1
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
2
|
Taye N, Karoulias SZ, Balic Z, Wang LW, Willard BB, Martin D, Richard D, Okamoto AS, Capellini TD, Apte SS, Hubmacher D. Combined ADAMTS10 and ADAMTS17 inactivation exacerbates bone shortening and compromises extracellular matrix formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634616. [PMID: 39896540 PMCID: PMC11785165 DOI: 10.1101/2025.01.23.634616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Weill-Marchesani syndrome (WMS) is characterized by severe short stature, short hands and feet (brachydactyly), joint contractures, tight skin, and heart valve, eye, and skin anomalies. Whereas recessive WMS is caused by mutations in ADAMTS10, ADAMTS17, or LTBP2, dominant WMS is caused by mutations in FBN1 (encoding fibrillin-1). Since bone growth is driven by chondrocyte proliferation and hypertrophy in the growth plates, the genetics of WMS suggests that the affected ECM proteins act within the same pathway to regulate chondrocyte and growth plate function. Here, we investigated the role of the secreted ADAMTS proteases ADAMTS10 and ADAMTS17 in growth plate function and ECM formation. We generated Adamts10;Adamts17 double knockout (DKO) mice, which showed significant postnatal lethality compared to single Adamts10 or Adamts17 KO mice. Importantly, we observed severe bone shortening DKO mice, which correlated with a narrower hypertrophic zone in their growth plates. ADAMTS17 substrates identified by N-terminomics and yeast two-hybrid screening identified the ECM proteins fibronectin and collagen VI (COL6). However, validation experiments did not reveal direct proteolysis of either fibronectin or COL6 by ADAMTS17. We then investigated ECM formation in primary ADAMTS10- and ADAMTS17-deficient skin fibroblasts and observed compromised fibronectin deposition concomitant with aberrant intracellular accumulation of fibrillin-1. These findings support a role for ADAMTS17 in ECM protein secretion and assembly. Collectively, our data suggest that ADAMTS10 and ADAMTS17 regulate bone growth by regulating chondrocyte hypertrophy or hypertrophic chondrocyte turnover. Mechanistically, ADAMTS17 appears to be a critical regulator of ECM protein secretion or pericellular matrix assembly, whereas ADAMTS10 likely modulates ECM formation at later stages, possibly regulating the spatio-temporal deposition of fibrillin isoforms.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stylianos Z. Karoulias
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zerina Balic
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lauren W. Wang
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic Orthopaedic and Rheumatologic Institute, Cleveland, OH, 44195, USA
| | - Belinda B. Willard
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Terence D. Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Suneel S. Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic Orthopaedic and Rheumatologic Institute, Cleveland, OH, 44195, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
3
|
Chipeta C, Aragon-Martin J, Chandra A. Zonulopathies as Genetic Disorders of the Extracellular Matrix. Genes (Basel) 2024; 15:1632. [PMID: 39766898 PMCID: PMC11675282 DOI: 10.3390/genes15121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The zonular fibres are formed primarily of fibrillin-1, a large extracellular matrix (ECM) glycoprotein, and also contain other constituents such as LTBP-2, ADAMTSL6, MFAP-2 and EMILIN-1, amongst others. They are critical for sight, holding the crystalline lens in place and being necessary for accommodation. Zonulopathies refer to conditions in which there is a lack or disruption of zonular support to the lens and may clinically be manifested as ectopia lens (EL)-defined as subluxation of the lens outside of the pupillary plane or frank displacement (dislocation) into the vitreous or anterior segment. Genes implicated in EL include those intimately involved in the formation and function of these glycoproteins as well as other genes involved in the extracellular matrix (ECM). As such, genetic pathogenic variants causing EL are primarily disorders of the ECM, causing zonular weakness by (1) directly affecting the protein components of the zonule, (2) affecting proteins involved in the regulation of zonular formation and (3) causing the dysregulation of ECM components leading to progressive zonular weakness. Herein, we discuss the clinical manifestations of zonulopathy and the underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- Chimwemwe Chipeta
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK;
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 2LZ, UK
| | - Jose Aragon-Martin
- Barts & The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Aman Chandra
- Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK;
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge CB1 2LZ, UK
| |
Collapse
|
4
|
Suri F, Biginaloo A, Ghadimi M, Banadaki HD, Paylakhi SH, Kanavi MR. Expression Profiling of ADAMTS (L) Superfamily of Genes in Various Human Eye Tissues. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2630-2642. [PMID: 38435780 PMCID: PMC10903312 DOI: 10.18502/ijph.v52i12.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/14/2022] [Indexed: 03/05/2024]
Abstract
Background A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) is a superfamily of extracellular proteinases found in both mammals and invertebrates. Although there is some evidence about the role of ADAMTSs in ocular diseases such as glaucoma and ectopia lentis, but there is little information about the expression patterns of ADAMTS-1-20 and ADAMTS-like (ADAMTSL-1-6 and PAPLN) genes in human ocular tissues. This study aimed to evaluate the expression profiling of ADAMTS(L) superfamily of genes in different ocular tissues based on age. Methods In 2019, nine human donated eye globes were provided from the Central Eye Bank of Iran, and were divided into three different groups based on age (under 3 yr old, between 20 to 50 and upper 50 yr old). To assess expression patterns of ADAMTS(L) genes in different ocular tissues including trabecular meshwork, lens, retinal pigment epithelium, macula, and optic nerve in the three age groups, total RNA was extracted from the tissues and reverse transcription polymerase chain reaction followed by Real-time PCR was performed. Results We demonstrated not only each member of ADAMTS(L) superfamily shows different expression pattern between the five investigated ocular tissues, but also some members have differential expressions among the investigated age groups in same tissues. Conclusion Differential expression of ADAMTS(L) genes in ocular tissues from different age groups could explain some functional aspects of the tissues and also may be used as prognostic and diagnostic biomarkers for ocular diseases and pathologies. Further studies are required to explore their functional roles associated with ocular pathologies.
Collapse
Affiliation(s)
- Fatemeh Suri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Ghadimi
- School of Biology, Damghan University, Damghan, Iran
| | - Hossein Dehghan Banadaki
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Guo D, Liu L, Yang F, Young CA, Zheng D, Jin G. Characteristics and genotype-phenotype correlations in ADAMTS17 mutation-related Weill-Marchesani syndrome. Exp Eye Res 2023; 234:109606. [PMID: 37506754 DOI: 10.1016/j.exer.2023.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/18/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Weill-Marchesani syndrome (WMS) manifests as ectopia lentis (EL), microspherophakia and short stature, which is caused by ADAMTS10, LTBP2, or ADAMTS17 gene defects. This study aims to investigate the characteristics and genotype-phenotype correlations of WMS with ADAMTS17 mutations. WMS patients with ADAMTS17 variants were identified by whole-exome sequencing from 185 patients with EL. All the included patients underwent comprehensive ocular and systemic examinations. ADAMTS17 variants were reviewed from included patients, published literature, and public databases. Bioinformatics analysis, co-segregation analysis, species sequence analysis, and protein silico modeling were used to verify the pathogenic mutations. A total of six novel ADAMTS17 mutations (c.1297C > T, c.2948C > T, c.1322+2T > C, c.1716C > G, c.1630G > A, and c.1669C > T) were identified in four WMS probands in our EL cohort (4/185, 2.16%). All probands and their biological parents presented with apparent short stature compared with the standard value. In particular, one child was detected with valvular heart disease, which has not previously been reported in patients with ADAMTS17 mutations. Conserved residues were greatly affected by the substitution of amino acids caused by these six mutations. Short stature could be considered a clue for EL patients with ADAMTS17 mutations, and much more attention needs to be paid to heart disorders among these patients. This study not only reported the characteristics of ADAMTS17 mutation-related WMS but also helped to recognize the genotype-phenotype correlations in these patients.
Collapse
Affiliation(s)
- Dongwei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Liyan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | | | - Danying Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China.
| | - Guangming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Dennler O, Coste F, Blanquart S, Belleannée C, Théret N. Phylogenetic inference of the emergence of sequence modules and protein-protein interactions in the ADAMTS-TSL family. PLoS Comput Biol 2023; 19:e1011404. [PMID: 37651409 PMCID: PMC10499240 DOI: 10.1371/journal.pcbi.1011404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/13/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Numerous computational methods based on sequences or structures have been developed for the characterization of protein function, but they are still unsatisfactory to deal with the multiple functions of multi-domain protein families. Here we propose an original approach based on 1) the detection of conserved sequence modules using partial local multiple alignment, 2) the phylogenetic inference of species/genes/modules/functions evolutionary histories, and 3) the identification of co-appearances of modules and functions. Applying our framework to the multidomain ADAMTS-TSL family including ADAMTS (A Disintegrin-like and Metalloproteinase with ThromboSpondin motif) and ADAMTS-like proteins over nine species including human, we identify 45 sequence module signatures that are associated with the occurrence of 278 Protein-Protein Interactions in ancestral genes. Some of these signatures are supported by published experimental data and the others provide new insights (e.g. ADAMTS-5). The module signatures of ADAMTS ancestors notably highlight the dual variability of the propeptide and ancillary regions suggesting the importance of these two regions in the specialization of ADAMTS during evolution. Our analyses further indicate convergent interactions of ADAMTS with COMP and CCN2 proteins. Overall, our study provides 186 sequence module signatures that discriminate distinct subgroups of ADAMTS and ADAMTSL and that may result from selective pressures on novel functions and phenotypes.
Collapse
Affiliation(s)
- Olivier Dennler
- Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France
- Univ Rennes, Inserm, EHESP, Irset, UMR S1085, Rennes, France
| | - François Coste
- Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France
| | | | | | - Nathalie Théret
- Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France
- Univ Rennes, Inserm, EHESP, Irset, UMR S1085, Rennes, France
| |
Collapse
|
7
|
Lin P, Hua J, Teng Z, Lin C, Liu S, He R, Chen H, Yao H, Ye J, Zhu G. Screening of hub inflammatory bowel disease biomarkers and identification of immune-related functions based on basement membrane genes. Eur J Med Res 2023; 28:247. [PMID: 37481583 PMCID: PMC10362583 DOI: 10.1186/s40001-023-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 06/23/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic, inflammatory, and autoimmune disease, but its specific etiology and pathogenesis are still unclear. This study aimed to better discover the causative basement membrane (BM) genes of their subtypes and their associations. METHODS The differential expression of BM genes between CD and UC was analyzed and validated by downloading relevant datasets from the GEO database. We divided the samples into 3 groups for comparative analysis. Construction of PPI networks, enrichment of differential gene functions, screening of Lasso regression models, validation of ROC curves, nomogram for disease prediction and other analytical methods were used. The immune cell infiltration was further explored by ssGSEA analysis, the immune correlates of hub BM genes were found, and finally, the hub central genes were screened by machine learning. RESULTS We obtained 6 candidate hub BM genes related to cellular immune infiltration in the CD and UC groups, respectively, and further screened the central hub genes ADAMTS17 and ADAMTS9 through machine learning. And in the ROC curve models, AUC > 0.7, indicating that this characteristic gene has a more accurate predictive effect on IBD. We also found that the pathogenicity-related BM genes of the CD and UC groups were mainly concentrated in the ADAMTS family (ADAMTS17 and ADAMTS9). Addition there are some differences between the two subtypes, and the central different hub BM genes are SPARC, POSTN, and ADAMTS2. CONCLUSIONS In the current study, we provided a nomogram model of CD and UC composed of BM genes, identified central hub genes, and clarified the similarities and differences between CD and UC. This will have potential value for preclinical, clinical, and translational guidance and differential research in IBD.
Collapse
Affiliation(s)
- Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Jin Hua
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Zuhong Teng
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hui Chen
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hengxin Yao
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China.
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Fujian Medical University, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20th, Chazhong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
8
|
Berardinelli SJ, Sillato AR, Grady RC, Neupane S, Ito A, Haltiwanger RS, Holdener BC. O-fucosylation of thrombospondin type I repeats is dispensable for trafficking thrombospondin 1 to platelet secretory granules. Glycobiology 2023; 33:301-310. [PMID: 36721988 PMCID: PMC10191222 DOI: 10.1093/glycob/cwad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Thrombospondin 1 (THBS1) is a secreted extracellular matrix glycoprotein that regulates a variety of cellular and physiological processes. THBS1's diverse functions are attributed to interactions between the modular domains of THBS1 with an array of proteins found in the extracellular matrix. THBS1's three Thrombospondin type 1 repeats (TSRs) are modified with O-linked glucose-fucose disaccharide and C-mannose. It is unknown whether these modifications impact trafficking and/or function of THBS1 in vivo. The O-fucose is added by Protein O-fucosyltransferase 2 (POFUT2) and is sequentially extended to the disaccharide by β3glucosyltransferase (B3GLCT). The C-mannose is added by one or more of four C-mannosyltransferases. O-fucosylation by POFUT2/B3GLCT in the endoplasmic reticulum has been proposed to play a role in quality control by locking TSR domains into their three-dimensional fold, allowing for proper secretion of many O-fucosylated substrates. Prior studies showed the siRNA knockdown of POFUT2 in HEK293T cells blocked secretion of TSRs 1-3 from THBS1. Here we demonstrated that secretion of THBS1 TSRs 1-3 was not reduced by CRISPR-Cas9-mediated knockout of POFUT2 in HEK293T cells and demonstrated that knockout of Pofut2 or B3glct in mice did not reduce the trafficking of endogenous THBS1 to secretory granules of platelets, a major source of THBS1. Additionally, we demonstrated that all three TSRs from platelet THBS1 were highly C-mannosylated, which has been shown to stabilize TSRs in vitro. Combined, these results suggested that POFUT2 substrates with TSRs that are also modified by C-mannose may be less susceptible to trafficking defects resulting from the loss of the glucose-fucose disaccharide.
Collapse
Affiliation(s)
- Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew R Sillato
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Richard C Grady
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Pan Y, Liu Z, Zhang H. Research progress of lens zonules. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:80-85. [PMID: 37846380 PMCID: PMC10577871 DOI: 10.1016/j.aopr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 10/18/2023]
Abstract
Background The lens zonule, a circumferential system of fibres connecting the ciliary body to the lens, is responsible for centration of the lens. The structural, functional, and positional abnormalities of the zonular apparatus can lead to the abnormality of the intraocular structure, presenting a significant challenge to cataract surgery. Main text The lens zonule is the elaborate system of extracellular fibers, which not only centers the lens in the eye but also plays an important role in accommodation and lens immunity, maintains the shape of the lens, and corrects spherical aberration. The zonules may directly participate in the formation of cataract via the immune mechanism. Abnormal zonular fibers that affect the position and shape of the lens may play an important role in the pathogenesis of angle closure disease and increase the complexity of the surgery. Capsular tension rings and related endocapsular devices are used to provide sufficient capsular bag stabilization and ensure the safety of cataract surgery procedures. Better preoperative and intraoperative evaluation methods for zonules are needed for clinicians. Conclusions The microstructure, biomechanical properties, and physiological functions of the lens zonules help us to better understand the pathogenesis of cataract and glaucoma, facilitating the development of safer surgical procedures for cataract. Further studies are needed to carefully analyze the structure-function relationship of the zonular apparatus to explore new treatment strategies for cataract and glaucoma.
Collapse
Affiliation(s)
- Yingying Pan
- Department of Ophthalmology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Zhaoqiang Liu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Han Zhang
- Department of Ophthalmology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Secreted protease ADAMTS18 in development and disease. Gene 2023; 858:147169. [PMID: 36632911 DOI: 10.1016/j.gene.2023.147169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
ADAMTS18 was identified in 2002 as a member of the ADAMTS family of 19 secreted Zinc-dependent metalloproteinases. Prior to 2016, ADAMTS18 was known as a candidate gene associated with a wide range of pathologies, particularly various malignancies and eye disorders. However, functions and substrates of ADAMTS18 in normal conditions were unknown. Since 2016, with the development of Adamts18 knockout models, many studies had been conducted on the Adamts18 gene in vivo. These studies revealed that ADAMTS18 is essential for the morphology and organogenesis of several epithelial organs (e.g., lung, kidney, breast, salivary glands, and lacrimal glands), vascular and neuronal systems, adipose tissue, and reproductive tracts. In this review, we describe the current understanding of ADAMTS18 and its substrates and regulators. Limitations in translating new findings on ADAMTS18 to clinical practice are also discussed.
Collapse
|
11
|
Taniguchi Y, Akune T, Nishida N, Omori G, Ha K, Ueno K, Saito T, Oichi T, Koike A, Mabuchi A, Oka H, Muraki S, Oshima Y, Kawaguchi H, Nakamura K, Tokunaga K, Tanaka S, Yoshimura N. A common variant rs2054564 in ADAMST17 is associated with susceptibility to lumbar spondylosis. Sci Rep 2023; 13:4900. [PMID: 36966180 PMCID: PMC10039864 DOI: 10.1038/s41598-023-32155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/23/2023] [Indexed: 03/27/2023] Open
Abstract
The molecular pathophysiology underlying lumbar spondylosis development remains unclear. To identify genetic factors associated with lumbar spondylosis, we conducted a genome-wide association study using 83 severe lumbar spondylosis cases and 182 healthy controls and identified 65 candidate disease-associated single nucleotide polymorphisms (SNPs). Replication analysis in 510 case and 911 control subjects from five independent Japanese cohorts identified rs2054564, located in intron 7 of ADAMTS17, as a disease-associated SNP with a genome-wide significance threshold (P = 1.17 × 10-11, odds ratio = 1.92). This association was significant even after adjustment of age, sex, and body mass index (P = 7.52 × 10-11). A replication study in a Korean cohort, including 123 case and 319 control subjects, also verified the significant association of this SNP with severe lumbar spondylosis. Immunohistochemistry revealed that fibrillin-1 (FBN1) and ADAMTS17 were co-expressed in the annulus fibrosus of intervertebral discs (IVDs). ADAMTS17 overexpression in MG63 cells promoted extracellular microfibrils biogenesis, suggesting the potential role of ADAMTS17 in IVD function through interaction with fibrillin fibers. Finally, we provided evidence of FBN1 involvement in IVD function by showing that lumbar IVDs in patients with Marfan syndrome, caused by heterozygous FBN1 gene mutation, were significantly more degenerated. We identified a common SNP variant, located in ADAMTS17, associated with susceptibility to lumbar spondylosis and demonstrated the potential role of the ADAMTS17-fibrillin network in IVDs in lumbar spondylosis development.
Collapse
Affiliation(s)
- Yuki Taniguchi
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Surgical Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan.
| | - Toru Akune
- Hospital, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, 359-0042, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Go Omori
- Department of Health and Sports, Faculty of Health and Science, Niigata University of Health and Welfare, Niigata, 950-3198, Japan
| | - Kim Ha
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, 18450, Korea
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Taku Saito
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takeshi Oichi
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Asako Koike
- Healthcare Business Division, Hitachi, Ltd., Tokyo, 105-6412, Japan
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for Musculoskeletal Pain, 22nd Century Medical & Research Center, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Shigeyuki Muraki
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yasushi Oshima
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroshi Kawaguchi
- Orthopaedics and Spine Department, Tokyo Neurological Center, Tokyo, 105-0001, Japan
| | - Kozo Nakamura
- Department of Orthopedics, Towa Hospital, Tokyo, 120-0003, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Sakae Tanaka
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Noriko Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8654, Japan
| |
Collapse
|
12
|
Huang J, Nie K, Lv X, Liu Y, Yang G, Fu J, Liu L, Lv H. Abnormal lens thickening in a child with Weill-Marchesani syndrome 4: A 3-year follow-up case report. Front Med (Lausanne) 2023; 9:1021489. [PMID: 36698805 PMCID: PMC9868407 DOI: 10.3389/fmed.2022.1021489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Background Weill-Marchesani syndrome 4 (WMS4) is caused by ADAMTS17 gene variant and clinical abnormalities including lenticular myopia, ectopia lentis, glaucoma, microspherophakia, brachydactyly, and short stature. Due to free of heart defects and joint stiffness compared with other WMS forms, WMS4 has an insidious onset and is often misdiagnosed as high myopia. We combined multiple imaging biometry and whole-exome sequencing to diagnose a case of WMS4 with a 3-year follow-up. Case presentation An 8-year-old boy presented to our ophthalmology department with progressive myopia for 1 year. He had high myopia in both eyes with normal funds, intraocular pressure, and axial length. Ocular examination revealed thicker lenses (right 4.38 mm, left 4.31 mm) with a smaller equatorial diameter (right 7.33 mm and left 7.17 mm) compared to normal children of the same age. Finger length measurement indicates brachydactyly. Whole-exome sequencing identified compound heterozygous missense variants c.2984G > A (p.Arg995Gln) and c.2254A > G (p.Ile752Val) in the ADAMTS17 gene. During the 3 years of follow-up, the thickness of lenses increased significantly (right 4.49 mm, left 4.48 mm), but the equatorial diameter of the lenses had no significant change (right 7.32 mm, left 7.21 mm). As the equivalent lens power increased, the patient's myopia spherical refractive error rose accordingly. Although the anterior chamber angle remained open during follow-up, the intraocular pressure increased to right 20.4 mmHg and left 19.6 mmHg, Iridodonesis and short stature were present. Conclusion This case report highlights the abnormal thickening of the lens in WMS4 compared to the physiological thinning process during childhood. Comprehensive clinical examinations and genetic testing may improve diagnosis, which allows early therapeutic interventions for complications and better visual outcomes for the patient.
Collapse
Affiliation(s)
- Junting Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Kailai Nie
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinpin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuting Liu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guiqi Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Longqian Liu,
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China,Hongbin Lv,
| |
Collapse
|
13
|
Berardinelli SJ, Eletsky A, Valero-González J, Ito A, Manjunath R, Hurtado-Guerrero R, Prestegard JH, Woods RJ, Haltiwanger RS. O-fucosylation stabilizes the TSR3 motif in thrombospondin-1 by interacting with nearby amino acids and protecting a disulfide bond. J Biol Chem 2022; 298:102047. [PMID: 35597280 PMCID: PMC9198472 DOI: 10.1016/j.jbc.2022.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Thrombospondin type-1 repeats (TSRs) are small protein motifs containing six conserved cysteines forming three disulfide bonds that can be modified with an O-linked fucose. Protein O-fucosyltransferase 2 (POFUT2) catalyzes the addition of O-fucose to TSRs containing the appropriate consensus sequence, and the O-fucose modification can be elongated to a Glucose-Fucose disaccharide with the addition of glucose by β3-glucosyltransferase (B3GLCT). Elimination of Pofut2 in mice results in embryonic lethality in mice, highlighting the biological significance of O-fucose modification on TSRs. Knockout of POFUT2 in HEK293T cells has been shown to cause complete or partial loss of secretion of many proteins containing O-fucosylated TSRs. In addition, POFUT2 is localized to the endoplasmic reticulum (ER) and only modifies folded TSRs, stabilizing their structures. These observations suggest that POFUT2 is involved in an ER quality control mechanism for TSR folding and that B3GLCT also participates in quality control by providing additional stabilization to TSRs. However, the mechanisms by which addition of these sugars result in stabilization are poorly understood. Here, we conducted molecular dynamics (MD) simulations and provide crystallographic and NMR evidence that the Glucose-Fucose disaccharide interacts with specific amino acids in the TSR3 domain in thrombospondin-1 that are within proximity to the O-fucosylation modification site resulting in protection of a nearby disulfide bond. We also show that mutation of these amino acids reduces the stabilizing effect of the sugars in vitro. These data provide mechanistic details regarding the importance of O-fucosylation and how it participates in quality control mechanisms inside the ER.
Collapse
Affiliation(s)
- Steven J Berardinelli
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Alexander Eletsky
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Jessika Valero-González
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Atsuko Ito
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Rajashri Manjunath
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Ramon Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain; Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - James H Prestegard
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Robert J Woods
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
14
|
Mead TJ, Martin DR, Wang LW, Cain SA, Gulec C, Cahill E, Mauch J, Reinhardt D, Lo C, Baldock C, Apte SS. Proteolysis of fibrillin-2 microfibrils is essential for normal skeletal development. eLife 2022; 11:71142. [PMID: 35503090 PMCID: PMC9064305 DOI: 10.7554/elife.71142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Daniel R Martin
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Lauren W Wang
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Stuart A Cain
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Cagri Gulec
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elisabeth Cahill
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Joseph Mauch
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Dieter Reinhardt
- Faculty of Medicine and Health Sciences and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| |
Collapse
|
15
|
Peeters S, De Kinderen P, Meester JAN, Verstraeten A, Loeys BL. The fibrillinopathies: new insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2. Hum Mutat 2022; 43:815-831. [PMID: 35419902 PMCID: PMC9322447 DOI: 10.1002/humu.24383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
Different pathogenic variants in the fibrillin‐1 gene (FBN1) cause Marfan syndrome and acromelic dysplasias. Whereas the musculoskeletal features of Marfan syndrome involve tall stature, arachnodactyly, joint hypermobility, and muscle hypoplasia, acromelic dysplasia patients present with short stature, brachydactyly, stiff joints, and hypermuscularity. Similarly, pathogenic variants in the fibrillin‐2 gene (FBN2) cause either a Marfanoid congenital contractural arachnodactyly or a FBN2‐related acromelic dysplasia that most prominently presents with brachydactyly. The phenotypic and molecular resemblances between both the FBN1 and FBN2‐related disorders suggest that reciprocal pathomechanistic lessons can be learned. In this review, we provide an updated overview and comparison of the phenotypic and mutational spectra of both the “tall” and “short” fibrillinopathies. The future parallel functional study of both FBN1/2‐related disorders will reveal new insights into how pathogenic fibrillin variants differently affect the fibrillin microfibril network and/or growth factor homeostasis in clinically opposite syndromes. This knowledge may eventually be translated into new therapeutic approaches by targeting or modulating the fibrillin microfibril network and/or the signaling pathways under its control.
Collapse
Affiliation(s)
- Silke Peeters
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Pauline De Kinderen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Josephina A N Meester
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Bart L Loeys
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Yu X, Kline B, Han Y, Gao Y, Fan Z, Shi Y. Weill-Marchesani syndrome 4 caused by compound heterozygosity of a maternal submicroscopic deletion and a paternal nonsense variant in the ADAMTS17 gene: A case report. Am J Ophthalmol Case Rep 2022; 26:101541. [PMID: 35496767 PMCID: PMC9046107 DOI: 10.1016/j.ajoc.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/26/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose To retrospectively report a case of Weill-Marchesani syndrome 4 (WMS4) with compound heterozygous variants of ADAMTS17 gene. Observations The patient was a 7-year-old boy with progressively worsening eyesight and intermittent elevated intraocular pressure (IOP) for two years. His IOPs were temporarily controlled using anti-glaucoma drugs. At presentation he had a shallow anterior chamber, lens subluxation, spherophakia and extensive synechial angle closure with high myopia in both eyes. Ultrasound biomicroscopy (UBM) identified thickened zonule fibers and anteriorly rotated, flat and slender ciliary processes, both of which worsened and were accompanied by obvious iris bombe after miosis. Gene testing showed compound heterozygosity of a maternal submicroscopic deletion on chromosome 15q26.3 (0.774 Mb) affecting the sequences of ADAMTS17, LYSMD4 and CERS3 as well as a paternal nonsense variant (c.1051_1053delAAGinsTAA, P.K351X) in the ADAMTS17 gene in the proband. The diagnosis of WMS4 was confirmed by genetic testing. Phacoemulsification (Phaco), intraocular lens (IOL) implantation, and irido-zonulo-hyaloid-vitrectomy (IZHV) combined with Ahmed Glaucoma Valve (AGV) implantation as a staged or one-stage surgery effectively lowered IOP, deepened ACD, improved visual acuity, and resolved the configuration of the ciliary processes in both eyes. Conclusion and Importance Recessive ADAMTS17 variants are associated with WMS4. We report here compound heterozygous variants in ADAMTS17 causing WMS4, and anatomically highlighted the possible pathophysiology for its clinical phenotype. A modified surgical approach with Phaco, IOL implantation, and IZHV combined with AGV implantation could be used to treat these complicated cases.
Collapse
|
17
|
Abstract
A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) are major mediators in extracellular matrix (ECM) turnover and have gained increasing interest over the last years as major players in ECM remodeling during tissue homeostasis and the development of diseases. Although, ADAMTSs are recognized in playing important roles during tissue remodeling, and loss of function in various member of the ADAMTS family could be associated with the development of numerous diseases, limited knowledge is available about their specific substrates and mechanism of action. In this chapter, we will review current knowledge about ADAMTSs and their use as disease biomarkers.
Collapse
Affiliation(s)
- Rahel Schnellmann
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
18
|
O-fucosylation of thrombospondin type 1 repeats is essential for ECM remodeling and signaling during bone development. Matrix Biol 2022; 107:77-96. [DOI: 10.1016/j.matbio.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
|
19
|
Arnaud P, Mougin Z, Boileau C, Le Goff C. Cooperative Mechanism of ADAMTS/ ADAMTSL and Fibrillin-1 in the Marfan Syndrome and Acromelic Dysplasias. Front Genet 2021; 12:734718. [PMID: 34912367 PMCID: PMC8667168 DOI: 10.3389/fgene.2021.734718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
The term “fibrillinopathies” gathers various diseases with a wide spectrum of clinical features and severity but all share mutations in the fibrillin genes. The first described fibrillinopathy, Marfan syndrome (MFS), is a multisystem disease with a unique combination of skeletal, thoracic aortic aneurysm (TAA) and ocular features. The numerous FBN1 mutations identified in MFS are located all along the gene, leading to the same pathogenic mechanism. The geleophysic/acromicric dysplasias (GD/AD), characterized by short stature, short extremities, and joint limitation are described as “the mirror image” of MFS. Previously, in GD/AD patients, we identified heterozygous FBN1 mutations all affecting TGFβ-binding protein-like domain 5 (TB5). ADAMTS10, ADAMTS17 and, ADAMTSL2 are also involved in the pathogenic mechanism of acromelic dysplasia. More recently, in TAA patients, we identified mutations in THSD4, encoding ADAMTSL6, a protein belonging to the ADAMTSL family suggesting that ADAMTSL proteins are also involved in the Marfanoid spectrum. Together with human genetic data and generated knockout mouse models targeting the involved genes, we provide herein an overview of the role of fibrillin-1 in opposite phenotypes. Finally, we will decipher the potential biological cooperation of ADAMTS-fibrillin-1 involved in these opposite phenotypes.
Collapse
Affiliation(s)
- Pauline Arnaud
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Zakaria Mougin
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France
| | - Catherine Boileau
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Carine Le Goff
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France
| |
Collapse
|
20
|
Santamaria S, Martin DR, Dong X, Yamamoto K, Apte SS, Ahnström J. Post-translational regulation and proteolytic activity of the metalloproteinase ADAMTS8. J Biol Chem 2021; 297:101323. [PMID: 34687701 PMCID: PMC8577114 DOI: 10.1016/j.jbc.2021.101323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS)8 is a secreted protease, which was recently implicated in pathogenesis of pulmonary arterial hypertension (PAH). However, the substrate repertoire of ADAMTS8 and regulation of its activity are incompletely understood. Although considered a proteoglycanase because of high sequence similarity and close phylogenetic relationship to the proteoglycan-degrading proteases ADAMTS1, 4, 5, and 15, as well as tight genetic linkage with ADAMTS15 on human chromosome 11, its aggrecanase activity was reportedly weak. Several post-translational factors are known to regulate ADAMTS proteases such as autolysis, inhibition by endogenous inhibitors, and receptor-mediated endocytosis, but their impacts on ADAMTS8 are unknown. Here, we show that ADAMTS8 undergoes autolysis at six different sites within its spacer domain. We also found that in contrast to ADAMTS4 and 5, ADAMTS8 levels were not regulated through low-density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytosis. Additionally, ADAMTS8 lacked significant activity against the proteoglycans aggrecan, versican, and biglycan. Instead, we found that ADAMTS8 cleaved osteopontin, a phosphoprotein whose expression is upregulated in PAH. Multiple ADAMTS8 cleavage sites were identified using liquid chromatography–tandem mass spectrometry. Osteopontin cleavage by ADAMTS8 was efficiently inhibited by TIMP-3, an endogenous inhibitor of ADAMTS1, 4, and 5, as well as by TIMP-2, which has no previously reported inhibitory activity against other ADAMTS proteases. These differences in post-translational regulation and substrate repertoire differentiate ADAMTS8 from other family members and may help to elucidate its role in PAH.
Collapse
Affiliation(s)
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiangyi Dong
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
21
|
Wu HJ, Mortlock DP, Kuchtey RW, Kuchtey J. Altered Ocular Fibrillin Microfibril Composition in Mice With a Glaucoma-Causing Mutation of Adamts10. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34424262 PMCID: PMC8383930 DOI: 10.1167/iovs.62.10.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Previously, we identified a G661R mutation of ADAMTS10 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif 10) as being disease causative in a colony of Beagles with inherited primary open-angle glaucoma (POAG). Mutations in ADAMTS10 are known to cause Weill-Marchesani syndrome (WMS), which is also caused by mutations in the fibrillin-1 gene (FBN1), suggesting functional linkage between ADAMTS10 and fibrillin-1, the principal component of microfibrils. Here, we established a mouse line with the G661R mutation of Adamts10 (Adamts10G661R/G661R) to determine if they develop features of WMS and alterations of ocular fibrillin microfibrils. Methods Intraocular pressure (IOP) was measured using a TonoLab rebound tonometer. Central cornea thickness (CCT), anterior chamber depth (ACD) and axial length (AL) of the eye were examined by spectral-domain optical coherence tomography. Sagittal eye sections from mice at postnatal day 10 (P10) and at 3 and 24 months of age were stained with antibodies against fibrillin-1, fibrillin-2, and ADAMTS10. Results IOP was not elevated in Adamts10G661R/G661R mice. Adamts10G661R/G661R mice had smaller bodies, thicker CCT, and shallower ACD compared to wild-type mice but normal AL. Adamts10G661R/G661R mice displayed persistent fibrillin-2 and enhanced fibrillin-1 immunofluorescence in the lens zonules and in the hyaloid vasculature and its remnants in the vitreous. Conclusions Adamts10G661R/G661R mice recapitulate the short stature and ocular phenotypes of WMS. The altered fibrillin-1 and fibrillin-2 immunoactivity in Adamts10G661R/G661R mice suggests that the G661R mutation of Adamts10 perturbs regulation of the fibrillin isotype composition of microfibrils in the mouse eye.
Collapse
Affiliation(s)
- Hang-Jing Wu
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Rachel W Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
22
|
Balic Z, Misra S, Willard B, Reinhardt DP, Apte SS, Hubmacher D. Alternative splicing of the metalloprotease ADAMTS17 spacer regulates secretion and modulates autoproteolytic activity. FASEB J 2021; 35:e21310. [PMID: 33484187 DOI: 10.1096/fj.202001120rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
ADAMTS proteases mediate biosynthesis and breakdown of secreted extracellular matrix (ECM) molecules in numerous physiological and disease processes. In addition to their catalytic domains, ADAMTS proteases contain ancillary domains, which mediate substrate recognition and ECM binding and confer distinctive properties and roles to individual ADAMTS proteases. Although alternative splicing can greatly expand the structural and functional diversity of ADAMTS proteases, it has been infrequently reported and functional consequences have been rarely investigated. Here, we characterize the structural and functional impact of alternative splicing of ADAMTS17, mutations in which cause Weill-Marchesani syndrome 4. Two novel ADAMTS17 splice variants, ADAMTS17A and ADAMTS17B, were investigated by structural modeling, mass spectrometry, and biochemical approaches. Our results identify a novel disulfide-bridged insertion in the ADAMTS17A spacer that originates from inclusion of a novel exon. This insertion results in differential autoproteolysis of ADAMTS17, and thus, predicts altered proteolytic activity against other substrates. The second variant, ADAMTS17B, results from an in-frame exon deletion and prevents ADAMTS17B secretion. Thus, alternative splicing of the ADAMTS spacer significantly regulates the physiologically relevant proteolytic activity of ADAMTS17, either by altering proteolytic specificity (ADAMTS17A) or by altering cellular localization (ADAMTS17B).
Collapse
Affiliation(s)
- Zerina Balic
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Belinda Willard
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Dirk Hubmacher
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Rose KWJ, Taye N, Karoulias SZ, Hubmacher D. Regulation of ADAMTS Proteases. Front Mol Biosci 2021; 8:701959. [PMID: 34268335 PMCID: PMC8275829 DOI: 10.3389/fmolb.2021.701959] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
A disintegrin and metalloprotease with thrombospondin type I motifs (ADAMTS) proteases are secreted metalloproteinases that play key roles in the formation, homeostasis and remodeling of the extracellular matrix (ECM). The substrate spectrum of ADAMTS proteases can range from individual ECM proteins to entire families of ECM proteins, such as the hyalectans. ADAMTS-mediated substrate cleavage is required for the formation, remodeling and physiological adaptation of the ECM to the needs of individual tissues and organ systems. However, ADAMTS proteases can also be involved in the destruction of tissues, resulting in pathologies such as arthritis. Specifically, ADAMTS4 and ADAMTS5 contribute to irreparable cartilage erosion by degrading aggrecan, which is a major constituent of cartilage. Arthritic joint damage is a major contributor to musculoskeletal morbidity and the most frequent clinical indication for total joint arthroplasty. Due to the high sequence homology of ADAMTS proteases in their catalytically active site, it remains a formidable challenge to design ADAMTS isotype-specific inhibitors that selectively inhibit ADAMTS proteases responsible for tissue destruction without affecting the beneficial functions of other ADAMTS proteases. In vivo, proteolytic activity of ADAMTS proteases is regulated on the transcriptional and posttranslational level. Here, we review the current knowledge of mechanisms that regulate ADAMTS protease activity in tissues including factors that induce ADAMTS gene expression, consequences of posttranslational modifications such as furin processing, the role of endogenous inhibitors and pharmacological approaches to limit ADAMTS protease activity in tissues, which almost exclusively focus on inhibiting the aggrecanase activity of ADAMTS4 and ADAMTS5.
Collapse
Affiliation(s)
| | | | | | - Dirk Hubmacher
- Orthopaedic Research Laboratories, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Ye S, Yang N, Lu T, Wu T, Wang L, Pan YH, Cao X, Yuan X, Wisniewski T, Dang S, Zhang W. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience 2021; 24:102672. [PMID: 34189436 PMCID: PMC8215225 DOI: 10.1016/j.isci.2021.102672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Members of a disintegrin and metalloproteinases with thrombospondin motif (ADAMTS) family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the third and fourth branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.
Collapse
Affiliation(s)
- Shuai Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Taojing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, New York University Langone Health, New York, NY, USA
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
25
|
Zhang A, Venkat A, Taujale R, Mull JL, Ito A, Kannan N, Haltiwanger RS. Peters plus syndrome mutations affect the function and stability of human β1,3-glucosyltransferase. J Biol Chem 2021; 297:100843. [PMID: 34058199 PMCID: PMC8233153 DOI: 10.1016/j.jbc.2021.100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes, have mutations in the gene encoding β1,3-glucosyltransferase [B3GLCT]). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats. Most B3GLCT substrate proteins belong to the ADAMTS superfamily and play critical roles in extracellular matrix. We sought to determine whether the PTRPLS or PTRPLS-like mutations abrogated B3GLCT activity. B3GLCT has two putative active sites, one in the N-terminal region and the other in the C-terminal glycosyltransferase domain. Using sequence analysis and in vitro activity assays, we demonstrated that the C-terminal domain catalyzes transfer of glucose to O-linked fucose. We also generated a homology model of B3GLCT and identified D421 as the catalytic base. PTRPLS and PTRPLS-like mutations were individually introduced into B3GLCT, and the mutated enzymes were evaluated using in vitro enzyme assays and cell-based functional assays. Our results demonstrated that PTRPLS mutations caused loss of B3GLCT enzymatic activity and/or significantly reduced protein stability. In contrast, B3GLCT with PTRPLS-like mutations retained enzymatic activity, although some showed a minor destabilizing effect. Overall, our data supports the hypothesis that loss of glucose from B3GLCT substrate proteins is responsible for the defects observed in PTRPLS patients, but not for those observed in PTRPLS-like patients.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Rahil Taujale
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - James L Mull
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
26
|
Neupane S, Goto J, Berardinelli SJ, Ito A, Haltiwanger RS, Holdener BC. Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ. Glycobiology 2021; 31:988-1004. [PMID: 33909046 DOI: 10.1093/glycob/cwab033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded Thrombospondin Type 1 Repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9, suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9, and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin (SSPO) TSRs were modified with O-linked glucose-fucose, and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant subcommissural organ intracellular SSPO levels were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
27
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
28
|
Adamo CS, Zuk AV, Sengle G. The fibrillin microfibril/elastic fibre network: A critical extracellular supramolecular scaffold to balance skin homoeostasis. Exp Dermatol 2020; 30:25-37. [PMID: 32920888 DOI: 10.1111/exd.14191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Supramolecular networks composed of fibrillins (fibrillin-1 and fibrillin-2) and associated ligands form intricate cellular microenvironments which balance skin homoeostasis and direct remodelling. Fibrillins assemble into microfibrils which are not only indispensable for conferring elasticity to the skin, but also control the bioavailability of growth factors targeted to the extracellular matrix architecture. Fibrillin microfibrils (FMF) represent the core scaffolds for elastic fibre formation, and they also decorate the surface of elastic fibres and form independent networks. In normal dermis, elastic fibres are suspended in a three-dimensional basket-like lattice of FMF intersecting basement membranes at the dermal-epidermal junction and thus conferring pliability to the skin. The importance of FMF for skin homoeostasis is illustrated by the clinical features caused by mutations in the human fibrillin genes (FBN1, FBN2), summarized as "fibrillinopathies." In skin, fibrillin mutations result in phenotypes ranging from thick, stiff and fibrotic skin to thin, lax and hyperextensible skin. The most plausible explanation for this spectrum of phenotypic outcomes is that FMF regulate growth factor signalling essential for proper growth and homoeostasis of the skin. Here, we will give an overview about the current understanding of the underlying pathomechanisms leading to fibrillin-dependent fibrosis as well as forms of cutis laxa caused by mutational inactivation of FMF-associated ligands.
Collapse
Affiliation(s)
- Christin S Adamo
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexandra V Zuk
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
29
|
Lu T, Lin X, Pan YH, Yang N, Ye S, Zhang Q, Wang C, Zhu R, Zhang T, Wisniewski TM, Cao Z, Ding BS, Dang S, Zhang W. ADAMTS18 Deficiency Leads to Pulmonary Hypoplasia and Bronchial Microfibril Accumulation. iScience 2020; 23:101472. [PMID: 32882513 PMCID: PMC7476315 DOI: 10.1016/j.isci.2020.101472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/02/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023] Open
Abstract
ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are secreted metalloproteinases that play a major role in the assembly and degradation of the extracellular matrix (ECM). In this study, we show that ADAMTS18, produced by the epithelial cells of distal airways and mesenchymal cells in lung apex at early embryonic stages, serves as a morphogen in lung development. ADAMTS18 deficiency leads to reduced number and length of bronchi, tipped lung apexes, and dilated alveoli. These developmental defects worsen lipopolysaccharide-induced acute lung injury and bleomycin-induced lung fibrosis in adult Adamts18-deficient mice. ADAMTS18 deficiency also causes increased levels of fibrillin1 and fibrillin2, bronchial microfibril accumulation, decreased focal adhesion kinase signaling, and disruption of F-actin organization. Our findings indicate that ECM homeostasis mediated by ADAMTS18 is pivotal in airway branching morphogenesis.
Collapse
Affiliation(s)
- Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaotian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuai Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Caiyun Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Rui Zhu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tianhao Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
30
|
Satz-Jacobowitz B, Hubmacher D. The quest for substrates and binding partners: A critical barrier for understanding the role of ADAMTS proteases in musculoskeletal development and disease. Dev Dyn 2020; 250:8-26. [PMID: 32875613 DOI: 10.1002/dvdy.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted ADAMTS metalloproteases are involved in the sculpting, remodeling, and erosion of connective tissues throughout the body, including in the musculoskeletal system. ADAMTS proteases contribute to musculoskeletal development, pathological tissue destruction, and are mutated in congenital musculoskeletal disorders. Examples include versican cleavage by ADAMTS9 which is required for interdigital web regression during limb development, ADAMTS5-mediated aggrecan degradation in osteoarthritis resulting in joint erosion, and mutations in ADAMTS10 or ADAMTS17 that cause Weill-Marchesani syndrome, a short stature syndrome with bone, joint, muscle, cardiac, and eye involvement. Since the function of ADAMTS proteases and proteases in general is primarily defined by the molecular consequences of proteolysis of their respective substrates, it is paramount to identify all physiological substrates for each individual ADAMTS protease. Here, we review the current knowledge of ADAMTS proteases and their involvement in musculoskeletal development and disease, focusing on some of their known physiological substrates and the consequences of substrate cleavage. We further emphasize the critical need for the identification and validation of novel ADAMTS substrates and binding partners by describing the principles of mass spectrometry-based approaches and by emphasizing strategies that need to be considered for validating the physiological relevance for ADAMTS-mediated proteolysis of novel putative substrates.
Collapse
Affiliation(s)
- Brandon Satz-Jacobowitz
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Zhang A, Berardinelli SJ, Leonhard-Melief C, Vasudevan D, Liu TW, Taibi A, Giannone S, Apte SS, Holdener BC, Haltiwanger RS. O-Fucosylation of ADAMTSL2 is required for secretion and is impacted by geleophysic dysplasia-causing mutations. J Biol Chem 2020; 295:15742-15753. [PMID: 32913123 DOI: 10.1074/jbc.ra120.014557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/01/2020] [Indexed: 01/20/2023] Open
Abstract
ADAMTSL2 mutations cause an autosomal recessive connective tissue disorder, geleophysic dysplasia 1 (GPHYSD1), which is characterized by short stature, small hands and feet, and cardiac defects. ADAMTSL2 is a matricellular protein previously shown to interact with latent transforming growth factor-β binding protein 1 and influence assembly of fibrillin 1 microfibrils. ADAMTSL2 contains seven thrombospondin type-1 repeats (TSRs), six of which contain the consensus sequence for O-fucosylation by protein O-fucosyltransferase 2 (POFUT2). O-fucose-modified TSRs are subsequently elongated to a glucose β1-3-fucose (GlcFuc) disaccharide by β1,3-glucosyltransferase (B3GLCT). B3GLCT mutations cause Peters Plus Syndrome (PTRPLS), which is characterized by skeletal defects similar to GPHYSD1. Several ADAMTSL2 TSRs also have consensus sequences for C-mannosylation. Six reported GPHYSD1 mutations occur within the TSRs and two lie near O-fucosylation sites. To investigate the effects of TSR glycosylation on ADAMTSL2 function, we used MS to identify glycan modifications at predicted consensus sequences on mouse ADAMTSL2. We found that most TSRs were modified with the GlcFuc disaccharide at high stoichiometry at O-fucosylation sites and variable mannose stoichiometry at C-mannosylation sites. Loss of ADAMTSL2 secretion in POFUT2 -/- but not in B3GLCT -/- cells suggested that impaired ADAMTSL2 secretion is not responsible for skeletal defects in PTRPLS patients. In contrast, secretion was significantly reduced for ADAMTSL2 carrying GPHYSD1 mutations (S641L in TSR3 and G817R in TSR6), and S641L eliminated O-fucosylation of TSR3. These results provide evidence that abnormalities in GPHYSD1 patients with this mutation are caused by loss of O-fucosylation on TSR3 and impaired ADAMTSL2 secretion.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | - Deepika Vasudevan
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Ta-Wei Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Andrew Taibi
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Sharee Giannone
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA.
| |
Collapse
|
32
|
Stanley S, Balic Z, Hubmacher D. Acromelic dysplasias: how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins. Ann N Y Acad Sci 2020; 1490:57-76. [PMID: 32880985 DOI: 10.1111/nyas.14465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Acromelic dysplasias are a group of rare musculoskeletal disorders that collectively present with short stature, pseudomuscular build, stiff joints, and tight skin. Acromelic dysplasias are caused by mutations in genes (FBN1, ADAMTSL2, ADAMTS10, ADAMTS17, LTBP2, and LTBP3) that encode secreted extracellular matrix proteins, and in SMAD4, an intracellular coregulator of transforming growth factor-β (TGF-β) signaling. The shared musculoskeletal presentations in acromelic dysplasias suggest that these proteins cooperate in a biological pathway, but also fulfill distinct roles in specific tissues that are affected in individual disorders of the acromelic dysplasia group. In addition, most of the affected proteins directly interact with fibrillin microfibrils in the extracellular matrix and have been linked to the regulation of TGF-β signaling. Together with recently developed knockout mouse models targeting the affected genes, novel insights into molecular mechanisms of how these proteins regulate musculoskeletal development and homeostasis have emerged. Here, we summarize the current knowledge highlighting pathogenic mechanisms of the different disorders that compose acromelic dysplasias and provide an overview of the emerging biological roles of the individual proteins that are compromised. Finally, we develop a conceptual model of how these proteins may interact and form an "acromelic dysplasia complex" on fibrillin microfibrils in connective tissues of the musculoskeletal system.
Collapse
Affiliation(s)
- Sarah Stanley
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zerina Balic
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
Evans DR, Green JS, Fahiminiya S, Majewski J, Fernandez BA, Deardorff MA, Johnson GJ, Whelan JH, Hubmacher D, Apte SS, Woods MO. A novel pathogenic missense ADAMTS17 variant that impairs secretion causes Weill-Marchesani Syndrome with variably dysmorphic hand features. Sci Rep 2020; 10:10827. [PMID: 32616716 PMCID: PMC7331723 DOI: 10.1038/s41598-020-66978-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Weill-Marchesani syndrome (WMS) is a rare disorder displaying short stature, brachydactyly and joint stiffness, and ocular features including microspherophakia and ectopia lentis. Brachydactyly and joint stiffness appear less commonly in patients with WMS4 caused by pathogenic ADAMTS17 variants. Here, we investigated a large family with WMS from Newfoundland, Canada. These patients displayed core WMS features, but with proportionate hands that were clinically equivocal for brachydactyly. Whole exome sequencing and autozygosity mapping unveiled a novel pathogenic missense ADAMTS17 variant (c.3068 G > A, p.C1023Y). Sanger sequencing demonstrated variant co-segregation with WMS, and absence in 150 population matched controls. Given ADAMTS17 involvement, we performed deep phenotyping of the patients’ hands. Anthropometrics applied to hand roentgenograms showed that metacarpophalangeal measurements of affected patients were smaller than expected for their age and sex, and when compared to their unaffected sibling. Furthermore, we found a possible sub-clinical phenotype involving markedly shortened metacarpophalangeal bones with intrafamilial variability. Transfection of the variant ADAMTS17 into HEK293T cells revealed significantly reduced secretion into the extracellular medium compared to wild-type. This work expands understanding of the molecular pathogenesis of ADAMTS17, clarifies the variable hand phenotype, and underscores a role for anthropometrics in characterizing sub-clinical brachydactyly in these patients.
Collapse
Affiliation(s)
- Daniel R Evans
- Discipline of Genetics, Memorial University of Newfoundland, Faculty of Medicine, St. Johns, NL, A1B 3V6, Canada
| | - Jane S Green
- Discipline of Genetics, Memorial University of Newfoundland, Faculty of Medicine, St. Johns, NL, A1B 3V6, Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1B1, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1B1, Canada.,McGill University and Genome Québec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Bridget A Fernandez
- Discipline of Genetics, Memorial University of Newfoundland, Faculty of Medicine, St. Johns, NL, A1B 3V6, Canada
| | - Matthew A Deardorff
- Division of Genetics, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, PA, 19104, USA
| | - Gordon J Johnson
- Care of Dr. Jane Green, Discipline of Genetics, Memorial University of Newfoundland, Faculty of Medicine, St. Johns, NL, A1B 3V6, Canada
| | - James H Whelan
- Memorial University of Newfoundland, Faculty of Medicine, Discipline of Surgery (Ophthalmology), St. Johns, NL, A1B 3V6, Canada
| | - Dirk Hubmacher
- Orthopaedic Research Laboratories, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | | | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, Faculty of Medicine, St. Johns, NL, A1B 3V6, Canada.
| |
Collapse
|
34
|
Holdener BC, Percival CJ, Grady RC, Cameron DC, Berardinelli SJ, Zhang A, Neupane S, Takeuchi M, Jimenez-Vega JC, Uddin SMZ, Komatsu DE, Honkanen R, Dubail J, Apte SS, Sato T, Narimatsu H, McClain SA, Haltiwanger RS. ADAMTS9 and ADAMTS20 are differentially affected by loss of B3GLCT in mouse model of Peters plus syndrome. Hum Mol Genet 2020; 28:4053-4066. [PMID: 31600785 DOI: 10.1093/hmg/ddz225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
Peters plus syndrome (MIM #261540 PTRPLS), characterized by defects in eye development, prominent forehead, hypertelorism, short stature and brachydactyly, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. Protein O-fucosyltransferase 2 (POFUT2) and B3GLCT work sequentially to add an O-linked glucose β1-3fucose disaccharide to properly folded thrombospondin type 1 repeats (TSRs). Forty-nine proteins are predicted to be modified by POFUT2, and nearly half are members of the ADAMTS superfamily. Previous studies suggested that O-linked fucose is essential for folding and secretion of POFUT2-modified proteins and that B3GLCT-mediated extension to the disaccharide is essential for only a subset of targets. To test this hypothesis and gain insight into the origin of PTRPLS developmental defects, we developed and characterized two mouse B3glct knockout alleles. Using these models, we tested the role of B3GLCT in enabling function of ADAMTS9 and ADAMTS20, two highly conserved targets whose functions are well characterized in mouse development. The mouse B3glct mutants developed craniofacial and skeletal abnormalities comparable to PTRPLS. In addition, we observed highly penetrant hydrocephalus, white spotting and soft tissue syndactyly. We provide strong genetic and biochemical evidence that hydrocephalus and white spotting in B3glct mutants resulted from loss of ADAMTS20, eye abnormalities from partial reduction of ADAMTS9 and cleft palate from loss of ADAMTS20 and partially reduced ADAMTS9 function. Combined, these results provide compelling evidence that ADAMTS9 and ADAMTS20 were differentially sensitive to B3GLCT inactivation and suggest that the developmental defects in PTRPLS result from disruption of a subset of highly sensitive POFUT2/B3GLCT targets such as ADAMTS20.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Richard C Grady
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel C Cameron
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven J Berardinelli
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ao Zhang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Megumi Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Institute, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Institute, Cleveland, OH 44195, USA
| | - Takashi Sato
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hisashi Narimatsu
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Steve A McClain
- Department of Dermatology and Department of Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
35
|
Revealing hidden genetic diagnoses in the ocular anterior segment disorders. Genet Med 2020; 22:1623-1632. [PMID: 32499604 PMCID: PMC7521990 DOI: 10.1038/s41436-020-0854-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion. Methods We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases. Results We identified likely causative variants in 54% (22/41) of cases, including 51% (19/37) of sporadic cases and 75% (3/4) of cases initially referred as familial ASD. Two-thirds of sporadic cases were found to have heterozygous variants, which in most cases were de novo. Approximately one-third (7/22) of genetic diagnoses were found in rarely reported or recently identified ASD genes including PXDN, GJA8, COL4A1, ITPR1, CPAMD8, as well as the new phenotypic association of Axenfeld–Rieger anomaly with a homozygous ADAMTS17 variant. The remainder of the variants were in key ASD genes including FOXC1, PITX2, CYP1B1, FOXE3, and PAX6. Conclusions We demonstrate the benefit of detailed phenotypic, genomic, variant, and segregation analysis to uncover some of the previously “hidden” heritable answers in several rarely reported and newly identified ocular ASD-related disease genes.
Collapse
|
36
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Karoulias SZ, Taye N, Stanley S, Hubmacher D. The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases. Biomolecules 2020; 10:biom10040596. [PMID: 32290605 PMCID: PMC7226509 DOI: 10.3390/biom10040596] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/28/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Secreted adisintegrin-like and metalloprotease with thrombospondin type 1 motif (ADAMTS) proteases play crucial roles in tissue development and homeostasis. The biological and pathological functions of ADAMTS proteases are determined broadly by their respective substrates and their interactions with proteins in the pericellular and extracellular matrix. For some ADAMTS proteases, substrates have been identified and substrate cleavage has been implicated in tissue development and in disease. For other ADAMTS proteases, substrates were discovered in vitro, but the role of these proteases and the consequences of substrate cleavage in vivo remains to be established. Mutations in ADAMTS10 and ADAMTS17 cause Weill–Marchesani syndrome (WMS), a congenital syndromic disorder that affects the musculoskeletal system (short stature, pseudomuscular build, tight skin), the eyes (lens dislocation), and the heart (heart valve abnormalities). WMS can also be caused by mutations in fibrillin-1 (FBN1), which suggests that ADAMTS10 and ADAMTS17 cooperate with fibrillin-1 in a common biological pathway during tissue development and homeostasis. Here, we compare and contrast the biochemical properties of ADAMTS10 and ADAMTS17 and we summarize recent findings indicating potential biological functions in connection with fibrillin microfibrils. We also compare ADAMTS10 and ADAMTS17 with their respective sister proteases, ADAMTS6 and ADAMTS19; both were recently linked to human disorders distinct from WMS. Finally, we propose a model for the interactions and roles of these four ADAMTS proteases in the extracellular matrix.
Collapse
|
38
|
Role of fibrillin-2 in the control of TGF-β activation in tumor angiogenesis and connective tissue disorders. Biochim Biophys Acta Rev Cancer 2020; 1873:188354. [PMID: 32119940 DOI: 10.1016/j.bbcan.2020.188354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Fibrillins constitute a family of large extracellular glycoproteins which multimerize to form microfibrils, an important structure in the extracellular matrix. It has long been assumed that fibrillin-2 was barely present during postnatal life, but it is now clear that fibrillin-2 molecules form the structural core of microfibrils, and are masked by an outer layer of fibrillin-1. Mutations in fibrillins give rise to heritable connective tissue disorders, including Marfan syndrome and congenital contractural arachnodactyly. Fibrillins also play an important role in matrix sequestering of members of the transforming growth factor-β family, and in context of Marfan syndrome excessive TGF-β activation has been observed. TGF-β activation is highly dependent on integrin binding, including integrin αvβ8 and αvβ6, which are upregulated upon TGF-β exposure. TGF-β is also involved in tumor progression, metastasis, epithelial-to-mesenchymal transition and tumor angiogenesis. In several highly vascularized types of cancer such as hepatocellular carcinoma, a positive correlation was found between increased TGF-β plasma concentrations and tumor vascularity. Interestingly, fibrillin-1 has a higher affinity to TGF-β and, therefore, has a higher capacity to sequester TGF-β compared to fibrillin-2. The previously reported downregulation of fibrillin-1 in tumor endothelium affects the fibrillin-1/fibrillin-2 ratio in the microfibrils, exposing the normally hidden fibrillin-2. We postulate that fibrillin-2 exposure in the tumor endothelium directly stimulates tumor angiogenesis by influencing TGF-β sequestering by microfibrils, leading to a locally higher active TGF-β concentration in the tumor microenvironment. From a therapeutic perspective, fibrillin-2 might serve as a potential target for future anti-cancer therapies.
Collapse
|
39
|
Hubmacher D. Cell-Based Interaction Analysis of ADAMTS Proteases and ADAMTS-Like Proteins with Fibrillin Microfibrils. Methods Mol Biol 2020; 2043:195-206. [PMID: 31463913 PMCID: PMC6910243 DOI: 10.1007/978-1-4939-9698-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The extracellular matrix (ECM) is a composite biomaterial that serves as an anchor for cells and provides guidance cues for cell migration, proliferation, and differentiation. However, many details of the hierarchical ECM assembly process and the role of individual protein-protein interactions are not well understood. Here, I describe a cell-culture-based method that allows for determination of the ECM localization of recombinant ADAMTS proteases and ADAMTS-like (L) proteins in relationship to fibrillin microfibrils deposited by human dermal fibroblasts. The method can be readily adapted to study the localization of ECM components other than ADAMTS and ADAMTSL proteins to fibrillin microfibrils and other ECM networks.
Collapse
|
40
|
Abstract
The ADAMTS superfamily comprises secreted metalloproteases (ADAMTS proteases) as well as structurally related secreted glycoproteins that lack catalytic activity (ADAMTS-like proteins). Members of both families participate in diverse morphogenetic processes during embryonic development, and connective tissue maintenance and hemostasis in the adult. Several ADAMTS proteins are heavily implicated in genetic and acquired human and animal disorders. Despite these indicators of a profound biological and medical importance, detailed knowledge about their molecular structures, substrates, biological pathways, and biochemical mechanisms is significantly limited by unique intrinsic characteristics, which have led to several technical challenges. As a group, they are larger, more heavily modified, and harder to purify than other secreted proteases. In addition, idiosyncratic aspects of individual members are deserving of further investigation but can complicate their analysis. Here, some of the key concepts, challenges, and prospects in ADAMTS research are discussed in the context of the knowledge accumulated over the past two decades. Individual chapters in this volume of Methods in Molecular Biology provide practical solutions for surmounting these challenges. Since the biology of a protease is actually the biology of its substrates, there is considerable emphasis on purification of recombinant ADAMTS proteins, identification of their substrates and assays for their proteolytic activity.
Collapse
|
41
|
Oichi T, Taniguchi Y, Soma K, Oshima Y, Yano F, Mori Y, Chijimatsu R, Kim-Kaneyama JR, Tanaka S, Saito T. Adamts17 is involved in skeletogenesis through modulation of BMP-Smad1/5/8 pathway. Cell Mol Life Sci 2019; 76:4795-4809. [PMID: 31201465 PMCID: PMC11105417 DOI: 10.1007/s00018-019-03188-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/14/2019] [Accepted: 06/06/2019] [Indexed: 01/30/2023]
Abstract
Fibrillin microfibrils are ubiquitous elements of extracellular matrix assemblies that play crucial roles in regulating the bioavailability of growth factors of the transforming growth factor beta superfamily. Recently, several "a disintegrin and metalloproteinase with thrombospondin motifs" (ADAMTS) proteins were shown to regulate fibrillin microfibril function. Among them, ADAMTS17 is the causative gene of Weill-Marchesani syndrome (WMS) and Weill-Marchesani-like syndrome, of which common symptoms are ectopia lentis and short stature. ADAMTS17 has also been linked to height variation in humans; however, the molecular mechanisms whereby ADAMTS17 regulates skeletal growth remain unknown. Here, we generated Adamts17-/- mice to examine the role of Adamts17 in skeletogenesis. Adamts17-/- mice recapitulated WMS, showing shorter long bones, brachydactyly, and thick skin. The hypertrophic zone of the growth plate in Adamts17-/- mice was shortened, with enhanced fibrillin-2 deposition, suggesting increased incorporation of fibrillin-2 into microfibrils. Comprehensive gene expression analysis of growth plates using laser microdissection and RNA sequencing indicated alteration of the bone morphogenetic protein (BMP) signaling pathway after Adamts17 knockout. Consistent with this, phospho-Smad1 levels were downregulated in the hypertrophic zone of the growth plate and in Adamts17-/- primary chondrocytes. Delayed terminal differentiation of Adamts17-/- chondrocytes, observed both in primary chondrocyte and primordial metatarsal cultures, and was prevented by BMP treatment. Our data indicated that Adamts17 is involved in skeletal formation by modulating BMP-Smad1/5/8 pathway, possibly through inhibiting the incorporation of fibrillin-2 into microfibrils. Our findings will contribute to further understanding of disease mechanisms and will facilitate the development of therapeutic interventions for WMS.
Collapse
Affiliation(s)
- Takeshi Oichi
- Sensory and Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuki Taniguchi
- Sensory and Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhito Soma
- Sensory and Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasushi Oshima
- Sensory and Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshifumi Mori
- Division of Oral Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, 350-0283, Saitama, Japan
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
42
|
Karoulias SZ, Beyens A, Balic Z, Symoens S, Vandersteen A, Rideout AL, Dickinson J, Callewaert B, Hubmacher D. A novel ADAMTS17 variant that causes Weill-Marchesani syndrome 4 alters fibrillin-1 and collagen type I deposition in the extracellular matrix. Matrix Biol 2019; 88:1-18. [PMID: 31726086 DOI: 10.1016/j.matbio.2019.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022]
Abstract
Weill-Marchesani syndrome (WMS) is a rare genetic disorder that affects the musculoskeletal system, the eye, and the cardiovascular system. Individuals with WMS present with short stature, joint contractures, thick skin, microspherophakia, small and dislocated lenses, and cardiac valve anomalies. WMS can be caused by recessive mutations in ADAMTS10 (WMS 1), ADAMTS17 (WMS 4), or LTBP2 (WMS 3), or by dominant mutations in fibrillin-1 (FBN1) (WMS 2); all genes encode secreted extracellular matrix (ECM) proteins. Individuals with WMS 4 due to ADAMTS17 mutations appear to have less severe cardiac involvement and present predominantly with the musculoskeletal and ocular features of WMS. ADAMTS17 is a member of the ADAMTS family of secreted proteases and directly binds to fibrillins. Here we report a novel pathogenic variant in ADAMTS17 that causes WMS 4 in an individual with short stature, brachydactyly, and small, spherical, and dislocated lenses. We provide biochemical and cell biological insights in the pathomechanisms of WMS 4, which also suggest potential biological functions for ADAMTS17. We show that the variant in ADAMTS17 prevents its secretion and we found intracellular accumulation of fibrillin-1 and collagen type I in patient-derived skin fibroblasts. In accordance, transmission electron microscopy revealed elastic fiber abnormalities, decreased collagen fibril diameters, and intracellular collagen accumulation in the dermis of the proband. Together, the data indicate a possible role for ADAMTS17 in the secretion of fibrillin-1 and collagen type I or in their early assembly in the pericellular matrix or the ECM.
Collapse
Affiliation(s)
- Stylianos Z Karoulias
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Aude Beyens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium; Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Zerina Balic
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - Anthony Vandersteen
- Division of Medical Genetics, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada; Maritime Medical Genetics Service, IWK Health Centre, Halifax, NS, Canada
| | - Andrea L Rideout
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, NS, Canada
| | - John Dickinson
- Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| | - Dirk Hubmacher
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| |
Collapse
|
43
|
Godwin ARF, Singh M, Lockhart-Cairns MP, Alanazi YF, Cain SA, Baldock C. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol 2019; 84:17-30. [PMID: 31226403 PMCID: PMC6943813 DOI: 10.1016/j.matbio.2019.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Fibrillin is a large evolutionarily ancient extracellular glycoprotein that assembles to form beaded microfibrils which are essential components of most extracellular matrices. Fibrillin microfibrils have specific biomechanical properties to endow animal tissues with limited elasticity, a fundamental feature of the durable function of large blood vessels, skin and lungs. They also form a template for elastin deposition and provide a platform for microfibril-elastin binding proteins to interact in elastic fibre assembly. In addition to their structural role, fibrillin microfibrils mediate cell signalling via integrin and syndecan receptors, and microfibrils sequester transforming growth factor (TGF)β family growth factors within the matrix to provide a tissue store which is critical for homeostasis and remodelling.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Yasmene F Alanazi
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Stuart A Cain
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
44
|
Biophysical Techniques to Analyze Elastic Tissue Extracellular Matrix Proteins Interacting with ADAMTS Proteins. Methods Mol Biol 2019. [PMID: 31463915 DOI: 10.1007/978-1-4939-9698-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Multidomain matrix-associated zinc extracellular proteases ADAMTS and ADAMTS-like proteins have important biological activities in cells and tissues. Beyond their traditional role in procollagen and von Willebrand factor processing and proteoglycan cleavage, ADAMTS/ADAMTSL likely participate in or at least have some role in ECM assembly as some of these proteins bind ECM proteins including fibrillins, fibronectin, and LTBPs. In this chapter, we present four biophysical techniques largely used for the characterization, multimerization, and interaction of proteins: surface plasmon resonance spectroscopy, dynamic light scattering, atomic force microscopy, and circular dichroism spectroscopy.
Collapse
|
45
|
Wang LW, Nandadasa S, Annis DS, Dubail J, Mosher DF, Willard BB, Apte SS. A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9) regulates fibronectin fibrillogenesis and turnover. J Biol Chem 2019; 294:9924-9936. [PMID: 31085586 PMCID: PMC6597835 DOI: 10.1074/jbc.ra118.006479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The secreted metalloprotease ADAMTS9 has dual roles in extracellular matrix (ECM) turnover and biogenesis of the primary cilium during mouse embryogenesis. Its gene locus is associated with several human traits and disorders, but ADAMTS9 has few known interacting partners or confirmed substrates. Here, using a yeast two-hybrid screen for proteins interacting with its C-terminal Gon1 domain, we identified three putative ADAMTS9-binding regions in the ECM glycoprotein fibronectin. Using solid-phase binding assays and surface plasmon resonance experiments with purified proteins, we demonstrate that ADAMTS9 and fibronectin interact. ADAMTS9 constructs, including those lacking Gon1, co-localized with fibronectin fibrils formed by cultured fibroblasts lacking fibrillin-1, which co-localizes with fibronectin and binds several ADAMTSs. We observed no fibrillar ADAMTS9 staining after blockade of fibroblast fibronectin fibrillogenesis with a peptide based on the functional upstream domain of a Staphylococcus aureus adhesin. These findings indicate that ADAMTS9 binds fibronectin dimers and fibrils directly through multiple sites in both molecules. Proteolytically active ADAMTS9, but not a catalytically inactive variant, disrupted fibronectin fibril networks formed by fibroblasts in vitro, and ADAMTS9-deficient RPE1 cells assembled a robust fibronectin fibril network, unlike WT cells. Targeted LC-MS analysis of fibronectin digested by ADAMTS9-expressing cells identified a semitryptic peptide arising from cleavage at Gly2196-Leu2197 We noted that this scissile bond is in the linker between fibronectin modules III17 and I10, a region targeted also by other proteases. These findings, along with stronger fibronectin staining previously observed in Adamts9 mutant embryos, suggest that ADAMTS9 contributes to fibronectin turnover during ECM remodeling.
Collapse
Affiliation(s)
| | | | - Douglas S Annis
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Belinda B Willard
- the Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | | |
Collapse
|
46
|
Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrotic pathways. Adv Drug Deliv Rev 2019; 146:3-16. [PMID: 29709492 DOI: 10.1016/j.addr.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.
Collapse
|
47
|
Jeanes EC, Oliver JAC, Ricketts SL, Gould DJ, Mellersh CS. Glaucoma-causing ADAMTS17 mutations are also reproducibly associated with height in two domestic dog breeds: selection for short stature may have contributed to increased prevalence of glaucoma. Canine Genet Epidemiol 2019; 6:5. [PMID: 31131111 PMCID: PMC6524303 DOI: 10.1186/s40575-019-0071-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background In humans, ADAMTS17 mutations are known to cause Weill-Marchesani-like syndrome, which is characterised by lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Breed-specific homozygous mutations in ADAMTS17 are associated with primary open angle glaucoma (POAG) in several dog breeds, including the Petit Basset Griffon Vendeen (PBGV) and Shar Pei (SP). We hypothesised that these mutations are associated with short stature in these breeds. Methods Two hundred thirty-three PBGV and 66 SP were genotyped for their breed-specific ADAMTS17 mutations. The height of each dog was measured at the withers. We used linear (per allele) regression to assess the association between ADAMTS17 mutations and height as a continuous variable, and linear regression and likelihood ratio tests to assess the shape of the association by comparing a general model with a linear (per allele) model. Results The adjusted mean heights of affected, carrier, and clear PBGV were 33.49 cm (n = 21, 95% CI 32.78-34.19 cm), 34.88 cm (n = 85, 95% CI 34.53-35.25 cm), and 34.92 cm (n = 121, 95% CI 34.62-35.21 cm), respectively. The mean heights of affected, carrier, and clear SP were 43.96 cm (n = 9, 95% CI 41.88-46.03 cm), 47.56 cm (n = 28, 95% CI 45.50-48.63 cm), and 48.95 cm (n = 23, 95% CI 47.80-50.11 cm), respectively. There was a significant difference between the height of affected and clear animals in the PBGV (P = 0.001) and the SP (P = < 0.0001). Conclusions ADAMTS17 POAG mutations are significantly associated with height in these breeds.
Collapse
Affiliation(s)
- Emily C Jeanes
- 1Centre for Small Animal Studies, Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU UK
| | - James A C Oliver
- 2Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU UK
| | - Sally L Ricketts
- 2Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU UK
| | - David J Gould
- Davies Veterinary Specialists, Manor Farm Business Park, Higham Gobion, Hitchin, SG5 3HR UK
| | - Cathryn S Mellersh
- 2Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU UK
| |
Collapse
|
48
|
Colige A, Monseur C, Crawley JTB, Santamaria S, de Groot R. Proteomic discovery of substrates of the cardiovascular protease ADAMTS7. J Biol Chem 2019; 294:8037-8045. [PMID: 30926607 PMCID: PMC6527163 DOI: 10.1074/jbc.ra119.007492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
The protease ADAMTS7 functions in the extracellular matrix (ECM) of the cardiovascular system. However, its physiological substrate specificity and mechanism of regulation remain to be explored. To address this, we conducted an unbiased substrate analysis using terminal amine isotopic labeling of substrates (TAILS). The analysis identified candidate substrates of ADAMTS7 in the human fibroblast secretome, including proteins with a wide range of functions, such as collagenous and noncollagenous extracellular matrix proteins, growth factors, proteases, and cell-surface receptors. It also suggested that autolysis occurs at Glu-729-Val-730 and Glu-732-Ala-733 in the ADAMTS7 Spacer domain, which was corroborated by N-terminal sequencing and Western blotting. Importantly, TAILS also identified proteolysis of the latent TGF-β-binding proteins 3 and 4 (LTBP3/4) at a Glu-Val and Glu-Ala site, respectively. Using purified enzyme and substrate, we confirmed ADAMTS7-catalyzed proteolysis of recombinant LTBP4. Moreover, we identified multiple additional scissile bonds in an N-terminal linker region of LTBP4 that connects fibulin-5/tropoelastin and fibrillin-1-binding regions, which have an important role in elastogenesis. ADAMTS7-mediated cleavage of LTBP4 was efficiently inhibited by the metalloprotease inhibitor TIMP-4, but not by TIMP-1 and less efficiently by TIMP-2 and TIMP-3. As TIMP-4 expression is prevalent in cardiovascular tissues, we propose that TIMP-4 represents the primary endogenous ADAMTS7 inhibitor. In summary, our findings reveal LTBP4 as an ADAMTS7 substrate, whose cleavage may potentially impact elastogenesis in the cardiovascular system. We also identify TIMP-4 as a likely physiological ADAMTS7 inhibitor.
Collapse
Affiliation(s)
- Alain Colige
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - James T B Crawley
- Centre for Haematology, Imperial College London, W12 0NN London, United Kingdom
| | | | - Rens de Groot
- Centre for Haematology, Imperial College London, W12 0NN London, United Kingdom.
| |
Collapse
|
49
|
Wiberg A, Ng M, Schmid AB, Smillie RW, Baskozos G, Holmes MV, Künnapuu K, Mägi R, Bennett DL, Furniss D. A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome. Nat Commun 2019; 10:1030. [PMID: 30833571 PMCID: PMC6399342 DOI: 10.1038/s41467-019-08993-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Carpal tunnel syndrome (CTS) is a common and disabling condition of the hand caused by entrapment of the median nerve at the level of the wrist. It is the commonest entrapment neuropathy, with estimates of prevalence ranging between 5-10%. Here, we undertake a genome-wide association study (GWAS) of an entrapment neuropathy, using 12,312 CTS cases and 389,344 controls identified in UK Biobank. We discover 16 susceptibility loci for CTS with p < 5 × 10-8. We identify likely causal genes in the pathogenesis of CTS, including ADAMTS17, ADAMTS10 and EFEMP1, and using RNA sequencing demonstrate expression of these genes in surgically resected tenosynovium from CTS patients. We perform Mendelian randomisation and demonstrate a causal relationship between short stature and higher risk of CTS. We suggest that variants within genes implicated in growth and extracellular matrix architecture contribute to the genetic predisposition to CTS by altering the environment through which the median nerve transits.
Collapse
Affiliation(s)
- Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Robert W Smillie
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, OX3 7LF, UK.,Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - K Künnapuu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - R Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23 B, 51010, Tartu, Estonia
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK. .,Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
50
|
Hubmacher D, Taye N, Balic Z, Thacker S, Adams SM, Birk DE, Schweitzer R, Apte SS. Limb- and tendon-specific Adamtsl2 deletion identifies a role for ADAMTSL2 in tendon growth in a mouse model for geleophysic dysplasia. Matrix Biol 2019; 82:38-53. [PMID: 30738849 DOI: 10.1016/j.matbio.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/08/2023]
Abstract
Geleophysic dysplasia is a rare, frequently lethal condition characterized by severe short stature with progressive joint contractures, cardiac, pulmonary, and skin anomalies. Geleophysic dysplasia results from dominant fibrillin-1 (FBN1) or recessive ADAMTSL2 mutations, suggesting a functional link between ADAMTSL2 and fibrillin microfibrils. Mice lacking ADAMTSL2 die at birth, which has precluded analysis of postnatal limb development and mechanisms underlying the skeletal anomalies of geleophysic dysplasia. Here, detailed expression analysis of Adamtsl2 using an intragenic lacZ reporter shows strong Adamtsl2 expression in limb tendons. Expression in developing and growing bones is present in regions that are destined to become articular cartilage but is absent in growth plate cartilage. Consistent with strong tendon expression, Adamtsl2 conditional deletion in limb mesenchyme using Prx1-Cre led to tendon anomalies, albeit with normal collagen fibrils, and distal limb shortening, providing a mouse model for geleophysic dysplasia. Unexpectedly, conditional Adamtsl2 deletion using Scx-Cre, a tendon-specific Cre-deleter strain, which does not delete in cartilage, also impaired skeletal growth. Recombinant ADAMTSL2 is shown here to colocalize with fibrillin microfibrils in vitro, and enhanced staining of fibrillin-1 microfibrils was observed in Prx1-Cre Adamtsl2 tendons. The findings show that ADAMTSL2 specifically regulates microfibril assembly in tendons and that proper microfibril composition in tendons is necessary for tendon growth. We speculate that reduced bone growth in geleophysic dysplasia may result from external tethering by short tendons rather than intrinsic growth plate anomalies. Taken together with previous work, we suggest that GD results from abnormal microfibril assembly in tissues, and that ADAMTSL2 may limit the assembly of fibrillin microfibrils.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Orthopaedic Research Laboratories, Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| | - Nandaraj Taye
- Orthopaedic Research Laboratories, Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| | - Zerina Balic
- Orthopaedic Research Laboratories, Department of Orthopaedics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| | - Stetson Thacker
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44120, USA.
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA.
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44120, USA.
| |
Collapse
|