1
|
Kwaczyński K, Szymaniec O, Bobrowska DM, Poltorak L. Exploring the potential of 3D-printed solvent activated electrodes for salicylic acid analysis. Analyst 2025; 150:2600-2611. [PMID: 40358363 DOI: 10.1039/d5an00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
This study evaluates the electrochemical properties of tetrahydrofuran (THF)-activated 3D-printed polylactic acid-carbon black (PLA-CB) electrodes. The electrodes were characterized using SEM, ATR-FTIR, contact angle measurements, and optical profilometry to assess the effects of THF activation on their surface and chemical properties. A range of redox probes were used to investigate both, outer- and inner-sphere electron transfer processes, providing a comprehensive understanding of the electrode's electrochemical behavior. The activated electrodes were further tested for their ability to determine salicylic acid (SA) using differential pulse voltammetry (DPV). Calibration curves were constructed, and preliminary analyses of SA in cosmetic products, including a face serum and a cream, were performed. Obtained data are critically assessed.
Collapse
Affiliation(s)
- Karolina Kwaczyński
- University of Lodz, Electrochemistry@Soft Interfaces, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| | - Olga Szymaniec
- University of Lodz, Electrochemistry@Soft Interfaces, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| | - Diana M Bobrowska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Lukasz Poltorak
- University of Lodz, Electrochemistry@Soft Interfaces, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
2
|
Zhao J, Cai F, Wang B, Ren J, Guo Z, Du Y, Helal MH, El-Bahy ZM, Wang Z, Sha J. Advances and future perspectives on silicon-based anodes for lithium-ion batteries. Adv Colloid Interface Sci 2025; 343:103543. [PMID: 40382850 DOI: 10.1016/j.cis.2025.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Silicon (Si)-based anode has emerged as the most promising anode material for next-generation lithium-ion batteries (LIBs) due to its high specific capacity, suitable operating potential and abundant natural reserves. Nevertheless, the drastic volume effect of Si particles during lithiation/delithiation leads to particle pulverization, electrode structure collapse, and solid electrolyte interfacial (SEI) film instability, which results in a rapid reversible capacity degradation of Si-based anodes. It is essential to deeply analyze the failure mechanism of silicon-based electrodes and explore suitable improvement methods to achieve higher capacity retention. Herein, we systematically summarize the improvement strategies for Si-based anodes, including regulating material particle size, optimizing structure and composition, and exploring new binders, along with their enhancement mechanisms. In addition, the preparation of high-performance Si-based electrodes based on newly developed 3D printing technology in recent years is discussed. Lastly, several possible directions and emerging challenges for Si anode are presented to facilitate further improvement in practical applications. Overall, this review is expected to provide basic understanding and insights into the practical application of Si-based materials in next-generation LIBs negative electrodes.
Collapse
Affiliation(s)
- Junkai Zhao
- Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Feipeng Cai
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bo Wang
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Yien Du
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Mohamed H Helal
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar 73213, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Zhaolong Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jingquan Sha
- Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China.
| |
Collapse
|
3
|
Sun H, Hwang U, Kim S, Sung J, Kim T, Suhr J, Park IK, Nam JD. Reversible Thixotropic Rheological Properties of Graphene-Incorporated Epoxy Inks for Self-Standing 3D Printing. ACS Macro Lett 2025; 14:135-141. [PMID: 39801069 DOI: 10.1021/acsmacrolett.4c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks. Herein, we develop a thermally curable graphene-incorporated epoxy ink system that exhibits shear-thinning characteristics and upright standing capability owing to its high static yield stress (∼1,680 Pa). The reversible liquid-to-solid phase transition of the composite ink, absent in the pristine epoxy ink, is clearly identified by its viscoelastic properties and dynamic yield stress. This thixotropic composite ink enables the continuous filament printing of 10 stacked layers without the spreading of injected filaments. Significantly, the 3D-printed composite structure, post-thermal curing, exhibits robust structural integrity and is free from weld lines or voids at the stacked interfaces. Combined with the clearly elucidated processing-structure-property relationships of the ink system, our results highlight its potential for a wide spectrum of applications.
Collapse
Affiliation(s)
- Hanna Sun
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Uiseok Hwang
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soochan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaeuk Sung
- Department of Applied Data Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Samsung Electronics Co., Ltd., Suwon 16677, Republic of Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonghwan Suhr
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Kyung Park
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae-Do Nam
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Abolhassani S, Fattahi R, Safshekan F, Saremi J, Hasanzadeh E. Advances in 4D Bioprinting: The Next Frontier in Regenerative Medicine and Tissue Engineering Applications. Adv Healthc Mater 2025; 14:e2403065. [PMID: 39918399 DOI: 10.1002/adhm.202403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Indexed: 01/06/2025]
Abstract
4D bioprinting is a critical advancement in tissue engineering and regenerative medicine (TERM), enabling the creation of structures that dynamically respond to environmental stimuli over time. This review investigates various fabrication techniques and responsive materials that are central to these fields. It underscores the integration of multi-material and biocomposite approaches in 4D bioprinting, which is crucial for fabricating complex and functional constructs with heterogeneous properties. Using 4D bioprinting techniques enhances the mimicry of natural tissue characteristics, offering tailored responses and improved integration with biological systems. Furthermore, this study highlights the synergy between 4D bioprinting and tissue engineering and demonstrates the technology's potential for developing tissues and organs. In regenerative medicine, 4D bioprinting's applications extend to creating smart implants and advanced drug delivery systems that adapt to the body's changes, promoting healing and tissue regeneration. Finally, the challenges and future directions of 4D bioprinting are also explored and emphasize its transformative impact on biomedical engineering and the future of healthcare.
Collapse
Affiliation(s)
- Sareh Abolhassani
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7134814336, Iran
| | - Roya Fattahi
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 4847191971, Iran
| | - Farzaneh Safshekan
- Department of Mechanical Engineering, Ahrar Institute of Technology and Higher Education, Rasht, 6359141931, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, 7154474992, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 4847191971, Iran
| |
Collapse
|
5
|
Pavlovskii AA, Pushnitsa K, Kosenko A, Novikov P, Popovich AA. 3D-Printed Lithium-Ion Battery Electrodes: A Brief Review of Three Key Fabrication Techniques. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5904. [PMID: 39685340 DOI: 10.3390/ma17235904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
In recent years, 3D printing has emerged as a promising technology in energy storage, particularly for the fabrication of Li-ion battery electrodes. This innovative manufacturing method offers significant material composition and electrode structure flexibility, enabling more complex and efficient designs. While traditional Li-ion battery fabrication methods are well-established, 3D printing opens up new possibilities for enhancing battery performance by allowing for tailored geometries, efficient material usage, and integrating multifunctional components. This article examines three key 3D printing methods for fabricating Li-ion battery electrodes: (1) material extrusion (ME), which encompasses two subcategories-fused deposition modeling (FDM), also referred to as fused filament fabrication (FFF), and direct ink writing (DIW); (2) material jetting (MJ), including inkjet printing (IJP) and aerosol jet printing (AJP) methods; and (3) vat photopolymerization (VAT-P), which includes the stereolithographic apparatus (SLA) subcategory. These methods have been applied in fabricating substrates, thin-film electrodes, and electrolytes for half-cell and full-cell Li-ion batteries. This discussion focuses on their strengths, limitations, and potential advancements for energy storage applications.
Collapse
Affiliation(s)
- Alexander A Pavlovskii
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia
| | - Konstantin Pushnitsa
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia
| | - Alexandra Kosenko
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia
| | - Pavel Novikov
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia
| | - Anatoliy A Popovich
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia
| |
Collapse
|
6
|
Lin YC, Fang Y, Liu X, Raut A, Yin Y, Sprouster D, Tsai E, Nitodas S, Shmueli Y, Sokolov J, Rafailovich M. Utilizing Binary Phase Segregation and Extrusion to Enhance the Electronic Properties of Graphene Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65245-65254. [PMID: 39531260 DOI: 10.1021/acsami.4c11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Our goal in this study is to incorporate graphene nanoplatelets (GNPs) in a polymer blend of poly(lactic acid) (PLA) and isotactic polypropylene (iPP) to facilitate the dispersion of GNPs and use the morphology of phase segregation to create a pathway for concentrating GNPs to achieve percolation with lower GNP concentration. Investigating the interfacial properties between PLA/GNPs and iPP/GNPs, we noticed that iPP has a lower contact angle on GNPs compared to PLA on GNPs. This showed a great potential that the GNP are easily confined in iPP rather than in PLA domains or at the PLA/PP interfaces. Utilizing this property, as the PLA content increases, the iPP content decreases, resulting in a reduction of the available space for GNPs. This decrease in space leads to a higher chance for GNPs to accumulate together. Furthermore, through careful control of the concentration in the immiscible blend of PLA/PP, it is possible to achieve a bicontinuous structure. This structure facilitates the creation of a pathway for the fillers, allowing for the use of minimal GNPs while achieving optimal electrical conductivity properties. The PLA/PP/GNPs can be oriented by the shear forces coming from the nozzle that produce a higher performance.
Collapse
Affiliation(s)
- Yu-Chung Lin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yiwei Fang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xiaoyang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Aniket Raut
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yifan Yin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - David Sprouster
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther Tsai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steve Nitodas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yuval Shmueli
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonathan Sokolov
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Miriam Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Tuyen NTK, Kim DM, Lee JW, Jung J. Innovative Hybrid Nanocomposites in 3D Printing for Functional Applications: A Review. Molecules 2024; 29:5159. [PMID: 39519800 PMCID: PMC11547392 DOI: 10.3390/molecules29215159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
3D printing has garnered significant attention across academia and industry due to its capability to design and fabricate complex architectures. Applications such as those requiring intricate geometries or custom designs, including footwear, healthcare, energy storage, and electronics applications, greatly benefit from exploiting 3D printing processes. Despite the recent advancement of structural 3D printing, its use in functional devices remains limited, requiring the need for the development of functional materials suitable for 3D printing in device fabrication. In this review, we briefly introduce various 3D printing techniques, including material extrusion and vat polymerization, and highlight the recent advances in 3D printing for energy and biomedical devices. A summary of future perspectives in this area is also presented. By highlighting recent developments and addressing key challenges, this review aims to inspire future directions in the development of functional devices.
Collapse
Affiliation(s)
- Nguyen Thi Kim Tuyen
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Dong Min Kim
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jung-Woo Lee
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jaehan Jung
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
8
|
Selemani MA, Cenhrang K, Azibere S, Singhateh M, Martin RS. 3D printed microfluidic devices with electrodes for electrochemical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6941-6953. [PMID: 39403769 DOI: 10.1039/d4ay01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A review with 93 references describing various 3D printing approaches that have been used to create microfluidic devices containing electrodes for electrochemical detection. The use of 3D printing to fabricate microfluidic devices is a rapidly growing area. One significant research area is how to detect analytes in the devices for quantitation purposes. This review article is focused on methods used to integrate electrodes into the devices for electrochemical detection. The review is organized in terms of the methodology for integrating the electrode within the device. This includes (1) external coupling of traditional electrode materials with 3D printed devices; (2) printing conductive electrode materials as part of device printing; and (3) integrating traditional electrodes into the device as part of the print process. Example applications are given and some future directions are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
9
|
Ramos DO, Crapnell RD, Asra R, Bernalte E, Oliveira ACM, Muñoz RAA, Richter EM, Jones AM, Banks CE. Conductive Polypropylene Additive Manufacturing Feedstock: Application to Aqueous Electroanalysis and Unlocking Nonaqueous Electrochemistry and Electrosynthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39358698 PMCID: PMC11492246 DOI: 10.1021/acsami.4c12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Additive manufacturing electrochemistry is an ever-expanding field; however, it is limited to aqueous environments due to the conductive filaments currently available. Herein, the production of a conductive poly(propylene) filament, which unlocks the door to organic electrochemistry and electrosynthesis, is reported. A filament with 40 wt % carbon black possessed enhanced thermal stability, excellent low-temperature flexibility, and high conductivity. The filament produced highly reproducible additive manufactured electrodes that were electrochemically characterized, showing a k0 of 2.00 ± 0.04 × 10-3 cm s-1. This material was then applied to three separate electrochemical applications. First, the electroanalytical sensing of colchicine within environmental waters, where a limit of detection of 10 nM was achieved before being applied to tap, bottled, and river water. Second, the electrodes were stable in organic solvents for 100 cyclic voltammograms and 15 days. Finally, these were applied toward an electrosynthetic reaction of chlorpromazine, where the electrodes were stable for 24-h experiments, outperforming a glassy carbon electrode, and were able to be reused while maintaining a good electrochemical performance. This material can revolutionize the field of additive manufacturing electrochemistry and expand research into a variety of new fields.
Collapse
Affiliation(s)
- David
L. O. Ramos
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Robert D. Crapnell
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| | - Ridho Asra
- School
of Pharmacy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Elena Bernalte
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| | - Ana C. M. Oliveira
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Rodrigo A. A. Muñoz
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Eduardo M. Richter
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38400-902, Brazil
| | - Alan M. Jones
- School
of Pharmacy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Craig E. Banks
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Dalton Building,
Chester Street, Manchester M1 5GD, Great Britain
| |
Collapse
|
10
|
R H, Dhilipkumar T, V Shankar K, P K, Salunkhe S, Venkatesan R, Shazly GA, Vetcher AA, Kim SC. Evaluating the Piezoelectric Energy Harvesting Potential of 3D-Printed Graphene Prepared Using Direct Ink Writing and Fused Deposition Modelling. Polymers (Basel) 2024; 16:2397. [PMID: 39274030 PMCID: PMC11397054 DOI: 10.3390/polym16172397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
This research aims to use energy harvested from conductive materials to power microelectronic components. The proposed method involves using vibration-based energy harvesting to increase the natural vibration frequency, reduce the need for battery replacement, and minimise chemical waste. Piezoelectric transduction, known for its high-power density and ease of application, has garnered significant attention. Additionally, graphene, a non-piezoelectric material, exhibits good piezoelectric properties. The research explores a novel method of printing graphene material using 3D printing, specifically Direct Ink Writing (DIW) and fused deposition modelling (FDM). Both simulation and experimental techniques were used to analyse energy harvesting. The experimental technique involved using the cantilever beam-based vibration energy harvesting method. The results showed that the DIW-derived 3D-printed prototype achieved a peak power output of 12.2 µW, surpassing the 6.4 µW output of the FDM-derived 3D-printed prototype. Furthermore, the simulation using COMSOL Multiphysics yielded a harvested output of 0.69 µV.
Collapse
Affiliation(s)
- Hushein R
- Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India
| | - Thulasidhas Dhilipkumar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Karthik V Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Karuppusamy P
- Department of Chemistry, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (DU), Salem 636308, India
| | - Sachin Salunkhe
- Department of Mechanical Engineering, Gazi University, 06560 Ankara, Turkey
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alexandre A Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia n.a Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Emelianov AV, Pettersson M, Bobrinetskiy II. Ultrafast Laser Processing of 2D Materials: Novel Routes to Advanced Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402907. [PMID: 38757602 DOI: 10.1002/adma.202402907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Ultrafast laser processing has emerged as a versatile technique for modifying materials and introducing novel functionalities. Over the past decade, this method has demonstrated remarkable advantages in the manipulation of 2D layered materials, including synthesis, structuring, functionalization, and local patterning. Unlike continuous-wave and long-pulsed optical methods, ultrafast lasers offer a solution for thermal heating issues. Nonlinear interactions between ultrafast laser pulses and the atomic lattice of 2D materials substantially influence their chemical and physical properties. This paper highlights the transformative role of ultrafast laser pulses in maskless green technology, enabling subtractive, and additive processes that unveil ways for advanced devices. Utilizing the synergetic effect between the energy states within the atomic layers and ultrafast laser irradiation, it is feasible to achieve unprecedented resolutions down to several nanometers. Recent advancements are discussed in functionalization, doping, atomic reconstruction, phase transformation, and 2D and 3D micro- and nanopatterning. A forward-looking perspective on a wide array of applications of 2D materials, along with device fabrication featuring novel physical and chemical properties through direct ultrafast laser writing, is also provided.
Collapse
Affiliation(s)
- Aleksei V Emelianov
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ivan I Bobrinetskiy
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| |
Collapse
|
12
|
Crapnell RD, Bernalte E, Sigley E, Banks CE. Recycled PETg embedded with graphene, multi-walled carbon nanotubes and carbon black for high-performance conductive additive manufacturing feedstock. RSC Adv 2024; 14:8108-8115. [PMID: 38464694 PMCID: PMC10921296 DOI: 10.1039/d3ra08524d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
The first report of conductive recycled polyethylene terephthalate glycol (rPETg) for additive manufacturing and electrochemical applications is reported herein. Graphene nanoplatelets (GNP), multi-walled carbon nanotubes (MWCNT) and carbon black (CB) were embedded within a recycled feedstock to produce a filament with lower resistance than commercially available conductive polylactic acid (PLA). In addition to electrical conductivity, the rPETg was able to hold >10 wt% more conductive filler without the use of a plasticiser, showed enhanced temperature stability, had a higher modulus, improved chemical resistance, lowered levels of solution ingress, and could be sterilised in ethanol. Using a mix of carbon materials CB/MWCNT/GNP (25/2.5/2.5 wt%) the electrochemical performance of the rPETg filament was significantly enhanced, providing a heterogenous electrochemical rate constant, k0, equating to 0.88 (±0.01) × 10-3 cm s-1 compared to 0.46 (±0.02) × 10-3 cm s-1 for commercial conductive PLA. This work presents a paradigm shift within the use of additive manufacturing and electrochemistry, allowing the production of electrodes with enhanced electrical, chemical and mechanical properties, whilst improving the sustainability of the production through the use of recycled feedstock.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK +44(0)1612471196
| | - Elena Bernalte
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK +44(0)1612471196
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK +44(0)1612471196
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK +44(0)1612471196
| |
Collapse
|
13
|
Putri KNA, Intasanta V, Hoven VP. Current significance and future perspective of 3D-printed bio-based polymers for applications in energy conversion and storage system. Heliyon 2024; 10:e25873. [PMID: 38390075 PMCID: PMC10881347 DOI: 10.1016/j.heliyon.2024.e25873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The increasing global population has led to a surge in energy demand and the production of environmentally harmful products, highlighting the urgent need for renewable and clean energy sources. In this context, sustainable and eco-friendly energy production strategies have been explored to mitigate the adverse effects of fossil fuel consumption to the environment. Additionally, efficient energy storage devices with a long lifespan are also crucial. Tailoring the components of energy conversion and storage devices can improve overall performance. Three-dimensional (3D) printing provides the flexibility to create and optimize geometrical structure in order to obtain preferable features to elevate energy conversion yield and storage capacitance. It also serves the potential for rapid and cost-efficient manufacturing. Besides that, bio-based polymers with potential mechanical and rheological properties have been exploited as material feedstocks for 3D printing. The use of these polymers promoted carbon neutrality and environmentally benign processes. In this perspective, this review provides an overview of various 3D printing techniques and processing parameters for bio-based polymers applicable for energy-relevant applications. It also explores the advances and current significance on the integration of 3D-printed bio-based polymers in several energy conversion and storage components from the recently published studies. Finally, the future perspective is elaborated for the development of bio-based polymers via 3D printing techniques as powerful tools for clean energy supplies towards the sustainable development goals (SDGs) with respect to environmental protection and green energy conversion.
Collapse
Affiliation(s)
- Khoiria Nur Atika Putri
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Varol Intasanta
- Nanohybrids and Coating Research Group, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Kamel AH, Hefnawy A, Hazeem LJ, Rashdan SA, Abd-Rabboh HSM. Current perspectives, challenges, and future directions in the electrochemical detection of microplastics. RSC Adv 2024; 14:2134-2158. [PMID: 38205235 PMCID: PMC10777194 DOI: 10.1039/d3ra06755f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Microplastics (5 μm) are a developing threat that contaminate every environmental compartment. The detection of these contaminants is undoubtedly an important topic of study because of their high potential to cause harm to ecosystems. For many years, scientists have been assiduously striving to surmount the obstacle of detection restrictions and minimize the likelihood of receiving results that are either false positives or false negatives. This study covers the current state of electrochemical sensing technology as well as its application as a low-cost analytical platform for the detection and characterization of novel contaminants. Examples of detection mechanisms, electrode modification procedures, device configuration, and performance are given to show how successful these approaches are for monitoring microplastics in the environment. Additionally included are the recent developments in nanoimpact techniques. Compared to electrochemical methods for microplastic remediation, the use of electrochemical sensors for microplastic detection has received very little attention. With an overview of microplastic electrochemical sensors, this review emphasizes the promise of existing electrochemical remediation platforms toward sensor design and development. In order to enhance the monitoring of these substances, a critical assessment of the requirements for future research, challenges associated with detection, and opportunities is provided. In addition to-or instead of-the now-in-use laboratory-based analytical equipment, these technologies can be utilized to support extensive research and manage issues pertaining to microplastics in the environment and other matrices.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - A Hefnawy
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University El-Shatby Alexandria 21526 Egypt
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain Zallaq 32038 Bahrain
| | - Suad A Rashdan
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University Abha 62529 Saudi Arabia
| |
Collapse
|
15
|
Zhao Y, Du J, Du J, Lu Q, Mikhailova D, Yu M, Pan X. Realizing Highly-Ordered Laser-Reduced Graphene for High-Performance Flexible Microsupercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301546. [PMID: 37186448 DOI: 10.1002/smll.202301546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Laser reduction of graphene oxide (GO) with direct-write technology is promising to develop miniaturized energy storage devices because of highly flexible, mask-free, and chemical-free merits. However, laser reduction of GO is often accompanied with deflagration (spectacular and violent deoxygenating reaction), leading reduced graphene oxide (rGO) films into brittle and irregular internal structure which is harmful to the applications. Here, a pre-reduction strategy is demonstrated to avoid this deflagration and realize a uniform laser-reduced GO (LrGO) matrix for the application of flexible micro-supercapacitors (MSCs).The pre-reduction process with ascorbic acid decreases the content of oxygen-containing functional groups on GO in advance, and thus relieves gases emission and avoids unconstrained expansion during the laser reduction process. In addition, a self-assembled skeleton with pre-reduced GO (PGO) nanosheets could be constructed which is a more appropriate aforehand framework for laser reduction to establish controllable rGO films with the homogenous porosity. The quasi-solid-state MSCs assembled with laser-reduced PGO exhibit the maximum areal capacitance of 88.32 mF cm-2 , good cycling performance (capacitance retention of 82% after 2000 cycles), and outstanding flexibility (no capacitance degradation after bending for 5000 times). This finding provides opportunities to enhance quality of LrGO which is promising for micro-power devices and beyond.
Collapse
Affiliation(s)
- Yirong Zhao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraße 20, 01069, Dresden, Germany
| | - Jingwei Du
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Jiajun Du
- College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Qiongqiong Lu
- Institute of Materials, Henan Academy of Sciences, Zhengzhou, 450046, China
- Henan Key Laboratory of Advanced Conductor Materials, Zhengzhou, 450046, China
| | - Daria Mikhailova
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraße 20, 01069, Dresden, Germany
| | - Minghao Yu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Xiaojun Pan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
- New Energy Photovoltaic Industry Research Center, Qinghai University, Xining, 810016, China
| |
Collapse
|
16
|
Fonseca N, Thummalapalli SV, Jambhulkar S, Ravichandran D, Zhu Y, Patil D, Thippanna V, Ramanathan A, Xu W, Guo S, Ko H, Fagade M, Kannan AM, Nian Q, Asadi A, Miquelard-Garnier G, Dmochowska A, Hassan MK, Al-Ejji M, El-Dessouky HM, Stan F, Song K. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302718. [PMID: 37501325 DOI: 10.1002/smll.202302718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.
Collapse
Affiliation(s)
- Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Hyunwoong Ko
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Mofe Fagade
- Mechanical Engineering, School of Engineering for Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Arunchala M Kannan
- Fuel Cell Laboratory, The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Qiong Nian
- School of Engineering for Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85287, USA
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution (ETID), Texas A&M University, College Station, TX, 77843, USA
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Anna Dmochowska
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Hassan M El-Dessouky
- Physics Department, Faculty of Science, Galala University, Galala City, 43511, Egypt
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Felicia Stan
- Center of Excellence Polymer Processing & Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania
| | - Kenan Song
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Mechanical Engineering, University of Georgia, 302 E. Campus Rd, Athens, Georgia, 30602, United States
| |
Collapse
|
17
|
Du J, Fu G, Xu X, Elshahawy AM, Guan C. 3D Printed Graphene-Based Metamaterials: Guesting Multi-Functionality in One Gain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207833. [PMID: 36760019 DOI: 10.1002/smll.202207833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Indexed: 05/11/2023]
Abstract
Advanced functional materials with fascinating properties and extended structural design have greatly broadened their applications. Metamaterials, exhibiting unprecedented physical properties (mechanical, electromagnetic, acoustic, etc.), are considered frontiers of physics, material science, and engineering. With the emerging 3D printing technology, the manufacturing of metamaterials becomes much more convenient. Graphene, due to its superior properties such as large surface area, superior electrical/thermal conductivity, and outstanding mechanical properties, shows promising applications to add multi-functionality into existing metamaterials for various applications. In this review, the aim is to outline the latest developments and applications of 3D printed graphene-based metamaterials. The structure design of different types of metamaterials and the fabrication strategies for 3D printed graphene-based materials are first reviewed. Then the representative explorations of 3D printed graphene-based metamaterials and multi-functionality that can be introduced with such a combination are further discussed. Subsequently, challenges and opportunities are provided, seeking to point out future directions of 3D printed graphene-based metamaterials.
Collapse
Affiliation(s)
- Junjie Du
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Gangwen Fu
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Xi Xu
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | | | - Cao Guan
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
18
|
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
19
|
Zhang H, Shi Z, Wang X, Xu X, Tang Y, Liu X, Tian L, Xiao Y, Wu Z, Wang H, Yang Y. Insights into the synthesis of monolithic and structured graphene bulks and its application for Cu2+ ions removal from aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Sigley E, Kalinke C, Crapnell RD, Whittingham MJ, Williams RJ, Keefe EM, Janegitz BC, Bonacin JA, Banks CE. Circular Economy Electrochemistry: Creating Additive Manufacturing Feedstocks for Caffeine Detection from Post-Industrial Coffee Pod Waste. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:2978-2988. [PMID: 36844748 PMCID: PMC9945317 DOI: 10.1021/acssuschemeng.2c06514] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The recycling of post-industrial waste poly(lactic acid) (PI-PLA) from coffee machine pods into electroanalytical sensors for the detection of caffeine in real tea and coffee samples is reported herein. The PI-PLA is transformed into both nonconductive and conductive filaments to produce full electroanalytical cells, including additively manufactured electrodes (AMEs). The electroanalytical cell was designed utilizing separate prints for the cell body and electrodes to increase the recyclability of the system. The cell body made from nonconductive filament was able to be recycled three times before the feedstock-induced print failure. Three bespoke formulations of conductive filament were produced, with the PI-PLA (61.62 wt %), carbon black (CB, 29.60 wt %), and poly(ethylene succinate) (PES, 8.78 wt %) chosen as the most suitable for use due to its equivalent electrochemical performance, lower material cost, and improved thermal stability compared to the filaments with higher PES loading and ability to be printable. It was shown that this system could detect caffeine with a sensitivity of 0.055 ± 0.001 μA μM-1, a limit of detection of 0.23 μM, a limit of quantification of 0.76 μM, and a relative standard deviation of 3.14% after activation. Interestingly, the nonactivated 8.78% PES electrodes produced significantly better results in this regard than the activated commercial filament toward the detection of caffeine. The activated 8.78% PES electrode was shown to be able to detect the caffeine content in real and spiked Earl Grey tea and Arabica coffee samples with excellent recoveries (96.7-102%). This work reports a paradigm shift in the way AM, electrochemical research, and sustainability can synergize and feed into part of a circular economy, akin to a circular economy electrochemistry.
Collapse
Affiliation(s)
- Evelyn Sigley
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Cristiane Kalinke
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, United Kingdom
- Institute
of Chemistry, University of Campinas (Unicamp), 13083-859 Campinas, Säo Paulo, Brazil
| | - Robert D. Crapnell
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Matthew J. Whittingham
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Rhys J. Williams
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Edmund M. Keefe
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Bruno Campos Janegitz
- Department
of Nature Sciences, Mathematics, and Education, Federal University of Säo Carlos (UFSCar), 13600-970 Araras, Säo Paulo, Brazil
| | - Juliano Alves Bonacin
- Institute
of Chemistry, University of Campinas (Unicamp), 13083-859 Campinas, Säo Paulo, Brazil
| | - Craig E. Banks
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, United Kingdom
| |
Collapse
|
21
|
Hüner B, Demir N, Kaya MF. Hydrogen Evolution Reaction Performance of Ni-Co-Coated Graphene-Based 3D Printed Electrodes. ACS OMEGA 2023; 8:5958-5974. [PMID: 36816706 PMCID: PMC9933213 DOI: 10.1021/acsomega.2c07856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Additive manufacturing has been a very promising topic in recent years for research and development studies and industrial applications. Its electrochemical applications are very popular due to the cost-effective rapid production from the environmentally friendly method. In this study, three-dimensional (3D) printed electrodes are prepared by Ni and Co coatings in different molar ratios. Different Ni/Co molar ratios (x:y) of the Ni/Co/x:y alloys are prepared as 1:1, 1:4, and 4:1 and they are named Ni/Co/1:1, Ni/Co/4:1, and Ni/Co/1:4, respectively. According to the results, when the 3D electrode samples are coated with Ni and Co at different molar ratios, the kinetic performance of the NiCo-coated 3D electrode samples for hydrogen evolution reaction is enhanced compared to that of the uncoated 3D electrode sample. The results indicate that the Ni/Co/1:4-coated 3D electrode has the highest kinetic activity for hydrogen evolution reactions (HERs). The calculated Tafel's slope and overpotential value (η10) for HER are determined as 164.65 mV/dec and 101.92 mV, respectively. Moreover, the Ni/Co/1:4-coated 3D electrode has an 81.2% higher current density than the other electrode. It is observed that the 3D printing of the electrochemical electrodes is very promising when they are coated with Ni-Co metals in different ratios. This study provides a new perspective on the use of 3D printed electrodes for high-performance water electrolysis.
Collapse
Affiliation(s)
- Bulut Hüner
- Erciyes
University, Engineering Faculty, Energy Systems Engineering Department,
Heat Engineering Division, 38039Kayseri, Turkey
- Erciyes
University, Graduate School of Natural and Applied Sciences, Energy
Systems Engineering Department, 38039Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039Kayseri, Turkey
| | - Nesrin Demir
- Erciyes
University, Engineering Faculty, Energy Systems Engineering Department,
Heat Engineering Division, 38039Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039Kayseri, Turkey
| | - Mehmet Fatih Kaya
- Erciyes
University, Engineering Faculty, Energy Systems Engineering Department,
Heat Engineering Division, 38039Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039Kayseri, Turkey
- BATARYASAN
Enerji ve San. Tic. Ltd. Şti.,
Yıldırım Beyazıt Mah., Aşık
Veysel Bul., ERÜ TGB Kuluçka Merkezi, No: 63/B, 38039Kayseri, Turkey
| |
Collapse
|
22
|
Paleari L, Bragaglia M, Fabbrocino F, Luciano R, Nanni F. Self-Monitoring Performance of 3D-Printed Poly-Ether-Ether-Ketone Carbon Nanotube Composites. Polymers (Basel) 2022; 15:polym15010008. [PMID: 36616358 PMCID: PMC9823479 DOI: 10.3390/polym15010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, poly-ether-ether-ketone (PEEK) carbon-nanotube (CNT) self-monitoring composites at different levels of filler loading (i.e., 3, 5 and 10% by weight) have been extruded as 3D-printable filaments, showing gauge factor values of 14.5, 3.36 and 1.99, respectively. CNT composite filaments of 3 and 5 wt% were 3D-printed into tensile samples, while the PEEK 10CNT filament was found to be barely printable. The 3D-printed PEEK 3CNT and PEEK 5CNT composites presented piezo-resistive behavior, with an increase in electrical resistance under mechanical stress, and showed an average gauge factor of 4.46 and 2.03, respectively. Mechanical tests highlighted that 3D-printed samples have a laminate-like behavior, presenting ultimate tensile strength that is always higher than 60 MPa, hence they offer the possibility to detect damages in an orthogonal direction to the applied load wit high sensitivity.
Collapse
Affiliation(s)
- Lorenzo Paleari
- Department of Enterprise Engineering Mario Lucertini, University of Rome Tor Vergata, and INSTM Research Unit Roma Tor Vergata, via del Politecnico 1, 00133 Rome, Italy
| | - Mario Bragaglia
- Department of Enterprise Engineering Mario Lucertini, University of Rome Tor Vergata, and INSTM Research Unit Roma Tor Vergata, via del Politecnico 1, 00133 Rome, Italy
- Correspondence: (M.B.); (F.N.); Tel.: +39-06-72594273 (M.B.); +39-06-72594496 (F.N.)
| | | | - Raimondo Luciano
- Department of Engineering, University of Naples Partenope, 80133 Naples, Italy
| | - Francesca Nanni
- Department of Enterprise Engineering Mario Lucertini, University of Rome Tor Vergata, and INSTM Research Unit Roma Tor Vergata, via del Politecnico 1, 00133 Rome, Italy
- Correspondence: (M.B.); (F.N.); Tel.: +39-06-72594273 (M.B.); +39-06-72594496 (F.N.)
| |
Collapse
|
23
|
Park S, Shi B, Shang Y, Deng K, Fu K. Structured Electrode Additive Manufacturing for Lithium-Ion Batteries. NANO LETTERS 2022; 22:9462-9469. [PMID: 36399137 DOI: 10.1021/acs.nanolett.2c03545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As the world increasingly swaps fossil fuels, significant advances in lithium-ion batteries have occurred over the past decade. Though demand for increased energy density with mechanical stability continues to be strong, attempts to use traditional ink-casting to increase electrode thickness or geometric complexity have had limited success. Here, we combined a nanomaterial orientation with 3D printing and developed a dry electrode processing route, structured electrode additive manufacturing (SEAM), to rapidly fabricate thick electrodes with an out-of-plane aligned architecture with low tortuosity and mechanical robustness. SEAM uses a shear flow of molten feedstock to control the orientation of the anisotropic materials across nano to macro scales, favoring Li-ion transport and insertion. These structured electrodes with 1 mm thickness have more than twice the specific capacity at 1 C compared to slurry-cast electrodes and have higher mechanical properties (compressive strength of 0.84 MPa and modulus of 5 MPa) than other reported 3D-printed electrodes.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Baohui Shi
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yuanyuan Shang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kaiyue Deng
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kun Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Composite Materials, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
24
|
Crapnell RD, Garcia-Miranda Ferrari A, Whittingham MJ, Sigley E, Hurst NJ, Keefe EM, Banks CE. Adjusting the Connection Length of Additively Manufactured Electrodes Changes the Electrochemical and Electroanalytical Performance. SENSORS (BASEL, SWITZERLAND) 2022; 22:9521. [PMID: 36502222 PMCID: PMC9736051 DOI: 10.3390/s22239521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 05/09/2023]
Abstract
Changing the connection length of an additively manufactured electrode (AME) has a significant impact on the electrochemical and electroanalytical response of the system. In the literature, many electrochemical platforms have been produced using additive manufacturing with great variations in how the AME itself is described. It is seen that when measuring the near-ideal outer-sphere redox probe hexaamineruthenium (III) chloride (RuHex), decreasing the AME connection length enhances the heterogeneous electrochemical transfer (HET) rate constant (k0) for the system. At slow scan rates, there is a clear change in the peak-to-peak separation (ΔEp) observed in the RuHex voltammograms, with the ΔEp shifting from 118 ± 5 mV to 291 ± 27 mV for the 10 and 100 mm electrodes, respectively. For the electroanalytical determination of dopamine, no significant difference is noticed at low concentrations between 10- and 100-mm connection length AMEs. However, at concentrations of 1 mM dopamine, the peak oxidation is shifted to significantly higher potentials as the AME connection length is increased, with a shift of 150 mV measured. It is recommended that in future work, all AME dimensions, not just the working electrode head size, is reported along with the resistance measured through electrochemical impedance spectroscopy to allow for appropriate comparisons with other reports in the literature. To produce the best additively manufactured electrochemical systems in the future, researchers should endeavor to use the shortest AME connection lengths that are viable for their designs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
25
|
Hüner B, Kıstı M, Uysal S, Uzgören İN, Özdoğan E, Süzen YO, Demir N, Kaya MF. An Overview of Various Additive Manufacturing Technologies and Materials for Electrochemical Energy Conversion Applications. ACS OMEGA 2022; 7:40638-40658. [PMID: 36406513 PMCID: PMC9670698 DOI: 10.1021/acsomega.2c05096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Additive manufacturing (AM) technologies have many advantages, such as design flexibility, minimal waste, manufacturing of very complex structures, cheaper production, and rapid prototyping. This technology is widely used in many fields, including health, energy, art, design, aircraft, and automotive sectors. In the manufacturing process of 3D printed products, it is possible to produce different objects with distinctive filament and powder materials using various production technologies. AM covers several 3D printing techniques such as fused deposition modeling (FDM), inkjet printing, selective laser melting (SLM), and stereolithography (SLA). The present review provides an extensive overview of the recent progress in 3D printing methods for electrochemical fields. A detailed review of polymeric and metallic 3D printing materials and their corresponding printing methods for electrodes is also presented. Finally, this paper comprehensively discusses the main benefits and the drawbacks of electrode production from AM methods for energy conversion systems.
Collapse
Affiliation(s)
- Bulut Hüner
- Engineering
Faculty, Energy Systems Engineering Department, Heat Engineering Division, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
| | - Murat Kıstı
- Engineering
Faculty, Energy Systems Engineering Department, Heat Engineering Division, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
| | - Süleyman Uysal
- Engineering
Faculty, Energy Systems Engineering Department, Heat Engineering Division, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
- BATARYASAN
Enerji ve San. Tic. Ltd. Şti, Yıldırım
Beyazıt Mah., Aşık Veysel Bul., ERÜ TGB İdare ve Kuluçka 4, No: 67/3/11, Melikgazi, 38039 Kayseri, Turkey
| | - İlayda Nur Uzgören
- Engineering
Faculty, Energy Systems Engineering Department, Heat Engineering Division, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
| | - Emre Özdoğan
- Engineering
Faculty, Energy Systems Engineering Department, Heat Engineering Division, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
- BATARYASAN
Enerji ve San. Tic. Ltd. Şti, Yıldırım
Beyazıt Mah., Aşık Veysel Bul., ERÜ TGB İdare ve Kuluçka 4, No: 67/3/11, Melikgazi, 38039 Kayseri, Turkey
| | - Yakup Ogün Süzen
- Engineering
Faculty, Department of Mechanical Engineering, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
| | - Nesrin Demir
- Engineering
Faculty, Energy Systems Engineering Department, Heat Engineering Division, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
| | - Mehmet Fatih Kaya
- Engineering
Faculty, Energy Systems Engineering Department, Heat Engineering Division, Erciyes University, 38039 Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039 Kayseri, Turkey
- BATARYASAN
Enerji ve San. Tic. Ltd. Şti, Yıldırım
Beyazıt Mah., Aşık Veysel Bul., ERÜ TGB İdare ve Kuluçka 4, No: 67/3/11, Melikgazi, 38039 Kayseri, Turkey
| |
Collapse
|
26
|
Ul Haque S, Yasir M, Cosnier S. Recent advancements in the field of flexible/wearable enzyme fuel cells. Biosens Bioelectron 2022; 214:114545. [PMID: 35839595 DOI: 10.1016/j.bios.2022.114545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
This review article focusses on new advances in the field of enzyme fuel cells (EFCs), especially, on flexible materials which can be used to make flexible EFCs for wearable devices, three-dimensional (3D) printed structures to prepare electrodes for EFCs and micro/nano electromechanical structures (MEMS/NEMS) to fabricate micro-EFCs. Particular attention is given to newly developed approaches to obtain efficient electrodes for harvesting energy via EFCs. This review article explains the various attributes of these recently developing technologies and their ability to mitigate the energy requirements of flexible/wearable bioelectronic devices. Besides discussing key milestones achieved, this perspective review article also emphasizes the main hurdles that are currently impeding the realization of flexible/wearable EFCs. We have also emphasized on the major hurdles related to the flexible materials required to fabricate wearable EFCs, suitable 3D printing techniques required, and MEMS and NEMS to fabricate micro-EFCs. In all the recently developed techniques, there are some common issues like stability, low power output, mechanical strength and flexibility. This review article also provides various routes to mitigate these issues. The main aim of this perspective article is to develop curiosity among the researchers of various fields to team up in order to address the huge challenges that restrict the real-world application of flexible/wearable EFCs. Such collaboration is important to harness the full potential of EFCs. It is requested to read this review article with supporting information to get the complete essence.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Yasir
- Department of Chemistry, Carnegie Mellon University, USA
| | - Serge Cosnier
- Department of Molecular Chemistry (DCM), University of Grenoble Alpes, France.
| |
Collapse
|
27
|
Stefano JS, Silva LRGE, Janegitz BC. New carbon black-based conductive filaments for the additive manufacture of improved electrochemical sensors by fused deposition modeling. Mikrochim Acta 2022; 189:414. [PMID: 36217039 PMCID: PMC9550156 DOI: 10.1007/s00604-022-05511-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
The development of a homemade carbon black composite filament with polylactic acid (CB-PLA) is reported. Optimized filaments containing 28.5% wt. of carbon black were obtained and employed in the 3D printing of improved electrochemical sensors by fused deposition modeling (FDM) technique. The fabricated filaments were used to construct a simple electrochemical system, which was explored for detecting catechol and hydroquinone in water samples and detecting hydrogen peroxide in milk. The determination of catechol and hydroquinone was successfully performed by differential pulse voltammetry, presenting LOD values of 0.02 and 0.22 µmol L-1, respectively, and recovery values ranging from 91.1 to 112% in tap water. Furthermore, the modification of CB-PLA electrodes with Prussian blue allowed the non-enzymatic amperometric detection of hydrogen peroxide at 0.0 V (vs. carbon black reference electrode) in milk samples, with a linear range between 5.0 and 350.0 mol L-1 and low limit of detection (1.03 µmol L-1). Thus, CB-PLA can be successfully applied as additively manufactured electrochemical sensors, and the easy filament manufacturing process allows for its exploration in a diversity of applications.
Collapse
Affiliation(s)
- Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, São Paulo, 13600-970, Brazil
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, São Paulo, 13600-970, Brazil
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052-780, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, São Paulo, 13600-970, Brazil.
| |
Collapse
|
28
|
Shergill R, Patel BA. The Effects of Material Extrusion Printing Speed on the Electrochemical Activity of Carbon Black/Polylactic Acid Electrodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Bhavik Anil Patel
- University of Brighton School of Pharmacy and Biomolecular Sciences Lewes Road BN2 4GJ Brighton UNITED KINGDOM
| |
Collapse
|
29
|
Silva LRG, Stefano JS, Orzari LO, Brazaca LC, Carrilho E, Marcolino-Junior LH, Bergamini MF, Munoz RAA, Janegitz BC. Electrochemical Biosensor for SARS-CoV-2 cDNA Detection Using AuPs-Modified 3D-Printed Graphene Electrodes. BIOSENSORS 2022; 12:622. [PMID: 36005018 PMCID: PMC9405530 DOI: 10.3390/bios12080622] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
A low-cost and disposable graphene polylactic (G-PLA) 3D-printed electrode modified with gold particles (AuPs) was explored to detect the cDNA of SARS-CoV-2 and creatinine, a potential biomarker for COVID-19. For that, a simple, non-enzymatic electrochemical sensor, based on a Au-modified G-PLA platform was applied. The AuPs deposited on the electrode were involved in a complexation reaction with creatinine, resulting in a decrease in the analytical response, and thus providing a fast and simple electroanalytical device. Physicochemical characterizations were performed by SEM, EIS, FTIR, and cyclic voltammetry. Square wave voltammetry was employed for the creatinine detection, and the sensor presented a linear response with a detection limit of 0.016 mmol L-1. Finally, a biosensor for the detection of SARS-CoV-2 was developed based on the immobilization of a capture sequence of the viral cDNA upon the Au-modified 3D-printed electrode. The concentration, immobilization time, and hybridization time were evaluated in presence of the DNA target, resulting in a biosensor with rapid and low-cost analysis, capable of sensing the cDNA of the virus with a good limit of detection (0.30 µmol L-1), and high sensitivity (0.583 µA µmol-1 L). Reproducible results were obtained (RSD = 1.14%, n = 3), attesting to the potentiality of 3D-printed platforms for the production of biosensors.
Collapse
Affiliation(s)
- Luiz R. G. Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, SP, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba 18052-780, SP, Brazil
| | - Jéssica S. Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Luiz O. Orzari
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, SP, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba 18052-780, SP, Brazil
| | - Laís C. Brazaca
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil
- National Institute of Science and Technology in Bioanalysis-INCTBio, Campinas 13083-970, SP, Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil
- National Institute of Science and Technology in Bioanalysis-INCTBio, Campinas 13083-970, SP, Brazil
| | - Luiz H. Marcolino-Junior
- Chemistry Department, Laboratory of Electrochemical Sensors (LabSensE), Federal University of Paraná, Curitiba 81531-980, PR, Brazil
| | - Marcio F. Bergamini
- Chemistry Department, Laboratory of Electrochemical Sensors (LabSensE), Federal University of Paraná, Curitiba 81531-980, PR, Brazil
| | - Rodrigo A. A. Munoz
- National Institute of Science and Technology in Bioanalysis-INCTBio, Campinas 13083-970, SP, Brazil
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| |
Collapse
|
30
|
Ostermann M, Velicsanyi P, Bilotto P, Schodl J, Nadlinger M, Fafilek G, Lieberzeit PA, Valtiner M. Development and Up-Scaling of Electrochemical Production and Mild Thermal Reduction of Graphene Oxide. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4639. [PMID: 35806768 PMCID: PMC9267235 DOI: 10.3390/ma15134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
To reduce the global emissions of CO2, the aviation industry largely relies on new light weight materials, which require multifunctional coatings. Graphene and its derivatives are particularly promising for combining light weight applications with functional coatings. Although they have proven to have outstanding properties, graphene and its precursor graphene oxide (GO) remain far from application at the industrial scale since a comprehensive protocol for mass production is still lacking. In this work, we develop and systematically describe a sustainable up-scaling process for the production of GO based on a three-step electrochemical exfoliation method. Surface characterization techniques (XRD, XPS and Raman) allow the understanding of the fast exfoliation rates obtained, and of high conductivities that are up to four orders of magnitude higher compared to GO produced via the commonly used modified Hummers method. Furthermore, we show that a newly developed mild thermal reduction at 250 °C is sufficient to increase conductivity by another order of magnitude, while limiting energy requirements. The proposed GO powder protocol suggests an up-scaling linear relation between the amount of educt surface and volume of electrolyte. This may support the mass production of GO-based coatings for the aviation industry, and address challenges such as low weight, fire, de-icing and lightning strike protection.
Collapse
Affiliation(s)
- Markus Ostermann
- Centre for Electrochemical Surface Technology, CEST GmbH, A-2700 Wiener Neustadt, Austria; (P.V.); (J.S.); (M.N.); (M.V.)
| | - Peter Velicsanyi
- Centre for Electrochemical Surface Technology, CEST GmbH, A-2700 Wiener Neustadt, Austria; (P.V.); (J.S.); (M.N.); (M.V.)
| | - Pierluigi Bilotto
- Centre for Electrochemical Surface Technology, CEST GmbH, A-2700 Wiener Neustadt, Austria; (P.V.); (J.S.); (M.N.); (M.V.)
| | - Juergen Schodl
- Centre for Electrochemical Surface Technology, CEST GmbH, A-2700 Wiener Neustadt, Austria; (P.V.); (J.S.); (M.N.); (M.V.)
| | - Markus Nadlinger
- Centre for Electrochemical Surface Technology, CEST GmbH, A-2700 Wiener Neustadt, Austria; (P.V.); (J.S.); (M.N.); (M.V.)
| | - Guenter Fafilek
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, A-1040 Vienna, Austria;
| | - Peter A. Lieberzeit
- Institute of Physical Chemistry, University of Vienna, A-1090 Vienna, Austria;
| | - Markus Valtiner
- Centre for Electrochemical Surface Technology, CEST GmbH, A-2700 Wiener Neustadt, Austria; (P.V.); (J.S.); (M.N.); (M.V.)
- Applied Interface Physics, Vienna University of Technology, A-1040 Vienna, Austria
| |
Collapse
|
31
|
Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
3D-printing design for continuous flow catalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Cieslik M, Sawczak M, Jendrzejewski R, Celej J, Nogala W, Ryl J. Locally sculptured modification of the electrochemical response of conductive poly(lactic acid) 3D prints by femtosecond laser processing. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Chandrasekaran S, Feaster J, Ynzunza J, Li F, Wang X, Nelson AJ, Worsley MA. Three-Dimensional Printed MoS 2/Graphene Aerogel Electrodes for Hydrogen Evolution Reactions. ACS MATERIALS AU 2022; 2:596-601. [PMID: 36855624 PMCID: PMC9928410 DOI: 10.1021/acsmaterialsau.2c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we demonstrate the use of direct ink writing (DIW) technology to create 3D catalytic electrodes for electrochemical applications. Hybrid MoS2/graphene aerogels are made by mixing commercially available MoS2 and graphene oxide powders into a thixotropic, high concentration, viscous ink. A porous 3D structure of 2D graphene sheets and MoS2 particles was created after post treatment by freeze-drying and reducing graphene oxide through annealing. The composition and morphology of the samples were fully characterized through XPS, BET, and SEM/EDS. The resulting 3D printed MoS2/graphene aerogel electrodes had a remarkable electrochemically active surface area (>1700 cm2) and were able to achieve currents over 100 mA in acidic media. Notably, the catalytic activity of the MoS2/graphene aerogel electrodes was maintained with minimal loss in surface area compared to the non-3D printed electrodes, suggesting that DIW can be a viable method of producing durable electrodes with a high surface area for water splitting. This demonstrates that 3D printing a MoS2/graphene 3D porous network directly using our approach not only improves electrolyte dispersion and facilitates catalyst utilization but also provides multidimensional electron transport channels for improving electronic conductivity.
Collapse
|
35
|
Stefano JS, Kalinke C, da Rocha RG, Rocha DP, da Silva VAOP, Bonacin JA, Angnes L, Richter EM, Janegitz BC, Muñoz RAA. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Anal Chem 2022; 94:6417-6429. [PMID: 35348329 DOI: 10.1021/acs.analchem.1c05523] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.
Collapse
Affiliation(s)
- Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | - Cristiane Kalinke
- Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Raquel Gomes da Rocha
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Diego Pessoa Rocha
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, São Paulo, Brazil.,Department of Chemistry, Federal Institute of Paraná, 85200-000, Pitanga, Paraná, Brazil
| | | | - Juliano Alves Bonacin
- Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Lúcio Angnes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, São Paulo, Brazil
| | - Eduardo Mathias Richter
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | | |
Collapse
|
36
|
Huo XL, Zhu CC, Zhou QW, Bao N. Enhanced analytical performance of disposable 3D carbon electrodes prepared with stainless steel wire mesh. Anal Chim Acta 2022; 1202:339674. [DOI: 10.1016/j.aca.2022.339674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
|
37
|
Vivaldi F, Sebechlebská T, Vaněčková E, Biagini D, Bonini A, Kolivoška V. Electric conductivity measurements employing 3D printed electrodes and cells. Anal Chim Acta 2022; 1203:339600. [DOI: 10.1016/j.aca.2022.339600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
|
38
|
Stefano JS, Guterres E Silva LR, Rocha RG, Brazaca LC, Richter EM, Abarza Muñoz RA, Janegitz BC. New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2. Anal Chim Acta 2022; 1191:339372. [PMID: 35033268 PMCID: PMC9381826 DOI: 10.1016/j.aca.2021.339372] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The 3D printing technology has gained ground due to its wide range of applicability. The development of new conductive filaments contributes significantly to the production of improved electrochemical devices. In this context, we report a simple method to producing an efficient conductive filament, containing graphite within the polymer matrix of PLA, and applied in conjunction with 3D printing technology to generate (bio)sensors without the need for surface activation. The proposed method for producing the conductive filament consists of four steps: (i) mixing graphite and PLA in a heated reflux system; (ii) recrystallization of the composite; (iii) drying and; (iv) extrusion. The produced filament was used for the manufacture of electrochemical 3D printed sensors. The filament and sensor were characterized by physicochemical techniques, such as SEM, TGA, Raman, FTIR as well as electrochemical techniques (EIS and CV). Finally, as a proof-of-concept, the fabricated 3D-printed sensor was applied for the determination of uric acid and dopamine in synthetic urine and used as a platform for the development of a biosensor for the detection of SARS-CoV-2. The developed sensors, without pre-treatment, provided linear ranges of 0.5-150.0 and 5.0-50.0 μmol L-1, with low LOD values (0.07 and 0.11 μmol L-1), for uric acid and dopamine, respectively. The developed biosensor successfully detected SARS-CoV-2 S protein, with a linear range from 5.0 to 75.0 nmol L-1 (0.38 μg mL-1 to 5.74 μg mL-1) and LOD of 1.36 nmol L-1 (0.10 μg mL-1) and sensitivity of 0.17 μA nmol-1 L (0.01 μA μg-1 mL). Therefore, the lab-made produced and the ready-to-use conductive filament is promising and can become an alternative route for the production of different 3D electrochemical (bio)sensors and other types of conductive devices by 3D printing.
Collapse
Affiliation(s)
- Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil.
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | - Raquel Gomes Rocha
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Laís Canniatti Brazaca
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, São Paulo, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil
| | - Eduardo Mathias Richter
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil.
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil.
| |
Collapse
|
39
|
Kalinke C, de Oliveira PR, Neumsteir NV, Henriques BF, de Oliveira Aparecido G, Loureiro HC, Janegitz BC, Bonacin JA. Influence of filament aging and conductive additive in 3D printed sensors. Anal Chim Acta 2022; 1191:339228. [PMID: 35033250 DOI: 10.1016/j.aca.2021.339228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
3D printing technology combined with electrochemical techniques have allowed the development of versatile and low-cost devices. However, some aspects need to be considered for the good quality and useful life of the sensors. In this work, we have demonstrated herein that the filament aging, the conductive material, and the activation processes (post-treatments) can influence the surface characteristics and the electrochemical performance of the 3D printed sensors. Commercial filaments and 3D printed sensors were morphologically, thermally, and electrochemically analyzed. The activated graphene-based (Black Magic®) sensor showed the best electrochemical response, compared to the carbon black-filament (Proto-Pasta®). In addition, we have proven that filament aging harms the performance of the sensors since the electrodes produced with three years old filament had a considerably lower intra-days reproducibility. Finally, the activated graphene-based sensor has shown the best performance for the electrochemical detection of bisphenol A, demonstrating the importance of evaluating and control the characteristics and quality of filaments to improve the mechanical, conductive, and electrochemical performance of 3D printed sensors.
Collapse
Affiliation(s)
- Cristiane Kalinke
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-859, Campinas, São Paulo, Brazil.
| | - Paulo Roberto de Oliveira
- Department of Nature Science, Mathematics and Education, Federal University of São Carlos (UFSCar), 13600-970, Araras, São Paulo, Brazil
| | | | - Brunna Ferri Henriques
- Department of Nature Science, Mathematics and Education, Federal University of São Carlos (UFSCar), 13600-970, Araras, São Paulo, Brazil
| | | | - Hugo Campos Loureiro
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-859, Campinas, São Paulo, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Science, Mathematics and Education, Federal University of São Carlos (UFSCar), 13600-970, Araras, São Paulo, Brazil
| | - Juliano Alves Bonacin
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-859, Campinas, São Paulo, Brazil.
| |
Collapse
|
40
|
Garcia-Miranda Ferrari A, Hurst NJ, Bernalte E, Crapnell RD, Whittingham MJ, Brownson DAC, Banks CE. Exploration of defined 2-dimensional working electrode shapes through additive manufacturing. Analyst 2022; 147:5121-5129. [DOI: 10.1039/d2an01412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this work, the electrochemical response of different morphologies (shapes) and dimensions of additively manufactured (3D-printing) carbon black(CB)/poly-lactic acid (PLA) electrodes are reported.
Collapse
Affiliation(s)
| | - Nicholas J. Hurst
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Elena Bernalte
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Matthew J. Whittingham
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Dale A. C. Brownson
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| |
Collapse
|
41
|
Gao W, Michalička J, Pumera M. Hierarchical Atomic Layer Deposited V 2 O 5 on 3D Printed Nanocarbon Electrodes for High-Performance Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105572. [PMID: 34761511 DOI: 10.1002/smll.202105572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Aqueous rechargeable zinc-ion batteries (ARZIBs) are promising energy storage systems owing to their ecofriendliness, safety, and cost-efficiency. However, the sluggish Zn2+ diffusion kinetics originated from its inherent large atomic mass and high polarization remains an ongoing challenge. To this end, electrodes with 3D architectures and high porosity are highly desired. This work reports a rational design and fabrication of hierarchical core-shell structured cathodes (3D@V2 O5 ) for ARZIBs by integrating fused deposition modeling (FDM) 3D-printing with atomic layer deposition (ALD). The 3D-printed porous carbon network provides an entangled electron conductive core and interconnected ion diffusion channels, whereas ALD-coated V2 O5 serves as an active shell without sacrificing the porosity for facilitated Zn2+ diffusion. This endows the 3D@V2 O5 cathode with high specific capacity (425 mAh g-1 at 0.3 A g-1 ), competitive energy and power densities (316 Wh Kg-1 at 213 W kg-1 and 163 Wh Kg-1 at 3400 W kg-1 ), and good rate performance (221 mAh g-1 at 4.8 A g-1 ). The developed 3D@V2 O5 cathode provides a promising model for customized and scalable battery electrode engineering technology. As the ALD-coated layer determines the functional properties, the proposed strategy shows a promising prospect of FDM 3D printing using 1D carbon materials for future energy storage.
Collapse
Affiliation(s)
- Wanli Gao
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Brno, 61600, Czech Republic
| | - Jan Michalička
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Brno, 61600, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Brno, 61600, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- 3D Printing & Innovation Hub, Department of Chemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
42
|
Hassan MH, Khan R, Andreescu S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Mohamed H. Hassan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Reem Khan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| |
Collapse
|
43
|
Sieradzka M, Fabia J, Biniaś D, Graczyk T, Fryczkowski R. High-Impact Polystyrene Reinforced with Reduced Graphene Oxide as a Filament for Fused Filament Fabrication 3D Printing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7008. [PMID: 34832407 PMCID: PMC8623337 DOI: 10.3390/ma14227008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022]
Abstract
Graphene and its derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), due to their properties, have been enjoying great interest for over two decades, particularly in the context of additive manufacturing (AM) applications in recent years. High-impact polystyrene (HIPS) is a polymer used in 3D printing technology due to its high dimensional stability, low cost, and ease of processing. However, the ongoing development of AM creates the need to produce modern feedstock materials with better properties and functionality. This can be achieved by introducing reduced graphene oxide into the polymer matrix. In this study, printable composite filaments were prepared and characterized in terms of morphology and thermal and mechanical properties. Among the obtained HIPS/rGO composites, the filament containing 0.5 wt% of reduced graphene oxide had the best mechanical properties. Its tensile strength increased from 19.84 to 22.45 MPa, for pure HIPS and HIPS-0.5, respectively. Furthermore, when using the HIPS-0.5 filament in the printing process, no clogging of the nozzle was observed, which may indicate good dispersion of the rGO in the polymer matrix.
Collapse
Affiliation(s)
- Marta Sieradzka
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland; (J.F.); (D.B.); (T.G.); (R.F.)
| | | | | | | | | |
Collapse
|
44
|
Abstract
In recent years, 2D materials have been implemented in several applications due to their unique and unprecedented properties. Several examples can be named, from the very first, graphene, to transition-metal dichalcogenides (TMDs, e.g., MoS2), two-dimensional inorganic compounds (MXenes), hexagonal boron nitride (h-BN), or black phosphorus (BP). On the other hand, the accessible and low-cost 3D printers and design software converted the 3D printing methods into affordable fabrication tools worldwide. The implementation of this technique for the preparation of new composites based on 2D materials provides an excellent platform for next-generation technologies. This review focuses on the recent advances of 3D printing of the 2D materials family and its applications; the newly created printed materials demonstrated significant advances in sensors, biomedical, and electrical applications.
Collapse
|
45
|
Beydaghi H, Abouali S, Thorat SB, Del Rio Castillo AE, Bellani S, Lauciello S, Gentiluomo S, Pellegrini V, Bonaccorso F. 3D printed silicon-few layer graphene anode for advanced Li-ion batteries. RSC Adv 2021; 11:35051-35060. [PMID: 35493174 PMCID: PMC9042803 DOI: 10.1039/d1ra06643a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022] Open
Abstract
The printing of three-dimensional (3D) porous electrodes for Li-ion batteries is considered a key driver for the design and realization of advanced energy storage systems. While different 3D printing techniques offer great potential to design and develop 3D architectures, several factors need to be addressed to print 3D electrodes, maintaining an optimal trade-off between electrochemical and mechanical performances. Herein, we report the first demonstration of 3D printed Si-based electrodes fabricated using a simple and cost-effective fused deposition modelling (FDM) method, and implemented as anodes in Li-ion batteries. To fulfil the printability requirement while maximizing the electrochemical performance, the composition of the FDM filament has been engineered using polylactic acid as the host polymeric matrix, a mixture of carbon black-doped polypyrrole and wet-jet milling exfoliated few-layer graphene flakes as conductive additives, and Si nanoparticles as the active material. The creation of a continuous conductive network and the control of the structural properties at the nanoscale enabled the design and realization of flexible 3D printed anodes, reaching a specific capacity up to ∼345 mA h g-1 at the current density of 20 mA g-1, together with a capacity retention of 96% after 350 cycles. The obtained results are promising for the fabrication of flexible polymeric-based 3D energy storage devices to meet the challenges ahead for the design of next-generation electronic devices.
Collapse
Affiliation(s)
- Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- BeDimensional S.p.A Lungotorrente Secca 30R 16163 Genoa Italy
| | - Sara Abouali
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- BeDimensional S.p.A Lungotorrente Secca 30R 16163 Genoa Italy
| | - Sanjay B Thorat
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- BeDimensional S.p.A Lungotorrente Secca 30R 16163 Genoa Italy
| | - Antonio Esau Del Rio Castillo
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- BeDimensional S.p.A Lungotorrente Secca 30R 16163 Genoa Italy
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- BeDimensional S.p.A Lungotorrente Secca 30R 16163 Genoa Italy
| | - Simone Lauciello
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
| | - Silvia Gentiluomo
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- BeDimensional S.p.A Lungotorrente Secca 30R 16163 Genoa Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- BeDimensional S.p.A Lungotorrente Secca 30R 16163 Genoa Italy
| |
Collapse
|
46
|
Muñoz J, Redondo E, Pumera M. Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103189. [PMID: 34510744 DOI: 10.1002/smll.202103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The ability to combine organic and inorganic components in a single material represents a great step toward the development of advanced (opto)electronic systems. Nowadays, 3D-printing technology has generated a revolution in the rapid prototyping and low-cost fabrication of 3D-printed electronic devices. However, a main drawback when using 3D-printed transducers is the lack of robust functionalization methods for tuning their capabilities. Herein, a simple, general and robust in situ functionalization approach is reported to tailor the capabilities of 3D-printed nanocomposite carbon/polymer electrode (3D-nCE) surfaces with a battery of functional inorganic nanoparticles (FINPs), which are appealing active units for electronic, optical and catalytic applications. The versatility of the resulting functional organic-inorganic 3D-printed electronic interfaces is provided in different pivotal areas of electrochemistry, including i) electrocatalysis, ii) bio-electroanalysis, iii) energy (storage and conversion), and iv) photoelectrochemical applications. Overall, the synergism of combining the transducing characteristics of 3D-nCEs with the implanted tuning surface capabilities of FINPs leads to new/enhanced electrochemical performances when compared to their bare 3D-nCE counterparts. Accordingly, this work elucidates that FINPs have much to offer in the field of 3D-printing technology and provides the bases toward the green fabrication of functional organic-inorganic 3D-printed (opto)electronic interfaces with custom catalytic activity.
Collapse
Affiliation(s)
- Jose Muñoz
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, Brno, 61200, Czech Republic
| | - Edurne Redondo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, Brno, 61200, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, Brno, 61200, Czech Republic
- 3D Printing & Innovation Hub, Department of Food Technology, Mendel University in Brno, Zemedelska 1/1665, Brno, 613 00, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
47
|
Sun H, Lin Y, Takeshi H, Wang X, Wu D, Tian Y. Synthesis of 3D graphene-based materials and their applications for removing dyes and heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52625-52650. [PMID: 34448139 DOI: 10.1007/s11356-021-15649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Contamination of water streams by dyes and heavy metals has become a major problem due to their persistence, accumulation, and toxicity. Therefore, it is essential to eliminate and/or reduce these contaminants before discharge into the natural environment. In recent years, 3D graphene has drawn intense research interests owing to its large surface area, superior charge conductivity, and thermal conductivity properties. Due to their unique surface and structural properties, 3D graphene-based materials (3D GBMs) are regarded as ideal adsorbents for decontamination and show great potential in wastewater or exhaust gas treatment. Here, this minireview summarizes the recent progress on 3D GBMs synthesis and their applications for adsorbing dyes and heavy metals from wastewater based on the structures and properties of 3D GBMs, which provides valuable insights into 3D GBMs' application in the environmental field.
Collapse
Affiliation(s)
- Hefei Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yan Lin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hagio Takeshi
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Deyi Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanqin Tian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
48
|
Tagliaferri S, Nagaraju G, Panagiotopoulos A, Och M, Cheng G, Iacoviello F, Mattevi C. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance. ACS NANO 2021; 15:15342-15353. [PMID: 34491713 PMCID: PMC8482754 DOI: 10.1021/acsnano.1c06535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 05/26/2023]
Abstract
Three-dimensional (3D) printing is gaining importance as a sustainable route for the fabrication of high-performance energy storage devices. It enables the streamlined manufacture of devices with programmable geometry at different length scales down to micron-sized dimensions. Miniaturized energy storage devices are fundamental components for on-chip technologies to enable energy autonomy. In this work, we demonstrate 3D printed microsupercapacitor electrodes from aqueous inks of pristine graphene without the need of high temperature processing and functional additives. With an intrinsic electrical conductivity of ∼1370 S m-1 and rationally designed architectures, the symmetric microsupercapacitors exhibit an exceptional areal capacitance of 1.57 F cm-2 at 2 mA cm-2 which is retained over 72% after repeated voltage holding tests. The areal power density (0.968 mW cm-2) and areal energy density (51.2 μWh cm-2) outperform the ones of previously reported carbon-based supercapacitors which have been either 3D or inkjet printed. Moreover, a current collector-free interdigitated microsupercapacitor combined with a gel electrolyte provides electrochemical performance approaching the one of devices with liquid-like ion transport properties. Our studies provide a sustainable and low-cost approach to fabricate efficient energy storage devices with programmable geometry.
Collapse
Affiliation(s)
- Stefano Tagliaferri
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Goli Nagaraju
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Mauro Och
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gang Cheng
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Francesco Iacoviello
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Cecilia Mattevi
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
49
|
High Performance Tunable Catalysts Prepared by Using 3D Printing. MATERIALS 2021; 14:ma14175017. [PMID: 34501105 PMCID: PMC8434323 DOI: 10.3390/ma14175017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Honeycomb monoliths are the preferred supports in many industrial heterogeneous catalysis reactions, but current extrusion synthesis only allows obtaining parallel channels. Here, we demonstrate that 3D printing opens new design possibilities that outperform conventional catalysts. High performance carbon integral monoliths have been prepared with a complex network of interconnected channels and have been tested for carbon dioxide hydrogenation to methane after loading a Ni/CeO2 active phase. CO2 methanation rate is enhanced by 25% at 300 °C because the novel design forces turbulent flow into the channels network. The methodology and monoliths developed can be applied to other heterogeneous catalysis reactions, and open new synthesis options based on 3D printing to manufacture tailored heterogeneous catalysts.
Collapse
|
50
|
3D-printed hybrid-carbon-based electrodes for electroanalytical sensing applications. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|