wagner S, Manickam R, Brotto M, Tipparaju SM. NAD + centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 2022; 477:1829-1848. [PMID: 35334034 PMCID: PMC10065019 DOI: 10.1007/s11010-022-04408-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.
Collapse
Affiliation(s)
- Sabrina Wagner
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA.
| |
Collapse
|
25
|
Zhang S, Zhong R, Tang S, Han H, Chen L, Zhang H. Baicalin Alleviates Short-Term Lincomycin-Induced Intestinal and Liver Injury and Inflammation in Infant Mice. Int J Mol Sci 2022; 23:ijms23116072. [PMID: 35682750 PMCID: PMC9181170 DOI: 10.3390/ijms23116072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
The adverse effects of short-term megadose of antibiotics exposure on the gastrointestinal and liver tissue reactions in young children have been reported. Antibiotic-induced intestinal and liver reactions are usually unpredictable and present a poorly understood pathogenesis. It is, therefore, necessary to develop strategies for reducing the adverse effects of antibiotics. Studies on the harm and rescue measures of antibiotics from the perspective of the gut–liver system are lacking. Here, we demonstrate that lincomycin exposure reduced body weight, disrupted the composition of gut microbiota and intestinal morphology, triggered immune-mediated injury and inflammation, caused liver dysfunction, and affected lipid metabolism. However, baicalin administration attenuated the lincomycin-induced changes. Transcriptome analysis showed that baicalin improved immunity in mice, as evidenced by the decreased levels of intestinal inflammatory cytokines and expression of genes that regulate Th1, Th2, and Th17 cell differentiation, and inhibited mucin type O-glycan biosynthesis pathways. In addition, baicalin improved liver function by upregulating the expression of genes involved in bile acid secretion and lipid degradation, and downregulating genes involved in lipid synthesis in lincomycin-treated mice. Bile acids can regulate intestinal immunity and strengthen hepatoenteric circulation. In addition, baicalin also improved anti-inflammatory bacteria abundance (Blautia and Coprobacillus) and reduced pathogenic bacteria abundance (Proteobacteria, Klebsiella, and Citrobacter) in lincomycin-treated mice. Thus, baicalin can ameliorate antibiotic-induced injury and its associated complications such as liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-6281-8910 (L.C.); Fax: +86-10-6281-6013 (H.Z.)
| | - Hongfu Zhang
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-6281-8910 (L.C.); Fax: +86-10-6281-6013 (H.Z.)
| |
Collapse
|
26
|
Ebadi M, Tsien C, Bhanji RA, Dunichand-Hoedl AR, Rider E, Motamedrad M, Mazurak VC, Baracos V, Montano-Loza AJ. Myosteatosis in Cirrhosis: A Review of Diagnosis, Pathophysiological Mechanisms and Potential Interventions. Cells 2022; 11:cells11071216. [PMID: 35406780 PMCID: PMC8997850 DOI: 10.3390/cells11071216] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Myosteatosis, or pathological excess fat accumulation in muscle, has been widely defined as a lower mean skeletal muscle radiodensity on computed tomography (CT). It is reported in more than half of patients with cirrhosis, and preliminary studies have shown a possible association with reduced survival and increased risk of portal hypertension complications. Despite the clinical implications in cirrhosis, a standardized definition for myosteatosis has not yet been established. Currently, little data exist on the mechanisms by which excess lipid accumulates within the muscle in individuals with cirrhosis. Hyperammonemia may play an important role in the pathophysiology of myosteatosis in this setting. Insulin resistance, impaired mitochondrial oxidative phosphorylation, diminished lipid oxidation in muscle and age-related differentiation of muscle stem cells into adipocytes have been also been suggested as potential mechanisms contributing to myosteatosis. The metabolic consequence of ammonia-lowering treatments and omega-3 polyunsaturated fatty acids in reversing myosteatosis in cirrhosis remains uncertain. Factors including the population of interest, design and sample size, single/combined treatment, dosing and duration of treatment are important considerations for future trials aiming to prevent or treat myosteatosis in individuals with cirrhosis.
Collapse
Affiliation(s)
- Maryam Ebadi
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
| | - Cynthia Tsien
- Ajmera Transplant Program, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Rahima A. Bhanji
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
| | - Abha R. Dunichand-Hoedl
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.R.D.-H.); (M.M.); (V.C.M.)
| | - Elora Rider
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
| | - Maryam Motamedrad
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.R.D.-H.); (M.M.); (V.C.M.)
| | - Vera C. Mazurak
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.R.D.-H.); (M.M.); (V.C.M.)
| | - Vickie Baracos
- Department of Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada;
| | - Aldo J. Montano-Loza
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada; (M.E.); (R.A.B.); (E.R.)
- Correspondence: ; Tel.: +1-780-248-1892
| |
Collapse
|
27
|
Azzam SK, Alsafar H, Sajini AA. FTO m6A Demethylase in Obesity and Cancer: Implications and Underlying Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms23073800. [PMID: 35409166 PMCID: PMC8998816 DOI: 10.3390/ijms23073800] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Fat mass and obesity-associated protein (FTO) is the first reported RNA N6-methyladenosine (m6A) demethylase in eukaryotic cells. m6A is considered as the most abundant mRNA internal modification, which modulates several cellular processes including alternative splicing, stability, and expression. Genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) within FTO to be associated with obesity, as well as cancer including endometrial cancer, breast cancer, pancreatic cancer, and melanoma. Since the initial classification of FTO as an m6A demethylase, various studies started to unravel a connection between FTO’s demethylase activity and the susceptibility to obesity on the molecular level. FTO was found to facilitate adipogenesis, by regulating adipogenic pathways and inducing pre-adipocyte differentiation. FTO has also been investigated in tumorigenesis, where emerging studies suggest m6A and FTO levels are dysregulated in various cancers, including acute myeloid leukemia (AML), glioblastoma, cervical squamous cell carcinoma (CSCC), breast cancer, and melanoma. Here we review the molecular bases of m6A in tumorigenesis and adipogenesis while highlighting the controversial role of FTO in obesity. We provide recent findings confirming FTO’s causative link to obesity and discuss novel approaches using RNA demethylase inhibitors as targeted oncotherapies. Our review aims to confirm m6A demethylation as a risk factor in obesity and provoke new research in FTO and human disorders.
Collapse
Affiliation(s)
- Sarah Kassem Azzam
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.K.A.); (H.A.)
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Habiba Alsafar
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.K.A.); (H.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi P.O. Box 389, United Arab Emirates
| | - Abdulrahim A. Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.K.A.); (H.A.)
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
28
|
Dang Y, Dong Q, Wu B, Yang S, Sun J, Cui G, Xu W, Zhao M, Zhang Y, Li P, Li L. Global Landscape of m6A Methylation of Differently Expressed Genes in Muscle Tissue of Liaoyu White Cattle and Simmental Cattle. Front Cell Dev Biol 2022; 10:840513. [PMID: 35359442 PMCID: PMC8960853 DOI: 10.3389/fcell.2022.840513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Liaoyu white cattle (LYWC) is a local breed in Liaoning Province, China. It has the advantages of grow quickly, high slaughter ratew, high meat quality and strong anti-stress ability. N6 methyladenosine (m6A) is a methylation modification of N6 position of RNA adenine, which is an important modification mechanism affecting physiological phenomena. In this study, we used the longissimus dorsi muscle of LYWC and SIMC for m6A-seq and RNA-seq high-throughput sequencing, and identified the key genes involved in muscle growth and m6A modification development by bioinformatics analysis. There were 31532 m6A peaks in the whole genome of LYWC and 47217 m6A peaks in the whole genome of SIMC. Compared with Simmental cattle group, LYWC group had 17,351 differentially expressed genes: 10,697 genes were up-regulated, 6,654 genes were down regulated, 620 differentially expressed genes were significant, while 16,731 differentially expressed genes were not significant. Among the 620 significantly differentially expressed genes, 295 genes were up-regulated and 325 genes were down regulated. In order to explore the relationship between m6A and mRNA expression in the muscles of LYWC and SIMC, the combined analysis of MeRIP-seq and RNA-seq revealed that 316 genes were m6A modified with mRNA expression. To identify differentially methylated genes related to muscle growth, four related genes were selected for quantitative verification in LYWC and SIMC. GO enrichment and KEGG analysis showed that the differentially expressed genes modified by m6A are mainly involved in skeletal muscle contraction, steroid biosynthesis process, redox process, PPAR pathway and fatty acid metabolism, and galactose metabolism. These results provide a theoretical basis for further research on the role of m6A in muscle growth and development.
Collapse
Affiliation(s)
- Yunlong Dang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiao Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bowei Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shuhua Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jiaming Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gengyuan Cui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weixiang Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Meiling Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yunxuan Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peng Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Peng Li, ; Lin Li,
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Peng Li, ; Lin Li,
| |
Collapse
|
29
|
Chen W, Chen Y, Wu R, Guo G, Liu Y, Zeng B, Liao X, Wang Y, Wang X. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/m 6A/DDIT4/PGC1α signaling. BMC Biol 2022; 20:39. [PMID: 35135551 PMCID: PMC8827147 DOI: 10.1186/s12915-022-01239-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background Obesity leads to a decline in the exercise capacity of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. Dietary intervention has been shown to be an important measure to regulate skeletal muscle function, and previous studies have demonstrated the beneficial effects of docosahexaenoic acid (DHA; 22:6 ω-3) on skeletal muscle function. At the molecular level, DHA and its metabolites were shown to be extensively involved in regulating epigenetic modifications, including DNA methylation, histone modifications, and small non-coding microRNAs. However, whether and how epigenetic modification of mRNA such as N6-methyladenosine (m6A) mediates DHA regulation of skeletal muscle function remains unknown. Here, we analyze the regulatory effect of DHA on skeletal muscle function and explore the involvement of m6A mRNA modifications in mediating such regulation. Results DHA supplement prevented HFD-induced decline in exercise capacity and conversion of muscle fiber types from slow to fast in mice. DHA-treated myoblasts display increased mitochondrial biogenesis, while slow muscle fiber formation was promoted through DHA-induced expression of PGC1α. Further analysis of the associated molecular mechanism revealed that DHA enhanced expression of the fat mass and obesity-associated gene (FTO), leading to reduced m6A levels of DNA damage-induced transcript 4 (Ddit4). Ddit4 mRNA with lower m6A marks could not be recognized and bound by the cytoplasmic m6A reader YTH domain family 2 (YTHDF2), thereby blocking the decay of Ddit4 mRNA. Accumulated Ddit4 mRNA levels accelerated its protein translation, and the consequential increased DDIT4 protein abundance promoted the expression of PGC1α, which finally elevated mitochondria biogenesis and slow muscle fiber formation. Conclusions DHA promotes mitochondrial biogenesis and skeletal muscle fiber remodeling via FTO/m6A/DDIT4/PGC1α signaling, protecting against obesity-induced decline in skeletal muscle function. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01239-w.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Guanqun Guo
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China. .,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China. .,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China. .,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Li H, Xiao W, He Y, Wen Z, Cheng S, Zhang Y, Li Y. Novel Insights Into the Multifaceted Functions of RNA n 6-Methyladenosine Modification in Degenerative Musculoskeletal Diseases. Front Cell Dev Biol 2021; 9:766020. [PMID: 35024366 PMCID: PMC8743268 DOI: 10.3389/fcell.2021.766020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is an important modification of eukaryotic mRNA. Since the first discovery of the corresponding demethylase and the subsequent identification of m6A as a dynamic modification, the function and mechanism of m6A in mammalian gene regulation have been extensively investigated. "Writer", "eraser" and "reader" proteins are key proteins involved in the dynamic regulation of m6A modifications, through the anchoring, removal, and interpretation of m6A modifications, respectively. Remarkably, such dynamic modifications can regulate the progression of many diseases by affecting RNA splicing, translation, export and degradation. Emerging evidence has identified the relationship between m6A modifications and degenerative musculoskeletal diseases, such as osteoarthritis, osteoporosis, sarcopenia and degenerative spinal disorders. Here, we have comprehensively summarized the evidence of the pathogenesis of m6A modifications in degenerative musculoskeletal diseases. Moreover, the potential molecular mechanisms, regulatory functions and clinical implications of m6A modifications are thoroughly discussed. Our review may provide potential prospects for addressing key issues in further studies.
Collapse
Affiliation(s)
- Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - WenFeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiong He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zeqin Wen
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Siyuan Cheng
- Department of Clinical Medicine, Xiangya School of Medicine of Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Wang Y, Li L, Li J, Zhao B, Huang G, Li X, Xie Z, Zhou Z. The Emerging Role of m6A Modification in Regulating the Immune System and Autoimmune Diseases. Front Cell Dev Biol 2021; 9:755691. [PMID: 34869344 PMCID: PMC8635162 DOI: 10.3389/fcell.2021.755691] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Over the past several decades, RNA modifications have rapidly emerged as an indispensable topic in epitranscriptomics. N6-methyladenosine (m6A), namely, methylation at the sixth position of an adenine base in an RNA molecule, is the most prevalent RNA modification in both coding and noncoding RNAs. m6A has emerged as a crucial posttranscriptional regulator involved in both physiological and pathological processes. Based on accumulating evidence, m6A participates in the pathogenesis of immune-related diseases by regulating both innate and adaptive immune cells through various mechanisms. Autoimmune diseases are caused by a self-destructive immune response in the setting of genetic and environmental factors, and recent studies have discovered that m6A may play an essential role in the development of autoimmune diseases. In this review, we focus on the important role of m6A modification in biological functions and highlight its contributions to immune cells and the development of autoimmune diseases, thereby providing promising epitranscriptomic targets for preventing and treating autoimmune disorders.
Collapse
Affiliation(s)
- Yimeng Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lifang Li
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Zhao C, Liu Y, Ju S, Wang X. Pan-Cancer Analysis of the N6-Methyladenosine Eraser FTO as a Potential Prognostic and Immunological Biomarker. Int J Gen Med 2021; 14:7411-7422. [PMID: 34744452 PMCID: PMC8565892 DOI: 10.2147/ijgm.s331752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Fat mass and obesity-associated protein (FTO) is a critical N6-methyladenosine (m6A) demethylase that participates in tumorigenesis and is associated with the prognosis of patients in some cancers. However, the key roles of FTO in pan-cancer are still largely obscure. Methods FTO expression levels in pan-cancer were estimated via the Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA) databases. Univariate survival analysis was used to estimate the effects of FTO on prognosis. In addition, we used the Tumor Immune Evaluation Resource (TIMER) to assess the immune cell infiltration of FTO gene across cancers. The association of FTO expression with immune checkpoint genes expression, DNA mismatch repair (MMR) gene mutation, DNA methyltransferases, microsatellite instability (MSI), and tumor mutational burden (TMB) was investigated using Spearman’s correlation analysis. Moreover, Gene Set Enrichment Analysis (GSEA) was utilized to identify critical pathways in cancers. The STRING website was used to reveal the protein–protein interaction (PPI) network of FTO. Results FTO was aberrantly expressed across cancers and survival analysis demonstrated that its expression was associated with clinical prognosis of many cancer patients. Specifically, FTO expression was significantly associated with immune infiltrating cells in colon adenocarcinoma, kidney renal clear cell carcinoma, and liver hepatocellular carcinoma. In addition, FTO expression was significantly associated with immune checkpoint genes expression, MMR, DNA methyltransferases levels, TMB, and MSI in multiple cancers. Moreover, the GSEA unveiled that FTO was involved in the regulation of tumors and immune-related signaling pathways. In addition, several m6A related genes were implicated in the PPI network of FTO. Conclusion FTO was related to patients’ prognosis and tumor immune infiltrates in various cancers, and may serve as a novel and potential prognostic and immune biomarker in human pan-cancer.
Collapse
Affiliation(s)
- Chengwen Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yonghui Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Gao W, Liu JL, Lu X, Yang Q. Epigenetic regulation of energy metabolism in obesity. J Mol Cell Biol 2021; 13:480-499. [PMID: 34289049 PMCID: PMC8530523 DOI: 10.1093/jmcb/mjab043] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity has reached epidemic proportions globally. Although modern adoption of a sedentary lifestyle coupled with energy-dense nutrition is considered to be the main cause of obesity epidemic, genetic preposition contributes significantly to the imbalanced energy metabolism in obesity. However, the variants of genetic loci identified from large-scale genetic studies do not appear to fully explain the rapid increase in obesity epidemic in the last four to five decades. Recent advancements of next-generation sequencing technologies and studies of tissue-specific effects of epigenetic factors in metabolic organs have significantly advanced our understanding of epigenetic regulation of energy metabolism in obesity. The epigenome, including DNA methylation, histone modifications, and RNA-mediated processes, is characterized as mitotically or meiotically heritable changes in gene function without alteration of DNA sequence. Importantly, epigenetic modifications are reversible. Therefore, comprehensively understanding the landscape of epigenetic regulation of energy metabolism could unravel novel molecular targets for obesity treatment. In this review, we summarize the current knowledge on the roles of DNA methylation, histone modifications such as methylation and acetylation, and RNA-mediated processes in regulating energy metabolism. We also discuss the effects of lifestyle modifications and therapeutic agents on epigenetic regulation of energy metabolism in obesity.
Collapse
Affiliation(s)
- Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
34
|
Liraglutide may affect visceral fat accumulation in diabetic rats via changes in FTO, AMPK, and AKT expression. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Abstract
Purpose
The aim of this study is to explore the effects of liraglutide (LRG) on the expression of FTO, AMPK, and AKT in the visceral adipose tissues of obese and diabetic rats and the underlying mechanisms thereof.
Methods
Thirty SPF-grade, male SD rats were randomly divided into the healthy control, diabetic model (DM), and DM + LRG groups. The DM and DM + LRG groups were administered normal saline and LRG (0.6 mg/kg/d), respectively. After 12 weeks, the body weight of the rats was measured, and their visceral adipose tissues were collected and weighed; the levels of serum biochemical indicators and FTO, AMPK, and AKT in these tissues were then measured using qRT-PCR and western blotting.
Results
Compared to the control group, the body weight and visceral fat accumulation and blood glucose, TG, TC, and LDL-C levels increased significantly, while the HDL-C levels decreased significantly, in the DM group (p < 0.05). After LRG treatment, the HDL-C levels increased significantly, but the levels of the other indicators decreased significantly (p < 0.05). Compared to the control group, the visceral adipose tissue levels of FTO and AKT increased significantly, while the AMPK levels decreased significantly in the DM group (p < 0.05). After LRG treatment, the FTO and AKT levels decreased significantly, and the AMPK levels increased significantly (p < 0.05).
Conclusion
LRG may activate and inhibit the AMPK and AKT pathways, respectively, and decrease FTO expression, thereby alleviating abdominal obesity in type 2 diabetes.
Collapse
|
35
|
Monteiro-Alfredo T, Oliveira S, Amaro A, Rosendo-Silva D, Antunes K, Pires AS, Teixo R, Abrantes AM, Botelho MF, Castelo-Branco M, Seiça R, Silva S, de Picoli Souza K, Matafome P. Hypoglycaemic and Antioxidant Properties of Acrocomia aculeata (Jacq.) Lodd Ex Mart. Extract Are Associated with Better Vascular Function of Type 2 Diabetic Rats. Nutrients 2021; 13:2856. [PMID: 34445015 PMCID: PMC8398401 DOI: 10.3390/nu13082856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress is involved in the metabolic dysregulation of type 2 diabetes (DM2). Acrocomia aculeata (Aa) fruit pulp has been described for the treatment of several diseases, and recently we have proved that its leaves have phenolic compounds with a marked antioxidant effect. We aimed to assess whether they can improve metabolic, redox and vascular functions in DM2. Control Wistar (W-Ctrl) and non-obese type 2 diabetic Goto-Kakizaki (GK-Ctrl) rats were treated for 30 days with 200 mg.kg-1 aqueous extract of Aa (EA-Aa) (Wistar, W-EA-Aa/GK, GK-EA-Aa). EA-Aa was able to reduce fasting glycaemia and triglycerides of GK-EA-Aa by improving proteins related to glucose and lipid metabolism, such as GLUT-4, PPARγ, AMPK, and IR, when compared to GK-Ctrl. It also improved viability of 3T3-L1 pre-adipocytes exposed by H2O2. EA-Aa also increased the levels of catalase in the aorta and kidney, reduced oxidative stress and increased relaxation of the aorta in GK-treated rats in relation to GK-Ctrl, in addition to the protective effect against oxidative stress in HMVec-D cells. We proved the direct antioxidant potential of the chemical compounds of EA-Aa, the increase in antioxidant defences in a tissue-specific manner and hypoglycaemic properties, improving vascular function in type 2 diabetes. EA-Aa and its constituents may have a therapeutic potential for the treatment of DM2 complications.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Research Group of Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil; (K.A.); (K.d.P.S.)
| | - Sara Oliveira
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
| | - Andreia Amaro
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Rosendo-Silva
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
| | - Katia Antunes
- Research Group of Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil; (K.A.); (K.d.P.S.)
| | - Ana Salomé Pires
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Centre for Neuroscience and Cell Biology (CNC), IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratório de Bioestatística Médica, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
| | - Sónia Silva
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Kely de Picoli Souza
- Research Group of Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil; (K.A.); (K.d.P.S.)
| | - Paulo Matafome
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Department of Complementary Sciences, 3000-548 Coimbra, Portugal
| |
Collapse
|
36
|
Liang RH, Zhu NX, Hou Q, Wu LF. Role of m6A methylation in occurrence and progression of digestive system malignancies. Shijie Huaren Xiaohua Zazhi 2021; 29:747-757. [DOI: 10.11569/wcjd.v29.i14.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common modification in higher eukaryotic messenger RNA (mRNA), which is closely related to the mRNA processing, nuclear output, translation, and degradation. M6A modification is regulated by methyltransferase and demethylase dynamically and reversibly. M6A plays an essential role in tumors progression by regulating epigenetic modification of tumor suppressor genes and oncogenes. In recent years, more and more studies have shown that m6A is related to the occurrence and development of digestive system malignant tumors and may serve as a novel potential biomarker for the diagnosis and prognosis of digestive cancer. This article reviews the latest progress in the research of m6A in digestive system malignant tumors.
Collapse
Affiliation(s)
- Rui-Huang Liang
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Nan-Xing Zhu
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Qin Hou
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
37
|
Zhang X, Ye L, Li X, Chen Y, Jiang Y, Li W, Wen Y. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med 2021; 9:e1747. [PMID: 34302448 PMCID: PMC8404241 DOI: 10.1002/mgg3.1747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Hypoxia within the plateau has a negative effect on skeletal muscle and may play a role in the development of sarcopenia in humans. Tibetans having lived in the Qinghai‐Tibet Plateau for thousands of years, are a high‐risk group for sarcopenia; however, they have a distinctive suite of genetic traits that enable them to tolerate environmental hypoxia and are genetically significantly different from Han Chinese and other lowland populations. Sarcopenia has been consistently found to be associated with single‐nucleotide polymorphisms, but few studies have investigated the role of single‐nucleotide polymorphisms in a range of muscle phenotypes and sarcopenia in Tibetan peoples. Methods Our study aimed to investigate the skeletal muscle mass and fat mass of 160 Tibetans (80 men and 80 women) from Lhasa (altitude of 3600 meters) and analyze the association between the polymorphisms of fat mass and obesity protein (FTO) rs9939609, FTO rs9936385, activin type IIB receptor (ACVR2B) rs2276541, insulin receptor substrate 1 (IRS1) 2943656 and sarcopenia. Result FTO rs9939609 and rs9936385 polymorphisms were associated with lower limb skeletal muscle mass and sarcopenia for Tibetan women, and TT homozygotes had a higher risk for sarcopenia. But ACVR2B rs2276541 and IRS1 2943656 polymorphisms were unassociated with sarcopenia in Tibetan. Conclusion In Tibetans, FTO rs9939609 and rs9936385 polymorphisms were associated with sarcopenia, and ACVR2B rs2276541 and IRS1 2943656 polymorphisms were unassociated with sarcopenia.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Yaqiong Jiang
- Tama Community Health Center of Chengguan District, Lhasa, China
| | - Wenhui Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
38
|
Gholamalizadeh M, Tabrizi R, Bourbour F, Rezaei S, Pourtaheri A, Badeli M, Jarrahi SAM, Akbari ME, Kalantari N, Doaei S. Are the FTO Gene Polymorphisms Associated with Colorectal Cancer? A Meta-analysis. J Gastrointest Cancer 2021; 52:846-853. [PMID: 34212310 DOI: 10.1007/s12029-021-00651-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/01/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is reported to be associated with some gene polymorphisms. However, the effect of the fat mass and obesity associated (FTO) gene on colorectal cancer is not yet clear. This meta-analysis aimed to investigate the association of the FTO gene polymorphism and colorectal cancer. METHODS PubMed, Web of science, Scopus, and Embase were explored to identify the studies investigating the relationship between rs9939609 and rs17817449 polymorphisms of FTO gene and colorectal cancer, and the published papers from 2000 to 2019 were collected. This meta-analysis was conducted by using a random-effects model for the best estimation of the desired outcomes. RESULTS In this study, 1528 studies were initially included and five eligible case-control studies including 13,460 cases and 22,578 controls were eligible for further analyses. No significant association was found between risk allele of FTO rs9939609 (OR = 0.98, 0.87-1.1) and rs17817449 (OR = 0.9, 0.79-1.03) polymorphisms and colorectal cancer risk. The subgroup analyses considering the source of the control group and race found no significant association between FTO polymorphisms and the risk of colon cancer. CONCLUSIONS This study indicated that rs9939609 and rs17817449 FTO gene polymorphisms are not associated with colorectal cancer risk. Individual studies involving different FTO polymorphisms are needed to further evaluation of the associations between the FTO gene and colon cancer.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Students Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Bourbour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahla Rezaei
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Pourtaheri
- School of Medicine, Mashhad University of Medical Sciences, Tehran, Iran
| | - Mostafa Badeli
- Department of Nutrition, Urmia University of Medical Science, Urmia, Iran
| | | | | | - Naser Kalantari
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
39
|
Maldonado M, Chen J, Lujun Y, Duan H, Raja MA, Qu T, Huang T, Gu J, Zhong Y. The consequences of a high-calorie diet background before calorie restriction on skeletal muscles in a mouse model. Aging (Albany NY) 2021; 13:16834-16858. [PMID: 34166224 PMCID: PMC8266348 DOI: 10.18632/aging.203237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/31/2021] [Indexed: 02/05/2023]
Abstract
The beneficial effects of calorie restriction (CR) are numerous. However, there is no scientific evidence about how a high-calorie diet (HCD) background influences the mechanisms underlying CR on skeletal muscles in an experimental mouse model. Herein we present empirical evidence showing significant interactions between HCD (4 months) and CR (3 months). Pectoralis major and quadriceps femoris vastus medialis, in the experimental and control groups, displayed metabolic and physiologic heterogeneity and remarkable plasticity, according to the dietary interventions. HCD-CR not only altered genetic activation patterns of satellite SC markers but also boosted the expression of myogenic regulatory factors and key activators of mitochondrial biogenesis, which in turn were also associated with metabolic fiber transition. Our data prompt us to theorize that the effects of CR may vary according to the physiologic, metabolic, and genetic peculiarities of the skeletal muscle described here and that INTM/IM lipid infiltration and tissue-specific fuel-energy status (demand/supply) both hold dependent-interacting roles with other key anti-aging mechanisms triggered by CR. Systematic integration of an HCD with CR appears to bring potential benefits for skeletal muscle function and energy metabolism. However, at this stage of our research, an optimal balance between the two dietary conditions, where anti-aging effects can be accomplished, is under intensive investigation in combination with other tissues and organs at different levels of organization within the organ system.
Collapse
Affiliation(s)
- Martin Maldonado
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Jianying Chen
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Yang Lujun
- Translational Medical Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Huiqin Duan
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Mazhar Ali Raja
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Ting Qu
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Tianhua Huang
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Jiang Gu
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Ying Zhong
- Chengdu Jinxin Institute of Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| |
Collapse
|
40
|
Li J, Pei Y, Zhou R, Tang Z, Yang Y. Regulation of RNA N 6-methyladenosine modification and its emerging roles in skeletal muscle development. Int J Biol Sci 2021; 17:1682-1692. [PMID: 33994853 PMCID: PMC8120468 DOI: 10.7150/ijbs.56251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most widespread and highly conserved chemical modifications in cellular RNAs of eukaryotic genomes. Owing to the development of high-throughput m6A sequencing, the functions and mechanisms of m6A modification in development and diseases have been revealed. Recent studies have shown that RNA m6A methylation plays a critical role in skeletal muscle development, which regulates myoblast proliferation and differentiation, and muscle regeneration. Exploration of the functions of m6A modification and its regulators provides a deeper understanding of the regulatory mechanisms underlying skeletal muscle development. In the present review, we aim to summarize recent breakthroughs concerning the global landscape of m6A modification in mammals and examine the biological functions and mechanisms of enzymes regulating m6A RNA methylation. We describe the interplay between m6A and other epigenetic modifications and highlight the regulatory roles of m6A in development, especially that of skeletal muscle. m6A and its regulators are expected to be targets for the treatment of human muscle-related diseases and novel epigenetic markers for animal breeding in meat production.
Collapse
Affiliation(s)
- Jiju Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Rong Zhou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
41
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
42
|
Cheng B, Leng L, Li Z, Wang W, Jing Y, Li Y, Wang N, Li H, Wang S. Profiling of RNA N 6 -Methyladenosine Methylation Reveals the Critical Role of m 6A in Chicken Adipose Deposition. Front Cell Dev Biol 2021; 9:590468. [PMID: 33614638 PMCID: PMC7892974 DOI: 10.3389/fcell.2021.590468] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
One of the main objectives of broiler breeding is to prevent excessive abdominal adipose deposition. The role of RNA modification in adipose deposition is not clear. This study was aimed to map m6A modification landscape in chicken adipose tissue. MeRIP-seq was performed to compare the differences in m6A methylation pattern between fat and lean broilers. We found that start codons, stop codons, coding regions, and 3′-untranslated regions were generally enriched for m6A peaks. The high m6A methylated genes (fat birds vs. lean birds) were primarily associated with fatty acid biosynthesis and fatty acid metabolism, while the low m6A methylated genes were mainly involved in processes associated with development. Furthermore, we found that the mRNA levels of many genes may be regulated by m6A modification. This is the first comprehensive characterization of m6A patterns in the chicken adipose transcriptome, and provides a basis for studying the role of m6A modification in fat deposition.
Collapse
Affiliation(s)
- Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ziwei Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Weijia Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yang Jing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yudong Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
43
|
Wu R, Wang X. Epigenetic regulation of adipose tissue expansion and adipogenesis by N 6 -methyladenosine. Obes Rev 2021; 22:e13124. [PMID: 32935469 DOI: 10.1111/obr.13124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022]
Abstract
Obesity, defined as excessive fat accumulation, is strongly associated with metabolic diseases and cancer, and its prevalence is rising worldwide. Thus, understanding the molecular mechanism of adipogenesis is of fundamental significance. Epigenetic modifications play important roles in regulating adipogenesis. N6 -methyladenosine (m6 A), the most prevalent and abundant mRNA modification in eukaryotic cells, modulates multiple aspects of RNA metabolism, including mRNA stability, translation, splicing and export. Recent studies indicate that m6 A methylation plays important roles in modulating gene expression and signal pathways in various physiologic processes and diseases. Notably, the significant function and regulatory mechanisms of m6 A in adipogenesis are now emerging. In this review, we summarize recent studies that elucidate the vital roles of m6 A modifications in regulating adipogenesis and adipose tissue expansion. Furthermore, we highlight the nutritional regulation of m6 A methylation and adipogenesis, which may prove a novel therapeutic strategy to fight against obesity.
Collapse
Affiliation(s)
- Ruifan Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
44
|
Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. MicroRNA-130a Is Elevated in Thyroid Eye Disease and Increases Lipid Accumulation in Fibroblasts Through the Suppression of AMPK. Invest Ophthalmol Vis Sci 2021; 62:29. [PMID: 33507228 PMCID: PMC7846950 DOI: 10.1167/iovs.62.1.29] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Thyroid eye disease (TED) is a condition that causes the tissue behind the eye to become inflamed and can result in excessive fatty tissue accumulation in the orbit. Two subpopulations of fibroblasts reside in the orbit: those that highly express Thy1 (Thy1+) and those with little or no Thy1 (Thy1–). Thy1– orbital fibroblasts (OFs) are more prone to lipid accumulation than Thy1+ OFs. The purpose of this study was to investigate the mechanisms whereby Thy1– OFs more readily accumulate lipid. Methods We screened Thy1+ and Thy1– OFs for differences in microRNA (miRNA) expression. The effects of increasing miR-130a levels in OFs was investigated by measuring lipid accumulation and visualizing lipid deposits. To determine if adenosine monophosphate-activated protein kinase (AMPK) is important for lipid accumulation, we performed small interfering RNA (siRNA)-mediated knockdown of AMPKβ1. We measured AMPK expression and activity using immunoblotting for AMPK and AMPK target proteins. Results We determined that miR-130a was upregulated in Thy1– OFs and that miR-130a targets two subunits of AMPK. Increasing miR-130a levels enhanced lipid accumulation and reduced expression of AMPKα and AMPKβ in OFs. Depletion of AMPK also increased lipid accumulation. Activation of AMPK using AICAR attenuated lipid accumulation and increased phosphorylation of acetyl-CoA carboxylase (ACC) in OFs. Conclusions These data suggest that when Thy1– OFs accumulate in TED, miR-130a levels increase, leading to a decrease in AMPK activity. Decreased AMPK activity promotes lipid accumulation in TED OFs, leading to excessive fatty tissue accumulation in the orbit.
Collapse
Affiliation(s)
- Christine L Hammond
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
45
|
Shen X, Hu B, Xu J, Qin W, Fu Y, Wang S, Dong Q, Qin L. The m6A methylation landscape stratifies hepatocellular carcinoma into 3 subtypes with distinct metabolic characteristics. Cancer Biol Med 2020; 17:937-952. [PMID: 33299645 PMCID: PMC7721089 DOI: 10.20892/j.issn.2095-3941.2020.0402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Epigenetic aberration plays an important role in the development and progression of hepatocellular carcinoma (HCC). However, the alteration of RNA N6-methyladenosine (m6A) modifications and its role in HCC progression remain unclear. We therefore aimed to provide evidence using bioinformatics analysis. METHODS We comprehensively analyzed the m6A regulator modification patterns of 605 HCC samples and correlated them with metabolic alteration characteristics. We elucidated 390 gene-based m6A-related signatures and defined an m6Ascore to quantify m6A modifications. We then assessed their values for predicting prognoses and therapeutic responses in HCC patients. RESULTS We identified 3 distinct m6A modification patterns in HCC, and each pattern had distinct metabolic characteristics. The evaluation of m6A modification patterns using m6Ascores could predict the prognoses, tumor stages, and responses to sorafenib treatments of HCC patients. A nomogram based on m6Ascores showed high accuracy in predicting the overall survival of patients. The area under the receiver operating characteristic curve of predictions of 1, 3, and 5-year overall survivals were 0.71, 0.69, and 0.70 in the training cohort, and in the test cohort it was 0.74, 0.75, and 0.71, respectively. M6Acluster C1, which corresponded to hypoactive mRNA methylation, lower expression of m6A regulators, and a lower m6Ascore, was characterized by metabolic hyperactivity, lower tumor stage, better prognosis, and lower response to sorafenib treatment. In contrast, m6Acluster C3 was distinct in its hyperactive mRNA methylations, higher expression of m6A regulators, and higher m6Ascores, and was characterized by hypoactive metabolism, advanced tumor stage, poorer prognosis, and a better response to sorafenib. The m6Acluster, C2, was intermediate between C1 and C3. CONCLUSIONS HCCs harbored distinct m6A regulator modification patterns that contributed to the metabolic heterogeneity and diversity of HCC. Development of m6A gene signatures and the m6Ascore provides a more comprehensive understanding of m6A modifications in HCC, and helps predict the prognosis and treatment response.
Collapse
Affiliation(s)
- Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Beiyuan Hu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Xu
- Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
46
|
Sun D, Zhao T, Zhang Q, Wu M, Zhang Z. Fat mass and obesity-associated protein regulates lipogenesis via m 6 A modification in fatty acid synthase mRNA. Cell Biol Int 2020; 45:334-344. [PMID: 33079435 DOI: 10.1002/cbin.11490] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
As the first identified N6 -methyladenosine (m6 A) demethylase, fat mass and obesity-associated (FTO) protein is associated with fatty acid synthase (FASN) and lipid accumulation. However, little is known about the regulatory role of FTO in the expression of FASN and de novo lipogenesis through m6 A modification. In this study, we used FTO small interfering RNA to explore the effects of FTO knockdown on hepatic lipogenesis and its underlying epigenetic mechanism in HepG2 cells. We found that knockdown of FTO increased m6 A levels in total RNA and enhanced the expression of YTH domain family member 2 which serves as the m6 A-binding protein. The de novo lipogenic enzymes and intracellular lipid content were significantly decreased under FTO knockdown. Mechanistically, knockdown of FTO dramatically enhanced m6 A levels in FASN messenger RNA (mRNA), leading to the reduced expression of FASN mRNA through m6 A-mediated mRNA decay. The protein expressions of FASN along with acetyl CoA carboxylase and ATP-citrate lyase were further decreased, which inhibited de novo lipogenesis, thereby resulting in the deficiency of lipid accumulation in HepG2 cells and the induction of cellular apoptosis. The results reveal that FTO regulates hepatic lipogenesis via FTO-dependent m6 A demethylation in FASN mRNA and indicate the critical role of FTO-mediated lipid metabolism in the survival of HepG2 cells. This study provides novel insights into a unique RNA epigenetic mechanism by which FTO mediates hepatic lipid accumulation through m6 A modification and indicates that FTO could be a potential target for obesity-related diseases and cancer.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Wu
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Kucher AN. The FTO Gene and Diseases: The Role of Genetic Polymorphism, Epigenetic Modifications, and Environmental Factors. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Zhang W, He L, Liu Z, Ren X, Qi L, Wan L, Wang W, Tu C, Li Z. Multifaceted Functions and Novel Insight Into the Regulatory Role of RNA N 6-Methyladenosine Modification in Musculoskeletal Disorders. Front Cell Dev Biol 2020; 8:870. [PMID: 32984346 PMCID: PMC7493464 DOI: 10.3389/fcell.2020.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications have emerged as key regulators of transcript expression in diverse physiological and pathological processes. As one of the most prevalent types of RNA modifications, N6-methyladenosine (m6A) has become the highlight in modulation of various diseases through interfering RNA splicing, translation, nuclear export, and decay. In many cases, the detailed functions of m6A in cellular processes and diseases remain unclear. Notably, recent studies have determined the relationship between m6A modification and musculoskeletal disorders containing osteosarcoma, osteoarthritis, rheumatoid arthritis, osteoporosis, etc. Herein, this review comprehensively summarizes the recent advances of m6A modification in pathogenesis and progression of musculoskeletal diseases. Specifically, the underlying molecular mechanisms, detection technologies, regulatory functions, clinical implications, and future perspectives of m6A in musculoskeletal disorders are discussed, with the aim to provide a novel insight into their association.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lile He
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y, Lan X, Lei C, Chen H. Insight into m 6A methylation from occurrence to functions. Open Biol 2020; 10:200091. [PMID: 32898471 PMCID: PMC7536083 DOI: 10.1098/rsob.200091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
RNA m6A methylation is a post-transcriptional modification that occurs at the nitrogen-6 position of adenine. This dynamically reversible modification is installed, removed and recognized by methyltransferases, demethylases and readers, respectively. This modification has been found in most eukaryotic mRNA, tRNA, rRNA and other non-coding RNA. Recent studies have revealed important regulatory functions of the m6A including effects on gene expression regulation, organism development and cancer development. In this review, we summarize the discovery and features of m6A, and briefly introduce the mammalian m6A writers, erasers and readers. Finally, we discuss progress in identifying additional functions of m6A and the outstanding questions about the regulatory effect of this widespread modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
50
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|