1
|
Gómez-Vilarrubla A, Niubó-Pallàs M, Mas-Parés B, Bonmatí-Santané A, Martínez-Calcerrada JM, López B, Peñas-Cruz A, de Zegher F, Ibáñez L, López-Bermejo A, Bassols J. Longitudinal Analysis of Placental IRS1 DNA Methylation and Childhood Obesity. Int J Mol Sci 2025; 26:3141. [PMID: 40243885 PMCID: PMC11988732 DOI: 10.3390/ijms26073141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Accumulating evidence suggests that the predisposition to metabolic diseases is established in utero through epigenomic modifications. However, it remains unclear whether childhood obesity results from preexisting epigenomic alterations or whether obesity itself induces changes in the epigenome. This study aimed to identify DNA methylation marks in the placenta associated with obesity-related outcomes in children at age 6 and to assess these marks in blood samples at age 6 and whether they correlate with obesity-related outcomes at that time. Using an epigenome-wide DNA methylation microarray on 24 placental samples, we identified differentially methylated CpGs (DMCs) associated with offspring BMI-SDS at 6 years. Individual DMCs were validated in 147 additional placental and leukocyte samples from children at 6 years of age. The methylation and/or gene expression of IRS1 in both placenta and offspring leukocytes were significantly associated with various metabolic risk parameters at age 6 (all p ≤ 0.05). Logistic regression models (LRM) and machine learning (ML) models indicated that IRS1 methylation in the placenta could strongly predict offspring obesity. Our results suggest that IRS1 may serve as a potential biomarker for the prediction of obesity and metabolic risk in children.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| | - Maria Niubó-Pallàs
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Alexandra Bonmatí-Santané
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
- Department of Gynecology, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Jose-Maria Martínez-Calcerrada
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| | - Beatriz López
- Control Engineering and Intelligent Systems (eXiT), University of Girona, 17003 Girona, Spain
| | - Aaron Peñas-Cruz
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children’s Hospital, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| |
Collapse
|
2
|
Vasileva F, Font-Lladó R, López-Ros V, Barretina J, Noguera-Castells A, Esteller M, López-Bermejo A, Prats-Puig A. An Integrated Neuromuscular Training Intervention Applied in Primary School Induces Epigenetic Modifications in Disease-Related Genes: A Genome-Wide DNA Methylation Study. Scand J Med Sci Sports 2025; 35:e70012. [PMID: 39757698 DOI: 10.1111/sms.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Physical exercise has been shown to induce epigenetic modifications with various health implications, directly affect DNA methylation (DNAm), as well as reverse the epigenetic age. Hence, we aimed to identify differential methylation changes and assess the epigenetic age in the saliva of 7-9-year-old school children following a 3-month integrated neuromuscular training (INT), as well as to explore if any of the methylation changes are in core genes. Core genes are defined as genes of high relevance and essential importance within the human genome. Forty children (17 boys and 23 girls) were recruited from schools in Girona, Spain, and allocated into control (N = 20) or INT (N = 20) group. The INT group performed a 3-month INT as a warm-up during the physical education (PE) classes, encompassing strength, coordination, dynamic stabilization, plyometrics, speed, and agility exercises, whereas the control group performed traditional warm-up activities, encompassing aerobic exercises that will prepare the cardiovascular system and increase the joint mobility for the upcoming effort during the class. Genome-wide DNAm analysis was performed with the Illumina 900 K microarray. Core genes were recognized based on the accomplishment of a rigorous and widely accepted 3-point criteria: participation in the enriched pathways, high connectivity (≥ 10), and target genes of key transcription factors. There were 1200 differentially methylated positions (DMPs) in the control group and 414 DMPs in the INT group (FDR < 0.05, p < 0.05, Aβ < |0.1|), suggesting a non-significant trend of epigenetic age acceleration in the control group (1.18 months, p > 0.05) and a non-significant 1-month decrease of the epigenetic age in the INT group (p > 0.05). The genes with DMPs in the control group showed low similarity between enriched pathways and low interconnectivity, encompassing distinct pathways, mostly development and growth-related. Additionally, no core genes were identified in the control group. Interestingly, the genes with DMPs in the INT group showed high similarity between enriched pathways and high interconnectivity, encompassing related pathways involving signaling mechanisms, as well as hormone and protein metabolism pathways. Moreover, 17 DMPs in the children from the INT group were in core genes. The main findings of the present study are suggesting an integrated response to the training stimulus in 7-9-year-old school children that performed a 3-month INT, including epigenetic modifications in 17 genes considered as core genes. Trial Registration: The study protocol was registered in the ISRCTN registry (ISRCTN16744821).
Collapse
Affiliation(s)
- Fidanka Vasileva
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- University School of Health and Sport, University of Girona, Girona, Spain
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, Girona, Spain
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
- Chair of Sport and Physical Education - Centre of Olympic Studies, University of Girona, Girona, Spain
| | - Víctor López-Ros
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
| | | | - Aleix Noguera-Castells
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
- Pediatric Endocrinology, Dr. Josep Trueta Hospital, Girona, Spain
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group Health and Health Care, Nursing Department, University of Girona, Girona, Spain
| |
Collapse
|
3
|
Luo Y, Luo D, Li M, Tang B. Insulin Resistance in Pediatric Obesity: From Mechanisms to Treatment Strategies. Pediatr Diabetes 2024; 2024:2298306. [PMID: 40302954 PMCID: PMC12016791 DOI: 10.1155/2024/2298306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 06/15/2024] [Indexed: 05/02/2025] Open
Abstract
Insulin resistance, an increasingly prevalent characteristic among children and adolescents with obesity, is now recognized as a significant contributor to the development of type 2 diabetes mellitus (T2DM) and other metabolic diseases in individuals with obesity. Insulin resistance refers to a decrease in the sensitivity of peripheral tissues (primarily skeletal muscle, adipose tissue, and liver) to insulin, which is mainly characterized by impaired glucose uptake and utilization. Although the mechanisms underlying insulin resistance in children with obesity remain incompletely elucidated, several risk factors including lipid metabolism disorders, oxidative stress (OS), mitochondrial dysfunction, inflammation, and genetic factors have been identified as pivotal contributors to the pathogenesis of obesity-related insulin resistance. In this review, we comprehensively analyze relevant literature and studies to elucidate the underlying mechanisms of insulin resistance in childhood obesity. Additionally, we discuss treatment strategies for pediatric obesity from a perspective centered on improving insulin sensitivity, aiming to provide valuable insights for the prevention and management of pediatric obesity.
Collapse
Affiliation(s)
- Yu Luo
- Department of PediatricsSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of China, Chengdu, China
| | - Dan Luo
- Department of PediatricsSchool of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maojun Li
- Department of PediatricsSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of China, Chengdu, China
| | - Binzhi Tang
- Department of PediatricsSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of China, Chengdu, China
- Department of PediatricsSchool of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
5
|
Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients 2023; 15:2782. [PMID: 37375686 DOI: 10.3390/nu15122782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a common, serious, and costly disease. More than 1 billion people worldwide are obese-650 million adults, 340 million adolescents, and 39 million children. The WHO estimates that, by 2025, approximately 167 million people-adults and children-will become less healthy because they are overweight or obese. Obesity-related conditions include heart disease, stroke, type 2 diabetes, and certain types of cancer. These are among the leading causes of preventable, premature death. The estimated annual medical cost of obesity in the United States was nearly $173 billion in 2019 dollars. Obesity is considered the result of a complex interaction between genes and the environment. Both genes and the environment change in different populations. In fact, the prevalence changes as the result of eating habits, lifestyle, and expression of genes coding for factors involved in the regulation of body weight, food intake, and satiety. Expression of these genes involves different epigenetic processes, such as DNA methylation, histone modification, or non-coding micro-RNA synthesis, as well as variations in the gene sequence, which results in functional alterations. Evolutionary and non-evolutionary (i.e., genetic drift, migration, and founder's effect) factors have shaped the genetic predisposition or protection from obesity in modern human populations. Understanding and knowing the pathogenesis of obesity will lead to prevention and treatment strategies not only for obesity, but also for other related diseases.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Carmen Cassadonte
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paolo Sbraccia
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Systems Medicine, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Biancolella
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
6
|
Cauzzo C, Chiavaroli V, Di Valerio S, Chiarelli F. Birth size, growth trajectory and later cardio-metabolic risk. Front Endocrinol (Lausanne) 2023; 14:1187261. [PMID: 37342257 PMCID: PMC10277632 DOI: 10.3389/fendo.2023.1187261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
There is increasing evidence of a strong association between intrauterine growth and subsequent development of chronic disease in adult life. Birth size and growth trajectory have been demonstrated to have an impact on cardio-metabolic health, both in childhood and adult life. Hence, careful observation of the children's growth pattern, starting from the intrauterine period and the first years of life, should be emphasized to detect the possible onset of cardio-metabolic sequelae. This allows to intervene on them as soon as they are detected, first of all through lifestyle interventions, whose efficacy seems to be higher when they are started early. Recent papers suggest that prematurity may constitute an independent risk factor for the development of cardiovascular disease and metabolic syndrome, regardless of birth weight. The purpose of the present review is to examine and summarize the available knowledge about the dynamic association between intrauterine and postnatal growth and cardio-metabolic risk, from childhood to adulthood.
Collapse
Affiliation(s)
- Chiara Cauzzo
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | |
Collapse
|
7
|
Fradin D, Tost J, Busato F, Mille C, Lachaux F, Deleuze JF, Apter G, Benachi A. DNA methylation dynamics during pregnancy. Front Cell Dev Biol 2023; 11:1185311. [PMID: 37287456 PMCID: PMC10242503 DOI: 10.3389/fcell.2023.1185311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.
Collapse
Affiliation(s)
- Delphine Fradin
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jorg Tost
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Florence Busato
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Clémence Mille
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Fanny Lachaux
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Gisèle Apter
- Child and Perinatal Psychiatric Department, Le Havre University Hospital, University Rouen Normandie, Le Havre, France
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology, DMU Santé des Femmes et des Nouveau-nés, Assistance Publique Hôpitaux de Paris, Antoine Beclere Hospital, Université Paris-Saclay, Paris, France
| |
Collapse
|
8
|
Patel P, Selvaraju V, Babu JR, Wang X, Geetha T. Novel Differentially Methylated Regions Identified by Genome-Wide DNA Methylation Analyses Contribute to Racial Disparities in Childhood Obesity. Genes (Basel) 2023; 14:genes14051098. [PMID: 37239458 DOI: 10.3390/genes14051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The magnitude of the childhood obesity epidemic and its effects on public health has accelerated the pursuit of practical preventative measures. Epigenetics is one subject that holds a lot of promise, despite being relatively new. The study of potentially heritable variations in gene expression that do not require modifications to the underlying DNA sequence is known as epigenetics. Here, we used Illumina MethylationEPIC BeadChip Array to identify differentially methylated regions in DNA isolated from saliva between normal weight (NW) and overweight/obese (OW/OB) children and between European American (EA) and African American (AA) children. A total of 3133 target IDs (associated with 2313 genes) were differentially methylated (p < 0.05) between NW and OW/OB children. In OW/OB children, 792 target IDs were hypermethylated and 2341 were hypomethylated compared to NW. Similarly, in the racial groups EA and AA, a total of 1239 target IDs corresponding to 739 genes were significantly differentially methylated in which 643 target IDs were hypermethylated and 596 were hypomethylated in the AA compared to EA participants. Along with this, the study identified novel genes that could contribute to the epigenetic regulation of childhood obesity.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Kachhawaha AS, Mishra S, Tiwari AK. Epigenetic control of heredity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:25-60. [PMID: 37225323 DOI: 10.1016/bs.pmbts.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetics is the field of science that deals with the study of changes in gene function that do not involve changes in DNA sequence and are heritable while epigenetics inheritance is the process of transmission of epigenetic modifications to the next generation. It can be transient, intergenerational, or transgenerational. There are various epigenetic modifications involving mechanisms such as DNA methylation, histone modification, and noncoding RNA expression, all of which are inheritable. In this chapter, we summarize the information on epigenetic inheritance, its mechanism, inheritance studies on various organisms, factors affecting epigenetic modifications and their inheritance, and the role of epigenetic inheritance in the heritability of diseases.
Collapse
Affiliation(s)
- Akanksha Singh Kachhawaha
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Sarita Mishra
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
10
|
Takahashi Y, Morales Valencia M, Yu Y, Ouchi Y, Takahashi K, Shokhirev MN, Lande K, Williams AE, Fresia C, Kurita M, Hishida T, Shojima K, Hatanaka F, Nuñez-Delicado E, Esteban CR, Izpisua Belmonte JC. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 2023; 186:715-731.e19. [PMID: 36754048 DOI: 10.1016/j.cell.2022.12.047] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/19/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.
Collapse
Affiliation(s)
- Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Mariana Morales Valencia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Yang Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yasuo Ouchi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Kazuki Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Maxim Nikolaievich Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kathryn Lande
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chiara Fresia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shitibancho, Wakayama, Wakayama, Japan
| | - Kensaku Shojima
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Estrella Nuñez-Delicado
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA.
| |
Collapse
|
11
|
Alfano R, Zugna D, Barros H, Bustamante M, Chatzi L, Ghantous A, Herceg Z, Keski-Rahkonen P, de Kok TM, Nawrot TS, Relton CL, Robinson O, Roumeliotaki T, Scalbert A, Vrijheid M, Vineis P, Richiardi L, Plusquin M. Cord blood epigenome-wide meta-analysis in six European-based child cohorts identifies signatures linked to rapid weight growth. BMC Med 2023; 21:17. [PMID: 36627699 PMCID: PMC9831885 DOI: 10.1186/s12916-022-02685-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. METHODS Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. RESULTS Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e-05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e-07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e-04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. CONCLUSIONS Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention.
Collapse
Affiliation(s)
- Rossella Alfano
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Daniela Zugna
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Henrique Barros
- Institute of Public Health, University of Porto, Porto, Portugal
| | - Mariona Bustamante
- ISGlobal, Institute of Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Akram Ghantous
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Caroline L Relton
- Μedical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Oliver Robinson
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Mohn Centre for Children's Health and Well-being, The School of Public Health, Imperial College London, London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Martine Vrijheid
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Paolo Vineis
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
12
|
Abstract
Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Feng-Yao Wu
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
| | - Rui-Xing Yin
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
13
|
Roebuck MM, Jamal J, Lane B, Wood A, Santini A, Wong PF, Bou-Gharios G, Frostick SP. Cartilage debris and osteoarthritis risk factors influence gene expression in the synovium in end stage osteoarthritis. Knee 2022; 37:47-59. [PMID: 35679783 DOI: 10.1016/j.knee.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gene expression in healthy synovium remains poorly characterised. Thus, synovial functional activity changes associated with osteoarthritis (OA) are difficult to define. This study sought to identify differentially expressed genes (DEG) of end-stage OA and assess the influence of OA risk factors on these DEG. METHODS Anonymised patient clinical data and x-ray images were analysed. Osteoarthritic and non-osteoarthritic patients with soft tissue or traumatic knee injuries were matched for body mass index (BMI) and sex. Tissue samples were partitioned for immunocytochemistry (IHC) and microarray analysis. Multiple bioinformatics applications were utilised to determine changes in functional and canonical pathway activation. RESULTS Age, disease-modifying injections and hypertension were confounding factors between patient groups. Inflammation was present in all tissues. Cartilage debris and inflammatory aggregates were noted in many osteoarthritic patient tissues. IHC and expression analyses revealed upregulation of synoviolin 1 (SYVN1) in osteoarthritic synovium. Significant differential expression was noted in 2084 genes. Osteoarthritic synovium displayed a significant upregulation of 95% of DEG coding for proteins, relative to non-osteoarthritic synovium tissues. Unfolded protein response (UPR)-related genes were upregulated in osteoarthritic synovium; gene expression of molecules within many canonical pathways including protein ubiquitination and UPR pathways was modified by BMI and sex. CONCLUSIONS The synovium of all three pathologies exhibited elements of an inflammatory response. Cartilage debris, age, BMI and sex influence DEG of osteoarthritic synovium. UPR pathway is the top deregulated canonical pathway identified in osteoarthritic synovium regardless of BMI and sex, while typical OA-associated inflammatory and matrix gene responses were minimal.
Collapse
Affiliation(s)
- Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, United Kingdom.
| | - Juliana Jamal
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom; Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Brian Lane
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Amanda Wood
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Alasdair Santini
- Liverpool University Hospitals NHS Foundation Trust, Prescot Street, Liverpool L7 8XP, United Kingdom; Faculty of Health and Life Science, The University of Liverpool, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - George Bou-Gharios
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Simon P Frostick
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, United Kingdom
| |
Collapse
|
14
|
Rathod R, Zhang H, Karmaus W, Ewart S, Mzayek F, Arshad SH, Holloway JW. Association of childhood BMI trajectory with post-adolescent and adult lung function is mediated by pre-adolescent DNA methylation. Respir Res 2022; 23:194. [PMID: 35906571 PMCID: PMC9335987 DOI: 10.1186/s12931-022-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Body mass index (BMI) has been shown to be associated with lung function. Recent findings showed that DNA methylation (DNAm) variation is likely to be a consequence of changes in BMI. However, whether DNAm mediates the association of BMI with lung function is unknown. We examined the mediating role of DNAm on the association of pre-adolescent BMI trajectories with post-adolescent and adulthood lung function (forced expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC). METHODS Analyses were undertaken in the Isle of Wight birth cohort (IOWBC). Group-based trajectory modelling was applied to infer latent BMI trajectories from age 1 to 10 years. An R package, ttscreening, was applied to identify CpGs at 10 years potentially associated with BMI trajectories for each sex. Linear regressions were implemented to further screen CpGs for their association with lung function at 18 years. Path analysis, stratified by sex, was applied to each screened CpG to assess its role of mediation. Internal validation was applied to further examine the mediation consistency of the detected CpGs based on lung function at 26 years. Mendelian randomization (MR-base) was used to test possible causal effects of the identified CpGs. RESULTS Two BMI trajectories (high vs. low) were identified. Of the 442,475 CpG sites, 18 CpGs in males and 33 in females passed screening. Eight CpGs in males and 16 CpGs in females (none overlapping) were identified as mediators. For subjects with high BMI trajectory, high DNAm at all CpGs in males were associated with decreased lung function, while 8 CpGs in females were associated with increased lung function at 18 years. At 26 years, 6 CpGs in males and 14 CpGs in females showed the same direction of indirect effects as those at 18 years. DNAm at CpGs cg19088553 (GRIK2) and cg00612625 (HPSE2) showed a potential causal effect on FEV1. CONCLUSIONS The effects of BMI trajectory in early childhood on post-adolescence lung function were likely to be mediated by pre-adolescence DNAm in both males and females, but such mediation effects were likely to diminish over time.
Collapse
Affiliation(s)
- Rutu Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA.
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - S Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, Bianco FM, Frederick P, Cristoforo GP, Gangemi A, Phillips SA, Mahmoud AM. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2022; 17:93-109. [PMID: 33487124 PMCID: PMC8812729 DOI: 10.1080/15592294.2021.1876285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk factor for cardiovascular disease. Blood-detected epigenetic profiles may serve as non-invasive clinically relevant biomarkers. Therefore, we investigated DNA methylation of genes involved in inflammation in peripheral blood of obese subjects and lean controls and their correlation with cardiometabolic measurements. We obtained blood and adipose tissue (AT) samples from bariatric patients (n = 24) and control adults (n = 24). AT-isolated arterioles were tested for flow-induced dilation (FID) and production of nitric oxide (NO) and reactive oxygen species (ROS). Brachial artery flow-mediated dilation (FMD) was measured via doppler ultrasound. Promoter methylation of 94 genes involved in inflammation and autoimmunity were analysed in whole-blood DNA in relation to vascular function and cardiometabolic risk factors. 77 genes had ahigher methylated fraction in the controls compare obese subjects and 28 proinflammatory genes were significantly hypomethylated in the obese individuals; on top of these genes are CXCL1, CXCL12, CXCL6, IGF2BP2, HDAC4, IL12A, and IL17RA. Fifteen of these genes had significantly higher mRNA in obese subjects compared to controls; on top of these genes are CXCL6, TLR5, IL6ST, EGR1, IL15RA, and HDAC4. Methylation % inversely correlated with BMI, total fat %, visceral fat%, blood pressure, fasting plasma insulin, serum IL6 and C-reactive protein, arteriolar ROS, and alcohol consumption and positive correlations with lean %, HDL, plasma folate and vitamin B12, arteriolar FID and NO production, and brachial FMD. Our results suggest that vascular dysfunction in obese adults may be attributed to asystemic hypomethylation and over expression of the immune-related genes.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dina Naquiallah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryam Qureshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chandra Hassan
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Masrur
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco M. Bianco
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrice Frederick
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Antonio Gangemi
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin M. Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review. Obes Rev 2022; 23 Suppl 1:e13389. [PMID: 34816569 DOI: 10.1111/obr.13389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
The tremendous increase in childhood obesity prevalence over the last few decades cannot merely be explained by genetics and evolutionary changes in the genome, implying that gene-environment interactions, such as epigenetic modifications, likely play a major role. This systematic review aims to summarize the evidence of the association between epigenetics and childhood obesity. A literature search was performed via PubMed and Scopus engines using a combination of terms related to epigenetics and pediatric obesity. Articles studying the association between epigenetic mechanisms (including DNA methylation and hydroxymethylation, non-coding RNAs, and chromatin and histones modification) and obesity and/or overweight (or any related anthropometric parameters) in children (0-18 years) were included. The risk of bias was assessed with a modified Newcastle-Ottawa scale for non-randomized studies. One hundred twenty-one studies explored epigenetic changes related to childhood obesity. DNA methylation was the most widely investigated mechanism (N = 101 studies), followed by non-coding RNAs (N = 19 studies) with evidence suggestive of an association with childhood obesity for DNA methylation of specific genes and microRNAs (miRNAs). One study, focusing on histones modification, was identified. Heterogeneity of findings may have hindered more insights into the epigenetic changes related to childhood obesity. Gaps and challenges that future research should face are herein described.
Collapse
Affiliation(s)
- Rossella Alfano
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Evangelos Handakas
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Unit of Molecular and Genetic Epidemiology, Human Genetic Foundation (HuGeF), Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
17
|
Gutiérrez-Repiso C, Linares-Pineda TM, Gonzalez-Jimenez A, Aguilar-Lineros F, Valdés S, Soriguer F, Rojo-Martínez G, Tinahones FJ, Morcillo S. Epigenetic Biomarkers of Transition from Metabolically Healthy Obesity to Metabolically Unhealthy Obesity Phenotype: A Prospective Study. Int J Mol Sci 2021; 22:ijms221910417. [PMID: 34638758 PMCID: PMC8508854 DOI: 10.3390/ijms221910417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Identifying those parameters that could potentially predict the deterioration of metabolically healthy phenotype is a matter of debate. In this field, epigenetics, in particular DNA methylation deserves special attention. Results: The aim of the present study was to analyze the long-term evolution of methylation patterns in a subset of metabolically healthy subjects in order to search for epigenetic markers that could predict the progression to an unhealthy state. Twenty-six CpG sites were significantly differentially methylated, both at baseline and 11-year follow-up. These sites were related to 19 genes or pseudogenes; a more in-depth analysis of the methylation sites of these genes showed that CYP2E1 had 50% of the collected CpG sites differently methylated between stable metabolically healthy obesity (MHO) and unstable MHO, followed by HLA-DRB1 (33%), ZBTB45 (16%), HOOK3 (14%), PLCZ1 (14%), SLC1A1 (12%), MUC2 (12%), ZFPM2 (12.5%) and HLA-DQB2 (8%). Pathway analysis of the selected 26 CpG sites showed enrichment in pathways linked to th1 and th2 activation, antigen presentation, allograft rejection signals and metabolic processes. Higher methylation levels in the cg20707527 (ZFPM2) could have a protective effect against the progression to unstable MHO (OR: 0.21, 95%CI (0.067–0.667), p < 0.0001), whilst higher methylation levels in cg11445109 (CYP2E1) would increase the progression to MUO; OR: 2.72, 95%CI (1.094–6.796), p < 0.0014; respectively). Conclusions: DNA methylation status is associated with the stability/worsening of MHO phenotype. Two potential biomarkers of the transition to an unhealthy state were identified and deserve further investigation (cg20707527 and cg11445109). Moreover, the described differences in methylation could alter immune system-related pathways, highlighting these pathways as therapeutic targets to prevent metabolic deterioration in MHO patients.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (C.G.-R.); (T.M.L.-P.); (F.A.-L.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa María Linares-Pineda
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (C.G.-R.); (T.M.L.-P.); (F.A.-L.)
| | - Andres Gonzalez-Jimenez
- ECAI Bioinformática Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
| | - Francisca Aguilar-Lineros
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (C.G.-R.); (T.M.L.-P.); (F.A.-L.)
| | - Sergio Valdés
- Departamento de Endocrinología and Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (S.V.); (F.S.); (G.R.-M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Federico Soriguer
- Departamento de Endocrinología and Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (S.V.); (F.S.); (G.R.-M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gemma Rojo-Martínez
- Departamento de Endocrinología and Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (S.V.); (F.S.); (G.R.-M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (C.G.-R.); (T.M.L.-P.); (F.A.-L.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
- Correspondence: (F.J.T.); (S.M.)
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; (C.G.-R.); (T.M.L.-P.); (F.A.-L.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (S.M.)
| |
Collapse
|
18
|
Adipose Tissue Hypoxia Correlates with Adipokine Hypomethylation and Vascular Dysfunction. Biomedicines 2021; 9:biomedicines9081034. [PMID: 34440238 PMCID: PMC8394952 DOI: 10.3390/biomedicines9081034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity is characterized by the accumulation of dysfunctional adipose tissues, which predisposes to cardiometabolic diseases. Our previous in vitro studies demonstrated a role of hypoxia in inducing adipokine hypomethylation in adipocytes. We sought to examine this mechanism in visceral adipose tissues (VATs) from obese individuals and its correlation with cardiometabolic risk factors. We propose an involvement of the hypoxia-inducible factor, HIF1α, and the DNA hydroxymethylase, TET1. Blood samples and VAT biopsies were obtained from obese and non-obese subjects (n = 60 each) having bariatric and elective surgeries, respectively. The analyses of VAT showed lower vascularity, and higher levels of HIF1α and TET1 proteins in the obese subjects than controls. Global hypomethylation and hydroxymethylation were observed in VAT from obese subjects along with promoter hypomethylation of several pro-inflammatory adipokines. TET1 protein was enriched near the promotor of the hypomethylated adipokines. The average levels of adipokine methylation correlated positively with vascularity and arteriolar vasoreactivity and negatively with protein levels of HIF1α and TET1 in corresponding VAT samples, serum and tissue inflammatory markers, and other cardiometabolic risk factors. These findings suggest a role for adipose tissue hypoxia in causing epigenetic alterations, which could explain the increased production of adipocytokines and ultimately, vascular dysfunction in obesity.
Collapse
|
19
|
Yamazaki J, Meagawa S, Jelinek J, Yokoyama S, Nagata N, Yuki M, Takiguchi M. Obese status is associated with accelerated DNA methylation change in peripheral blood of senior dogs. Res Vet Sci 2021; 139:193-199. [PMID: 34358922 DOI: 10.1016/j.rvsc.2021.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Obesity and its associated comorbidities constitute a major and growing health problem worldwide not only involved with people but also dogs and cats. Although few genetic mutations have been associated with obesity in dogs, molecular mechanism remains to be clearly understood. Given the fact that DNA methylation leads to gene expression variability and has plasticity affected by metabolic phenotypes such as obesity in human, the objective of this study is to identify obesity-associated differentially methylated cytosine-phosphate-guanine (CpG) dinucleotide sites in dogs. With genome-wide DNA methylation analysis using next-generation sequencing for blood samples from fourteen Miniature dachshunds with body condition score (BCS) 4-5 and BCS ≥6, over 100,000 sites could be analysed to identify genomic locations of differentially methylated CpG sites. As a result, 191 differentially methylated CpG sites (89 CpG sites were hypermethylated in BCS ≥6 and 102 were hypermethylated in BCS 4-5) were identified. These sites included promoter regions of Kisspeptin receptor (KISS1R) and Calcyphosine 2 (CAPS2) genes which were subsequently validated by bisulfite-pyrosequencing for another set of 157 dog blood samples. KISS1R methylation levels were found to be higher in BCS ≥6 group than BCS 4-5 in senior (>84 months) dogs. Especially male dogs but not female dogs as well as uncastrated male dogs but not castrated male dogs showed this trend. DNA methylation of KISS1R gene will be useful for understanding of comprehensive epigenetic change in obese dogs.
Collapse
Affiliation(s)
- Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan.
| | - Shinji Meagawa
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Tx, USA
| | | | - Shoko Yokoyama
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Noriyuki Nagata
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Masashi Yuki
- Yuki Animal Hospital, 2-99 Kiba-cho, Minato-ku, Aichi, Japan
| | - Mitsuyoshi Takiguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
20
|
Rathod R, Zhang H, Karmaus W, Ewart S, Kadalayil L, Relton C, Ring S, Arshad SH, Holloway JW. BMI trajectory in childhood is associated with asthma incidence at young adulthood mediated by DNA methylation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:77. [PMID: 34301314 PMCID: PMC8299682 DOI: 10.1186/s13223-021-00575-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Body mass index (BMI) is associated with asthma but associations of BMI temporal patterns with asthma incidence are unclear. Previous studies suggest that DNA methylation (DNAm) is associated with asthma status and variation in DNAm is a consequence of BMI changes. This study assessed the direct and indirect (via DNAm) effects of BMI trajectories in childhood on asthma incidence at young adulthood. METHODS Data from the Isle of Wight (IoW) birth cohort were included in the analyses. Group-based trajectory modelling was applied to infer latent BMI trajectories from ages 1 to 10 years. An R package, ttscreening, was applied to identify differentially methylated CpGs at age 10 years associated with BMI trajectories, stratified for sex. Logistic regressions were used to further exclude CpGs with DNAm at age 10 years not associated with asthma incidence at 18 years. CpGs discovered via path analyses that mediated the association of BMI trajectories with asthma incidence in the IoW cohort were further tested in an independent cohort, the Avon Longitudinal Study of Children and Parents (ALSPAC). RESULTS Two BMI trajectories (high vs. normal) were identified. Of the 442,474 CpG sites, DNAm at 159 CpGs in males and 212 in females were potentially associated with BMI trajectories. Assessment of their association with asthma incidence identified 9 CpGs in males and 6 CpGs in females. DNAm at 4 of these 15 CpGs showed statistically significant mediation effects (p-value < 0.05). At two of the 4 CpGs (cg23632109 and cg10817500), DNAm completely mediated the association (i.e., only statistically significant indirect effects were identified). In the ALSPAC cohort, at all four CpGs, the same direction of mediating effects were observed as those found in the IoW cohort, although statistically insignificant. CONCLUSION The association of BMI trajectory in childhood with asthma incidence at young adulthood is possibly mediated by DNAm.
Collapse
Affiliation(s)
- Rutu Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - S Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
21
|
Individuals Diagnosed with Binge-Eating Disorder Have DNA Hypomethylated Sites in Genes of the Metabolic System: A Pilot Study. Nutrients 2021; 13:nu13051413. [PMID: 33922358 PMCID: PMC8145109 DOI: 10.3390/nu13051413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Binge-eating disorder, recently accepted as a diagnostic category, is differentiated from bulimia nervosa in that the former shows the presence of binge-eating episodes and the absence of compensatory behavior. Epigenetics is a conjunct of mechanisms (like DNA methylation) that regulate gene expression, which are dependent on environmental changes. Analysis of DNA methylation in eating disorders shows that it is reduced. The present study aimed to analyze the genome-wide DNA methylation differences between individuals diagnosed with BED and BN. A total of 46 individuals were analyzed using the Infinium Methylation EPIC array. We found 11 differentially methylated sites between BED- and BN-diagnosed individuals, with genome-wide significance. Most of the associations were found in genes related to metabolic processes (ST3GAL4, PRKAG2, and FRK), which are hypomethylated genes in BED. Cg04781532, located in the body of the PRKAG2 gene (protein kinase AMP-activated non-catalytic subunit gamma 2), was hypomethylated in individuals with BED. Agonists of PRKAG2, which is the subunit of AMPK (AMP-activated protein kinase), are proposed to treat obesity, BED, and BN. The present study contributes important insights into the effect that BED could have on PRKAG2 activation.
Collapse
|
22
|
Mărginean CO, Meliţ LE, Săsăran MO. Pediatric Obesity-A Potential Risk Factor for Systemic Inflammatory Syndrome Associated to COVID-19, a Case Report. Front Pediatr 2021; 9:681626. [PMID: 34123977 PMCID: PMC8192702 DOI: 10.3389/fped.2021.681626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
The well-documented systemic inflammation associated to pediatric obesity might act as an augmenting factor for other inflammatory conditions, such as pediatric inflammatory multisystem syndrome (PIMS) associated to COVID-19. We report the case of 9-year-old boy admitted in our clinic for fever, anorexia, and fatigability. The clinical exam revealed influenced general status, palpebral edema, non-exudative conjunctivitis, and abdominal tenderness. The patient weighed 45 kg. The laboratory tests at the time of admission pointed out anemia, lymphopenia; elevated inflammatory biomarkers, NT-proBNP, D-dimers, and troponin; high liver enzymes and lactate dehydrogenase levels, as well as hypoalbuminemia. The patient tested positive for both RT-PCR and serology for SARS-CoV-2 infection. We initiated intravenous immunoglobulin and methylprednisolone, associated with empirical antibiotic, anticoagulation therapy, and symptomatic treatment. The patient was discharged on the 7th day of admission with the recommendation to continue enoxaparin and methylprednisolone at home tapering the dose for the next week. The subclinical inflammatory status associated to obesity might serve as an unfortunate trigger factor for the development of COVID-19 severe forms in children. Therefore, clinicians should be aware that children with obesity and COVID-19 represent a peculiar group that should be closely monitored and thoroughly assessed in order to preempt life-threatening complications, such as PIMS.
Collapse
Affiliation(s)
- Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Lorena Elena Meliţ
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
23
|
Gong P, Jing Y, Liu Y, Wang L, Wu C, Du Z, Li H. Whole-genome bisulfite sequencing of abdominal adipose reveals DNA methylation pattern variations in broiler lines divergently selected for fatness. J Anim Sci 2021; 99:skaa408. [PMID: 33373456 PMCID: PMC8611762 DOI: 10.1093/jas/skaa408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 11/14/2022] Open
Abstract
The methylation status of pivotal genes involved in fat deposition in chickens has been extensively studied. However, the whole-genome DNA methylation profiles of broiler abdominal adipose tissue remain poorly understood. Using whole-genome bisulfite sequencing, we generated DNA methylation profiles of chicken abdominal adipose tissue from Northeast Agricultural University broiler lines divergently selected for abdominal fat content. We aimed to explore whether DNA methylation was associated with abdominal fat deposition in broilers. The whole-genome DNA methylation profiles of fat- and lean-line broilers abdominal adipose tissue were constructed. The DNA methylation levels of functional genomic regions in the fat broiler were higher than those in the lean broiler, especially in the 3' untranslated regions (UTRs) and exons in the non-CG contexts. Additionally, we identified 29,631 differentially methylated regions and, subsequently, annotated 6,484 and 2,016 differentially methylated genes (DMGs) in the gene body and promoter regions between the two lines, respectively. Functional annotation showed that the DMGs in promoter regions were significantly enriched mainly in the triglyceride catabolic process, lipid metabolism-related pathways, and extracellular matrix signal pathways. When the DMG in promoter regions and differentially expressed genes were integrated, we identified 30 genes with DNA methylation levels that negatively correlated with their messenger RNA (mRNA) expression, of which CMSS1 reached significant levels (false discovery rate < 0.05). These 30 genes were mainly involved in fatty acid metabolism, peroxisome-proliferator-activated receptor signaling, Wnt signaling pathways, transmembrane transport, RNA degradation, and glycosaminoglycan degradation. Comparing the DNA methylation profiles between fat- and lean-line broilers demonstrated that DNA methylation is involved in regulating broiler abdominal fat deposition. Our study offers a basis for further exploring the underlying mechanisms of abdominal adipose deposition in broilers.
Collapse
Affiliation(s)
- Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Yang Jing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Chunyan Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Zhiqiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| |
Collapse
|
24
|
Vehmeijer FOL, Küpers LK, Sharp GC, Salas LA, Lent S, Jima DD, Tindula G, Reese S, Qi C, Gruzieva O, Page C, Rezwan FI, Melton PE, Nohr E, Escaramís G, Rzehak P, Heiskala A, Gong T, Tuominen ST, Gao L, Ross JP, Starling AP, Holloway JW, Yousefi P, Aasvang GM, Beilin LJ, Bergström A, Binder E, Chatzi L, Corpeleijn E, Czamara D, Eskenazi B, Ewart S, Ferre N, Grote V, Gruszfeld D, Håberg SE, Hoyo C, Huen K, Karlsson R, Kull I, Langhendries JP, Lepeule J, Magnus MC, Maguire RL, Molloy PL, Monnereau C, Mori TA, Oken E, Räikkönen K, Rifas-Shiman S, Ruiz-Arenas C, Sebert S, Ullemar V, Verduci E, Vonk JM, Xu CJ, Yang IV, Zhang H, Zhang W, Karmaus W, Dabelea D, Muhlhausler BS, Breton CV, Lahti J, Almqvist C, Jarvelin MR, Koletzko B, Vrijheid M, Sørensen TIA, Huang RC, Arshad SH, Nystad W, Melén E, Koppelman GH, London SJ, Holland N, Bustamante M, Murphy SK, Hivert MF, Baccarelli A, Relton CL, Snieder H, Jaddoe VWV, Felix JF. DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Med 2020; 12:105. [PMID: 33239103 PMCID: PMC7687793 DOI: 10.1186/s13073-020-00810-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.
Collapse
Affiliation(s)
- Florianne O L Vehmeijer
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Lucas A Salas
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dereje D Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Gwen Tindula
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Sarah Reese
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Cancan Qi
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Christian Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Faisal I Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, UK
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Philip E Melton
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Austalia, Australia
| | - Ellen Nohr
- Centre for Women's, Family and Child Health, University of South-Eastern Norway, Kongsberg, Norway
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Geòrgia Escaramís
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Anni Heiskala
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuli T Tuominen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason P Ross
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn Marit Aasvang
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eva Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Natalia Ferre
- Pediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Dariusz Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, Warsaw, Poland
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | | | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Peter L Molloy
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sheryl Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos Ruiz-Arenas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Milan, Italy
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
- Department of Gastroenterology, Hepatology and Endocrinology, CiiM, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Marjo-Riitta Jarvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health, Section of Epidemiology, and The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Stephanie J London
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Nina Holland
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Bendor CD, Bardugo A, Pinhas-Hamiel O, Afek A, Twig G. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc Diabetol 2020; 19:79. [PMID: 32534575 PMCID: PMC7293793 DOI: 10.1186/s12933-020-01052-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Severe obesity among children and adolescents is a significant global public health concern. The prevalence has markedly increased over the last decades, becoming common in many countries. Overwhelming rates of obesity among youth have prompted efforts to identify an evidence-based immediate- and long-term cardiometabolic risk factor profile in childhood-onset severe obesity, and to highlight gaps that require further investigation. The PubMed database was systematically searched in accordance with PRISMA guidelines. The search yielded 831 results, of which 60 fulfilled stringent criteria and were summarized in this review. The definition of severe obesity was variable, with only one half the publications using the definition BMI > 120% of the 95th percentile. Point estimates of the prevalence of at least one cardiometabolic risk factor in children with severe obesity reportedly range from 67 to 86%. Cross-sectional studies indicate that children and adolescents with severe obesity are at greater risk than those with mild obesity for type 2 diabetes, hypertension, fatty liver disease and dyslipidemia, already at childhood and adolescence. Robust epidemiological data on the long-term risk and actual point estimates in adulthood are lacking for these diseases as well as for other diseases (coronary heart disease, stroke, chronic kidney disease and cancer). Recent longitudinal studies indicate an increased risk for cardiomyopathy, heart failure, cardiovascular mortality and all-cause mortality in adulthood for adolescents with severe obesity compared to those with mild obesity. Given the alarming increase in the prevalence of severe obesity, the persistence of adiposity from childhood to adulthood and the precarious course of young adults with chronic comorbidities, the economic and clinical services burden on the healthcare system is expected to rise.
Collapse
Affiliation(s)
- Cole D Bendor
- Department of Military Medicine, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
- Academy and Research Division, Surgeon General Headquarters, Israel Defense Forces, Medical Corps, Ramat Gan, Israel
| | - Aya Bardugo
- Department of Military Medicine, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
- Academy and Research Division, Surgeon General Headquarters, Israel Defense Forces, Medical Corps, Ramat Gan, Israel
| | - Orit Pinhas-Hamiel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Endocrinology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Arnon Afek
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central Management, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Gilad Twig
- Department of Military Medicine, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
- Academy and Research Division, Surgeon General Headquarters, Israel Defense Forces, Medical Corps, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Institute of Endocrinology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
| |
Collapse
|
26
|
Wu Y, Perng W, Peterson KE. Precision Nutrition and Childhood Obesity: A Scoping Review. Metabolites 2020; 10:E235. [PMID: 32521722 PMCID: PMC7345802 DOI: 10.3390/metabo10060235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Environmental exposures such as nutrition during life stages with high developmental plasticity-in particular, the in utero period, infancy, childhood, and puberty-may have long-lasting influences on risk of chronic diseases, including obesity-related conditions that manifest as early as childhood. Yet, specific mechanisms underlying these relationships remain unclear. Here, we consider the study of 'omics mechanisms, including nutrigenomics, epigenetics/epigenomics, and metabolomics, within a life course epidemiological framework to accomplish three objectives. First, we carried out a scoping review of population-based literature with a focus on studies that include 'omics analyses during three sensitive periods during early life: in utero, infancy, and childhood. We elected to conduct a scoping review because the application of multi-'omics and/or precision nutrition in childhood obesity prevention and treatment is relatively recent, and identifying knowledge gaps can expedite future research. Second, concomitant with the literature review, we discuss the relevance and plausibility of biological mechanisms that may underlie early origins of childhood obesity identified by studies to date. Finally, we identify current research limitations and future opportunities for application of multi-'omics in precision nutrition/health practice.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; (Y.W.); (K.E.P.)
| | - Wei Perng
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; (Y.W.); (K.E.P.)
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 80045, USA
| |
Collapse
|
27
|
Shrestha D, Ouidir M, Workalemahu T, Zeng X, Tekola-Ayele F. Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain. Int J Obes (Lond) 2020; 44:1406-1416. [PMID: 32071425 PMCID: PMC7261634 DOI: 10.1038/s41366-020-0546-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maternal obesity prior to or during pregnancy influences fetal growth, predisposing the offspring to increased risk for obesity across the life course. Placental epigenetic mechanisms may underlie these associations. We conducted an epigenome-wide association study to identify placental DNA methylation changes associated with maternal prepregnancy body mass index (BMI) and rate of gestational weight gain at first (GWG1), second (GWG2), and third trimester (GWG3). METHOD Participants of the NICHD Fetal Growth Studies with genome-wide placental DNA methylation (n = 301) and gene expression (n = 75) data were included. Multivariable-adjusted regression models were used to test the associations of 1 kg/m2 increase in prepregnancy BMI or 1 kg/week increase in GWG with DNA methylation levels. Genes harboring top differentially methylated CpGs (FDR P < 0.05) were evaluated for placental gene expression. We assessed whether DNA methylation sites known to be associated with BMI in child or adult tissues, were also associated with maternal prepregnancy BMI in placenta. RESULTS Prepregnancy BMI was associated with DNA methylation at cg14568196[EGFL7], cg15339142[VETZ], and cg02301019[AC092377.1] (FDR P < 0.05, P ranging from 1.4 × 10-10 to 1.7 × 10-9). GWG1 or GWG2 was associated with DNA methylation at cg17918270[MYT1L], cg20735365[DLX5], and cg17451688[SLC35F3] (FDR P < 0.05, P ranging from 6.4 × 10-10 to 1.2 × 10-8). Both prepregnancy BMI and DNA methylation at cg1456819 [EGFL7] were negatively correlated with EGFL7 expression in placenta (P < 0.05). Several CpGs previously implicated in obesity traits in children and adults were associated with prepregnancy BMI in placenta. Functional annotations revealed that EGFL7 is highly expressed in placenta and the differentially methylated CpG sites near EGFL7 and VEZT were cis-meQTL targets in blood. CONCLUSIONS We identified placental DNA methylation changes at novel loci associated with prepregnancy BMI and GWG. The overlap between CpGs associated with obesity traits in placenta and other tissues in children and adults suggests that epigenetic mechanisms in placenta may give insights to early origins of obesity.
Collapse
Affiliation(s)
- Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Abstract
Obesity is a worldwide epidemic and contributes to global morbidity and mortality mediated via the development of nonalcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), cardiovascular (CVD) and other diseases. It is a consequence of an elevated caloric intake, a sedentary lifestyle and a genetic as well as an epigenetic predisposition. This review summarizes changes in DNA methylation and microRNAs identified in blood cells and different tissues in obese human and rodent models. It includes information on epigenetic alterations which occur in response to fat-enriched diets, exercise and metabolic surgery and discusses the potential of interventions to reverse epigenetic modifications.
Collapse
Affiliation(s)
- Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
29
|
Lima RS, Assis Silva Gomes J, Moreira PR. An overview about DNA methylation in childhood obesity: Characteristics of the studies and main findings. J Cell Biochem 2020; 121:3042-3057. [DOI: 10.1002/jcb.29544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Rafael Silva Lima
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Juliana Assis Silva Gomes
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Paula Rocha Moreira
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| |
Collapse
|
30
|
Cadiou S, Bustamante M, Agier L, Andrusaityte S, Basagaña X, Carracedo A, Chatzi L, Grazuleviciene R, Gonzalez JR, Gutzkow KB, Maitre L, Mason D, Millot F, Nieuwenhuijsen M, Papadopoulou E, Santorelli G, Saulnier PJ, Vives M, Wright J, Vrijheid M, Slama R. Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index. ENVIRONMENT INTERNATIONAL 2020; 138:105622. [PMID: 32179316 PMCID: PMC8713647 DOI: 10.1016/j.envint.2020.105622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The exposome is defined as encompassing all environmental exposures one undergoes from conception onwards. Challenges of the application of this concept to environmental-health association studies include a possibly high false-positive rate. OBJECTIVES We aimed to reduce the dimension of the exposome using information from DNA methylation as a way to more efficiently characterize the relation between exposome and child body mass index (BMI). METHODS Among 1,173 mother-child pairs from HELIX cohort, 216 exposures ("whole exposome") were characterized. BMI and DNA methylation from immune cells of peripheral blood were assessed in children at age 6-10 years. A priori reduction of the methylome to preselect BMI-relevant CpGs was performed using biological pathways. We then implemented a tailored Meet-in-the-Middle approach to identify from these CpGs candidate mediators in the exposome-BMI association, using univariate linear regression models corrected for multiple testing: this allowed to point out exposures most likely to be associated with BMI ("reduced exposome"). Associations of this reduced exposome with BMI were finally tested. The approach was compared to an agnostic exposome-wide association study (ExWAS) ignoring the methylome. RESULTS Among the 2284 preselected CpGs (0.6% of the assessed CpGs), 62 were associated with BMI. Four factors (3 postnatal and 1 prenatal) of the exposome were associated with at least one of these CpGs, among which postnatal blood level of copper and PFOS were directly associated with BMI, with respectively positive and negative estimated effects. The agnostic ExWAS identified 18 additional postnatal exposures, including many persistent pollutants, generally unexpectedly associated with decreased BMI. DISCUSSION Our approach incorporating a priori information identified fewer significant associations than an agnostic approach. We hypothesize that this smaller number corresponds to a higher specificity (and possibly lower sensitivity), compared to the agnostic approach. Indeed, the latter cannot distinguish causal relations from reverse causation, e.g. for persistent compounds stored in fat, whose circulating level is influenced by BMI.
Collapse
Affiliation(s)
- Solène Cadiou
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Lydiane Agier
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagaña
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), IDIS, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | | | - Juan R Gonzalez
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Léa Maitre
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Frédéric Millot
- CHU Poitiers, Clinical Investigation Centre, CIC 1402, Poitiers, France; Poitiers University, Clinical Investigation Centre CIC 1402, Poitiers, France
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Gillian Santorelli
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Pierre-Jean Saulnier
- CHU Poitiers, Clinical Investigation Centre, CIC 1402, Poitiers, France; Poitiers University, Clinical Investigation Centre CIC 1402, Poitiers, France; INSERM, CIC 1402, F-86000 Poitiers, France; CHU Poitiers, Endocrinology, Diabetology, Nutrition Service, Poitiers, France
| | - Marta Vives
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rémy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
31
|
Ren J, Zhou F, Li X, Chen Q, Zhang H, Ma S, Jiang Y, Wu C. Semiparametric Bayesian variable selection for gene-environment interactions. Stat Med 2020; 39:617-638. [PMID: 31863500 PMCID: PMC7467082 DOI: 10.1002/sim.8434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 11/02/2019] [Indexed: 11/06/2022]
Abstract
Many complex diseases are known to be affected by the interactions between genetic variants and environmental exposures beyond the main genetic and environmental effects. Study of gene-environment (G×E) interactions is important for elucidating the disease etiology. Existing Bayesian methods for G×E interaction studies are challenged by the high-dimensional nature of the study and the complexity of environmental influences. Many studies have shown the advantages of penalization methods in detecting G×E interactions in "large p, small n" settings. However, Bayesian variable selection, which can provide fresh insight into G×E study, has not been widely examined. We propose a novel and powerful semiparametric Bayesian variable selection model that can investigate linear and nonlinear G×E interactions simultaneously. Furthermore, the proposed method can conduct structural identification by distinguishing nonlinear interactions from main-effects-only case within the Bayesian framework. Spike-and-slab priors are incorporated on both individual and group levels to identify the sparse main and interaction effects. The proposed method conducts Bayesian variable selection more efficiently than existing methods. Simulation shows that the proposed model outperforms competing alternatives in terms of both identification and prediction. The proposed Bayesian method leads to the identification of main and interaction effects with important implications in a high-throughput profiling study with high-dimensional SNP data.
Collapse
Affiliation(s)
- Jie Ren
- Department of Statistics, Kansas State University, Manhattan, Kansas
| | - Fei Zhou
- Department of Statistics, Kansas State University, Manhattan, Kansas
| | - Xiaoxi Li
- Department of Statistics, Kansas State University, Manhattan, Kansas
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, Connecticut
| | - Yu Jiang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee
| | - Cen Wu
- Department of Statistics, Kansas State University, Manhattan, Kansas
| |
Collapse
|
32
|
Li Y, Wang K, Zhang P, Huang J, Liu Y, Wang Z, Lu Y, Tan S, Yang F, Tan Y. Pyrosequencing analysis of IRS1 methylation levels in schizophrenia with tardive dyskinesia. Mol Med Rep 2020; 21:1702-1708. [PMID: 32319643 PMCID: PMC7057828 DOI: 10.3892/mmr.2020.10984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Tardive dyskinesia (TD) is a serious side effect of certain antipsychotic medications that are used to treat schizophrenia (SCZ) and other mental illnesses. The methylation status of the insulin receptor substrate 1 (IRS1) gene is reportedly associated with SCZ; however, no study, to the best of the authors' knowledge, has focused on the quantitative DNA methylation levels of the IRS1 gene using pyrosequencing in SCZ with or without TD. The present study aimed to quantify DNA methylation levels of 4 CpG sites in the IRS1 gene using a Chinese sample including SCZ patients with TD and without TD (NTD) and healthy controls (HCs). The general linear model (GLM) was used to detect DNA methylation levels among the 3 proposed groups (TD vs. NTD vs. HC). Mean DNA methylation levels of 4 CpG sites demonstrated normal distribution. Pearson's correlation analysis did not reveal any significant correlations between the DNA methylation levels of the 4 CpG sites and the severity of SCZ. GLM revealed significant differences between the 3 groups for CpG site 1 and the average of the 4 CpG sites (P=0.0001 and P=0.0126, respectively). Furthermore, the TD, NTD and TD + NTD groups demonstrated lower methylation levels in CpG site 1 (P=0.0003, P<0.0001 and P<0.0001, respectively) and the average of 4 CpG sites (P=0.0176, P=0.0063 and P=0.003, respectively) compared with the HC group. The results revealed that both NTD and TD patients had significantly decreased DNA methylation levels compared with healthy controls, which indicated a significant association between the DNA methylation levels of the IRS1 gene with SCZ and TD.
Collapse
Affiliation(s)
- Yanli Li
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Ping Zhang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| |
Collapse
|
33
|
Mulder RH, Walton E, Neumann A, Houtepen LC, Felix JF, Bakermans-Kranenburg MJ, Suderman M, Tiemeier H, van IJzendoorn MH, Relton CL, Cecil CAM. Epigenomics of being bullied: changes in DNA methylation following bullying exposure. Epigenetics 2020; 15:750-764. [PMID: 31992121 PMCID: PMC7574379 DOI: 10.1080/15592294.2020.1719303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bullying among children is ubiquitous and associated with pervasive mental health problems. However, little is known about the biological pathways that change after exposure to bullying. Epigenome-wide changes in DNA methylation in peripheral blood were studied from pre- to post measurement of bullying exposure, in a longitudinal study of the population-based Generation R Study and Avon Longitudinal Study of Parents and Children (combined n = 1,352). Linear mixed-model results were meta-analysed to estimate how DNA methylation changed as a function of exposure to bullying. Sensitivity analyses including co-occurring child characteristics and risks were performed, as well as a Gene Ontology analysis. A candidate follow-up was employed for CpG (cytosine-phosphate-guanine) sites annotated to 5-HTT and NR3C1. One site, cg17312179, showed small changes in DNA methylation associated to bullying exposure (b = -2.67e-03, SE = 4.97e-04, p = 7.17e-08). This site is annotated to RAB14, an oncogene related to Golgi apparatus functioning, and its methylation levels decreased for exposed but increased for non-exposed. This result was consistent across sensitivity analyses. Enriched Gene Ontology pathways for differentially methylated sites included cardiac function and neurodevelopmental processes. Top CpG sites tended to have overall low levels of DNA methylation, decreasing in exposed, increasing in non-exposed individuals. There were no gene-wide corrected findings for 5-HTT and NR3C1. This is the first study to identify changes in DNA methylation associated with bullying exposure at the epigenome-wide significance level. Consistent with other population-based studies, we do not find evidence for strong associations between bullying exposure and DNA methylation.
Collapse
Affiliation(s)
- Rosa H Mulder
- Institute of Education and Child Studies, Leiden University , Leiden, The Netherlands.,Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Generation R Study Group, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Esther Walton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol , Bristol, UK.,Department of Psychology, University of Bath , Bath, UK
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Generation R Study Group, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal, Qc, Canada
| | - Lotte C Houtepen
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol , Bristol, UK
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | | | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol , Bristol, UK
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Department of Social and Behavioral Science, Harvard TH Chan School of Public Health , Boston, MA, USA
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam , Rotterdam, The Netherlands.,School of Clinical Medicine, University of Cambridge , Cambridge, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol , Bristol, UK
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Department of Psychology, Institute of Psychology, Psychiatry & Neuroscience, King's College London , London, UK
| |
Collapse
|
34
|
Bordoni L, Smerilli V, Nasuti C, Gabbianelli R. Mitochondrial DNA methylation and copy number predict body composition in a young female population. J Transl Med 2019; 17:399. [PMID: 31779622 PMCID: PMC6883616 DOI: 10.1186/s12967-019-02150-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background Since both genomic and environmental factors are involved in obesity etiology, several studies about the influence of adiposity on both nuclear DNA and mitochondrial DNA methylation patterns have been carried out. Nevertheless, few evidences exploring the usage of buccal swab samples to study mitochondrial DNA epigenetics can be found in literature. Methods In this study, mitochondrial DNA from buccal swabs collected from a young Caucasian population (n = 69) have been used to examine potential correlation between mitochondrial DNA copy number and methylation with body composition (BMI, WHtR and bioimpedance measurements). Results A negative correlation between mitochondrial DNA copy number and BMI was measured in females (p = 0.028), but not in males. The mean percentage of D-loop methylation is significantly higher in overweight than in lean female subjects (p = 0.003), and a specific CpG located in the D-loop shows per se an association with impaired body composition (p = 0.004). Body composition impairment is predicted by a combined variable including mtDNA copy number and the D-loop methylation (AUC = 0.785; p = 0.009). Conclusions This study corroborates the hypothesis that mitochondrial DNA carries relevant information about body composition. However, wider investigations able to validate the usage of mtDNA methylation from buccal swabs as a biomarker are warranted.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Vanessa Smerilli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Cinzia Nasuti
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
35
|
Ling C, Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab 2019; 29:1028-1044. [PMID: 30982733 PMCID: PMC6509280 DOI: 10.1016/j.cmet.2019.03.009] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms control gene activity and the development of an organism. The epigenome includes DNA methylation, histone modifications, and RNA-mediated processes, and disruption of this balance may cause several pathologies and contribute to obesity and type 2 diabetes (T2D). This Review summarizes epigenetic signatures obtained from human tissues of relevance for metabolism-i.e., adipose tissue, skeletal muscle, pancreatic islets, liver, and blood-in relation to obesity and T2D. Although this research field is still young, these comprehensive data support not only a role for epigenetics in disease development, but also epigenetic alterations as a response to disease. Genetic predisposition, as well as aging, contribute to epigenetic variability, and several environmental factors, including exercise and diet, further interact with the human epigenome. The reversible nature of epigenetic modifications holds promise for future therapeutic strategies in obesity and T2D.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
36
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
37
|
He F, Berg A, Imamura Kawasawa Y, Bixler EO, Fernandez-Mendoza J, Whitsel EA, Liao D. Association between DNA methylation in obesity-related genes and body mass index percentile in adolescents. Sci Rep 2019; 9:2079. [PMID: 30765773 PMCID: PMC6375997 DOI: 10.1038/s41598-019-38587-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Childhood obesity remains an epidemic in the U.S. and worldwide. However, little is understood regarding the epigenetic basis of obesity in adolescents. To investigate the cross-sectional association between DNA methylation level in obesity-related genes and body mass index (BMI) percentile, data from 263 adolescents in the population-based Penn State Child Cohort follow-up exam was analysed. Using DNA extracted from peripheral leukocytes, epigenome-wide single nucleotide resolution of DNA methylation in cytosine-phosphate-guanine (CpG) sites and surrounding regions was obtained. We used multivariable-adjusted linear regression models to assess the association between site-specific methylation level and age- and sex-specific BMI percentile. Hypergeometric and permutation tests were used to determine if obesity-related genes were significantly enriched among all intragenic sites that achieved a p < 0.05 throughout the epigenome. Among the 5,669 sites related to BMI percentile with p < 0.05, 28 were identified within obesity-related genes. Obesity-related genes were significantly enriched among 103,466 intragenic sites (Phypergeometric = 0.006; Ppermutation = 0.006). Moreover, increased methylation on one site within SIM1 was significantly related to higher BMI percentile (P = 4.2E-05). If externally validated, our data would suggest that DNA methylation in obesity-related genes may relate to obesity risk in adolescents.
Collapse
Affiliation(s)
- Fan He
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Arthur Berg
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Yuka Imamura Kawasawa
- Institute for Personalized Medicine, Departments of Biochemistry and Molecular Biology and Pharmacology, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Edward O Bixler
- Sleep Research and Treatment Center, Department of Psychiatry, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Duanping Liao
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA.
| |
Collapse
|
38
|
Butruille L, Marousez L, Pourpe C, Oger F, Lecoutre S, Catheline D, Görs S, Metges CC, Guinez C, Laborie C, Deruelle P, Eeckhoute J, Breton C, Legrand P, Lesage J, Eberlé D. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes (Lond) 2019; 43:2381-2393. [PMID: 30622312 DOI: 10.1038/s41366-018-0310-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point. METHODS We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood. RESULTS Maternal HF feeding during lactation had no effect on mothers' body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming. CONCLUSIONS Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.
Collapse
Affiliation(s)
- Laura Butruille
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Lucie Marousez
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Charlène Pourpe
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Frédérik Oger
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Simon Lecoutre
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Daniel Catheline
- Laboratoire de Biochimie et Nutrition Humaine INRA 1378, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042, Rennes cedex, France
| | - Solvig Görs
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, D-18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, D-18196, Dummerstorf, Germany
| | - Céline Guinez
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Christine Laborie
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Philippe Deruelle
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Christophe Breton
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine INRA 1378, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042, Rennes cedex, France
| | - Jean Lesage
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Delphine Eberlé
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.
| |
Collapse
|
39
|
Yamaguchi T, Hosomichi K, Takahashi M, Haga S, Nakawaki T, Hikita Y, Maki K, Tajima A. Orthognathic surgery induces genomewide changes longitudinally in DNA methylation in saliva. Oral Dis 2018; 25:508-514. [PMID: 30362655 DOI: 10.1111/odi.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 07/27/2018] [Accepted: 10/05/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Orthognathic surgery dramatically changes morphology of the maxillofacial deformity and improves the malocclusion morphologically and functionally. We investigated the influence of orthognathic surgery on genomewide DNA methylation in saliva. METHODS Saliva was obtained from nine patients undergoing orthognathic surgery and two healthy reference individuals before and 3 months after orthognathic surgery. Genomewide DNA methylation profiling of saliva (341,482 CpG dinucleotides) was conducted using Infinium HumanMethylation450 BeadChips. RESULTS Comparison between pre- and postsurgery saliva samples revealed significant changes in DNA methylation patterns at 2,381 CpG sites (p < 0.01) with suggestive significance. The differentially methylated probe sets were significantly associated with the cancer pathway (p = 2.8 × 10-7 ; a false discovery rate q-value = 3.7 × 10-4 ) and PI3K-Akt signalling pathway (p = 2.4 × 10-5 ; a false discovery rate q-value = 3.1 × 10-2 ). CONCLUSION Pathway enrichment analysis of genes with suggestive significance demonstrated that altered DNA methylation in saliva of patients undergoing orthognathic surgery, possibly as a response to surgical stress or bone injury. Further studies with a large sample size and long-term observation are needed to validate the phenomena identified in this study.
Collapse
Affiliation(s)
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| | | | - Shugo Haga
- Department of Orthodontics, Showa University, Tokyo, Japan
| | | | - Yu Hikita
- Department of Orthodontics, Showa University, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University, Tokyo, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
40
|
Mirza N, Phan TL, Tester J, Fals A, Fernandez C, Datto G, Estrada E, Eneli I. A Narrative Review of Medical and Genetic Risk Factors among Children Age 5 and Younger with Severe Obesity. Child Obes 2018; 14:443-452. [PMID: 29791184 PMCID: PMC6157342 DOI: 10.1089/chi.2017.0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe obesity defined as an age- and gender-specific body mass index ≥120% of the 95th percentile in children younger than 5 years is well recognized as a significant challenge for prevention and treatment. This article provides an overview of the prevalence, classification of obesity severity, patterns of weight gain trajectory, medical and genetic risk factors, and comorbid disorders among young children with an emphasis on severe obesity. Studies suggest rapid weight gain trajectory in infancy, maternal smoking, maternal gestational diabetes, and genetic conditions are associated with an increased risk for severe obesity in early childhood. Among populations of young children with severe obesity seeking care, co-morbid conditions such as dyslipidemia and fatty liver disease are present and families report behavioral concerns and developmental delays. Children with severe obesity by age 5 represent a vulnerable population of children at high medical risk and need to be identified early and appropriately managed.
Collapse
Affiliation(s)
- Nazrat Mirza
- Department of Pediatrics and Adolescent Medicine, Children's National Health System, and George Washington University, Washington, DC
| | - Thao-Ly Phan
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
- Division of Weight Management, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE
| | - June Tester
- Division of Endocrinology, UCSF Benioff Children's Hospital Oakland, Oakland, CA
| | - Angela Fals
- Center for Child and Family Wellness, Florida Hospital for Children, Orlando, FL
| | - Cristina Fernandez
- Creighton University and Children's Hospital and Medical Center, Omaha, NE
| | - George Datto
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
- Division of Weight Management, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Elizabeth Estrada
- Pediatric Endocrinology, University of North Carolina, Chapel Hill, NC
| | - Ihuoma Eneli
- Center for Healthy Weight and Nutrition, Nationwide Children's Hospital, and Ohio State University, Columbus, OH
| |
Collapse
|
41
|
de Oliveira Y, Lima RPA, Luna RCP, Monteiro MGCA, da Silva CSO, do Nascimento RAF, de Farias Lima KQ, Andrade E Silva AH, de Lima Ferreira FEL, de Toledo Vianna RP, de Moraes RM, de Oliveira NFP, de Almeida ATC, Silva AS, da Silva Diniz A, de Carvalho Costa MJ, da Conceição Rodrigues Gonçalves M. Decrease of the DNA methylation levels of the ADRB3 gene in leukocytes is related with serum folate in eutrophic adults. J Transl Med 2018; 16:152. [PMID: 29866117 PMCID: PMC5987450 DOI: 10.1186/s12967-018-1529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background DNA methylation has been evidenced as a potential epigenetic mechanism related to various candidate genes to development of obesity. Therefore, the objective of this study was to evaluate the DNA methylation levels of the ADRB3 gene by body mass index (BMI) in a representative adult population, besides characterizing this population as to the lipid profile, oxidative stress and food intake. Methods This was a cross-sectional population-based study, involving 262 adults aged 20–59 years, of both genders, representative of the East and West regions of the municipality of João Pessoa, Paraíba state, Brazil, in that were evaluated lifestyle variables and performed nutritional, biochemical evaluation and DNA methylation levels of the ADRB3 gene using high resolution melting method. The relationship between the study variables was performed using analyses of variance and multiple regression models. All results were obtained using the software R, 3.3.2. Results From the stratification of categories BMI, was observed a difference in the average variables values of age, waist-to-height ratio, waist-to-hip ratio, waist circumference, triglycerides and intake of trans fat, which occurred more frequently between the categories “eutrophic” and “obesity”. From the multiple regression analysis in the group of eutrophic adults, it was observed a negative relationship between methylation levels of the ADRB3 gene with serum levels of folic acid. However, no significant relation was observed among lipid profile, oxidative stress and food intake in individuals distributed in the three categories of BMI. Conclusions A negative relationship was demonstrated between methylation levels of the ADRB3 gene in eutrophic adults individuals with serum levels of folic acid, as well as with the independent gender of BMI, however, was not observed relation with lipid profile, oxidative stress and variables of food intake. Regarding the absence of relationship with methylation levels of the ADRB3 gene in the categories of overweight, mild and moderate obesity, the answer probably lies in the insufficient amount of body fat to initiate inflammatory processes and oxidative stress with a direct impact on methylation levels, what is differently is found most of the times in exacerbated levels in severe obesity. Electronic supplementary material The online version of this article (10.1186/s12967-018-1529-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohanna de Oliveira
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil.
| | - Raquel Patrícia Ataíde Lima
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Rafaella Cristhine Pordeus Luna
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Mussara Gomes Cavalcanti Alves Monteiro
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Cássia Surama Oliveira da Silva
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Rayner Anderson Ferreira do Nascimento
- Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Keylha Querino de Farias Lima
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Ana Hermínia Andrade E Silva
- Departament of Statistics, Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Flávia Emília Leite de Lima Ferreira
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Rodrigo Pinheiro de Toledo Vianna
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Ronei Marcos de Moraes
- Departament of Statistics, Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Naila Francis Paulo de Oliveira
- Departament of Molecular Biology, Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Aléssio Tony Cavalcanti de Almeida
- Department of Economics, Center for Applied Social Sciences (Centro de Ciências Sociais Aplicadas), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Alexandre Sérgio Silva
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Alcides da Silva Diniz
- Departament of Nutrition, Health Sciences Center (Centro de Ciências da Saúde), Federal University of Pernambuco (Universidade Federal de Pernambuco), Recife, Brazil
| | - Maria José de Carvalho Costa
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Maria da Conceição Rodrigues Gonçalves
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| |
Collapse
|
42
|
Zhang SJ, Wang Y, Yang YL, Zheng H. Aberrant DNA Methylation Involved in Obese Women with Systemic Insulin Resistance. Open Life Sci 2018; 13:201-207. [PMID: 33817084 PMCID: PMC7874722 DOI: 10.1515/biol-2018-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/08/2018] [Indexed: 01/03/2023] Open
Abstract
Background Epigenetics has been recognized as a significant regulator in many diseases. White adipose tissue (WAT) epigenetic dysregulation is associated with systemic insulin resistance (IR). The aim of this study was to survey the differential methylation of genes in obese women with systemic insulin resistance by DNA methylation microarray. Methods The genome-wide methylation profile of systemic insulin resistant obese women was obtained from Gene Expression Omnibus database. After data preprocessing, differing methylation patterns between insulin resistant and sensitive obese women were identified by Student's t-test and methylation value differences. Network analysis was then performed to reveal co-regulated genes of differentially methylated genes. Functional analysis was also implemented to reveal the underlying biological processes related to systemic insulin resistance in obese women. Results Relative to insulin sensitive obese women, we initially screened 10,874 differentially methylated CpGs, including 7402 hyper-methylated sites and 6073 hypo-methylated CpGs. Our analysis identified 4 significantly differentially methylated genes, including SMYD3, UST, BCL11A, and BAI3. Network and functional analyses found that these differentially methylated genes were mainly involved in chondroitin and dermatan sulfate biosynthetic processes. Conclusion Based on our study, we propose several epigenetic biomarkers that may be related to obesity-associated insulin resistance. Our results provide new insights into the epigenetic regulation of disease etiology and also identify novel targets for insulin resistance treatment in obese women.
Collapse
Affiliation(s)
- Shao-Jun Zhang
- Department of Endocrinology, The People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, China.,Department of Endocrinology, The Sixth Division Hospital of Xinjiang Production and Construction Corps, Wujiaqu, Xinjiang 830025, China
| | - Yan Wang
- Medical Laboratory Diagnosis Center, Jinan Central Hospital, Jinan, Shandong 250013, China
| | - Yan-Lan Yang
- Department of Endocrinology, The People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, China
| | - Hong Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China
| |
Collapse
|
43
|
Li Y, Zhou Y, Zhu L, Liu G, Wang X, Wang X, Wang J, You L, Ji C, Guo X, Zhao Y, Cui X. Genome‐wide analysis reveals that altered methylation in specific CpG loci is associated with childhood obesity. J Cell Biochem 2018; 119:7490-7497. [DOI: 10.1002/jcb.27059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Li
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Yahui Zhou
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
- Department of PediatricsJingjiang People's HospitalJingjiangJiangsuChina
| | - Lijun Zhu
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Guiyou Liu
- College of Life Science and ChemistryJiangsu Second Normal UniversityNanjingJiangsuChina
| | - Xing Wang
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Xingyun Wang
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Jian Wang
- Department of EndocrinologyNanjing First Hospital, Nanjing Medical UniversityNanjingJiangsuChina
| | - Lianghui You
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Chenbo Ji
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Xirong Guo
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| | - Yingmin Zhao
- Department of PediatricsJingjiang People's HospitalJingjiangJiangsuChina
| | - Xianwei Cui
- Nanjing Maternal and Child Health InstituteThe Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital)NanjingChina
| |
Collapse
|
44
|
Abstract
The aim of the present review paper is to survey the literature related to DNA methylation, and its association with cancer and ageing. The review will outline the key factors, including diet, which modulate DNA methylation. Our rationale for conducting this review is that ageing and diseases, including cancer, are often accompanied by aberrant DNA methylation, a key epigenetic process, which is crucial to the regulation of gene expression. Significantly, it has been observed that with age and certain disease states, DNA methylation status can become disrupted. For instance, a broad array of cancers are associated with promoter-specific hypermethylation and concomitant gene silencing. This review highlights that hypermethylation, and gene silencing, of the EN1 gene promoter, a crucial homeobox gene, has been detected in various forms of cancer. This has led to this region being proposed as a potential biomarker for diseases such as cancer. We conclude the review by describing a recently developed novel electrochemical method that can be used to quantify the level of methylation within the EN1 promoter and emphasise the growing trend in the use of electrochemical techniques for the detection of aberrant DNA methylation.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Although childhood obesity has leveled off in the last decade, 'severe obesity' continues to be on the rise. Various genetic, environmental and hormonal factors contribute to obesity. This article reviews the most current understanding of obesity's multifactorial origin and recent recommendations for its management in childhood and adolescence. RECENT FINDINGS Epigenetics plays a key role in transmitting obesity risk to offspring. Single-nucleotide polymorphisms at genetic loci for adipokines and their receptors are associated with obesity. Gut microbiota is an important regulator of weight status, and Bifidobacterium species improves metabolic status. The incidence of comorbidities including prediabetes and type 2 diabetes has increased. Novel biomarkers such as alpha-hydroxybutyrate and branched-chain amino acids correlate with insulin sensitivity and predict glycemic control in adolescents. Lifestyle modifications and pharmacotherapy can produce small BMI changes. Bariatric surgery induces substantial weight loss and remission of comorbidities. SUMMARY Alterations in genetics, epigenetics and microbiota influence childhood obesity. Lifestyle modification remains the mainstay of management and pharmacotherapy with Food and Drug Administration approved medications is recommended only for patients resistant to lifestyle changes and for comorbidities. Bariatric surgery produces sustained weight loss and cardiovascular benefits and is an effective option for adolescents with severe obesity.
Collapse
Affiliation(s)
- Charumathi Baskaran
- Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | | |
Collapse
|
46
|
Shafei AES, Nabih ES, Shehata KA, Abd Elfatah ESM, Sanad ABA, Marey MY, Hammouda AAMA, Mohammed MMM, Mostafa R, Ali MA. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Child Obes 2018; 14:18-25. [PMID: 29019419 DOI: 10.1089/chi.2017.0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is a global health problem. It is characterized by excess adipose tissue that results from either increase in the number of adipocytes or increase in adipocytes size. Adipocyte differentiation is a highly regulated process that involves the activation of several transcription factors culminating in the removal of adipocytes from the cell cycle and induction of highly specific proteins. Several other factors, including hormones, genes, and epigenetics, are among the most important triggers of the differentiation process. Although the main contributing factors to obesity are high caloric intake, a sedentary lifestyle, and genetic predisposition, strong evidence supports a role for life exposure to environmental pollutants. Endocrine-disrupting chemicals are exogenous, both natural and man-made, chemicals that disrupt the body signaling processes, thus interfering with the endocrine system. Several studies have shown that prenatal exposure to endocrine disruptors modulates the mechanisms, by which multipotent mesenchymal stem cells differentiate into adipocytes. This review discusses adipocytes differentiation and highlights the possible mechanisms of prenatal exposure to endocrine disruptors in reprogramming of adipogenesis and induction of obesity later in life. Therefore, this review provides knowledge that reduction of early life exposure to these chemicals could open the door for new strategies in the prevention of obesity, especially during childhood.
Collapse
Affiliation(s)
- Ayman El-Sayed Shafei
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Enas Samir Nabih
- 2 Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| | | | | | | | | | | | | | - Randa Mostafa
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Mahmoud A Ali
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| |
Collapse
|
47
|
Lima RPA, do Nascimento RAF, Luna RCP, Persuhn DC, da Silva AS, da Conceição Rodrigues Gonçalves M, de Almeida ATC, de Moraes RM, Junior EV, Fouilloux-Meugnier E, Vidal H, Pirola L, Magnani M, de Oliveira NFP, Prada PO, de Carvalho Costa MJ. Effect of a diet containing folate and hazelnut oil capsule on the methylation level of the ADRB3 gene, lipid profile and oxidative stress in overweight or obese women. Clin Epigenetics 2017; 9:110. [PMID: 29046732 PMCID: PMC5640916 DOI: 10.1186/s13148-017-0407-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Background Studies of genes that play an important role in the development of obesity are needed, especially studies focusing on genes that regulate food intake and affect nutrient metabolism. For example, the beta-3 adrenergic receptor (ADRB3) responds to noradrenaline and mediates lipolysis in adipocytes. Methods This was a controlled intervention study involving 40 overweight and obese adult women in which food intake, anthropometric measurements, biochemical analyses, and methylation levels of the ADRB3 gene were evaluated before and after intervention. The individuals were randomized into four groups: group 1 (G1) received 300 g of vegetables and legumes containing on average 191 μg/day of folate and 1 hazelnut oil capsule; group 2 (G2) received 300 g of vegetables and legumes containing on average 191 μg/day of folate and 1 placebo capsule; group 3 (G3) received 300 g of vegetables and legumes containing on average 90 μg/day of folate and 1 hazelnut oil capsule; and individuals in group 4 (G4) were only followed-up and maintained their regular dietary habits. Statistical analysis was performed using analysis of variance (ANOVA), Student’s t test and simple regression, using STATA 13 software. Results In the total sample, after the intervention, the women classified as overweight and obese did not present weight loss, and there was a reduction in the methylation levels of the ADRB3 gene and malondialdehyde, as well as an increase in high-density lipoprotein cholesterol and total antioxidant capacity. Conclusions The beneficial effect of the intake of a hazelnut capsule on the methylation levels of the ADRB3 gene was demonstrated for the first time. Trial registration ClinicalTrials.gov, NCT 02846025
Collapse
Affiliation(s)
- Raquel Patrícia Ataíde Lima
- Graduate Program in Nutritional Sciences, Health Sciences Center (Centro de Ciências da Saúd-CCS), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil.,Present Address: Pós-graduação em Ciências da Nutrição, Centro de Ciências da Saúde, NIESN-Núcleo Interdisciplinar de Estudos em Saúde e Nutrição/Universidade Federal da Paraíba, Castelo Branco, João Pessoa, PB 58059-900 Brazil
| | - Rayner Anderson Ferreira do Nascimento
- Graduate Program in Molecular and Human Biology, Center of Natural and Exact Sciences (Centro de Ciências Exatas da Natureza-CCEN), Federal University of Paraíba, João Pessoa, Brazil
| | | | - Darlene Camati Persuhn
- Graduate Program in Cellular and Molecular Biology CCEN, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Alessio Tony Cavalcanti de Almeida
- Department of Economics, Center for Applied Social Sciences (Centro de Ciências Sociais Aplicada-CCSA), Federal University of Paraíba, João Pessoa, Brazil
| | - Ronei Marcos de Moraes
- Graduate Program in Decision Models in Health, CCEN, Federal University of Paraíba, João Pessoa, Brazil
| | - Eliseu Verly Junior
- Department of Epidemiology, Institute of Social Medicine, State University of Rio de Janeiro (Universidade Estadual do Rio de Janeiro), João Pessoa, Brazil
| | | | - Hubert Vidal
- University of Lyon 1, CARMEN-Vileurbanne Laboratory, Villeurbanne, France
| | - Luciano Pirola
- University of Lyon 1, CARMEN-Vileurbanne Laboratory, Villeurbanne, France
| | - Marciane Magnani
- Graduate Program in Nutritional Sciences, CCS, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Patrícia Oliveira Prada
- Graduate Program in Nutritional and Sport Sciences and Metabolism (Ciências da Nutrição, do Esporte e Metabolismo-CNEM), School of Applied Sciences (Faculdade de Ciências Aplicadas-FCA), State University of Campinas (Universidade Estadual de Campinas-UNICAMP), Campinas, Brazil
| | | |
Collapse
|
48
|
|