1
|
Jia Y, Zhang X, Zhao C, Ma Z, Sun K, Sun Y, Du X, Liu M, Liang X, Yu X, Gao Y. miR-212-5p Regulates PM 2.5-Induced Apoptosis by Targeting LAMC2 and LAMA3. Int J Mol Sci 2025; 26:1761. [PMID: 40004224 PMCID: PMC11855808 DOI: 10.3390/ijms26041761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Fine particulate matter (PM2.5) is often linked to a range of respiratory diseases and cellular damage. Although studies have shown that the expression profiles of microRNAs (miRNAs) are altered during lung damage brought on by PM2.5, the underlying functions of miRNAs remain poorly understood. In this research, we explored the role of PM2.5-induced apoptosis in detail and focused on the miRNA (miR-212-5p) that regulates apoptosis. Through a dual-luciferase assay, a direct targeting connection between laminin subunits γ2 (LAMC2) and α3 (LAMA3) and miR-212-5p was successfully demonstrated. This study focused on revealing the negative regulatory relationship between miR-212-5p and LAMC2 and LAMA3, providing important clues for a deeper understanding of the relevant physiological and pathological mechanisms. The present study showed that LAMC2 and LAMA3 positively regulate the PI3K-AKT pathway and negatively regulate the NF-κB pathway, which directly leads to significant changes in apoptosis rates. This study reveals a previously unrecognized molecular mechanism by showing that miR-212-5p directly targets LAMC2 and LAMA3 and thus associates with PM2.5-induced apoptosis via the PI3K/AKT/NF-κB pathway. These findings not only redefine the role of miR-212-5p in apoptosis but also open up new avenues for future research.
Collapse
Affiliation(s)
- Yunna Jia
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Xiqing Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Cuizhu Zhao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Zhenhua Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Ke Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Yize Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Xiaohui Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Meng Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China;
| | - Xiuzhen Yu
- Institute of Agricultural Mechanisation, Xinjiang Academy of Agricultural Sciences, Wulumuqi 830091, China
| | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| |
Collapse
|
2
|
Harris AR, Hughes JD, Lawrence WR, Lenz P, Franklin J, Bhawsar PMS, Dorsey TH, Rossi EL, Pichardo CM, Pichardo MS, White AJ, Ramin C, Duggan MA, Abubakar M, Rozeboom AM, Almeida JS, Gierach GL, Ambs S, Jenkins BD. Neighborhood Environment, DNA Methylation, and Presence of Crown-Like Structures of the Breast. JAMA Netw Open 2025; 8:e2461334. [PMID: 39992653 PMCID: PMC11851241 DOI: 10.1001/jamanetworkopen.2024.61334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/29/2024] [Indexed: 02/26/2025] Open
Abstract
Importance Inflammation impacts cancer risk and tumor biological processes, yet studies linking it to social and environmental risk factors are lacking. Objective To investigate the association of neighborhood deprivation and air pollution with breast adipose inflammation as well as the association between crown-like structures of the breast (CLS-B) and DNA methylation in Black and White women. Design, Setting, and Participants This cross-sectional study analyzed women with and without breast cancer participating in the National Cancer Institute-Maryland Breast Cancer Study, most of whom were recruited between January 1, 1993, and December 1, 2003, from the University of Maryland Medical Center and surrounding hospitals in the Baltimore, Maryland, area. A small subset of the sample was recruited between March 27, 2012, and November 27, 2017. Noncancerous breast tissue was collected from women who underwent reduction mammoplasty or breast cancer surgery. Statistical analyses were conducted between May and August 2024. Exposures Two socioenvironmental exposures were examined: air pollution (specifically, fine particulate matter less than 2.5 μm in diameter [PM2.5]) and neighborhood deprivation (measured with Neighborhood Deprivation Index [NDI]). Participant geocodes were linked to 2000 US Census data to calculate PM2.5 concentrations (total mass [μg/m3]) and NDI. Main Outcomes and Measures Breast tissues underwent immunohistochemical staining for pan-macrophage marker CD68 to detect 2 outcomes: CLS-B and adipose-associated macrophages. CLS-B and adipose-related macrophages were assessed by pathologists using artificial intelligence-assisted and manual approaches. Covariate-adjusted logistic regression models were used to ascertain associations between PM2.5 and NDI (exposures) and presence or absence of CLS-B (outcome); CD68-positive adipose macrophages were modeled as a dichotomous high or low variable. Covariate-adjusted linear regression was used to identify associations between CLS-B (exposure) and DNA methylation (outcome). Results The cohort included 205 participants (127 Black [62.0%], 78 White [38.0%] women; mean [SD] age, 48.7 [13.3] years). Women with vs without CLS-B had higher median (IQR) body mass index (calculated as weight in kilograms divided by height in meters squared; 35.5 [30.5-40.9] vs 31.8 [26.6-36.4]; P = .02). Higher levels of PM2.5 (odds ratio [OR], 2.32; 95% CI, 1.12-4.78; P = .02) and NDI (OR, 1.21; 95% CI, 1.02-1.43; P = .03) were associated with presence of CLS-B overall; findings were still significant among Black women (PM2.5: OR, 2.64 [95% CI, 1.10-6.33], P = .03; NDI: OR, 1.22 [95% CI, 1.01-1.48], P = .04) but were not statistically significant among White women (PM2.5: OR, 1.65 [95% CI, 0.45-5.99], P = .45; NDI: OR, 1.19 [95% CI, 0.83-1.70], P = .35). Higher PM2.5 concentration was associated with increased macrophage infiltration (OR, 2.11; 95% CI, 1.24-3.60; P = .006), with similar outcomes by race. The top 2 significant differentially methylated CpG sites by CLS-B status were SAR1B (β = 0.01; 95% CI, 0.01-0.02; P < .001) and IL2RB (β = -0.04; 95% CI, -0.05 to -0.02; P < .001). Significant interaction was observed between CLS-B status and race for IL2RB methylation levels (β = -0.03; 95% CI, -0.04 to -0.01; P for interaction <.001). Conclusions and Relevance This cross-sectional study uncovered an association between neighborhood-level social and environmental risk factors and breast tissue inflammation. The findings help inform efforts to reduce racial and socioeconomic disparities in breast cancer and improve health equity for socially vulnerable populations.
Collapse
Affiliation(s)
- Alexandra R. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
- Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Jeri D. Hughes
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Wayne R. Lawrence
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Petra Lenz
- Molecular Digital Pathology Laboratory, Division of Cancer Epidemiology and Genetics, NCI, Leidos Biomedical Research Inc, Frederick, Maryland
| | - Jamirra Franklin
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Praphulla M. S. Bhawsar
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Emily L. Rossi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
- Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
| | - Catherine M. Pichardo
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Margaret S. Pichardo
- Department of Surgery, Hospital of the University of Pennsylvania, Penn Medicine, Philadelphia
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Cody Ramin
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Máire A. Duggan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mustapha Abubakar
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Aaron M. Rozeboom
- Molecular Digital Pathology Laboratory, Division of Cancer Epidemiology and Genetics, NCI, Leidos Biomedical Research Inc, Frederick, Maryland
| | - Jonas S. Almeida
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Gretchen L. Gierach
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Brittany D. Jenkins
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
- Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
3
|
Shao L, Yu B, Lyu Y, Fan S, Gu C, Wang H. The Clinical Value of Novel Inflammatory Biomarkers for Predicting Mycoplasma pneumoniae Infection in Children. J Clin Lab Anal 2025; 39:e25150. [PMID: 39800911 PMCID: PMC11821716 DOI: 10.1002/jcla.25150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (MP) is a major cause of community-acquired pneumonia (CAP), posing diagnostic challenges. This study evaluates novel inflammatory biomarkers, including neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII) and system inflammation response index (SIRI) for MP diagnosis in children. METHODS Complete blood count (CBC) results of 424 children with MP infection and 150 health children were collected. NLR, MLR, PLR, SII and SIRI, were respectively calculated. Shapiro-Wilk test, Student's t-test, Mann-Whitney U-test and Pearson chi-squared test were used to analyze the clinical data of the patients and participants. Multiple logistic regression analysis was conducted based on the results of single factor analysis. Receiver operating characteristic (ROC) curve was drawn to evaluate the potential of the above biomarkers for MP infection. RESULTS Compared with the control group, white blood cell (WBC) count, neutrophil (NEU) count, monocyte (MON) count, NLR, MLR, PLR, SII and SIRI were significantly higher and lymphocyte count (LYM) and platelet (PLT) were significantly lower than those in MP group. The results of multivariate logistic regression analysis indicate that MLR and SIRI can serve as major risk factors for MP infection in children. The predictive accuracy of logistic regression model based on MLR and SIRI is 83.28%. The area under the curve (AUC) results showed that SIRI has better predicting value of MP infection (AUC = 0.892, Sensitivity = 75.7%, Specificity = 92.0%). CONCLUSION This study described the significance of novel inflammatory biomarkers in children with MP infection and may provide new auxiliary diagnostic indicators for MP infection.
Collapse
Affiliation(s)
- Liqun Shao
- Department of Medical LaboratoryShenzhen Hospital (Futian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Bohai Yu
- Department of Medical LaboratoryShenzhen Hospital (Futian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Ying Lyu
- Department of Medical LaboratoryShenzhen Hospital (Futian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Shizhen Fan
- Department of Medical LaboratoryShenzhen Hospital (Futian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Caizhen Gu
- Department of Medical LaboratoryShenzhen Hospital (Futian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Hetong Wang
- Department of Medical LaboratoryShenzhen Hospital (Futian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| |
Collapse
|
4
|
Cheng Y, Zhang H, Guan B, Zhang Y, Qin C, Li D, Zhang J, Zhang B, Lin Y, Li F. CircCDR1as orchestrates the advancement of asthma triggered by PM 2.5 through the modulation of ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175328. [PMID: 39117210 DOI: 10.1016/j.scitotenv.2024.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Exposure to fine particulate matter (PM2.5) in the ambient environment augments susceptibility to respiratory ailments. Circular RNAs, a distinctive subclass of endogenous non-coding RNAs, have been acknowledged as pivotal regulators of pathological conditions. Ferroptosis, an innovative iron-dependent form of cellular demise, has emerged as a consequential participant in numerous maladies. Despite the established association between PM2.5 exposure and the exacerbation of asthma, scant investigations have probed into the implication of circRNAs and ferroptosis in PM2.5-induced asthma. Consequently, this inquiry sought to scrutinize the potential involvement of circCDR1as and ferroptosis in PM2.5-induced asthma. Through the formulation of a PM2.5 exposure model in asthmatic mice and an in vitro cellular model, it was discerned that PM2.5 induced ferroptosis, thereby intensifying asthma progression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed an upregulation of circCDR1as in the PM2.5-stimulated asthma cell model. Molecular biology assays demonstrated that diminished circCDR1as expression hindered the onset of ferroptosis in response to PM2.5 exposure. Notably, Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, manifested the ability to impede the advancement of asthma. Mechanistically, RNA pull-down and molecular biology experiments substantiated that circCDR1as selectively bound to insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), thereby modulating the occurrence of ferroptosis. CircCDR1as emerged as a potential orchestrator of asthma progression by regulating ferroptosis under PM2.5 exposure. Additionally, PM2.5 exposure elicited activation of the Wnt/β-catenin signaling pathway, subsequently influencing the expression of C-myc and Cyclin D1, ultimately exacerbating asthma development. In summation, the interaction between circCDR1as and IGF2BP2 in regulating ferroptosis was identified as a critical facet in the progression of asthma under PM2.5 exposure. This investigation underscores the pivotal roles of circCDR1as and ferroptosis in PM2.5-induced asthma, offering a novel theoretical foundation for the therapeutic and preventive approaches to asthma.
Collapse
Affiliation(s)
- Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Boyu Guan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Chuhao Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Dongsheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jiahui Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingwei Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
5
|
Dong X, Han X, Yao S, Su Y, Luo Z, Deng L, Zhang F, Xu J, Zhang L, Li H, Wu W. Combined transcriptome and microbiome analysis reveals the thyrotoxic effects of PM 2.5 in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116879. [PMID: 39142117 DOI: 10.1016/j.ecoenv.2024.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Pervasive environmental pollutants, specifically particulate matter (PM2.5), possess the potential to disrupt homeostasis of female thyroid hormone (TH). However, the precise mechanism underlying this effect remains unclear. In this study, we established a model of PM2.5-induced thyroid damage in female rats through intratracheal instillation and employed histopathological and molecular biological methods to observe the toxic effects of PM2.5 on the thyroid gland. Transcriptome gene analysis and 16S rRNA sequencing were utilized to investigate the impact of PM2.5 exposure on the female rat thyroid gland. Furthermore, based on the PM2.5-induced toxic model in female rats, we evaluated its effects on intestinal microbiota, TH levels, and indicators of thyroid function. The findings revealed that PM2.5 exposure induced histopathological damage to thyroid tissue by disrupting thyroid hormone levels (total T3 [TT3], (P < 0.05); total T4 [TT4], (P < 0.05); and thyrotropin hormone [TSH], (P < 0.05)) and functional indices (urine iodine [UI], P > 0.05), thus further inducing histopathological injuries. Transcriptome analysis identified differentially expressed genes (DEGs), primarily concentrated in interleukin 17 (IL-17), forkhead box O (FOXO), and other signaling pathways. Furthermore, exposure to PM2.5 altered the composition and abundance of intestinal microbes. Transcriptome and microbiome analyses demonstrated a correlation between the DEGs within these pathways and the flora present in the intestines. Moreover, 16 S rRNA gene sequencing analysis or DEGs combined with thyroid function analysis revealed that exposure to PM2.5 significantly induced thyroid hormone imbalance. We further identified key DEGs involved in thyroid function-relevant pathways, which were validated using molecular biology methods for clinical applications. In conclusion, the homeostasis of the "gut-thyroid" axis may serve as the underlying mechanism for PM2.5-induced thyrotoxicity in female rats.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Xiaofeng Han
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Yaguang Su
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Zheng Luo
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Lvfei Deng
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Fengquan Zhang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Jie Xu
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Li Zhang
- Center for Bioinformatics and Statistical Health Research, School of Public Health, Xinxiang Medical, Xinxiang, Henan Province 453003, China.
| | - Haibin Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
6
|
Gong Z, Song T, Hu M, Che Q, Guo J, Zhang H, Li H, Wang Y, Liu B, Shi N. Natural and socio-environmental factors in the transmission of COVID-19: a comprehensive analysis of epidemiology and mechanisms. BMC Public Health 2024; 24:2196. [PMID: 39138466 PMCID: PMC11321203 DOI: 10.1186/s12889-024-19749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE OF REVIEW There are significant differences in the transmission rate and mortality rate of COVID-19 under environmental conditions such as seasons and climates. However, the impact of environmental factors on the role of the COVID-19 pandemic and the transmission mechanism of the SARS-CoV-2 is unclear. Therefore, a comprehensive understanding of the impact of environmental factors on COVID-19 can provide innovative insights for global epidemic prevention and control policies and COVID-19 related research. This review summarizes the evidence of the impact of different natural and social environmental factors on the transmission of COVID-19 through a comprehensive analysis of epidemiology and mechanism research. This will provide innovative inspiration for global epidemic prevention and control policies and provide reference for similar infectious diseases that may emerge in the future. RECENT FINDINGS Evidence reveals mechanisms by which natural environmental factors influence the transmission of COVID-19, including (i) virus survival and transport, (ii) immune system damage, (iii) inflammation, oxidative stress, and cell death, and (iiii) increasing risk of complications. All of these measures appear to be effective in controlling the spread or mortality of COVID-19: (1) reducing air pollution levels, (2) rational use of ozone disinfection and medical ozone therapy, (3) rational exposure to sunlight, (4) scientific ventilation and maintenance of indoor temperature and humidity, (5) control of population density, and (6) control of population movement. Our review indicates that with the continuous mutation of SARS-CoV-2, high temperature, high humidity, low air pollution levels, and low population density more likely to slow down the spread of the virus.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tian Song
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingzhi Hu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haili Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huizhen Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
8
|
Zhou X, Sampath V, Nadeau KC. Effect of air pollution on asthma. Ann Allergy Asthma Immunol 2024; 132:426-432. [PMID: 38253122 PMCID: PMC10990824 DOI: 10.1016/j.anai.2024.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Asthma is a chronic inflammatory airway disease characterized by respiratory symptoms, variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Exposure to air pollution has been linked to an increased risk of asthma development and exacerbation. This review aims to comprehensively summarize recent data on the impact of air pollution on asthma development and exacerbation. Specifically, we reviewed the effects of air pollution on the pathogenic pathways of asthma, including type 2 and non-type 2 inflammatory responses, and airway epithelial barrier dysfunction. Air pollution promotes the release of epithelial cytokines, driving TH2 responses, and induces oxidative stress and the production of proinflammatory cytokines. The enhanced type 2 inflammation, furthered by air pollution-induced dysfunction of the airway epithelial barrier, may be associated with the exacerbation of asthma. Disruption of the TH17/regulatory T cell balance by air pollutants is also related to asthma exacerbation. As the effects of air pollution exposure may accumulate over time, with potentially stronger impacts in the development of asthma during certain sensitive life periods, we also reviewed the effects of air pollution on asthma across the lifespan. Future research is needed to better characterize the sensitive period contributing to the development of air pollution-induced asthma and to map air pollution-associated epigenetic biomarkers contributing to the epigenetic ages onto asthma-related genes.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
9
|
Guo YN, He KR, Liang SS, Mou RW, Lu MH, He YM, Tang LP. The effect and mechanism of volatile oil emulsion from leaves of Clausena lansium (Lour.) Skeels on Staphylococcus aureus in vitro. Front Microbiol 2024; 15:1376819. [PMID: 38525077 PMCID: PMC10957740 DOI: 10.3389/fmicb.2024.1376819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
This study aimed to develop a suitable dosage form of volatile oil from wampee leaves and to explore its antibacterial mechanism in vitro. The chemical composition of the volatile oil from wampee leaves was determined by gas chromatography-mass spectrometry (GC-MS). Different microemulsion ratios were tested and their stabilities were investigated to determine the optimal ratio. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the wampee leaves volatile oil emulsion (WVOE) against Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S. aureus) were determined using double-dilution and plate-counting methods, respectively. Morphological changes in these two bacteria were observed using scanning electron microscopy. Death, ultrastructural morphology, and biofilm formation were also assessed for S. aureus. Finally, we established an S. aureus-infected Lewis lung carcinoma (LLC) cell model to evaluate the protective effects of the volatile oil emulsion and the associated mechanisms. The volatile oil extracted from wampee leaves contained 37 compounds, of which 96.49% were aromatic hydrocarbons, terpenoids, and their oxygen-containing derivatives. The emulsion was most stable at 1:1 in the oil phase and 1:9 in the water phase. WVOE had poor antibacterial activity against S. typhimurium, but the MIC and MBC against S. aureus were 312.5 and 2,500 μg/mL, respectively. S. aureus survival rates were 84.6%, 14.5%, and 12.8% in the 1/2, 1, and 4 × MIC groups, respectively, compared with 97.2% in the control group. S. typhimurium survival was not affected by WVOE treatment. WVOE administration induced cavity formation and abnormal binary fission, and significantly inhibited biofilm formation in S. aureus cells. The WVOE notably reduced the number of S. aureus and inhibited TLR4, NLRP3, NF-κB, IL-6, IL-18, and TNF-α gene expression in S. aureus-infected LLC cells. The WVOE had a significant inhibitory effect on S. aureus and altered its cell membrane permeability. Moreover, it alleviated inflammation by inhibiting the NF-κB-NLRP3 pathway in S. aureus-infected LLC cells.
Collapse
Affiliation(s)
- Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ke-Ren He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Rui-Wei Mou
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
10
|
Arima H. Seasonal variation in air pollutant levels and its effects on the sex ratio at birth on Fukue island, Japan. BMC Public Health 2023; 23:2471. [PMID: 38082405 PMCID: PMC10714618 DOI: 10.1186/s12889-023-17418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In general, a slightly higher number of boys are born than girls, and the sex ratio at birth (number of male births/number of female births) is reported to be 1.03-1.07 in many countries. However, pregnant women exposed to high levels of atmospheric particulate matter have a reduced sex ratio at birth. Exposure to air pollutants can also lead to premature birth, suggesting that inflammation within the body may affect pregnancy maintenance and fetal development. On the other hand, the effects of air pollutants carried from afar by monsoons on the sex ratio at birth in downstream areas have not been evaluated. We focused on the Goto Islands, where various air pollutants flow from the Eurasian continent. The objective of this study was to clarify the effects of the atmospheric level of each pollutant on the sex ratio at birth on the Goto Islands. METHODS We extracted observation data of particulate matter 2.5, sulfur dioxide, oxidants, nonmethane hydrocarbons, and methane from the National Institute for Environmental Studies database. In addition, the monthly sex ratio at birth was calculated using birth data from the National Statistics Center. To evaluate the effect of substance exposure just before fertilization on the sex ratio at birth, we analyzed the relationship between the observed pollutant level and the sex ratio at birth 9 months later. A stepwise generalized linear model was used to analyze the effects of air pollutant levels on the sex ratio at birth. RESULTS The observed values for all pollutants were significantly different between seasons, including the particulate matter 2.5 (p < 0.0001), sulfur dioxide (p = 0.0026), oxidant (p < 0.0001), nonmethane hydrocarbon (p < 0.0001), and methane (p < 0.0001) values. In the target population in the target period, the total number of births was 1835, and the sex ratio at birth was 0.967. Univariate analysis showed that the values of particulate matter 2.5 (p = 0.0157) and oxidants (p = 0.0047) correlated negatively with the sex ratio at birth. In addition, the results of multivariate analysis using the stepwise method in the model equation indicated that every 1 ppm increase in the observed OX value resulted in a 0.311 decrease in the sex ratio at birth (p = 0.0034). CONCLUSIONS We evaluated the relationship between seasonal variations in air pollutant levels and the sex ratio at birth 9 months later on the Goto Islands. We found that an increase in oxidant levels just before and after conception may be a risk factor for a lower sex ratio at birth. Due to the previously reported vulnerability of male fetuses, females who become pregnant when air pollutant concentrations are high may be more likely to have a female baby. It is necessary to evaluate the effects of oxidants on various aspects of pregnancy and childbirth.
Collapse
Affiliation(s)
- Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan.
| |
Collapse
|
11
|
Błach J, Siedliński M, Sydor W. Immunology in COPD and the use of combustible cigarettes and heated tobacco products. Eur J Med Res 2023; 28:397. [PMID: 37794516 PMCID: PMC10548761 DOI: 10.1186/s40001-023-01374-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic respiratory diseases, characterised by high morbidity and mortality. COPD is characterised by a progressive decline of lung function caused by chronic inflammatory reactions in the lung tissue due to continual exposure to harmful molecules by inhalation. As prevention plays a very important role in COPD, quitting smoking is the most important factor in reducing the decline in lung function. Unfortunately, many people are unable to break their nicotine addiction. This paper summarises current knowledge about combustible cigarettes (CSs) and alternative tobacco products such as heated tobacco products (HTPs) in COPD. The paper focuses on the immunological aspects of COPD and the influence of tobacco products on lung tissue immunology. There are differences in research results between HTPs and CSs in favour of HTPs. More long-term studies are needed to look at the effects of HTPs, especially in COPD. However, there is no doubt that it would be best for patients to give up their nicotine addiction completely.
Collapse
Affiliation(s)
- Justyna Błach
- Department of Clinical Immunology, UCH, Cracow, Poland.
| | - Mateusz Siedliński
- Department of Internal Medicine and Rural Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Wojciech Sydor
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
12
|
Amma C, Inomata Y, Kohno R, Satake M, Furukawa A, Nagata Y, Sugiyama H, Seto T, Suzuki R. Copper in airborne fine particulate matter (PM 2.5) from urban sites causes the upregulation of pro-inflammatory cytokine IL-8 in human lung epithelial A549 cells. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5879-5891. [PMID: 37179508 DOI: 10.1007/s10653-023-01599-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Fine atmospheric particles, such as PM2.5, are strongly related to the onset and exacerbation of inflammatory responses leading to the development of respiratory and cardiovascular diseases. PM2.5 is a complex mixture of tiny particles with different properties (i.e., size, morphology, and chemical components). Moreover, the mechanism by which PM2.5 induces inflammatory responses has not been fully elucidated. Therefore, it is necessary to determine the composition of PM2.5 to identify the main factors causing PM2.5-associated inflammation and diseases. In the present study, we investigated PM2.5 from two sites (Fukue, a remote monitoring site, and Kawasaki, an urban monitoring site) with greatly different environments and PM2.5 compositions. The results of ICP-MS and EDX-SEM indicated that PM2.5 from Kawasaki contained more metals and significantly induced the expression of the pro-inflammatory cytokine gene IL-8 compared to the PM2.5 from Fukue. We also verified the increased secretion of IL-8 protein from exposure to PM2.5 from Kawasaki. We further investigated their effects on inflammatory response and cytotoxicity using metal nanoparticles (Cu, Zn, and Ni) and ions and found that the Cu nanoparticles caused a dose-dependent increase in IL-8 expression together with significant cell death. We also found that Cu nanoparticles enhanced the secretion of IL-8 protein. These results suggest that Cu in PM2.5 is involved in lung inflammation.
Collapse
Affiliation(s)
- Chisato Amma
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yayoi Inomata
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Risa Kohno
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Minami Satake
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Atsushi Furukawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yuka Nagata
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hironori Sugiyama
- Instrumental Analysis Division, Engineering and Technology Department, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takafumi Seto
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
13
|
Huang D, Jia N, Pei C, Shen Z, Zhao S, Wang Y, Wu Y, Shi S, Li S, Wang Z. Rosavidin protects against PM2.5-induced lung toxicity via inhibition of NLRP3 inflammasome-mediated pyroptosis by activating the PI3K/AKT pathway. Biochem Pharmacol 2023; 213:115623. [PMID: 37244433 DOI: 10.1016/j.bcp.2023.115623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Fine particulate matter (PM2.5) contributes to adverse health effects through the promotion of inflammatory cytokine release. Rosavidin (Ro), a phenylpropanoid compound having multiple biological activities, is extracted from Rhodiola crenulata, a medicine and food homology plant. However, the protective role and mechanism of Ro in PM2.5-induced lung toxicity have not been previously studied. This study aimed to investigate the potential protective effect and mechanism of Ro in PM2.5-induced lung toxicity. A lung toxicity rat model was established through trachea drip of PM2.5 suspension after the different dose pretreatment of Ro (50 mg/kg and 100 mg/kg) to evaluate the effect of Ro on PM2.5 caused lung toxicity. The results showed that Ro attenuated the pathological changes, edema, and inflammation response in rats. The PI3K/AKT signaling pathway may be associated with the protective effect of Ro against pulmonary toxicity. Subsequently, we verified the role of PI3K/AKT in the PM2.5 exposure lung tissue. Moreover, expression levels of p-PI3K and p-AKT were lower, and those of NLRP3, ASC, cleaved caspase-1, cleaved IL-1β, and GSDMD-N were higher in PM2.5 group compared to those in control group. Whereas pre-administration of Ro reversed the expression trends of these proteins in lung tissue. Notably, those protective effects of Ro were not observed after pretreatment with a combination of Ro with nigericin or LY294002. These results indicate that Ro mitigates PM2.5-caused lung toxicity by inhibiting NLRP3 inflammasome-mediated pyroptosis through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
14
|
Endaryanto A, Darma A, Sundjaya T, Masita BM, Basrowi RW. The Notorious Triumvirate in Pediatric Health: Air Pollution, Respiratory Allergy, and Infection. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1067. [PMID: 37371298 DOI: 10.3390/children10061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
A plausible association is suspected among air pollution, respiratory allergic disorder, and infection. These three factors could cause uncontrollable chronic inflammation in the airway tract, creating a negative impact on the physiology of the respiratory system. This review aims to understand the underlying pathophysiology in explaining the association among air pollution, respiratory allergy, and infection in the pediatric population and to capture the public's attention regarding the interaction among these three factors, as they synergistically reduce the health status of children living in polluted countries globally, including Indonesia.
Collapse
Affiliation(s)
- Anang Endaryanto
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Andy Darma
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Tonny Sundjaya
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Bertri Maulidya Masita
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| |
Collapse
|
15
|
Wang L, Cui Y, Liu H, Wu J, Li J, Liu X. PM2.5 aggravates airway inflammation in asthmatic mice: activating NF-κB via MyD88 signaling pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:563-574. [PMID: 35227140 DOI: 10.1080/09603123.2022.2041561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The role of PM2.5 in the bronchial asthma remains unclear. In this study, the deficient mice of TLR4-/-, TLR2-/- and MyD88 -/- were used to establish asthma model. The effects of PM2.5 on the inflammatory response in lung tissue of these mice were observed. PM2.5 increased alveolar macrophages and neutrophils, up-regulated the IL-12 and KC expression in WT mice, but down-regulated their levels in TLR2 -/-, TLR4 -/- and MyD88 -/- mice. OVA+PM2.5 stimulated neutrophil count in WT mice, but it decreased in TLR2 -/- and TLR4 -/- mice. OVA+PM2.5 also increased the Eotaxin, IL-5, IL-13 and MCP-3 expression levels, and OVA specific IgE and IgG1 in serum also increased in WT group. PM2.5 may activate NF-κB through the TLR2/TLR4/MyD88 signaling pathway and aggravate allergic inflammation of lung in asthmatic mice. The microelements in PM2.5 granules, such as lipopolysaccharide, may be an important factor in the high incidence of asthma.
Collapse
Affiliation(s)
- Lei Wang
- Department of Respiratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Yanzhi Cui
- Department of Respiratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Hu Liu
- Department of Respiratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Jing Wu
- Department of Respiratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Jie Li
- Department of Respiratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Xiansheng Liu
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
17
|
Jia R, Wei M, Lei J, Meng X, Du R, Yang M, Lu X, Jiang Y, Cao R, Wang L, Song L. PM 2.5 induce myocardial injury in hyperlipidemic mice through ROS-pyroptosis signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114699. [PMID: 36889212 DOI: 10.1016/j.ecoenv.2023.114699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/07/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Exposure to particulate matters with diameters below 2.5 µm (PM2.5) is considered a major risk factor for cardiovascular diseases (CVDs). The closest associations between PM2.5 and CVDs have been observed in hyperbetalipoproteinemia cases, although the detailed underpinning mechanism remains undefined. In this work, hyperlipidemic mice and H9C2 cells were used to examine the effects of PM2.5 on myocardial injury and their underlying mechanisms. The results revealed that PM2.5 exposure caused severe myocardial damage in the high-fat mouse model. Oxidative stress and pyroptosis were also observed along with myocardial injury. After inhibiting pyroptosis with disulfiram (DSF), the level of pyroptosis was effectively reduced as well as myocardial injury, suggesting that PM2.5 induced the pyroptosis pathway and further caused myocardial injury and cell death. Afterwards, by suppressing PM2.5-induced oxidative stress with N-acetyl-L-cysteine (NAC), myocardial injury was markedly ameliorated, and the upregulation of pyroptosis markers was reversed, which indicated that PM2.5-pyroptosis was also improved. Taken together, this study revealed that PM2.5 induce myocardial injury through the ROS-pyroptosis signaling pathway in hyperlipidemia mice models, providing a potential approach for clinical interventions.
Collapse
Affiliation(s)
- Ruxue Jia
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, People's Republic of China; Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, People's Republic of China
| | - Min Wei
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, People's Republic of China
| | - Jinrong Lei
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, People's Republic of China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, People's Republic of China; Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Rui Du
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, People's Republic of China
| | - Mengxin Yang
- Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province 116023, People's Republic of China
| | - Xinjun Lu
- First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province 116000, People's Republic of China
| | - Yizhu Jiang
- Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province 116023, People's Republic of China
| | - Ran Cao
- Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province 116023, People's Republic of China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, People's Republic of China.
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, People's Republic of China.
| |
Collapse
|
18
|
Kodavanti UP, Jackson TW, Henriquez AR, Snow SJ, Alewel DI, Costa DL. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal Toxicol 2023; 35:109-126. [PMID: 36749208 PMCID: PMC11792093 DOI: 10.1080/08958378.2023.2172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.
Collapse
Affiliation(s)
- Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel L. Costa
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27713, USA
| |
Collapse
|
19
|
Zhou Z, Shen D, Wang K, Liu J, Li M, Win-Shwe TT, Nagaoka K, Li C. Pulmonary microbiota intervention alleviates fine particulate matter-induced lung inflammation in broilers. J Anim Sci 2023; 101:skad207. [PMID: 37341706 PMCID: PMC10390102 DOI: 10.1093/jas/skad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023] Open
Abstract
Fine particulate matter (PM2.5) released during the livestock industry endangers the respiratory health of animals. Our previous findings suggested that broilers exposed to PM2.5 exhibited lung inflammation and changes in the pulmonary microbiome. Therefore, this study was to investigate whether the pulmonary microbiota plays a causal role in the pathogenesis of PM2.5-induced lung inflammation. We first used antibiotics to establish a pulmonary microbiota intervention broiler model, which showed a significantly reduced total bacterial load in the lungs without affecting the microbiota composition or structure. Based on it, 45 AA broilers of similar body weight were randomly assigned to three groups: control (CON), PM2.5 (PM), and pulmonary microbiota intervention (ABX-PM). From 21 d of age, broilers in the ABX-PM group were intratracheally instilled with antibiotics once a day for 3 d. Meanwhile, broilers in the other two groups were simultaneously instilled with sterile saline. On 24 and 26 d of age, broilers in the PM and ABX-PM groups were intratracheally instilled with PM2.5 suspension to induce lung inflammation, and broilers in the CON group were simultaneously instilled with sterile saline. The lung histomorphology, inflammatory cytokines' expression levels, lung microbiome, and microbial growth conditions were analyzed to determine the effect of the pulmonary microbiota on PM2.5-induced lung inflammation. Broilers in the PM group showed lung histological injury, while broilers in the ABX-PM group had normal lung histomorphology. Furthermore, microbiota intervention significantly reduced mRNA expression levels of interleukin-1β, tumor necrosis factor-α, interleukin-6, interleukin-8, toll-like receptor 4 and nuclear factor kappa-B. PM2.5 induced significant changes in the β diversity and structure of the pulmonary microbiota in the PM group. However, no significant changes in microbiota structure were observed in the ABX-PM group. Moreover, the relative abundance of Enterococcus cecorum in the PM group was significantly higher than that in the CON and ABX-PM groups. And sterile bronchoalveolar lavage fluid from the PM group significantly promoted the growth of E. cecorum, indicating that PM2.5 altered the microbiota's growth condition. In conclusion, pulmonary microbiota can affect PM2.5-induced lung inflammation in broilers. PM2.5 can alter the bacterial growth environment and promote dysbiosis, potentially exacerbating inflammation.
Collapse
Affiliation(s)
- Zilin Zhou
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dan Shen
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Wang
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junze Liu
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyang Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tin-Tin Win-Shwe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Chunmei Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
20
|
Dong X, Yao S, Deng L, Li H, Zhang F, Xu J, Li Z, Zhang L, Jiang J, Wu W. Alterations in the gut microbiota and its metabolic profile of PM 2.5 exposure-induced thyroid dysfunction rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156402. [PMID: 35660575 DOI: 10.1016/j.scitotenv.2022.156402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/23/2022] [Accepted: 05/28/2022] [Indexed: 05/25/2023]
Abstract
Fine particulate matter (PM2.5) has drawn more and more interest due to its adverse effects on health. Thyroid has been demonstrated to be the key organ impacted by PM2.5. However, the mechanisms for PM2.5 exposure-induced thyrotoxicity remain unclear. To explore the mechanisms, a rat thyroid injury model was established by exposing rats to PM2.5 via passive pulmonary inhalation. Thyroid hormones and thyroid function proteins were detected. The thyroid function affected by PM2.5 exposure was investigated via metabolomics analysis using liquid chromatography-mass spectrometry and 16S rRNA gene sequencing. Results showed that PM2.5 exposure induced remarkable alterations in gut microbiome evenness, richness, and composition. Metabolomics profiling revealed that the urine metabolites levels were changed by PM2.5 exposure. The altered gut microbiota and urine metabolites showed significant correlations with thyroid function indicators (total T3, total T4 and thyrotropin hormone, etc.). These metabolites were involved in metabolic pathways including thyroid hormone synthesis, metabolisms of tryptophan, d-Glutamine and D-glutamate, histidine, glutathione, etc. The altered gut microbiota showed significant correlations with urine metabolites (glutathione, citric acid, D-Glutamic acid, kynurenic acid and 5-Aminopentanoic acid, etc.). For example, the taurocholic acid levels positively correlated with the relative abundance of several genera including Elusimicrobium (r = 0.9741, p = 0.000000), Muribaculum (r = 0.9886, p = 0.000000), Candidatus_Obscuribacter (r = 0.8423, p = 0.000585), Eubacterium (r = 0.9237, p = 0.000017), and Parabacteroides (r = 0.8813, p = 0.000150), while it negatively correlated with the relative abundance of Prevotella (r = -0.8070, p = 0.001509). PM2.5 exposure-induced thyrotoxicity led to remarkable alterations both in gut microbiome composition and some metabolites involved in metabolic pathways. The altered intestinal flora and metabolites can in turn influence thyroid function in rats. These findings may provide novel insights regarding perturbations of the gut-thyroid axis as a new mechanism for PM2.5 exposure-induced thyrotoxicity.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lvfei Deng
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haibin Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Fengquan Zhang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Xu
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhichun Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Li Zhang
- Center for Bioinformatics and Statistical Health Research, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
21
|
Zhang J, Chen X, Li H, Liu W, Liu X, Song Y, Cong X. Selenium-enriched soybean peptides pretreatment attenuates lung injury in mice induced by fine particulate matters (PM2.5) through inhibition of TLR4/NF-κB/IκBα signaling pathway and inflammasome generation. Food Funct 2022; 13:9459-9469. [PMID: 35979800 DOI: 10.1039/d2fo01585d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to identify and prepare peptides from selenium (Se)-enriched soybeans and determine whether dietary Se-enriched soybean peptides (Se-SPep) could inhibit lung injury in mice induced by fine particulate matter 2.5 (PM2.5). BALB/c mice were randomly divided into six groups. The mice in the prevention groups were pretreated with 378 mg kg-1 of Se-SPep, soybean peptides (SPep), and Se-enriched soybean protein (Se-SPro), respectively, for four weeks. The mice in the PM2.5 exposure group received concentrated PM2.5 (15 μg per day mice) for 1 h daily from the third week for two weeks. The results showed that the leukocyte and cytokine (IL-1β, IL-6, TNF-α) levels in the bronchoalveolar lavage fluid (BALF) of the PM2.5 exposure group were higher than those in the control group. Se-SPep pretreatment decreased the IL-1β, IL-6, and TNF-α levels compared with the PM2.5 exposure group. Additionally, Se-SPep pretreatment inhibited TLR4/NF-κB/IκBα and NLRP3/ASC/caspase-1 protein expression in the lungs. In conclusion, Se-SPep pretreatment may protect the lungs of the mice against PM2.5-induced inflammation, suggesting that Se-SPep represents a potential preventative agent to inhibit PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinwei Chen
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yao Song
- Handan Institute of Innovation, Peking University, Handan 056000, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co. Ltd., Enshi 445000, China
| |
Collapse
|
22
|
Particulate matter in COPD pathogenesis: an overview. Inflamm Res 2022; 71:797-815. [PMID: 35710643 DOI: 10.1007/s00011-022-01594-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disorder with substantial patient burden and leading cause of death globally. Cigarette smoke remains to be the most recognised causative factor behind COPD pathogenesis. Given the alarming increase in prevalence of COPD amongst non-smokers in recent past, a potential role of air pollution particularly particulate matter (PM) in COPD development has gained much attention of the scientists. Indeed, several epidemiological studies indicate strong correlation between airborne PM and COPD incidence/exacerbations. PM-induced oxidative stress seems to be the major player in orchestrating COPD inflammatory cycle but the exact molecular mechanism(s) behind such a process are still poorly understood. This may be due to the complexity of multiple molecular pathways involved. Oxidative stress-linked mitochondrial dysfunction and autophagy have also gained importance and have been the focus of recent studies regarding COPD pathogenesis. Accordingly, the present review is aimed at understanding the key molecular players behind PM-mediated COPD pathogenesis through analysis of various experimental studies supported by epidemiological data to identify relevant preventive/therapeutic targets in the area.
Collapse
|
23
|
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 2022; 31:31/163/210112. [PMID: 35321933 PMCID: PMC9128841 DOI: 10.1183/16000617.0112-2021] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD. Exposure to air pollution induces airway epithelial barrier dysfunction through several mechanisms including increased oxidative stress, exaggerated cytokine responses and impaired host defence, which contributes to development of asthma and COPD. https://bit.ly/3DHL1CA
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Venkataramana Sidhaye
- Pulmonary and Critical Care Medicine, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.,Dept of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
24
|
Podobas EI, Gutowska-Owsiak D, Moretti S, Poznański J, Kulińczak M, Grynberg M, Gruca A, Bonna A, Płonka D, Frączyk T, Ogg G, Bal W. Ni 2+-Assisted Hydrolysis May Affect the Human Proteome; Filaggrin Degradation Ex Vivo as an Example of Possible Consequences. Front Mol Biosci 2022; 9:828674. [PMID: 35359602 PMCID: PMC8960189 DOI: 10.3389/fmolb.2022.828674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 01/28/2023] Open
Abstract
Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.
Collapse
Affiliation(s)
- Ewa Izabela Podobas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Sébastien Moretti
- SIB Swiss Institute of Bioinformatics, Vital-IT Team, Lausanne, Switzerland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz Kulińczak
- The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Gruca
- Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Meng M, Jia R, Wei M, Meng X, Zhang X, Du R, Sun W, Wang L, Song L. Oxidative stress activates Ryr2-Ca 2+ and apoptosis to promote PM 2.5-induced heart injury of hyperlipidemia mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113228. [PMID: 35091300 DOI: 10.1016/j.ecoenv.2022.113228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The increased cases of hyperlipemia in China and the crucial role of PM2.5 in inducing and promoting cardiovascular diseases have attracting more and more researchers' attention. However, the effects and mechanisms of PM2.5 on cardiovascular system of hyperlipidemia people are still unclear. In this study, hyperlipidemia mice model was established by high-fat diet. Then we exposed these mice to PM2.5 or saline to explore the underling mechanism of cardiac injury in hyperlipidemia mice. The hyperlipemia mice are more susceptible to heart damage caused by PM2.5 exposure. The participation of oxidative stress, cell apoptosis and Ca2+ related mechanism could be observed in this model. After NAC (N-acetyl-L-cysteine) treatment, the oxidative stress level induced by PM2.5 exposure significantly decreased in hyperlipemia mice. NAC effectively alleviated cardiac injury, improved the imbalance of calcium and attenuated apoptosis induced by PM2.5 exposure in hyperlipemia mice. The strong oxidative stress in hyperlipemia mice could lead to calcium homeostasis imbalance and activation of apoptosis-related pathways. This mechanism of PM2.5-induced myocardial injury was also verified in vitro. In our present study, we demonstrated the contribution of the PM2.5-ROS-Ryr2-Ca2+ axis in PM2.5-induced heart injury of hyperlipidemia mice, offering a potential therapeutical target for related pathology.
Collapse
Affiliation(s)
- Meiling Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China; Tai 'an city central hospital, Tai 'an City, Shandong Province 271000, China
| | - Ruxue Jia
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Min Wei
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China; Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Rui Du
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Wenping Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China.
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province 116044, China.
| |
Collapse
|
26
|
Xie S, Zhang C, Zhao J, Li D, Chen J. Exposure to concentrated ambient PM 2.5 (CAPM) induces intestinal disturbance via inflammation and alternation of gut microbiome. ENVIRONMENT INTERNATIONAL 2022; 161:107138. [PMID: 35176574 DOI: 10.1016/j.envint.2022.107138] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 05/21/2023]
Abstract
Air pollution causes a great disease burden worldwide. Recent evidences suggested that PM2.5 contributes to intestinal disease. The objective of present study was to investigate the influence of ambient PM2.5 on intestinal tissue and microbiome via whole-body inhalation exposure. The results showed that high levels and prolonged periods exposure to concentrated ambient PM2.5 (CAPM) could destroy the mucous layer of the colon, and significantly alter the mRNA expression of tight junction (Occludin and ZO-1) and inflammation-related (IL-6, IL-10 and IL-1β) genes in the colon, comparing with exposure to the filtered air (FA). The composition of intestinal microbiome at the phylum and genus levels also varied along with the exposure time and PM2.5 levels. At the phylum level, Bacteroidetes was greatly decreased, while Proteobacteria was increased after exposure to CAPM, comparing with exposure to FA. At the genus level, Clostridium XlVa, Akkermansia and Acetatifactor, were significantly elevated exposure to CAPM, comparing with exposure to FA. Our results also indicated that high levels and prolonged periods exposure to CAPM altered metabolic functional pathways. The correlation analysis showed that the intestinal inflammation was related to the alteration of gut microbiome induced by CAPM exposure, which may be a potential mechanism that elucidates PM2.5-induced intestinal diseases. These results extend our knowledge on the toxicology and health effects of ambient PM2.5.
Collapse
Affiliation(s)
- Shanshan Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Caihong Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China.
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
27
|
Kawakami T, Kasakura K, Kawakami Y, Ando T. Immunoglobulin E-Dependent Activation of Immune Cells in Rhinovirus-Induced Asthma Exacerbation. FRONTIERS IN ALLERGY 2022; 3:835748. [PMID: 35386658 PMCID: PMC8974681 DOI: 10.3389/falgy.2022.835748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Acute exacerbation is the major cause of asthma morbidity, mortality, and health-care costs. Respiratory viral infections, particularly rhinovirus (RV) infections, are associated with the majority of asthma exacerbations. The risk for bronchoconstriction with RV is associated with allergic sensitization and type 2 airway inflammation. The efficacy of the humanized anti-IgE monoclonal antibody omalizumab in treating asthma and reducing the frequency and severity of RV-induced asthma exacerbation is well-known. Despite these clinical data, mechanistic details of omalizumab's effects on RV-induced asthma exacerbation have not been well-defined for years due to the lack of appropriate animal models. In this Perspective, we discuss potential IgE-dependent roles of mast cells and dendritic cells in asthma exacerbations.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Toshiaki Kawakami
| | - Kazumi Kasakura
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Cao W, Wang X, Li J, Yan M, Chang CH, Kim J, Jiang J, Liao YP, Tseng S, Kusumoputro S, Lau C, Huang M, Han P, Lu P, Xia T. NLRP3 inflammasome activation determines the fibrogenic potential of PM 2.5 air pollution particles in the lung. J Environ Sci (China) 2022; 111:429-441. [PMID: 34949371 DOI: 10.1016/j.jes.2021.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/14/2023]
Abstract
Airborne fine particulate matter (PM2.5) is known to cause respiratory inflammation such as chronic obstructive pulmonary disease and lung fibrosis. NLRP3 inflammasome activation has been implicated in these diseases; however, due to the complexity in PM2.5 compositions, it is difficult to differentiate the roles of the components in triggering this pathway. We collected eight real-life PM2.5 samples for a comparative analysis of their effects on NLRP3 inflammasome activation and lung fibrosis. In vitro assays showed that although the PM2.5 particles did not induce significant cytotoxicity at the dose range of 12.5 to 100 µg/mL, they induced potent TNF-α and IL-1β production in PMA differentiated THP-1 human macrophages and TGF-β1 production in BEAS-2B human bronchial epithelial cells. At the dose of 100 µg/mL, PM2.5 induced NLRP3 inflammasome activation by inducing lysosomal damage and cathepsin B release, leading to IL-1β production. This was confirmed by using NLRP3- and ASC-deficient cells as well as a cathepsin B inhibitor, ca-074 ME. Administration of PM2.5 via oropharyngeal aspiration at 2 mg/kg induced significant TGF-β1 production in the bronchoalveolar lavage fluid and collagen deposition in the lung at 21 days post-exposure, suggesting PM2.5 has the potential to induce pulmonary fibrosis. The ranking of in vitro IL-1β production correlates well with the in vivo total cell count, TGF-β1 production, and collagen deposition. In summary, we demonstrate that the PM2.5 is capable of inducing NLRP3 inflammasome activation, which triggers a series of cellular responses in the lung to induce fibrosis.
Collapse
Affiliation(s)
- Wei Cao
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China.
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States.
| | - Jiulong Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Chong Hyun Chang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Joshua Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Jinhong Jiang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Shannon Tseng
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Sydney Kusumoputro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Candice Lau
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095, CA, United States
| | - Marissa Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, CA, United States
| | - Pengli Han
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China
| | - Pengju Lu
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China
| | - Tian Xia
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China; Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States.
| |
Collapse
|
29
|
Damage to Olfactory Organs of Adult Zebrafish Induced by Diesel Particulate Matter. Int J Mol Sci 2021; 23:ijms23010407. [PMID: 35008830 PMCID: PMC8745429 DOI: 10.3390/ijms23010407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
Particulate matter (PM) is an environmental hazard that is associated with various human health risks. The olfactory system is directly exposed to PM; therefore, the influence of PM exposure on olfactory function must be investigated. In this study, we propose a zebrafish olfactory model to evaluate the effects of exposure to diesel particulate matter (DPM), which was labeled Korean diesel particulate matter (KDP20). KDP20 comprises heavy metals and polycyclic aromatic hydrocarbons (PAHs). KDP20 exposed olfactory organs exhibited reduced cilia and damaged epithelium. Olfactory dysfunction was confirmed using an odor-mediated behavior test. Furthermore, the olfactory damage was analyzed using Alcian blue and anti-calretinin staining. KDP20 exposed olfactory organs exhibited histological damages, such as increased goblet cells, decreased cell density, and calretinin level. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that PAHs exposure related genes (AHR2 and CYP1A) were upregulated. Reactive oxidation stress (ROS) (CAT) and inflammation (IL-1B) related genes were upregulated. Furthermore, olfactory sensory neuron (OSN) related genes (OMP and S100) were downregulated. In conclusion, KDP20 exposure induced dysfunction of the olfactory system. Additionally, the zebrafish olfactory system exhibited a regenerative capacity with recovery conditions. Thus, this model may be used in future investigating PM-related diseases.
Collapse
|
30
|
Essential Oils from Zingiber striolatum Diels Attenuate Inflammatory Response and Oxidative Stress through Regulation of MAPK and NF-κB Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10122019. [PMID: 34943122 PMCID: PMC8698606 DOI: 10.3390/antiox10122019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Zingiber striolatum Diels (Z. striolatum), a widely popular vegetable in China, is famous for its medicinal and nutritional values. However, the anti-inflammatory effects of essential oil from Z. striolatum (EOZS) remain unclear. In this study, EOZS from seven regions in China were extracted and analyzed by GC–MS. LPS-induced RAW264.7 cells and 12-O-Tetradecanoylphorbol 13-acetate (TPA)-stimulated mice were used to evaluate the anti-inflammatory effects of EOZS. Results show that 116 compounds were identified in EOZS from seven locations. Samples 2, 4 and 5 showed the best capability on DPPH radical scavenging and NO inhibition. They also significantly reduced the production of ROS, pro-inflammatory cytokines, macrophage morphological changes, migration and phagocytic capability. Transcriptomics revealed MAPK and NF-κB signaling pathways may be involved in the anti-inflammatory mechanism, and the predictions were proven by Western blotting. In TPA-induced mice, EOZS reduced the degree of ear swelling and local immune cell infiltration by blocking the activation of MAPK and NF-κB signaling pathways, which was consistent with the in vitro experimental results. Our research unveils the antioxidant capability and potential molecular mechanism of EOZS in regulating inflammatory response, and suggests the application of EOZS as a natural antioxidant and anti-inflammatory agent in the pharmaceutical and functional food industries.
Collapse
|
31
|
Park SR, Lee JW, Kim SK, Yu WJ, Lee SJ, Kim D, Kim KW, Jung JW, Hong IS. The impact of fine particulate matter (PM) on various beneficial functions of human endometrial stem cells through its key regulator SERPINB2. Exp Mol Med 2021; 53:1850-1865. [PMID: 34857902 PMCID: PMC8741906 DOI: 10.1038/s12276-021-00713-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Fine particulate matter (PM) has a small diameter but a large surface area; thus, it may have broad toxic effects that subsequently damage many tissues of the human body. Interestingly, many studies have suggested that the recent decline in female fertility could be associated with increased PM exposure. However, the precise mechanisms underlying the negative effects of PM exposure on female fertility are still a matter of debate. A previous study demonstrated that resident stem cell deficiency limits the cyclic regenerative capacity of the endometrium and subsequently increases the pregnancy failure rate. Therefore, we hypothesized that PM exposure induces endometrial tissue damage and subsequently reduces the pregnancy rate by inhibiting various beneficial functions of local endometrial stem cells. Consistent with our hypothesis, we showed for the first time that PM exposure significantly inhibits various beneficial functions of endometrial stem cells, such as their self-renewal, transdifferentiation, and migratory capacities, in vitro and in vivo through the PM target gene SERPINB2, which has recently been shown to be involved in multiple stem cell functions. In addition, the PM-induced inhibitory effects on the beneficial functions of endometrial stem cells were significantly diminished by SERPINB2 depletion. Our findings may facilitate the development of promising therapeutic strategies for improving reproductive outcomes in infertile women. Airborne pollutants may reduce female fertility through their debilitating effects on the stem cells that maintain the endometrium, the interior lining of the uterus. Recent evidence suggests that toxic byproducts from fossil fuels known as ‘particulate matter’ represent a danger to women’s reproductive health. South Korean researchers led by Ji-Won Jung, Korea Centers for Disease Control and Prevention, and In-Sun Hong, Gachon University, Incheon, have investigated this risk by exposing cultured human endometrial stem cells to diesel-derived particulate matter. These stem cells normally maintain the endometrium, allowing embryonic implantation to take place, but exposure to particulate matter greatly impaired the cells’ regenerative function. Mice exposed to particulate matter exhibited similar impairments of endometrial maintenance. The researchers identified a molecular pathway associated with this response that could guide development of fertility-restoring treatments.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Joong Won Lee
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon-gun, Republic of Korea
| | - Seong-Kwan Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon, 34114, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon, 34114, Republic of Korea
| | - Doojin Kim
- Department of Surgery, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Kun-Woo Kim
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Ji-Won Jung
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon-gun, Republic of Korea.
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
32
|
Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics (Basel) 2021; 10:antibiotics10121444. [PMID: 34943656 PMCID: PMC8698344 DOI: 10.3390/antibiotics10121444] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Lung diseases such as asthma, chronic obstructive pulmonary diseases, and pneumonia are causing many global health problems. The COVID-19 pandemic has directed the scientific community's attention toward performing more research to explore novel therapeutic drugs for pulmonary diseases. Herein, gas chromatography coupled with mass spectrometry tentatively identified 44 compounds in frankincense ethanol extract (FEE). We investigated the antibacterial and antibiofilm effects of FEE against Pseudomonas aeruginosa bacteria, isolated from patients with respiratory infections. In addition, its in vitro immunomodulatory activity was explored by the detection of the gene expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide synthase (iNOS), cycloxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMC). In addition, its anticancer activity against the A549 lung cancer cell line and human skin fibroblast (HSF) normal cell line was studied. Moreover, the in vivo lung protective potential of FEE was explored histologically and immunohistochemically in mice using a benzo(a)pyrene induced lung damage model. FEE exhibited antibacterial and antibiofilm activities besides the significant inhibition of gene expression of TNFα, IL-6, and NF-κB. FEE also exerted a cytotoxic effect against A549 cell line. Histological and immunohistochemical investigations with morphometric analysis of the mean area percentage and color intensity of positive TNF-α, COX-2, and NF-κB and Bcl-2 reactions revealed the lung protective activity of FEE. This study outlined the promising therapeutic activity of oleoresin obtained from B. dalzielii in the treatment of different pulmonary diseases.
Collapse
|
33
|
He X, Zhang L, Hu L, Liu S, Xiong A, Wang J, Xiong Y, Li G. PM2.5 Aggravated OVA-Induced Epithelial Tight Junction Disruption Through Fas Associated via Death Domain-Dependent Apoptosis in Asthmatic Mice. J Asthma Allergy 2021; 14:1411-1423. [PMID: 34848976 PMCID: PMC8612670 DOI: 10.2147/jaa.s335590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exposure to air pollutants cause exacerbation of asthma, but the experimental evidence and the mechanisms still need to be collected and addressed. METHODS Asthma model was constructed by ovalbumin (OVA) combined with or without airborne fine particulate matter 2.5 (PM2.5) exposure. Lung sections were stained by hematoxylin-eosin staining (H&E) and Masson's trichrome. RNA-seq and gene set enrichment analysis (GSEA) was performed to identify the key pathway. TdT mediated dUTP Nick End Labeling (TUNEL) assay, real-time qPCR, Western blot, immunofluorescence and lentivirus transfection were applied for mechanism discovery. RESULTS In this study, we found PM2.5 aggravated airway inflammation in OVA-induced asthmatic mice. RNA-seq analysis also showed that epithelial mesenchymal transition (EMT) was enhanced in OVA-induced mice exposed to PM2.5 compared with that in OVA-induced mice. In the meantime, we observed that apoptosis was significantly increased in asthmatic mice exposed to PM2.5 by using GSEA analysis, which was validated by TUNEL assay. By using bioinformatic analysis, Fas associated via death domain (FADD), a new actor in innate immunity and inflammation, was identified to be related to apoptosis, EMT and tight junction. Furthermore, we found that the transcript and protein levels of tight junction markers, E-cadherin, zonula occludens (ZO)-1 and Occludin, were decreased after PM2.5 exposure in vivo and in vitro by using RT-qPCR and immunofluorescence, with the increased expression of FADD. Moreover, down-regulation of FADD attenuated PM2.5-induced apoptosis and tight junction disruption in human airway epithelial cells. CONCLUSION Taken together, we demonstrated that PM2.5 aggravated epithelial tight junction disruption through apoptosis mediated by up-regulation of FADD in OVA-induced model.
Collapse
Affiliation(s)
- Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Lingjuan Hu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
- Department of Respiratory Disease, Renshou County People’s Hospital, Renshou, 620550, People’s Republic of China
| | - Shengbin Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, 610000, People’s Republic of China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| |
Collapse
|
34
|
YG-1 Extract Improves Acute Pulmonary Inflammation by Inducing Bronchodilation and Inhibiting Inflammatory Cytokines. Nutrients 2021; 13:nu13103414. [PMID: 34684415 PMCID: PMC8537401 DOI: 10.3390/nu13103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
YG-1 extract used in this study is a mixture of Lonicera japonica, Arctic Fructus, and Scutellariae Radix. The present study was designed to investigate the effect of YG-1 extract on bronchodilatation (ex vivo) and acute bronchial and pulmonary inflammation relief (in vivo). Ex vivo: The bronchodilation reaction was confirmed by treatment with YG-1 concentration-accumulation (0.01, 0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring pre-contracted by acetylcholine (10 μM). As a result, YG-1 extract is considered to affect bronchodilation by increased cyclic adenosine monophosphate, cAMP) levels through the β2-adrenergic receptor. In vivo: experiments were performed in C57BL/6 mice were divided into the following groups: control group; PM2.5 (fine particulate matter)-exposed group (PM2.5, 200 μg/kg/mL saline); and PM2.5-exposed + YG-1 extract (200 mg/kg/day) group. The PM2.5 (200 μg/kg/mL saline) was exposed for 1 h for 5 days using an ultrasonic nebulizer aerosol chamber to instill fine dust in the bronchi and lungs, thereby inducing acute lung and bronchial inflammation. From two days before PM2.5 exposure, YG-1 extract (200 mg/kg/day) was administered orally for 7 days. The PM2.5 exposure was involved in airway remodeling and inflammation, suggesting that YG-1 treatment improves acute bronchial and pulmonary inflammation by inhibiting the inflammatory cytokines (NLRP3/caspase-1 pathway). The application of YG-1 extract with broncho-dilating effect to acute bronchial and pulmonary inflammation animal models has great significance in developing therapeutic agents for respiratory diseases. Therefore, these results can provide essential data for the development of novel respiratory symptom relievers. Our study provides strong evidence that YG-1 extracts reduce the prevalence of respiratory symptoms and the incidence of non-specific lung diseases and improve bronchial and lung function.
Collapse
|
35
|
Zhang W, Ren J, Lu J, Li P, Zhang W, Wang H, Tang B. Elucidating the Relationship between ROS and Protein Phosphorylation through In Situ Fluorescence Imaging in the Pneumonia Mice. Anal Chem 2021; 93:10907-10915. [PMID: 34324298 DOI: 10.1021/acs.analchem.1c01690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Revealing the relationship between reactive oxygen species (ROS) and levels of protein phosphorylation is of great significance for understanding the pathogenesis of diseases. Although mass spectrometry is used as a classical method for protein phosphorylation analysis, there are still some challenges to realize in vivo protein phosphorylation recognition. Herein, we designed and prepared an metal-organic framework (MOF)-based fluorescent nanoprobe with Zr(IV) and boronate ester as an active center, which achieved simultaneous recognition of ROS and phosphorylation sites. The ROS unit was constructed by 1,8-naphthalimide and boronate ester as a fluorophore and a recognition group, respectively. The specific interaction between Zr(IV) and a phosphate group was used to realize fluorescence imaging of phosphorylation sites. Using the advantages of two-photon property of the ROS recognition unit, the nanoprobe can effectively reduce the background fluorescence and thus improve the imaging sensitivity. Finally, the MOF-based nanoprobe was successfully applied to reveal the relationship between ROS and levels of phosphorylation in pneumonia mice, which illustrated that the ROS and phosphorylation levels in the process of pulmonary inflammation were obviously higher than those of the normal mice. This work provides feasible fluorescence tools that have important significance for revealing pathogenesis of diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Jie Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Jun Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
36
|
Martin PJ, Billet S, Landkocz Y, Fougère B. Inflammation at the Crossroads: the Combined Effects of COVID-19, Ageing, and Air Pollution. J Frailty Aging 2021; 10:281-285. [PMID: 34105713 PMCID: PMC7948651 DOI: 10.14283/jfa.2021.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global COVID-19 pandemic has highlighted different vulnerability profiles among individuals. With the highest mortality rate, the elderly are a very sensitive group. With regard to the main symptoms, a failure of the respiratory system, associated with deregulation of the immune system, has been observed. These symptoms may also be encountered in chronic exposure of susceptible populations to air pollution, including exacerbation of the inflammatory response. Is there a relationship between age, pollution exposure and the severity of COVID-19? Although it is unclear how these parameters are related, the same pathways can be activated and appear to find a common mechanism of action in inflammation.
Collapse
Affiliation(s)
- P J Martin
- Dr. Sylvain Billet, Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Maison de la Recherche en Environnement Industriel 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque, France. Phone: +33-3 28 23 76 41, E-mail:
| | | | | | | |
Collapse
|
37
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
38
|
Xu X, Xu H, Ren F, Huang L, Xu J, Li F. Protective effect of scorpion venom heat-resistant synthetic peptide against PM 2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway. J Neuroimmunol 2021; 355:577567. [PMID: 33887539 DOI: 10.1016/j.jneuroim.2021.577567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
There is growing evidence that fine particulate matter (PM2.5) is a considerable risk factor for neurodegenerative diseases. Scorpion venom heat-resistant synthetic peptide (SVHRSP) plays a neuroprotective effect by promoting neurogenesis and neuron axon growth. In this study, SVHRSP inhibited the level of TLR4, autophagy and PM2.5-induced microglia M1 polarization, thereby promoting Phosphorylation of PI3K and AKT, inhibiting the expression of NF-κB. Moreover, SVHRSP suppressed the cytotoxic factors and increased the cytoprotective factor. This research demonstrates that SVHRSP relieves PM2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway, which provides new insights for the treatment of PM2.5-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Henggui Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fei Ren
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
39
|
Lee W, Ku SK, Kim TI, Kim EN, Park EK, Jeong GS, Bae JS. Inhibitory effects of cudratricusxanthone O on particulate matter-induced pulmonary injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:271-284. [PMID: 31407590 DOI: 10.1080/09603123.2019.1652252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), aerodynamic diameter ≤ 2.5 μm, is the primary air pollutant that plays the key role for lung injury resulted from the loss of vascular barrier integrity. Cudratricusxanthone O (CTXO) is a novel xanthone compound isolated from the root of Cudrania tricuspidata Bureau. Here, we investigated the beneficial effects of CTXO against PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated ECs and mice. CTXO significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase (MAPK). Concurrently, CTXO activated Akt, which helped maintain endothelial integrity. Furthermore, CTXO reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid in PM-induced lung tissues. These results indicated that CTXO may exhibit protective effects against PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Deajeon, Republic of Korea
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University , Gyeongsan-si, Republic of Korea
| | - Tae In Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine , Dong-gu, Daegu, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
40
|
Sagawa T, Tsujikawa T, Honda A, Miyasaka N, Tanaka M, Kida T, Hasegawa K, Okuda T, Kawahito Y, Takano H. Exposure to particulate matter upregulates ACE2 and TMPRSS2 expression in the murine lung. ENVIRONMENTAL RESEARCH 2021; 195:110722. [PMID: 33422505 PMCID: PMC7789825 DOI: 10.1016/j.envres.2021.110722] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/20/2020] [Accepted: 01/02/2021] [Indexed: 05/21/2023]
Abstract
Coronavirus disease (COVID-19) is currently a serious global issue. Epidemiological studies have identified air pollutants, including particulate matter (PM), as a risk factor for COVID-19 infection and severity of illness, in addition to numerous factors such as pre-existing conditions, aging and smoking. However, the mechanisms by which air pollution is involved in the manifestation and/or progression of COVID-19 is still unknown. In this study, we used a mouse model exposed to crude PM, collected by the cyclone method, to evaluate the pulmonary expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), the two molecules required for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells. Multiplex immunohistochemical analysis revealed that exposure to PM increased the expression of these two molecules at the same site. Furthermore, image cytometry analysis revealed increased expression of these proteins, particularly, in the alveolar type 2 cells and macrophages, which are potential targets for SARS-CoV-2. Our findings provide an experimental evidence that exposure to PM may adversely affect the manifestation and progression of COVID-19, mediated by the impact of SARS-CoV-2 on the site of entry. The study results suggest that examining these effects might help to advance our understanding of COVID-19 and aid the development of appropriate social interventions.
Collapse
Affiliation(s)
- Tomoya Sagawa
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology - Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Michitaka Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Takashi Kida
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Hasegawa
- Department of Respiratory Medicine, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Xu J, Xu H, Ma K, Wang Y, Niu B, Zhang L, Li F. lncRNA Gm16410 Mediates PM 2. 5-Induced Macrophage Activation via PI3K/AKT Pathway. Front Cell Dev Biol 2021; 9:618045. [PMID: 33796524 PMCID: PMC8007886 DOI: 10.3389/fcell.2021.618045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
PM2.5 refers to atmospheric particulate matters with a diameter of less than 2.5 μm. The deposit of PM2.5 in lung cells can cause oxidative stress, leading to changes in macrophage polarity, which can subsequently cause pulmonary inflammation. Long-chain non-coding RNA (lncRNA) is a class of transcripts that regulate biological processes through multiple mechanisms. However, the role of lncRNA in PM2.5-induced lung inflammation has not been established. In this study, the biological effects and associated mechanism of lncRNA in PM2.5-induced change in macrophage polarity were investigated. The lncRNA-mediated PM2.5-induced macrophage inflammation and lung inflammation-associated injury were also determined. Mice were exposed to chronic levels of PM2.5, and changes in the expression of lncRNA in the lung were measured by lncRNA microarray. lncRNAs that showed significant changes in expression in response to PM2.5 were identified. lncRNA showing the biggest change was subjected to further analysis to determine its functional roles and mechanisms with respect to macrophage activation. The result showed that a significant reduction in expression of one lncRNA, identified as lncGm16410, was observed in the lung of mice and RAW264.7 cells following exposure to PM2.5. lncGm16410 suppressed PM2.5-induced macrophage activation via the SRC protein-mediated PI3K/AKT signaling pathway. PM2.5 promoted lung inflammation by downregulating the expression of lncGm16410, enhancing the activation of macrophages. Thus, lncGm16410 might provide new insight into the prevention of PM2.5 injury.
Collapse
Affiliation(s)
- Jingbin Xu
- Laboratory Medicine College, Dalian Medical University, Dalian, China
| | - Henggui Xu
- Laboratory Medicine College, Dalian Medical University, Dalian, China
| | - Kexin Ma
- Laboratory Medicine College, Dalian Medical University, Dalian, China
| | - Yue Wang
- Laboratory Medicine College, Dalian Medical University, Dalian, China
| | - Ben Niu
- Laboratory Medicine College, Dalian Medical University, Dalian, China
| | - Li Zhang
- Department of Central Laboratory, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Fasheng Li
- Laboratory Medicine College, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Jia H, Liu Y, Guo D, He W, Zhao L, Xia S. PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:298-307. [PMID: 32996690 PMCID: PMC7891361 DOI: 10.1002/tox.23035] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 05/07/2023]
Abstract
Particulate matter 2.5 (PM2.5)-induced pulmonary inflammation has become a public concern in recent years. In which, the activation of the NLRP3/caspase-1 pathway was closely related to the inflammatory response of various diseases. However, the promotion effect of the NLRP3/caspase-1 pathway on PM2.5-induced pulmonary inflammation remains largely unclear. Here, our data showed that PM2.5 exposure caused lung injury in the mice by which inflammatory cell infiltration occurred in lung and alveolar structure disorder. Meanwhile, the exposure of human bronchial epithelial cells (16HBE) to PM2.5 resulted in suppressed cell viability, as well as elevated cell apoptosis. Moreover, a higher level of inflammatory cytokine and activation of the NLRP3/caspase-1 pathway in PM2.5-induced inflammation mice models and 16HBE cells. Mechanistically, pretreatment with MCC950, a NLRP3/caspase-1 pathway inhibitor, prevented PM2.5-induced lung injury, inflammatory response, and the number of inflammatory cells in BALFs, as well as promoted cell viability and decreased inflammatory cytokine secretion. Collectively, our findings indicated that the NLRP3/caspase-1 pathway serves a vital role in the pathological changes of pulmonary inflammation caused by PM2.5 exposure. MCC950 was expected to be the therapeutic target of PM2.5 inhalation mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hui Jia
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Yang Liu
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Dan Guo
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Wei He
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Long Zhao
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Shuyue Xia
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| |
Collapse
|
43
|
Yue Q, Deng X, Li Y, Zhang Y. Effects of Betulinic Acid Derivative on Lung Inflammation in a Mouse Model of Chronic Obstructive Pulmonary Disease Induced by Particulate Matter 2.5. Med Sci Monit 2021; 27:e928954. [PMID: 33612710 PMCID: PMC7885291 DOI: 10.12659/msm.928954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is mainly induced by the increased content of particulate matter 2.5 (PM2.5) in the atmosphere. This study aimed to evaluate the effects of betulinic acid derivative on lung inflammation in a mouse model of chronic obstructive pulmonary disease induced by particulate matter 2.5. MATERIAL AND METHODS The mice were given a PM2.5 (25 μl) suspension for 7 days by the intranasal route to establish a COPD model. The content of TNF-alpha and IL-6 in the BALF samples was measured by commercially available ELISA kits. RESULTS The PM2.5-induced higher LDH and ACP levels were significantly alleviated in mouse lung tissues by treatment with betulinic acid derivative. Treatment with betulinic acid derivative also suppressed PM2.5-induced increase in AKP and ALB levels in mouse lung tissues. Betulinic acid derivative reversed PM2.5-mediated suppression of SOD activity and elevation of NOS level in mouse BALF. Moreover, the PM2.5-induced excessive NO and MDA levels in mouse BALF were significantly reduced (P.
Collapse
Affiliation(s)
- Qianyu Yue
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Xiaoli Deng
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yuntao Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yunhui Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
44
|
Cox LA. How Do Exposure Estimation Errors Affect Estimated Exposure-Response Relations? INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE 2021:449-474. [DOI: 10.1007/978-3-030-57358-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
45
|
Ma K, Li C, Xu J, Ren F, Xu X, Liu C, Niu B, Li F. LncRNA Gm16410 regulates PM 2.5-induced lung Endothelial-Mesenchymal Transition via the TGF-β1/Smad3/p-Smad3 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111327. [PMID: 32961493 DOI: 10.1016/j.ecoenv.2020.111327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Exposure to PM2.5 can cause serious harm to the respiratory system. Until now, although many toxicological studies have shown that pulmonary fibrosis can be caused by long-term PM2.5 exposure, there is no evidence that Endothelial-Mesenchymal Transition (EndMT) can trigger the process of pulmonary fibrosis after exposure. LncRNAs are a class of non-coding RNAs detected in mammalian cells. Nevertheless, researchers have not found whether lncRNAs participate in PM2.5 induced EndMT during pathophysiological duration. The Balb/c mouse model was exposed to PM2.5 for 4 months by dynamic intoxication. The levels of specific endothelial and mesenchymal markers were evaluated by molecular biology experiments to elucidate the mechanisms of EndMT induced by PM2.5 in lung tissues. LncRNA microarray analysis of the established mouse model of PM2.5 exposure was performed. Based on a bioinformatics analysis and RT-qPCR analysis, lncRNA Gm16410 attracted our attention. The change of lncRNA Gm16410 in mouse pulmonary vascular endothelial cells (MHCs) exposed to PM2.5 was verified, and the mechanism of lncRNA Gm16410 in EndMT was discussed. The changes of cell function were evaluated by cell migration and proliferation experiments. The molecular biology experiments proved that PM2.5 induced EndMT by activating the TGF-β1/Smad3/p-Smad3 pathway in vitro. The relationship of EndMT and lncRNA Gm16410 was verified in mouse lung tissues and MHC cells by PM2.5 exposure. The involvement of lncRNA Gm16410 in PM2.5-induced EndMT highlights the potential of lncRNA to promote pulmonary fibrosis under environmental pollution.
Collapse
Affiliation(s)
- Kexin Ma
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, China; Department of Clincal Laboratory, The Fourth People's Hospital of Shenyang, Shenyang, 110031, Liaoning Province, China
| | - Cailong Li
- Department of Neurosurgery, Dalian Central Hospital, Dalian, 116033, Liaoning Province, China
| | - Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Fei Ren
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Xin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Chaosheng Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Ben Niu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
46
|
Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42390-42404. [PMID: 32870429 DOI: 10.1007/s11356-020-10574-w] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is composed of microscopic particles that contain a mixture of chemicals and biological elements that can be harmful to human health. The aerodynamic diameter of PM facilitates their deposition when inhaled. For instance, coarse PM having a diameter of < 10 μm is deposited mainly in the large conducting airways, but PM of < 2.5 μm can cross the alveolar-capillary barrier, traveling to other organs within the body. Epidemiological studies have shown the association between PM exposure and risk of disease, namely those of the respiratory system such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD). However, cardiovascular and neurological diseases have also been reported, including hypertension, atherosclerosis, acute myocardial infarction, stroke, loss of cognitive function, anxiety, and Parkinson's and Alzheimer's diseases. Inflammation is a common hallmark in the pathogenesis of many of these diseases associated with exposure to a variety of air pollutants, including PM. This review focuses on the main effects of PM on human health, with an emphasis on the role of inflammation.
Collapse
Affiliation(s)
- Rubén D Arias-Pérez
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Natalia A Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana M Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Jhon Fredy Narvaez
- Grupo de Investigaciones Ingeniar, Facultad de Ingenierías, Corporación Universitaria Remington, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| |
Collapse
|
47
|
Leon-Kabamba N, Ngatu NR, Muzembo BA, Kakoma S, Michel-Kabamba N, Danuser B, Luboya O, Hirao T. Air Quality in the Working Environment and Respiratory Health of Female Congolese Stone Quarry Workers. Trop Med Infect Dis 2020; 5:tropicalmed5040171. [PMID: 33212892 PMCID: PMC7709688 DOI: 10.3390/tropicalmed5040171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim. Environmental and occupational exposure to high dust levels are known to be associated with lung function impairment. We assessed the ambient air quality in the working environment and the respiratory health of female stone quarry workers in Lubumbashi, Democratic Republic of Congo (DRC) in a context of severe economic, security, and health crises. Methods. This was a case-control study conducted in three stone quarry sites. Participants were 256 dust-exposed female stone quarry workers matched to 256 unexposed female office workers and market tax collectors (N = 512). They each answered a structured respiratory health questionnaire and underwent physical examination and a lung function test with the use of a spirometer and peak flow meter. Quality of ambient air in the working environment was assessed by means of a BRAMC air quality monitor (BR-AIR-329). Results. Results showed that exposed women did not use any personal protective equipment (PPE); in quarry sites, abnormally high levels of PM2.5 (205 ± 13.2 μg/m3 vs. 31.3 ± 10.3 μg/m3 in control sites; p < 0.001) and volatile organic compounds (VOC, 2.2 ± 0.2 μg/m3 vs. 0.5 ± 0.3 μg/m3, respectively; p < 0.01) were found. Furthermore, respiratory complaints were more common among exposed women (32.4% vs. 3.5% in controls; p < 0.01), who had abnormal chest auscultation and reduced lung capacity than controls (mean PEFR: 344.8 ± 2.26 and 405 ± 67.7 L/s, respectively; p < 0.001 Conclusion. Findings from this study show that in the midst of severe crises in the DRC, women stone quarry workers are exposed to abnormally high levels of respiratory hazards, which contribute to impaired lung function. There is a need to regulate quarry work and improve the working conditions in quarry sites in the DRC.
Collapse
Affiliation(s)
- Ngombe Leon-Kabamba
- Department of Public Health, University of Kamina, Kamina, Congo; (N.M.-K.); (O.L.)
- Technical Medical College of Lubumbashi (ISTM-Lubumbashi), Lubumbashi, Congo
- Correspondence: (N.L.-K.); or (N.R.N)
| | - Nlandu Roger Ngatu
- Department of Public Health, Kagawa University Faculty of Medicine, Miki-cho 761-0793, Japan;
- Correspondence: (N.L.-K.); or (N.R.N)
| | - Basilua Andre Muzembo
- Graduate School of Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; or
| | - Sakatolo Kakoma
- School of Public Health, University of Lubumbashi, Lubumbashi, Congo;
| | - Nzaji Michel-Kabamba
- Department of Public Health, University of Kamina, Kamina, Congo; (N.M.-K.); (O.L.)
| | - Brigitta Danuser
- Institute for Work and Health Service, University of Lausanne and Geneva, CH-1011 Lausanne, Switzerland;
| | - Oscar Luboya
- Department of Public Health, University of Kamina, Kamina, Congo; (N.M.-K.); (O.L.)
- Technical Medical College of Lubumbashi (ISTM-Lubumbashi), Lubumbashi, Congo
- School of Public Health, University of Lubumbashi, Lubumbashi, Congo;
| | - Tomohiro Hirao
- Department of Public Health, Kagawa University Faculty of Medicine, Miki-cho 761-0793, Japan;
| |
Collapse
|
48
|
Wyatt LH, Devlin RB, Rappold AG, Case MW, Diaz-Sanchez D. Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part Fibre Toxicol 2020; 17:58. [PMID: 33198760 PMCID: PMC7670817 DOI: 10.1186/s12989-020-00389-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies. METHODS To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 μg/m3, SD 6.5), and filtered air (mean: 2.1 μg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure. RESULTS Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 μg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure. CONCLUSIONS This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard. CLINICAL TRIAL REGISTRATION INFORMATION clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Martin W Case
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| |
Collapse
|
49
|
Shull JG, Pay MT, Lara Compte C, Olid M, Bermudo G, Portillo K, Sellarés J, Balcells E, Vicens-Zygmunt V, Planas-Cerezales L, Badenes-Bonet D, Blavia R, Rivera-Ortega P, Moreno A, Sans J, Perich D, Barril S, Esteban L, Garcia-Bellmunt L, Esplugas J, Suarez-Cuartin G, Bordas-Martinez J, Castillo D, Jolis R, Salvador I, Eizaguirre Anton S, Villar A, Robles-Perez A, Cardona MJ, Barbeta E, Silveira MG, Guevara C, Dorca J, Rosell A, Luburich P, Llatjós R, Jorba O, Molina-Molina M. Mapping IPF helps identify geographic regions at higher risk for disease development and potential triggers. Respirology 2020; 26:352-359. [PMID: 33167075 DOI: 10.1111/resp.13973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE The relationship between IPF development and environmental factors has not been completely elucidated. Analysing geographic regions of idiopathic pulmonary fibrosis (IPF) cases could help identify those areas with higher aggregation and investigate potential triggers. We hypothesize that cross-analysing location of IPF cases and areas of consistently high air pollution concentration could lead to recognition of environmental risk factors for IPF development. METHODS This retrospective study analysed epidemiological and clinical data from 503 patients registered in the Observatory IPF.cat from January 2017 to June 2019. Incident and prevalent IPF cases from the Catalan region of Spain were graphed based on their postal address. We generated maps of the most relevant air pollutant PM2.5 from the last 10 years using data from the CALIOPE air quality forecast system and observational data. RESULTS In 2018, the prevalence of IPF differed across provinces; from 8.1 cases per 100 000 habitants in Barcelona to 2.0 cases per 100 000 in Girona. The ratio of IPF was higher in some areas. Mapping PM2.5 levels illustrated that certain areas with more industry, traffic and shipping maintained markedly higher PM2.5 concentrations. Most of these locations correlated with higher aggregation of IPF cases. Compared with other risk factors, PM2.5 exposure was the most frequent. CONCLUSION In this retrospective study, prevalence of IPF is higher in areas of elevated PM2.5 concentration. Prospective studies with targeted pollution mapping need to be done in specific geographies to compile a broader profile of environmental factors involved in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jessica Germaine Shull
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Maria Teresa Pay
- Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29,, Barcelona, Spain
| | - Carla Lara Compte
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Miriam Olid
- Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29,, Barcelona, Spain
| | - Guadalupe Bermudo
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Karina Portillo
- ILD Multidisciplinary Unit, University Hospital Trias i Pujol, Badalona, Spain
| | - Jacobo Sellarés
- ILD Multidisciplinary Unit, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Eva Balcells
- Respiratory Medicine Department, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
| | - Vanesa Vicens-Zygmunt
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Lurdes Planas-Cerezales
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Diana Badenes-Bonet
- Respiratory Medicine Department, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain.,School of Health & Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rosana Blavia
- Respiratory Department, Hospital Moises Broggi, San Joan Despi, Spain
| | - Pilar Rivera-Ortega
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Amalia Moreno
- Respiratory Department, Hospital Parc Taulí, Sabadell, Spain
| | - Jordi Sans
- Respiratory Department, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Damià Perich
- Respiratory Department, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Silvia Barril
- Respiratory Department, Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Jordi Esplugas
- Respiratory Department, Hospital de Martorell, Barcelonès, Spain
| | - Guillermo Suarez-Cuartin
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Jaume Bordas-Martinez
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Diego Castillo
- ILD Multidisciplinary Unit, Hospital Sant Pau i Santa Creu, Barcelona, Spain
| | - Rosa Jolis
- Respiratory Department, Hospital de Figueres, Figueres, Spain
| | - Inma Salvador
- Respiratory Department, Hospital de Tortosa, Tortosa, Spain
| | | | - Ana Villar
- ILD Multidisciplinary Unit, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | - Enric Barbeta
- Respiratory Department, Hospital de Granollers, Granollers, Spain
| | | | - Claudia Guevara
- Respiratory Department, Hospital Sant Camil, Vilanova, Spain
| | - Jordi Dorca
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Antoni Rosell
- ILD Multidisciplinary Unit, University Hospital Trias i Pujol, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Translational Respiratory Research Group, Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Patricio Luburich
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Roger Llatjós
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Oriol Jorba
- Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29,, Barcelona, Spain
| | - Maria Molina-Molina
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
50
|
Herath KHINM, Kim HJ, Mihindukulasooriya SP, Kim A, Kim HJ, Jeon YJ, Jee Y. Sargassum horneri extract containing mojabanchromanol attenuates the particulate matter exacerbated allergic asthma through reduction of Th2 and Th17 response in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114094. [PMID: 32806433 DOI: 10.1016/j.envpol.2020.114094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Airborne particulate matter (PM) has become a serious health issue causing pulmonary diseases such as asthma. Due to the side effects and non-specificity of conventional drugs, there is a need to develop natural-product-based alternative treatments. Sargassum horneri is a brown alga shown to have anti-oxidant, anti-inflammatory, and anti-allergic effects. Thus, we sought to determine whether ethanol extract of Sargassum horneri (SHE) mitigates the effect of PM exposure on asthma development. To establish a mouse model of asthma, BALB/c mice were sensitized with ovalbumin (OVA, 10 μg) and challenged with PM (5 mg/m3) for 7 days consecutively. SHE (200, 400 mg/kg), Prednisone (5 mg/kg), or PBS was daily administrated orally before PM exposure. SHE mitigated PM exacerbated dendritic cell activation. More importantly, SHE restrained Th2 polarization by attenuating transcription factors GATA3 and STAT5, which further mitigated the expression of Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 in the lung homogenates of PM-exacerbated asthmatic mice. SHE further attenuated PM-exacerbated eosinophil infiltration in the lung, trachea, and BALF. In addition, SHE markedly mitigated the activation of mast cells and the IgE level in serum. Concomitantly, SHE further restrained the Th17 cell response in PM-exposed allergic mice through attenuating expression of transcription factors RORγT, STAT3 and expression of relevant effector cytokines IL-17a. This resulted in mitigated neutrophil infiltration in the lung. Taken together, SHE significantly suppressed PM-exacerbated hypersecretion of mucus in asthmatic mice. These results suggest that SHE has therapeutic potential for treating PM-exacerbated allergic asthma through concomitantly inhibiting Th2/Th17 responses.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju, 63243, Republic of Korea
| | | | - Areum Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju, 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|