1
|
Jamali F, Lan K, Daniel P, Petrecca K, Sabri S, Abdulkarim B. Synergistic Dual Targeting of Thioredoxin and Glutathione Systems Irrespective of p53 in Glioblastoma Stem Cells. Antioxidants (Basel) 2024; 13:1201. [PMID: 39456455 PMCID: PMC11504866 DOI: 10.3390/antiox13101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma (GBM) is an incurable primary brain cancer characterized by increased reactive oxygen species (ROS) production. The redox-sensitive tumor suppressor gene TP53, wild-type (wt) for 70% of patients, regulates redox homeostasis. Glioblastoma stem cells (GSCs) increase thioredoxin (Trx) and glutathione (GSH) antioxidant systems as survival redox-adaptive mechanisms to maintain ROS below the cytotoxic threshold. Auranofin, an FDA-approved anti-rheumatoid drug, inhibits thioredoxin reductase 1 (TrxR1). L-buthionine sulfoximine (L-BSO) and the natural product piperlongumine (PPL) inhibit the GSH system. We evaluated the cytotoxic effects of Auranofin alone and in combination with L-BSO or PPL in GBM cell lines and GSCs with a known TP53 status. The Cancer Genome Atlas/GBM analysis revealed a significant positive correlation between wtp53 and TrxR1 expression in GBM. Auranofin induced ROS-dependent cytotoxicity within a micromolar range in GSCs. Auranofin decreased TrxR1 expression, AKT (Ser-473) phosphorylation, and increased p53, p21, and PARP-1 apoptotic cleavage in wtp53-GSCs, while mutant-p53 was decreased in a mutant-p53 GSC line. Additionally, p53-knockdown in a wtp53-GSC line decreased TrxR1 expression and significantly increased sensitivity to Auranofin, suggesting the role of wtp53 as a negative redox-sensitive mechanism in response to Auranofin in GSCs. The combination of Auranofin and L-BSO synergistically increased ROS, decreased IC50s, and induced long-term cytotoxicity irrespective of p53 in GBM cell lines and GSCs. Intriguingly, Auranofin increased the expression of glutathione S-transferase pi-1 (GSTP-1), a target of PPL. Combining Auranofin with PPL synergistically decreased IC50s to a nanomolar range in GSCs, supporting the potential to repurpose Auranofin and PPL in GBM.
Collapse
Affiliation(s)
- Fatemeh Jamali
- Pathology Graduate and Postdoctoral Studies Program, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
| | - Katherine Lan
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Paul Daniel
- Centre for Cancer Research, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Faculty of Medicine, Monash University, Clayton, VIC 3168, Australia;
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 1A1, Canada;
| | - Siham Sabri
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
| | - Bassam Abdulkarim
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada;
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| |
Collapse
|
2
|
Yang C, Cui XW, Ding ZW, Jiang TY, Feng XF, Pan YF, Lin YK, Shang TY, Wang Q, Pan J, Wang J, Wang HY, Dong LW. Gankyrin and TIGAR cooperatively accelerate glucose metabolism toward the PPP and TCA cycle in hepatocellular carcinoma. Cancer Sci 2022; 113:4151-4164. [PMID: 36114745 DOI: 10.1111/cas.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Oncogene-derived metabolic reprogramming is important for anabolic growth of cancer cells, which is now considered to be not simply rely on glycolysis. Pentose phosphate pathway and tricarboxylic acid cycle also play pivotal roles in helping cancer cells to meet their anabolic and energy demands. The present work focused on gankyrin, a relatively specific oncogene in hepatocellular carcinoma (HCC), and its impact on glycolysis and mitochondrial homeostasis. Metabolomics, RNA-seq analysis, and subsequent conjoint analysis illustrated that gankyrin regulated the pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and mitochondrial function and homeostasis, which play pivotal roles in tumor development. Mechanistically, gankyrin was found to modulate HCC metabolic reprogramming via TIGAR. Gankyrin positively regulated the transcription of TIGAR through Nrf2, which bound to the antioxidant response elements (AREs) in the promoter of TIGAR. Interestingly, TIGAR feedback regulated the transcription of Nrf2 and subsequently gankyrin by promoting nuclear importation of PGC1α. The loop between gankyrin, Nrf2, and TIGAR accelerated glucose metabolism toward the PPP and TCA cycle, which provided vital building blocks, such as NADPH, ATP, and ribose of tumor and further facilitated the progression of HCC.
Collapse
Affiliation(s)
- Chun Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao-Wen Cui
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Zhi-Wen Ding
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tian-Yi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Xiao-Fan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Yu-Fei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Tai-Yu Shang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Qing Wang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China.,Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Naval Medical University & Ministry of Education, Shanghai, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
4
|
Huang B, Lang X, Li X. The role of TIGAR in nervous system diseases. Front Aging Neurosci 2022; 14:1023161. [DOI: 10.3389/fnagi.2022.1023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) mainly regulates pentose phosphate pathway by inhibiting glycolysis, so as to synthesize ribose required by DNA, promote DNA damage repair and cell proliferation, maintain cell homeostasis and avoid body injury. Its physiological functions include anti-oxidative stress, reducing inflammation, maintaining mitochondrial function, inhibiting apoptosis, reducing autophagy etc. This paper reviews the research of TIGAR in neurological diseases, including stroke, Parkinson’s disease (PD), Alzheimer’s disease (AD), seizures and brain tumors, aiming to provide reference for the development of new therapeutic targets.
Collapse
|
5
|
Ge X, Xu M, Cheng T, Hu N, Sun P, Lu B, Wang Z, Li J. TP53I13 promotes metastasis in glioma via macrophages, neutrophils, and fibroblasts and is a potential prognostic biomarker. Front Immunol 2022; 13:974346. [PMID: 36275718 PMCID: PMC9585303 DOI: 10.3389/fimmu.2022.974346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background TP53I13 is a protein coding tumor suppression gene encoded by the tumor protein p53. Overexpression of TP53I13 impedes tumor cell proliferation. Nevertheless, TP53I13 role and expression in the emergence and progression of glioma (low-grade glioma and glioblastoma) are yet to be identified. Thus, we aim to use comprehensive bioinformatics analyses to investigate TP53I13 and its prognostic value in gliomas. Methods Multiple databases were consulted to evaluate and assess the expression of TP53I13, such as the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GeneMANIA, and Gene Expression Profiling Interactive. TP53I13 expression was further explored using immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Through Gene Set Enrichment Analysis (GSEA), the biological functions of TP53I13 and metastatic processes associated with it were studied. Results The expression of TP53I13 was higher in tumor samples compared to normal samples. In samples retrieved from the TCGA and CGGA databases, high TP53I13 expression was associated with poor survival outcomes. The analysis of multivariate Cox showed that TP53I13 might be an independent prognostic marker of glioma. It was also found that increased expression of TP53I13 was significantly correlated with PRS type, status, 1p/19q codeletion status, IDH mutation status, chemotherapy, age, and tumor grade. According to CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcript), the expression of TP53I13 correlates with macrophages, neutrophils, and dendritic cells. GSEA shows a close correlation between TP53I13 and p53 signaling pathways, DNA replication, and the pentose phosphate pathway. Conclusion Our results reveal a close correlation between TP53I13 and gliomas. Further, TP53I13 expression could affect the survival outcomes in glioma patients. In addition, TP53I13 was an independent marker that was crucial in regulating the infiltration of immune cells into tumors. As a result of these findings, TP53I13 might represent a new biomarker of immune infiltration and prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Xinqi Ge
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Nan Hu
- Medical School of Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| |
Collapse
|
6
|
Wang H, Wang Q, Cai G, Duan Z, Nugent Z, Huang J, Zheng J, Borowsky AD, Li JJ, Liu P, Kung HJ, Murphy L, Chen HW, Wang J. Nuclear TIGAR mediates an epigenetic and metabolic autoregulatory loop via NRF2 in cancer therapeutic resistance. Acta Pharm Sin B 2022; 12:1871-1884. [PMID: 35847493 PMCID: PMC9279715 DOI: 10.1016/j.apsb.2021.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Hong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijian Duan
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Zoann Nugent
- Research Institute in Oncology and Hematology, University of Manitoba and CancerCare Manitoba, Winnipeg R3E 0V9, Canada
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Corresponding authors.
| | - Jianwei Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Alexander D. Borowsky
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA 95817, USA
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
- UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Leigh Murphy
- Research Institute in Oncology and Hematology, University of Manitoba and CancerCare Manitoba, Winnipeg R3E 0V9, Canada
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
- UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
- Corresponding authors.
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| |
Collapse
|
7
|
Patwardhan RS, Sharma D, Sandur SK. Thioredoxin reductase: An emerging pharmacologic target for radiosensitization of cancer. Transl Oncol 2022; 17:101341. [PMID: 35078017 PMCID: PMC8790659 DOI: 10.1016/j.tranon.2022.101341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel agents are required to increase the radiosensitivity of cancer and improve the outcome of radiotherapy. Thioredoxin (Trx) and thioredoxin reductase (TrxR) reduce the oxidized cysteine thiols in several proteins, which regulate cellular redox, survival, proliferation, DNA synthesis, transcription factor activity and apoptosis. TrxR is essential for maintaining a conducive redox state for tumor growth, survival and resistance to therapy. Therefore, it is an appealing pharmacological target for the radiosensitization of tumors. Ionizing radiation (IR) is known to cause cytotoxicity through ROS, oxidative stress and DNA damage. Inhibition of thioredoxin system augments IR induced oxidative stress and potentiates cytotoxic effects. However, TrxR also regulates several critical cellular processes in normal cells. Here, we highlight the pre-clinical research and pharmacological studies to surmise possible utility of different TrxR inhibitors for radiosensitization. This review provides a succinct perspective on the role of TrxR inhibitors during the radiotherapy of cancer.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
8
|
Molecular Basis for the Interactions of Human Thioredoxins with Their Respective Reductases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621292. [PMID: 34122725 PMCID: PMC8189816 DOI: 10.1155/2021/6621292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
The mammalian cytosolic thioredoxin (Trx) system consists of Trx1 and its reductase, the NADPH-dependent seleno-enzyme TrxR1. These proteins function as electron donor for metabolic enzymes, for instance in DNA synthesis, and the redox regulation of numerous processes. In this work, we analysed the interactions between these two proteins. We proposed electrostatic complementarity as major force controlling the formation of encounter complexes between the proteins and thus the efficiency of the subsequent electron transfer reaction. If our hypothesis is valid, formation of the encounter complex should be independent of the redox reaction. In fact, we were able to confirm that also a redox inactive mutant of Trx1 lacking both active site cysteinyl residues (C32,35S) binds to TrxR1 in a similar manner and with similar kinetics as the wild-type protein. We have generated a number of mutants with alterations in electrostatic properties and characterised their interaction with TrxR1 in kinetic assays. For human Trx1 and TrxR1, complementary electrostatic surfaces within the area covered in the encounter complex appear to control the affinity of the reductase for its substrate Trx. Electrostatic compatibility was even observed in areas that do not form direct molecular interactions in the encounter complex, and our results suggest that the electrostatic complementarity in these areas influences the catalytic efficiency of the reduction. The human genome encodes ten cytosolic Trx-like or Trx domain-containing proteins. In agreement with our hypothesis, the proteins that have been characterised as TrxR1 substrates also show the highest similarity in their electrostatic properties.
Collapse
|
9
|
Abdullah NA, Inman M, Moody CJ, Storr SJ, Martin SG. Cytotoxic and radiosensitising effects of a novel thioredoxin reductase inhibitor in breast cancer. Invest New Drugs 2021; 39:1232-1241. [PMID: 33768386 PMCID: PMC8426295 DOI: 10.1007/s10637-021-01106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Radiotherapy is an effective treatment modality for breast cancer but, unfortunately, not all patients respond fully with a significant number experiencing local recurrences. Overexpression of thioredoxin and thioredoxin reductase has been reported to cause multidrug and radiation resistance - their inhibition may therefore improve therapeutic efficacy. Novel indolequinone compounds have been shown, in pancreatic cancer models, to inhibit thioredoxin reductase activity and exhibit potent anticancer activity. The present study evaluates, using in vitro breast cancer models, the efficacy of a novel indolequinone compound (IQ9) as a single agent and in combination with ionising radiation using a variety of endpoint assays including cell proliferation, clonogenic survival, enzyme activity, and western blotting. Three triple-negative breast cancer (MDA-MB-231, MDA-MB-468, and MDA-MB-436) and two luminal (MCF-7 and T47D) breast cancer cell lines were used. Results show that treatment with IQ9 significantly inhibited thioredoxin reductase activity, and inhibited cell growth and colony formation of breast cancer cells with IC50 values in the low micromolar ranges. Enhanced radiosensitivity of triple-negative breast cancer cells was observed, with sensitiser enhancement ratios of 1.20–1.43, but with no evident radiosensitisation of luminal breast cancer cell lines. IQ9 upregulated protein expression of thioredoxin reductase in luminal but not in triple-negative breast cancer cells which may explain the observed differential radiosensitisation. This study provides important evidence of the roles of the thioredoxin system as an exploitable radiobiological target in breast cancer cells and highlights the potential therapeutic value of indolequinones as radiosensitisers. ***This study was not part of a clinical trial. Clinical trial registration number: N/A
Collapse
Affiliation(s)
- Nurul A Abdullah
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Present address: Biomedical Science Department, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Martyn Inman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Christopher J Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
10
|
Shi X, Zhang W, Gu C, Ren H, Wang C, Yin N, Wang Z, Yu J, Liu F, Zhang H. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radic Biol Med 2021; 162:514-522. [PMID: 33197538 DOI: 10.1016/j.freeradbiomed.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
Two-deoxy-d-glucose (2-DG) mediated glucose restriction (GR) has been applied as a potential therapeutic strategy for tumor clinical treatments. However, increasing evidences have indicated that 2-DG alone is inefficient in killing tumor cells, and the effect of 2-DG on modifying tumor radio-responses also remains controversial. In this study, we found that 2-DG triggered metabolic adaption in U87 glioma cells by up-regulating nicotinamide phosphoribosyltransferase (NAMPT) and cellular NAD+ content, which abolished 2-DG-induced potential radiosensitizing effect in glioma cells. Strikingly, NAD+ depletion evoked notable oxidative stress by NADPH reduction and hence re-radiosensitized 2-DG-treated glioma cells. Furthermore, isocitrate dehydrogenase-1 (IDH1) mutant U87 glioma cells with deficiency in the rate-limiting enzyme of Preiss-Handler pathway nicotinate phosphoribosyltransferase (Naprt1) revealed notable 2-DG-induced oxidative stress and radiosensitization. Our findings implied that targeting NAD+ could radiosensitize gliomas with GR, and 2-DG administration could be benefit for tumor patients with IDH1 mutation.
Collapse
Affiliation(s)
- Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gu
- Department of Radiation Oncology, Changzhou No.4 People's Hospital, Soochow University, Changzhou, 213001, China
| | - Huangge Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Chen Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| |
Collapse
|
11
|
Branco V, Pimentel J, Brito MA, Carvalho C. Thioredoxin, Glutathione and Related Molecules in Tumors of the Nervous System. Curr Med Chem 2020; 27:1878-1900. [PMID: 30706774 DOI: 10.2174/0929867326666190201113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Central Nervous System (CNS) tumors have a poor survival prognosis due to their invasive and heterogeneous nature, in addition to the resistance to multiple treatments. OBJECTIVE In this paper, the main aspects of brain tumor biology and pathogenesis are reviewed both for primary tumors of the brain, (i.e., gliomas) and for metastasis from other malignant tumors, namely lung cancer, breast cancer and malignant melanoma which account for a high percentage of overall malignant brain tumors. We review the role of antioxidant systems, namely the thioredoxin and glutathione systems, in the genesis and/or progression of brain tumors. METHODS Although overexpression of Thioredoxin Reductase (TrxR) and Thioredoxin (Trx) is often linked to increased malignancy rate of brain tumors, and higher expression of Glutathione (GSH) and Glutathione S-Transferases (GST) are associated to resistance to therapy, several knowledge gaps still exist regarding for example, the role of Peroxiredoxins (Prx), and Glutaredoxins (Grx). CONCLUSION Due to their central role in redox homeostasis and ROS scavenging, redox systems are potential targets for new antitumorals and examples of innovative therapeutics aiming at improving success rates in brain tumor treatment are discussed.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurology, Hospital de Santa Maria (CHLN), Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal.,Faculty of Medicine, Lisbon University, Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
12
|
Yin N, Xie T, Zhang H, Chen J, Yu J, Liu F. IDH1-R132H mutation radiosensitizes U87MG glioma cells via epigenetic downregulation of TIGAR. Oncol Lett 2019; 19:1322-1330. [PMID: 31966064 PMCID: PMC6956398 DOI: 10.3892/ol.2019.11148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most frequently mutated gene in World Health Organization grade II–III and secondary glioma. The majority of IDH1 mutation cases involve the substitution from arginine to histidine at codon 132 (IDH1-R132H). Although the oncogenic role of IDH1-R132H has been confirmed, patients with IDH1-R132H brain tumors exhibit a better response to radiotherapy compared with those with wild-type (WT) IDH1. In the present study, the potential mechanism of radiosensitization mediated by IDH1-R132H was investigated by overexpressing IDH1-R132H in U87MG glioma cells. The results demonstrated decreased clonogenic capacity of IDH1-R132H-expressing cells, as well as delayed repair of DNA double-strand breaks compared with IDH1-WT. Data from The Cancer Genome Atlas were analyzed, which demonstrated that the expression of TP53-induced glycolysis and apoptosis regulator (TIGAR) was lower in patients with glioma harboring IDH1 mutations compared with that in patients with IDH1-WT. TIGAR-knockdown increases the radiosensitivity of glioma cells; in U87MG cells, IDH1-R132H suppressed TIGAR expression. Chromatin immunoprecipitation assays revealed increased levels of repressive H3K9me3 markers at the TIGAR promoter in IDH1-R132H compared with IDH1-WT. These data indicated that IDH1-R132H may overcome radioresistance in glioma cells through epigenetic suppression of TIGAR expression. However, these favorable effects were not observed in U87MG glioma stem-like cells. The results of the present study provide an improved understanding of the functionality of IDH1 mutations in glioma cells, which may improve the therapeutic efficacy of radiotherapy.
Collapse
Affiliation(s)
- Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Ting Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
13
|
Zou S, Rao Y, Chen W. miR‐885‐5p plays an accomplice role in liver cancer by instigating TIGAR expression via targeting its promoter. Biotechnol Appl Biochem 2019; 66:763-771. [PMID: 31119791 DOI: 10.1002/bab.1767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shubiao Zou
- Department of Laboratory Medicine The Second Affiliated Hospital of Nanchang University Nanchang P. R. China
| | - Yao Rao
- Department of Physical Education Jiangxi University of Technology Nanchang P. R. China
| | - Weicai Chen
- Department of Orthopedics The Second Affiliated Hospital of Nanchang University Nanchang P. R. China
| |
Collapse
|
14
|
Li Z, Shao Z, Chen S, Huang D, Peng Y, Chen S, Ma K. TIGAR impedes compression-induced intervertebral disc degeneration by suppressing nucleus pulposus cell apoptosis and autophagy. J Cell Physiol 2019; 235:1780-1794. [PMID: 31317559 DOI: 10.1002/jcp.29097] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
To investigate whether TP53-induced glycolysis and apoptosis regulator (TIGAR) participates in compression-induced intervertebral disc (IVD) degeneration, and to determine the regulatory effect of TIGAR on nucleus pulposus (NP) cell autophagy and apoptosis following compression-induced injuries. IVD tissues were collected from human patients undergoing surgery (n = 20) and skeletally mature Sprague-Dawley rats (n = 15). Initially, the effect of compression on the expression of TIGAR was evaluated with in vivo and in vitro models. In addition, TIGAR was silenced to investigate the regulatory effect of TIGAR on compression-induced intracellular reactive oxygen species (ROS) levels, autophagy, and apoptosis in rat NP cells. Furthermore, the P53 inhibitor pifithrin-α (PFTα) and SP1 inhibitor mithramycin A were employed to detect expression level changes of TIGAR and autophagy-associated target molecules. TIGAR expression of NP cells increased gradually in human degenerative IVDs and in rat NP cells under compression both in vivo and in vitro. TIGAR knockdown enhanced compression-induced intracellular ROS generation and the NADPH/NADP+ and GSH/GSSG ratios. Moreover, TIGAR knockdown amplified the compression-induced caspase-3 activation and the apoptosis rate of rat NP cells. Likewise, knockdown of TIGAR significantly accelerated LC3B expression and autophagosome formation in rat NP cells during compression-induced injuries. The results also established that mithramycin A could inhibit TIGAR expression and autophagy levels in NP cells under compression conditions, while PFTα had no similar effect. Our data demonstrated that TIGAR acted as an important endogenous negative regulator of ROS levels, which might inhibit compression-induced apoptosis and autophagy through SP1-dependent mechanisms.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Donghua Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Tang Z, He Z. TIGAR promotes growth, survival and metastasis through oxidation resistance and AKT activation in glioblastoma. Oncol Lett 2019; 18:2509-2517. [PMID: 31402948 PMCID: PMC6676722 DOI: 10.3892/ol.2019.10574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma has a poor prognosis and is one of the most lethal types of cancer in the world. TP53 induced glycolysis regulatory phosphatase (TIGAR) is upregulated in various types of cancer. Therefore, the present study investigated the role of TIGAR in glioblastoma. TIGAR expression was measured in glioma samples and cell lines using immunohistochemistry and western blotting. Reduced nicotinamide adenine dinucleotide phosphate (NADPH), glutathione, malondialdehyde and intracellular reactive oxygen species levels were detected to measure oxidative stress in U-87MG cells following short hairpin RNA (shRNA)-mediated knockdown of TIGAR. Cell viability was determined using an MTT assay for TIGAR-overexpression vector- and TIGAR-shRNA-transfected U-87MG cells. Apoptosis was assessed to evaluate whether TIGAR knockdown sensitized cells to the antitumor effects of temozolomide (TMZ). Migration, invasion and epithelial-mesenchymal transition (EMT) were further assessed using Transwell and western blotting assays. A co-immunoprecipitation assay was used to detect the interaction between TIGAR and protein kinase B (AKT). The results of the present study revealed that TIGAR was positively associated with poor survival and was upregulated in glioblastoma. TIGAR knockdown significantly increased oxidative stress, decreased cell proliferation and exacerbated TMZ-induced apoptosis in U-87MG cells. Additionally, TIGAR knockdown decreased migration, invasion and EMT, and treatment of TIGAR-shRNA-transfected cells with NADPH had no effect on metastasis. In addition, TIGAR promoted AKT activation and bound to AKT. In conclusion, the present study demonstrated that TIGAR may promote glioblastoma growth and progression through oxidation resistance and AKT activation.
Collapse
Affiliation(s)
- Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
16
|
Maurer GD, Heller S, Wanka C, Rieger J, Steinbach JP. Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Sensitizes Glioma Cells to Hypoxia, Irradiation and Temozolomide. Int J Mol Sci 2019; 20:ijms20051061. [PMID: 30823646 PMCID: PMC6429390 DOI: 10.3390/ijms20051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to decrease glycolysis, to activate the pentose phosphate pathway, and to provide protection against oxidative damage. Hypoxic regions are considered characteristic of glioblastoma and linked with resistance to current treatment strategies. Here, we established that LNT-229 glioma cell lines stably expressed shRNA constructs targeting TIGAR, and exposed them to hypoxia, irradiation and temozolomide. The disruption of TIGAR enhanced levels of reactive oxygen species and cell death under hypoxic conditions, as well as the effectiveness of irradiation and temozolomide. In addition, TIGAR was upregulated by HIF-1α. As a component of a complex network, TIGAR contributes to the metabolic adjustments that arise from either spontaneous or therapy-induced changes in tumor microenvironment.
Collapse
Affiliation(s)
- Gabriele D Maurer
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Sonja Heller
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Christina Wanka
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Geng J, Yuan X, Wei M, Wu J, Qin ZH. The diverse role of TIGAR in cellular homeostasis and cancer. Free Radic Res 2018; 52:1240-1249. [PMID: 30284488 DOI: 10.1080/10715762.2018.1489133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) is a p53 target protein that plays critical roles in glycolysis and redox balance. Accumulating evidence shows that TIGAR is highly expressed in cancer. TIGAR redirects glycolysis and promotes carcinoma growth by providing metabolic intermediates and reductive power derived from pentose phosphate pathway (PPP). The expression of TIGAR in cancer is positively associated with chemotherapy resistance, suggesting that TIGAR could be a novel therapeutic target. In this review, we briefly presented the function of TIGAR in metabolic homeostasis in normal and cancer cells. Finally, we discussed the future directions of TIGAR research in cancer.
Collapse
Affiliation(s)
- Ji Geng
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Xiao Yuan
- b Pathology Department , The First Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Mingzhen Wei
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Junchao Wu
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Zheng-Hong Qin
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| |
Collapse
|
18
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|
19
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|