1
|
Haider FU, Virk AL, Zhou S, Ul Ain N, Aguila LCR, Siddique KHM, Farooq M, Li Y. Impact of silicon nitride nanoparticles on soil organic carbon dynamics in subtropical evergreen forest ecosystems of China: An incubation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178682. [PMID: 39892230 DOI: 10.1016/j.scitotenv.2025.178682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Ensuring the stability of soil organic carbon (SOC) is vital for effective long-term carbon storage in forest ecosystems. While nanoparticles (NPs) have shown the potential to enhance SOC stability and reduce cumulative carbon mineralization rates (CCMR) in agricultural soils, their effects on forest soils remain largely unexplored. This study addresses this gap through an incubation experiment that evaluated the impact of silicon nitride nanoparticles (Si3N4-NPs) at varying concentrations [control, 0 mg kg-1 (NP0); 50 mg kg-1 (NP1); 100 mg kg-1 (NP2)] on SOC stability, CCMR, enzymatic activities, and microbial diversity across three forest ecosystems in the Dinghushan region of Guangdong, China: coniferous forest (CF), mixed conifer-broadleaf forest (MCBF), and monsoon evergreen broadleaf forest (MEF). The results revealed that Si3N4-NP application at the NP2 concentration significantly reduced CCMR by 40.82 % compared to the control (NP0). Moreover, NP2 substantially decreased the activities of key soil enzymes: β-glucosidase by 13.81 %, N-acetylglucosaminidase by 32.62 %, cellobiohydrolase by 59.12 %, and phenol oxidase by 26.40 %, relative to NP0. The NP2 treatment also enhanced total SOC retention by 24.62 % compared to NP0. Within SOC fractions, NP2 significantly impacted the less labile (C3) and non-labile (C4) fractions, which increased by 46.83 % and 57.84 %, respectively, compared to NP0. Meanwhile, the very labile C (C1) and labile C (C2) fractions showed non-significant changes. Furthermore, the Si3N4-NP applications induced distinct shifts in bacterial (Actinobacteriota) and fungal (Ascomycota) microbiomes, which correlated significantly with CCMR and total SOC. These findings indicate that Si3N4-NPs improve SOC stability and reduce mineralization in forest soils. However, field-scale validation is essential to assess the long-term impacts of Si3N4-NPs on microbial communities and overall ecosystem functioning. This study highlights the significance of NP concentration and forest type in developing effective strategies for SOC management to mitigate climate change.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ahmad Latif Virk
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shuyidan Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Luis Carlos Ramos Aguila
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Yuelin Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
2
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Bao T, Damtie MM, Wang CY, Li CL, Chen Z, Cho K, Wei W, Yuan P, Frost RL, Ni BJ. Iron-containing nanominerals for sustainable phosphate management: A comprehensive review and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172025. [PMID: 38554954 DOI: 10.1016/j.scitotenv.2024.172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.
Collapse
Affiliation(s)
- Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea; Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Mekdimu Mezemir Damtie
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Water Resources Engineering Department, Adama Science and Technology University, Adama, P.O. Box 1888, Ethiopia
| | - Chu Yan Wang
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Cheng Long Li
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kuk Cho
- Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ray L Frost
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Liu D, Iqbal S, Gui H, Xu J, An S, Xing B. Nano-Iron Oxide (Fe 3O 4) Mitigates the Effects of Microplastics on a Ryegrass Soil-Microbe-Plant System. ACS NANO 2023; 17:24867-24882. [PMID: 38084717 DOI: 10.1021/acsnano.3c05809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
To understand microplastic-nanomaterial interactions in agricultural systems, a randomized block 90-day pot experiment was set up to cultivate ryegrass seedings in a typical red sandy soil amended with compost (1:9 ratio). Polyvinyl chloride (PVC) and polyethylene (PE) microplastic (MP) contaminants were added into pot soils at 0.1 and 10%, whereas nano-Fe3O4 (as nanoenabled agrochemicals) was added at 0.1% and 0.5% in comparison with chemical-free controls. The combination of nano-Fe3O4 and MPs significantly increased the soil pH (+3% to + 17%) but decreased the total nitrogen content (-9% to - 30%; P < 0.05). The treatment group with both nano-Fe3O4 and PE had the highest total soil C (29 g kg-1 vs 20 g kg-1 in control) and C/N ratio (13 vs 8 in control). Increased rhizosphere nano-Fe3O4 concentrations promoted ryegrass growth (+42% dry weight) by enhancing the chlorophyll (+20%) and carotenoid (+15%) activities. Plant leaf and root peroxidase enzyme activity was more significantly affected by nano-Fe3O4 with PVC (+15%) than with PE (+6%). Nano-Fe3O4 significantly changed the ryegrass bacterial community structure from belowground (the rhizoplane and root endosphere) to aboveground (the phylloplane). Under MP contamination, the addition of nano-Fe3O4 increased bacterial diversity (+0.35%) and abundance (+30%) in the phylloplane and further intensified the connectivity of ryegrass aboveground bacterial networks (positive association increased 17%). The structural equation model showed that the change in the plant microbiome was associated with the rhizosphere microbiome. Overall, these findings imply the positive influences of nano-Fe3O4 on the soil-microbe-plant system and establish a method to alleviate the harmful effects of MP accumulation in soils.
Collapse
Affiliation(s)
- Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Daniel AI, Keyster M, Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165483. [PMID: 37442458 DOI: 10.1016/j.scitotenv.2023.165483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria.
| | - Marshall Keyster
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| |
Collapse
|
6
|
Tao Z, Zhou Q, Zheng T, Mo F, Ouyang S. Iron oxide nanoparticles in the soil environment: Adsorption, transformation, and environmental risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132107. [PMID: 37515989 DOI: 10.1016/j.jhazmat.2023.132107] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Iron oxide nanoparticles (IONPs) have great application potential due to their multifunctional excellence properties, leading to the possibility of their release into soil environments. IONPs exhibit different adsorption properties toward environmental pollutants (e.g., heavy metals and organic compounds), thus the adsorption performance for various contaminants and the molecular interactions at the IONPs-pollutants interface are discussed. After solute adsorption, the change in the environmental behavior of IONPs is an important transformation process in the natural environments. The aggregation, aging process, and chemical/biological transformation of IONPs can be altered by soil solution chemistry, as well as by the presence of dissolved organic matter and microorganisms. Upon exposure to soil environments, IONPs have both positive and negative impacts on soil organisms (e.g., bacteria, plants, nematodes, and earthworms). Moreover, we compared the toxicity of IONPs alone to combined toxicity with environmental pollutants and pristine IONPs to aged IONPs, and the mechanisms of IONPs toxicity at the cellular level are also reviewed. Given the unanswered questions, future research should include prediction and design of IONPs, new characterization technology for monitoring IONPs transformation in soil ecosystems, and further refinement the environmental risk assessment of IONPs. This review will greatly enhance our knowledge of the performance and impact of IONPs in soil systems.
Collapse
Affiliation(s)
- Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
He G, Yang Y, Liu G, Zhang Q, Liu W. Global analysis of the perturbation effects of metal-based nanoparticles on soil nitrogen cycling. GLOBAL CHANGE BIOLOGY 2023; 29:4001-4017. [PMID: 37082828 DOI: 10.1111/gcb.16735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2 S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2 S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2 S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg-1 ), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
Rashid MI, Shah GA, Iqbal Z, Ramzan M, Rehan M, Ali N, Shahzad K, Summan A, Ismail IMI, Ondrasek G. Nanobiochar Associated Ammonia Emission Mitigation and Toxicity to Soil Microbial Biomass and Corn Nutrient Uptake from Farmyard Manure. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091740. [PMID: 37176798 PMCID: PMC10181413 DOI: 10.3390/plants12091740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
The unique properties of NB, such as its nano-size effect and greater adsorption capacity, have the potential to mitigate ammonia (NH3) emission, but may also pose threats to soil life and their associated processes, which are not well understood. We studied the influence of different NB concentrations on NH3 emission, soil microbial biomass, nutrient mineralization, and corn nutrient uptake from farmyard manure (FM). Three different NB concentrations i.e., 12.5 (NB1), 25 (NB2), and 50% (NB3), alone and in a fertilizer mixture with FM, were applied to corn. NB1 alone increased microbial biomass in soil more than control, but other high NB concentrations did not influence these parameters. In fertilizer mixtures, NB2 and NB3 decreased NH3 emission by 25% and 38%, respectively, compared with FM alone. Additionally, NB3 significantly decreased microbial biomass carbon, N, and soil potassium by 34%, 36%, and 14%, respectively, compared with FM. This toxicity to soil parameters resulted in a 21% decrease in corn K uptake from FM. Hence, a high NB concentration causes toxicity to soil microbes, nutrient mineralization, and crop nutrient uptake from the FM. Therefore, this concentration-dependent toxicity of NB to soil microbes and their associated processes should be considered before endorsing NB use in agroecosystems.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Zahid Iqbal
- Department of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Ramzan
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ahmad Summan
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Iqbal M I Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Wani MY, Ganie NA, Dar KA, Dar SQ, Khan AH, Khan NA, Zahmatkesh S, Manzar MS, Banerjee R. Nanotechnology future in food using carbohydrate macromolecules: A state-of-the-art review. Int J Biol Macromol 2023; 239:124350. [PMID: 37028631 DOI: 10.1016/j.ijbiomac.2023.124350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
It is commonly known that agricultural pest and disease management is achieved through the use of agricultural chemicals and other synthetic compounds, which can contaminate water, soil, and food. Using agrochemicals indiscriminately has negative effects on the environment and poor food quality. In contrast, the world's population is increasing rapidly, and arable land is diminishing daily. Traditional agricultural methods must be replaced by nanotechnology-based treatments that efficiently address both the demands of the present and the needs of the future. As a promising contributor to sustainable agriculture and food production worldwide, nanotechnology has been applied through innovative and resourceful tools. Recent advances in nanomaterial engineering have increased agricultural and food sector production and protected crops using nanoparticles (1000 nm). Agrochemicals, nutrients, and genes can now be distributed to plants in a precise and tailored manner through nanoencapsulation (nanofertilizers, nanopesticides, and genes). Despite the advancement of technology in agriculture, some areas remain unexplored. The various agricultural domains must therefore be updated in priority order. The development of long-lasting and efficient nanoparticle materials will be key to the development of future eco-friendly and nanoparticle-based technologies. We thoroughly covered the many types of nanoscale agro-materials and gave an overview of biological techniques in nano-enabled tactics that can effectively reduce plant biotic and abiotic challenges while potentially boosting plant nutritional values.
Collapse
Affiliation(s)
- M Younus Wani
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, Jammu & Kashmir 190025, India
| | - N A Ganie
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, Jammu & Kashmir 190025, India
| | - K A Dar
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, Jammu & Kashmir 190025, India
| | - S Q Dar
- Civil Engineering Department, College of Engineering, Jazan University, PO Box: 706, Jazan 45142, Saudi Arabia
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, PO Box: 706, Jazan 45142, Saudi Arabia
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | |
Collapse
|
10
|
Application of Exogenous Iron Alters the Microbial Community Structure and Reduces the Accumulation of Cadmium and Arsenic in Rice ( Oryza sativa L.). NANOMATERIALS 2022; 12:nano12081311. [PMID: 35458019 PMCID: PMC9028164 DOI: 10.3390/nano12081311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/07/2022]
Abstract
Cadmium (Cd) and arsenic (As) contamination of soil has been a public concern due to their potential accumulation risk through the food chain. This study was conducted to investigate the performance of ferrous sulfate (FeSO4) and ferric oxide (Fe2O3) nanoparticle (Nano-Fe) to stabilize the concentrations of Cd and As in paddy soil. Both Fe treatments led to low extractable Cd and the contents of specifically sorbed As contents, increased (p < 0.05) the Shannon index and decreased (p < 0.05) the Simpson diversity indices compared with the control. Nano-Fe increased the relative abundances of Firmicutes and Proteobacteria and decreased the abundances of Acidobacteria and Chloroflexi. Moreover, the addition of both forms of Fe promoted the formation of Fe plaque and decreased the translocation factor index (TFs) root/soil, TFs shoot/root, and TFs grain/shoot of Cd and As. These results suggest that exogenous Fe may modify the microbial community and decrease the soil available Cd and As contents, inhibit the absorption of Cd and As by the roots and decrease the transport of Cd and As in rice grains and the risk intake in humans. These findings demonstrate that soil amendment with exogenous Fe, particularly Nano-Fe, is a potential approach to simultaneously remediate the accumulation of Cd and As from the soil to rice grain systems.
Collapse
|
11
|
Shah GM, Ali H, Ahmad I, Kamran M, Hammad M, Shah GA, Bakhat HF, Waqar A, Guo J, Dong R, Rashid MI. Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118559. [PMID: 34801625 DOI: 10.1016/j.envpol.2021.118559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO2 emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO2 emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
Collapse
Affiliation(s)
- Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Hifsa Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Muhammad Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Mohkum Hammad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Atika Waqar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari, 61100, Pakistan
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
12
|
Zinc Plus Biopolymer Coating Slows Nitrogen Release, Decreases Ammonia Volatilization from Urea and Improves Sunflower Productivity. Polymers (Basel) 2021; 13:polym13183170. [PMID: 34578067 PMCID: PMC8472901 DOI: 10.3390/polym13183170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022] Open
Abstract
Currently, the global agriculture productivity is heavily relied on the use of chemical fertilizers. However, the low nutrient utilization efficiency (NUE) is the main obstacle for attaining higher crop productivity and reducing nutrients losses from these fertilizers to the environment. Coating fertilizer with micronutrients and biopolymer can offer an opportunity to overcome these fertilizers associated problems. Here, we coated urea with zinc sulphate (ZnS) and ZnS plus molasses (ZnSM) to control its N release, decrease the ammonia (NH3) volatilization and improve N utilization efficiency by sunflower. Morphological analysis confirmed a uniform coating layer formation of both formulations on urea granules. A slow release of N from ZnS and ZnSM was observed in water. After soil application, ZnSM decreased the NH3 emission by 38% compared to uncoated urea. Most of the soil parameters did not differ between ZnS and uncoated urea treatment. Microbial biomass N and Zn in ZnSM were 125 and 107% higher than uncoated urea, respectively. Soil mineral N in ZnSM was 21% higher than uncoated urea. Such controlled nutrient availability in the soil resulted in higher sunflower grain yield (53%), N (80%) and Zn (126%) uptakes from ZnSM than uncoated fertilizer. Hence, coating biopolymer with Zn on urea did not only increase the sunflower yield and N utilization efficiency but also meet the micronutrient Zn demand of sunflower. Therefore, coating urea with Zn plus biopolymer is recommended to fertilizer production companies for improving NUE, crop yield and reducing urea N losses to the environment in addition to fulfil crop micronutrient demand.
Collapse
|
13
|
Sheteiwy MS, Shaghaleh H, Hamoud YA, Holford P, Shao H, Qi W, Hashmi MZ, Wu T. Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36942-36966. [PMID: 34043175 DOI: 10.1007/s11356-021-14542-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The use of zinc oxide nanoparticles (ZnO NPs) is expected to increase soil fertility, crop productivity, and food quality. However, the potential effects of ZnO NP utilization should be deeply understood. This review highlights the behavior of ZnO NPs in soil and their interactions with the soil components. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. The impact of current applications of ZnO NPs in the food industry is also discussed. Based on the literature reviewed, soil properties play a vital role in dispersing, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transfer of ZnO NPs into the soil can affect the soil components, and subsequently, the structure of plants. The toxic effects of ZnO NPs on plants and microbes are caused by various mechanisms, mainly through the generation of reactive oxygen species, lysosomal destabilization, DNA damage, and the reduction of oxidative stress through direct penetration/liberation of Zn2+ ions in plant/microbe cells. The integration of ZnO NPs in food processing improves the properties of the relative ZnO NP-based nano-sensing, active packing, and food/feed bioactive ingredients delivery systems, leading to better food quality and safety. The unregulated/unsafe discharge concentrations of ZnO NPs into the soil, edible plant tissues, and processed foods raise environmental/safety concerns and adverse effects. Therefore, the safety issues related to ZnO NP applications in the soil, plants, and food are also discussed.
Collapse
Affiliation(s)
- Mohamed Salah Sheteiwy
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Hiba Shaghaleh
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, NSW, 2751, Penrith, Australia
| | - Hongbo Shao
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China.
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, China.
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China.
| | - Weicong Qi
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science (JAAS), Nanjing, 210014, China
| | | | - Tianow Wu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Toxicity of NiO nanoparticles to soil nutrient availability and herbage N uptake from poultry manure. Sci Rep 2021; 11:11540. [PMID: 34079018 PMCID: PMC8172895 DOI: 10.1038/s41598-021-91080-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/21/2021] [Indexed: 11/08/2022] Open
Abstract
Recently, there is an increasing trend of using metallic nanoparticles (NPs) in agriculture due to their potential role in remediating soil pollution and improving nutrient utilization from fertilizers. However, evidence suggested that these NPs were toxic to the soil life and their associated functions, and this toxicity depended on their dose, type, and size. Here, a dose-dependent (5, 50, and 100 mg kg−1 soil) toxicity of NiO NPs on poultry manure (PM: 136 kg N ha−1) decomposition, nutrient mineralization, and herbage N uptake were studied in a standard pot experiment. The NPs doses were mixed with PM and applied in soil-filled pots where then ryegrass was sown. Results revealed that the lowest dose significantly increased microbial biomass (C and N) and respiration from PM, whereas a high dose reduced these parameters. This decrease in such parameters by the highest NPs dose resulted in 13 and 41% lower soil mineral N and plant available K from PM, respectively. Moreover, such effects resulted in 32 and 35% lower herbage shoot and root N uptakes from PM in this treatment. Both intermediate and high doses decreased herbage shoot Ni uptake from PM by 33 and 34%, respectively. However, all NPs doses did not influence soil Ni content from PM. Hence, our results indicated that high NPs dose (100 mg kg−1) was toxic to decomposition, nutrient mineralization, and herbage N uptake from PM. Therefore, such NiONPs toxicity should be considered before recommending their use in agriculture for soil remediation or optimizing nutrient use efficiency of fertilizers.
Collapse
|
15
|
Bungau S, Behl T, Aleya L, Bourgeade P, Aloui-Sossé B, Purza AL, Abid A, Samuel AD. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30528-30550. [PMID: 33905061 DOI: 10.1007/s11356-021-14127-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 05/26/2023]
Abstract
This article is an extensive collection of scientific literature related to the impact of fertilizers on soil microbial and enzymatic activity. Due to the significance of technology in quantitative and qualitative evaluation of agricultural production, this is a basic problem for the present and future of mankind, where the scientific data being of utmost importance related to the topic. The comparison, including pedo-enzymological evaluation of minerals along with organic fertilization, highlights significant differences between mineral and organic fertilizers, confirming the superiority of complex mineral-organic fertilization. Enzymatic indicators that describe and define the soil quality resulted from enzymatic activities value and provide valuable information regarding the soil fertility status. Moreover, soil enzyme responds to soil management as well as to environmental pollutants. Changes of environmental conditions and pollutants like heavy metals and other toxic substances result in a shift in the biological activity of the soil. These changes can destabilize the soil system and cause a decrease in the nutrient pools. To ensure the improvement of fertilization techniques, the properties of nanoparticles are exploited that can efficiently release nutrients to plant cells. Numerous researches were performed in order to follow the long-term effects of incorporating nanofertilizers into the soil, obtaining an exhaustive overview of this new technology over the development of sustainable agriculture.
Collapse
Affiliation(s)
- Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Pascale Bourgeade
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Badr Aloui-Sossé
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Alina Dora Samuel
- Department of Biology, Faculty of Sciences, University of Oradea, 410087, Oradea, Romania
| |
Collapse
|
16
|
Shemawar, Mahmood A, Hussain S, Mahmood F, Iqbal M, Shahid M, Ibrahim M, Ali MA, Shahzad T. Toxicity of biogenic zinc oxide nanoparticles to soil organic matter cycling and their interaction with rice-straw derived biochar. Sci Rep 2021; 11:8429. [PMID: 33875737 PMCID: PMC8055651 DOI: 10.1038/s41598-021-88016-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Given the rapidly increasing use of metal oxide nanoparticles in agriculture as well as their inadvertent addition through sewage sludge application to soils, it is imperative to assess their possible toxic effects on soil functions that are vital for healthy crop production. In this regard, we designed a lab study to investigate the potential toxicity of one of the most produced nanoparticles, i.e. zinc oxide nanoparticles (nZnO), in a calcareous soil. Microcosms of 80 g of dry-equivalent fresh soils were incubated in mason jars for 64 days, after adding 100 or 1000 mg of biogenically produced nZnO kg-1 soil. Moreover, we also added rice-straw derived biochar at 1 or 5% (w: w basis) hypothesizing that the biochar would alleviate nZnO-induced toxicity given that it has been shown to adsorb and detoxify heavy metals in soils. We found that the nZnO decreased microbial biomass carbon by 27.0 to 33.5% in 100 mg nZnO kg-1 soil and by 39.0 to 43.3% in 1000 mg nZnO kg-1 soil treatments across biochar treatments in the short term i.e. 24 days after incubation. However, this decrease disappeared after 64 days of incubation and the microbial biomass in nZnO amended soils were similar to that in control soils. This shows that the toxicity of nZnO in the studied soil was ephemeral and transient which was overcome by the soil itself in a couple of months. This is also supported by the fact that the nZnO induced higher cumulative C mineralization (i.e. soil respiration) at both rates of addition. The treatment 100 mg nZnO kg-1 soil induced 166 to 207%, while 1000 mg nZnO kg-1 soil induced 136 to 171% higher cumulative C mineralization across biochar treatments by the end of the experiment. However, contrary to our hypothesis increasing the nZnO addition from 100 to 1000 mg nZnO kg-1 soil did not cause additional decrease in microbial biomass nor induced higher C mineralization. Moreover, the biochar did not alleviate even the ephemeral toxicity that was observed after 24d of incubation. Based on overall results, we conclude that the studied soil can function without impairment even at 1000 mg kg-1 concentration of nZnO in it.
Collapse
Affiliation(s)
- Shemawar
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Abid Mahmood
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Sabir Hussain
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Faisal Mahmood
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Iqbal
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Shahid
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Ibrahim
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Arif Ali
- grid.411501.00000 0001 0228 333XDepartment of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanvir Shahzad
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| |
Collapse
|
17
|
Yuan C, Na S, Li F, Hu H. Impact of sulfate and iron oxide on bacterial community dynamics in paddy soil under alternate watering conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124417. [PMID: 33172683 DOI: 10.1016/j.jhazmat.2020.124417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Sulfate and iron oxides are often used as amendments in paddy soil, but their ecological risks for soil microbiomes are not well understood. Paddy soil amended with gypsum or hematite was incubated in laboratory microcosms under submerged (56 d) and subsequent dry (35 d) conditions. The soil bacterial community composition stabilized after 15-21 d of submergence and remained largely unchanged after redrying. The presence of OTUs related to facultative anaerobic bacteria (mainly Acidobacteria groups 7 and 16, Gemmatimonas, and unclassified bacteria) probably accounted for the limited variation in community composition after redrying, as suggested by random forest regressions. Redrying caused remarkable changes in the relative abundance of many bacteria putatively involved in soil reduction and oxidation. Gypsum and hematite did not stimulate sulfate or iron reduction after soil submergence. Although gypsum and hematite largely preserved the bacterial community composition, they significantly reduced the abundance and diversity of the total bacteria (by 3-12%), as well as the relative abundance of many putative bacterial reducers and oxidizers (by 17-100%), compared to the control. The results suggested the potential hazardous effects of sulfate and iron oxide on the bacteria in paddy soil, which should be considered before applying these amendments.
Collapse
Affiliation(s)
- Chaolei Yuan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuo Na
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Kamran M, Ali H, Saeed MF, Bakhat HF, Hassan Z, Tahir M, Abbas G, Naeem MA, Rashid MI, Shah GM. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111099. [PMID: 32829207 DOI: 10.1016/j.ecoenv.2020.111099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination with metallic nanoparticles is increasing due to their increased use in industrial and domestic settings. These nanoparticles are potentially toxic to soil microbes and may affect their associated functions and thereby the nutrient cycling in agro-ecosystems. This study examined the effects of iron oxides nanoparticles (IONPs) on carbon (C) and nitrogen (N) dynamics of poultry (PM) and farmyard manure (FYM) in the soil. The application of IONPs increased iron content in soil microbial biomass, which reflected its consumption by the microbes. As a result, colony-forming units of bacteria and fungi reduced considerably. Such observations lead to a decrease in CO2 emission from PM and FYM by 27 and 28%, respectively. The respective decrease fractions in the case of N mineralization were 24 and 35%. Consequently, soil mineral N content was reduced by 16% from PM and 12% from FYM as compared to their sole application without IONPs. Spinach dry matter yield and apparent N recovery were increased by the use of organic waste (FYM, PM). The use of IONPs significantly reduced the plant N recovery fraction by 26 and 24% (P < 0.05) from PM and FYM, respectively. All the results mentioned above lead us to conclude that IONPs are toxic to soil microbes and affect their function i.e., carbon and N mineralization of applied manure, and thereby the on-farm N cycling from the manure-soil-plant continuum.
Collapse
Affiliation(s)
- Muhammad Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hifsa Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Zeshan Hassan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
| | - Muhammad Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan.
| |
Collapse
|
19
|
Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU, Ashraf I, Sanaullah M. Nanotechnology in agriculture: Current status, challenges and future opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137778. [PMID: 32179352 DOI: 10.1016/j.scitotenv.2020.137778] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
Nanotechnology has shown promising potential to promote sustainable agriculture. This article reviews the recent developments on applications of nanotechnology in agriculture including crop production and protection with emphasis on nanofertilizers, nanopesticides, nanobiosensors and nano-enabled remediation strategies for contaminated soils. Nanomaterials play an important role regarding the fate, mobility and toxicity of soil pollutants and are essential part of different biotic and abiotic remediation strategies. Efficiency and fate of nanomaterials is strongly dictated by their properties and interactions with soil constituents which is also critically discussed in this review. Investigations into the remediation applications and fate of nanoparticles in soil remain scarce and are mostly limited to laboratory studies. Once entered in the soil system, nanomaterials may affect the soil quality and plant growth which is discussed in context of their effects on nutrient release in target soils, soil biota, soil organic matter and plant morphological and physiological responses. The mechanisms involved in uptake and translocation of nanomaterials within plants and associated defense mechanisms have also been discussed. Future research directions have been identified to promote the research into sustainable development of nano-enabled agriculture.
Collapse
Affiliation(s)
- Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Imran Ashraf
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
20
|
Levada K, Pshenichnikov S, Omelyanchik A, Rodionova V, Nikitin A, Savchenko A, Schetinin I, Zhukov D, Abakumov M, Majouga A, Lunova M, Jirsa M, Smolková B, Uzhytchak M, Dejneka A, Lunov O. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. NANO CONVERGENCE 2020; 7:17. [PMID: 32424769 PMCID: PMC7235155 DOI: 10.1186/s40580-020-00228-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/29/2020] [Indexed: 05/02/2023]
Abstract
Iron oxide nanoparticles (IONs) are frequently used in various biomedical applications, in particular as magnetic resonance imaging contrast agents in liver imaging. Indeed, number of IONs have been withdrawn due to their poor clinical performance. Yet comprehensive understanding of their interactions with hepatocytes remains relatively limited. Here we investigated how iron oxide nanocubes (IO-cubes) and clusters of nanocubes (IO-clusters) affect distinct human hepatic cell lines. The viability of HepG2, Huh7 and Alexander cells was concentration-dependently decreased after exposure to either IO-cubes or IO-clusters. We found similar cytotoxicity levels in three cell lines triggered by both nanoparticle formulations. Our data indicate that different expression levels of Bcl-2 predispose cell death signaling mediated by nanoparticles. Both nanoparticles induced rather apoptosis than autophagy in HepG2. Contrary, IO-cubes and IO-clusters trigger distinct cell death signaling events in Alexander and Huh7 cells. Our data clarifies the mechanism by which cubic nanoparticles induce autophagic flux and the mechanism of subsequent toxicity. These findings imply that the cytotoxicity of ION-based contrast agents should be carefully considered, particularly in patients with liver diseases.
Collapse
Affiliation(s)
- Kateryna Levada
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Stanislav Pshenichnikov
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Omelyanchik
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Valeria Rodionova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Aleksey Nikitin
- National University of Science and Technology "MISIS", Moscow, Russia
| | | | - Igor Schetinin
- National University of Science and Technology "MISIS", Moscow, Russia
| | - Dmitry Zhukov
- National University of Science and Technology "MISIS", Moscow, Russia
| | - Maxim Abakumov
- National University of Science and Technology "MISIS", Moscow, Russia
| | - Alexander Majouga
- National University of Science and Technology "MISIS", Moscow, Russia
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221, Prague, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221, Prague, Czech Republic
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221, Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221, Prague, Czech Republic.
| |
Collapse
|
21
|
Ali B, Shah GA, Traore B, Shah SAA, Shah SUS, Al-Solaimani SGM, Hussain Q, Ali N, Shahzad K, Shahzad T, Ahmad A, Muhammad S, Shah GM, Arshad M, Hussain RA, Shah JA, Anwar A, Amjid MW, Rashid MI. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:468-478. [PMID: 30967352 DOI: 10.1016/j.jenvman.2019.02.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Livestock manure is a valuable source of nutrients for plants. However, poor handling practices during storage resulted in nutrient losses from the manure and decrement in its nitrogen (N) fertilizer value. We explored the influence of divergent storage methods on manure chemical composition, carbon (C) and N losses to the environment as well as fertilizer value of storage products after their application to the wheat. Fresh buffalo manure (FM) was subjected to different storage operations for a period of ∼6 months, (i) fermentation by covering with a plastic sheet (CM) (ii) placed under the roof (RM) (iii) heap was unturned (SM) to remain stacked at an open space and (iv) manure heap turned monthly (TM) to make compost. During storage, 8, 24, 45 and 46% of the initial Ntotal was lost from CM, RM, SM, and TM, respectively. The respective C losses from these treatments were 16, 34, 47 and 44% of the initial C content. After stored manures application to the wheat crop, mineral N in the soil remained 27% higher in CM (14.1 vs. 11.1 kg ha-1) and 3% (10.8 vs. 11.1 kg ha-1) lower in SM compared to FM treatment. In contrast, microbial biomass C and N was 35 (509 vs.782 mg C kg-1 soil) and 25% (278 vs.370 mg N kg-1 soil) lower in CM than FM treatment, respectively indicating lower N immobilization of CM in the soil. These findings could result in the highest grain yield (5166 kg ha-1) and N uptake (117 kg ha-1) in CM and the lowest in SM treatments (3105 and 61 kg ha-1, respectively). Similarly, wheat crop recovered 44, 15 and 13% N from CM, TM and SM, respectively. Hence, management operations play a critical role in conserving N during storage phase and after stored manure application to the field. Among the studied operations, storing animal manure under an impermeable plastic sheet is a much better and cheaper option for decreasing N losses during storage and improving wheat yield when incorporated into the soil. Therefore, by adopting this manure storage technique, farmers can improve the agro-environmental value of animal manure in Pakistan.
Collapse
Affiliation(s)
- Basit Ali
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan.
| | - Bouba Traore
- International Crops Research Institute for the Semi-Arid and Tropics (ICRISAT), Mali
| | | | - Shamim-Ul-Sibtain Shah
- Farm Operations and Services, National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Samir Gamil Mohammad Al-Solaimani
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz, University, Jeddah, Saudi Arabia
| | - Qaiser Hussain
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Afzal Ahmad
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Sher Muhammad
- National Institute of Organic Agriculture, National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University, Islamabad, Sub-campus Vehari 61100, Pakistan
| | - Muhammad Arshad
- Department of Agriculture & Food Technology, Karakoram International University, Gilgit 15100, Pakistan
| | - Rai Altaf Hussain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Jawad Ali Shah
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Adeel Anwar
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Muhammad Waqas Amjid
- Department of Agriculture, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, COMSATS University, Islamabad, Sub-campus Vehari 61100, Pakistan.
| |
Collapse
|
22
|
Avila-Arias H, Nies LF, Gray MB, Turco RF. Impacts of molybdenum-, nickel-, and lithium- oxide nanomaterials on soil activity and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:202-211. [PMID: 30366321 DOI: 10.1016/j.scitotenv.2018.10.189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The nano forms of the metals molybdenum oxide (MoO3), nickel oxide (NiO) and lithium oxide (Li2O) are finding wide application in advanced technologies including batteries and fuel cells. We evaluated soil responses to nanoMoO3, nanoNiO, and nanoLi2O as some environmental release of the materials, either directly or following the land application of biosolids, is expected. Using Drummer soil (Fine-silty, mixed, superactive, mesic Typic Endoaquolls), we evaluated the impacts of the three nanometals on soil gas (N2O, CH4, and CO2) emissions, enzyme activities (β-glucosidase and urease), and microbial community structure (bacterial, archaeal, and eukaryal) in a 60 day microcosms incubation. Soil treated with nanoLi2O at 474 μg Li/g soil, released 3.45 times more CO2 with respect to the control. Additionally, β-glucosidase activity was decreased while urease activity increased following nanoLi2O treatment. While no clear patterns were observed for gas emissions in soils exposed to nanoMoO3 and nanoNiO, we observed a temporary suppression of β-glucosidase activity in soil treated with either metal. All three domains of microbial community were affected by increasing metal concentrations. This is the first evaluation of soil responses to nanoMoO3, nanoNiO, or nanoLi2O.
Collapse
Affiliation(s)
- Helena Avila-Arias
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Loring F Nies
- Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Aziz Y, Shah GA, Rashid MI. ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. CHEMOSPHERE 2019; 216:564-575. [PMID: 30390587 DOI: 10.1016/j.chemosphere.2018.10.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 05/20/2023]
Abstract
Recently, there is a growing interest among agriculturists to use nanotechnology for the development of nutrient-use efficient fertilizers. However, its sustainable use for the synthesis of mineral or organic nano-fertilizers requires a thoughtful of the mechanism as well as the fate of nutrients and their interaction with soil-plant systems. Therefore, the aim of current study was to investigate the mixing of three different application rates of zinc oxide nanoparticles (ZNPs: 1.4, 2.8 and 3.6 mg kg-1 soil) as well as zeolite (141, 282 and 423 mg kg-1 soil) with biogas slurry (AS) on soil nutrient availability and herbage nitrogen (N) and zinc (Zn) uptake in a standard pot experiment. We found that both ZNPs and zeolite significantly increased mineral N content in soil compared to AS alone (P < 0.05). On the other hand, plant available phosphorus or potassium and microbial biomass carbon (C) in the soil were neither significantly affected by any application rate of ZNPs nor zeolite mixed AS. Soil microbial biomass N was significantly higher in second and third application rates of both ZNPs and zeolite amended AS treatments compared to AS alone. However, this increment in mineral N did not influence shoot uptake and herbage apparent recovery of this nutrient from AS. Similarly, co-mixing of both ZNPs and zeolite in AS did not influence shoot N uptake but Zn uptake was significantly higher in this treatment compared to AS alone. Therefore, this combination would be considered for improving crop Zn uptake under such fertilizer management regimes.
Collapse
Affiliation(s)
- Yasir Aziz
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ghulam Abbas Shah
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, COMSATS University, Islamabad, Sub-campus, Vehari, 61100, Pakistan.
| |
Collapse
|
24
|
Kasem KK, Mostafa M, Abd-Elsalam KA. Iron-Based Nanomaterials: Effect on Soil Microbes and Soil Health. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:261-285. [DOI: 10.1007/978-3-030-16439-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Parada J, Rubilar O, Fernández-Baldo MA, Bertolino FA, Durán N, Seabra AB, Tortella GR. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Crit Rev Biotechnol 2018; 39:157-172. [PMID: 30396282 DOI: 10.1080/07388551.2018.1523865] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metal nanoparticles and metal oxides nanoparticles (MNPs/MONPs) have been widely included in a great diversity of products and industrial applications and they are already a part of our everyday life. According to estimation studies, their production is expected to increase exponentially in the next few years. Consequently, soil has been suggested as the main sink of MNPs/MONPs once they are deliberately or accidentally released into the environment. The potential negative perturbations that may result on soil microbial communities and ecological processes are resulting in concerns. Several nano-toxicological studies of MNPs/MONPs, reported so far, have focused on aquatic organisms, animals, and soil invertebrates. However, during recent years, the studies have been oriented to understand the effects of MNPs/MONPs on microbial communities and their interaction with soil components. The studies have suggested that MNPs/MONPs are one of the most toxic type to soil biota, amongst different types of nanomaterials. This may threaten soil health and fertility, since microbial communities are known to support important biological processes and ecosystem services such as the nutrient cycling, whereby their protection against the environmental pollution is imperative. Therefore, in this review we summarize the actual knowledge available from the last five years (2013-2018) and gaps about the potential negative, positive or neutral effects produced on soil by different classes of MNPs/MONPs. A particular emphasis has been placed on the associated soil microorganisms and biological processes. Finally, perspectives about future research are discussed.
Collapse
Affiliation(s)
- J Parada
- a Doctoral Program in Sciences of Natural Resources , Universidad de La Frontera , Temuco , Chile
| | - O Rubilar
- b Chemical Engineering Department , Universidad de La Frontera , Temuco , Chile.,c Scientific & Technological Bioresource Nucleus , Universidad de La Frontera , Temuco , Chile
| | - M A Fernández-Baldo
- d INQUISAL, Departamento de Química , Universidad Nacional de San Luis , San Luis , Argentina
| | - F A Bertolino
- d INQUISAL, Departamento de Química , Universidad Nacional de San Luis , San Luis , Argentina
| | - N Durán
- e Institute of Biology, Urogenital, Carcinogenesis and Immunotherapy Laboratory, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, Brazil.,f NanoBioss, Chemistry Institute , University of Campinas , Campinas , Brazil.,g Nanomedicine Research Unit (Nanomed) , Federal University of ABC (UFABC) , Santo André , Brazil
| | - A B Seabra
- h Center for Natural and Human Sciences , Universidade Federal do ABC , Santo André , Brazil
| | - G R Tortella
- b Chemical Engineering Department , Universidad de La Frontera , Temuco , Chile.,c Scientific & Technological Bioresource Nucleus , Universidad de La Frontera , Temuco , Chile
| |
Collapse
|
26
|
López-Luna J, Camacho-Martínez MM, Solís-Domínguez FA, González-Chávez MC, Carrillo-González R, Martinez-Vargas S, Mijangos-Ricardez OF, Cuevas-Díaz MC. Toxicity assessment of cobalt ferrite nanoparticles on wheat plants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:604-619. [PMID: 29737961 DOI: 10.1080/15287394.2018.1469060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Cobalt ferrite nanoparticles (NPs) have received increasing attention due to their widespread therapeutic and agricultural applicability. In the environmental field, dry powder- and ferrofluid-suspended cobalt ferrite NPs were found to be useful for removing heavy metals and metalloids from water, while diluted suspensions of cobalt ferrite NP have been promisingly applied in medicine. However, the potential toxicological implications of widespread exposure are still unknown. Since cobalt ferrite NPs are considered residual wastes of environmental or medical applications, plants may serve as a point-of-entry for engineered nanomaterials as a result of consumption of these plants. Thus, the aim of this study was to assess the effects of dry powder and fresh cobalt ferrite NP on wheat plants. Seven-day assays were conducted, using quartz sand as the plant growth substrate. The toxicity end points measured were seed germination, root and shoot lengths, total cobalt (Co) and iron (Fe) accumulation, photosynthetic pigment production, protein (PRT) production, and activities of catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX). Increasing total Co and Fe in plant tissues indicated that wheat plants were exposed to cobalt ferrite NP. Seed germination and shoot length were not sufficiently sensitive toxicity end points. The effective concentration (EC50) that diminished root length of plants by 50% was 1963 mg/kg for fresh ferrite NPs and 5023 mg/kg for powder ferrite NP. Hence, fresh ferrite NPs were more toxic than powder NP. Plant stress was indicated by a significant decrease in photosynthetic pigments. CAT, APX, and GPX antioxidant enzymatic activity suggested the generation of reactive oxygen species and oxidative damage induced by cobalt ferrite NP. More studies are thus necessary to determine whether the benefits of using these NPs outweigh the risks.
Collapse
Affiliation(s)
- J López-Luna
- a Instituto de Estudios Ambientales , Universidad de la Sierra Juárez , Oaxaca , México
| | - M M Camacho-Martínez
- a Instituto de Estudios Ambientales , Universidad de la Sierra Juárez , Oaxaca , México
| | - F A Solís-Domínguez
- b Facultad de Ingeniería , Universidad Autónoma de Baja California , Mexicali , México
| | | | | | - S Martinez-Vargas
- d Facultad de Ingeniería , Universidad Autónoma del Carmen , Ciudad del Carmen , México
| | - O F Mijangos-Ricardez
- a Instituto de Estudios Ambientales , Universidad de la Sierra Juárez , Oaxaca , México
| | - M C Cuevas-Díaz
- e Facultad de Ciencias Químicas , Universidad Veracruzana , Veracruz , México
| |
Collapse
|
27
|
Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S. Nanoparticles in the environment: where do we come from, where do we go to? ENVIRONMENTAL SCIENCES EUROPE 2018; 30:6. [PMID: 29456907 PMCID: PMC5803285 DOI: 10.1186/s12302-018-0132-6] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing production volume. This economic success comes along with their presence in the environment and the risk of potentially adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, fate, and effects of nanoparticles has been made. Predictions of environmental concentrations based on modelling approaches could recently be confirmed by measured concentrations in the field. Nonetheless, analytical techniques are, as covered elsewhere, still under development to more efficiently and reliably characterize and quantify nanoparticles, as well as to detect them in complex environmental matrixes. Simultaneously, the effects of nanoparticles on aquatic and terrestrial systems have received increasing attention. While the debate on the relevance of nanoparticle-released metal ions for their toxicity is still ongoing, it is a re-occurring phenomenon that inert nanoparticles are able to interact with biota through physical pathways such as biological surface coating. This among others interferes with the growth and behaviour of exposed organisms. Moreover, co-occurring contaminants interact with nanoparticles. There is multiple evidence suggesting nanoparticles as a sink for organic and inorganic co-contaminants. On the other hand, in the presence of nanoparticles, repeatedly an elevated effect on the test species induced by the co-contaminants has been reported. In this paper, we highlight recent achievements in the field of nano-ecotoxicology in both aquatic and terrestrial systems but also refer to substantial gaps that require further attention in the future.
Collapse
Affiliation(s)
- Mirco Bundschuh
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| | - Juliane Filser
- FB 02, UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Simon Lüderwald
- Ecotoxicology and Environment, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Moira S. McKee
- FB 02, UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - George Metreveli
- Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Gabriele E. Schaumann
- Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Ralf Schulz
- Ecotoxicology and Environment, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UfZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|