1
|
Zheng S, Wang Y, Tang S, Guo Y, Ma D, Jiang X. Mechanism of nimodipine in treating neurodegenerative diseases: in silico target identification and molecular dynamic simulation. Front Pharmacol 2025; 16:1549953. [PMID: 40183081 PMCID: PMC11965916 DOI: 10.3389/fphar.2025.1549953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Aim Nimodipine has shown neuroprotective effects in several studies; however, the specific targets and mechanisms remain unclear. This study aims to explore the potential targets and mechanisms of nimodipine in the treatment of neurodegenerative diseases (NDDs), providing a theoretical foundation for repurposing nimodipine for NDDs. Methods Drug-related targets were predicted using SwissTargetPrediction and integrated with results from CTD, GeneCards, and DrugBank. These targets were then cross-referenced with disease-related targets retrieved from CTD to identify overlapping targets. The intersecting targets were imported into STRING to construct a protein-protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the R package ClusterProfiler. Molecular docking was carried out using AutoDock Vina, and the ligand-receptor complexes with the highest binding affinities were further simulated using GROMACS to assess the dynamic structural stability and interactions between the ligand and receptor in the dynamic system. Results A total of 33 intersecting drug-disease targets were identified. After constructing the PPI network and removing isolated targets, the network contained 28 nodes and 69 edges. Network degree analysis combined with enrichment analysis highlighted 12 key targets: CASP3, TNF, BAX, BCL2, IL1B, GSK3B, IL1A, MAOB, MAOA, BDNF, APP, and GFAP. Molecular docking analysis revealed binding energies greater than -6 kcal/mol for MAOA, GSK3B, MAOB, CASP3, BCL2, IL1B and APP. MAOA, with the highest binding energy of -7.343 kcal/mol, demonstrated a stable structure in a 100ns dynamic simulation with nimodipine, exhibiting an average dynamic binding energy of -52.39 ± 3.05 kcal/mol. The dynamic cross-correlation matrix (DCCM) of nimodipine resembled that of harmine, reducing the interactions between protein residues compared to the apo state (regardless of positive or negative correlations). Furthermore, nimodipine induced new negative correlations in residues 100-200 and 300-400. Conclusion Nimodipine binds to the internal pocket of MAOA and shows potential inhibitory effects. Given its brain-enrichment characteristics and proven neuroprotective effects, it is hypothesized that nimodipine may exert therapeutic effects on NDDs by inhibiting MAOA activity and modulating cerebral oxidative stress. Thus, MAOA emerges as a promising new target for nimodipine in the treatment of NDDs.
Collapse
Affiliation(s)
- Shuang Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Precision Genes Technology, INC., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
| | - Yin Wang
- Precision Genes Technology, INC., Nantong, China
| | | | - Yuntao Guo
- Precision Genes Technology, INC., Nantong, China
| | - Duan Ma
- Precision Genes Technology, INC., Nantong, China
| | - Xin Jiang
- Precision Genes Technology, INC., Nantong, China
| |
Collapse
|
2
|
Hâncu IM, Giuchici S, Furdui-Lința AV, Lolescu B, Sturza A, Muntean DM, Dănilă MD, Lighezan R. The highs and lows of monoamine oxidase as molecular target in cancer: an updated review. Mol Cell Biochem 2024:10.1007/s11010-024-05192-w. [PMID: 39714760 DOI: 10.1007/s11010-024-05192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
The global burden of cancer as a major cause of death and invalidity has been constantly increasing in the past decades. Monoamine oxidases (MAO) with two isoforms, MAO-A and MAO-B, are mammalian mitochondrial enzymes responsible for the oxidative deamination of neurotransmitters and amines in the central nervous system and peripheral tissues with the constant generation of hydrogen peroxide as the main deleterious ancillary product. However, given the complexity of cancer biology, MAO involvement in tumorigenesis is multifaceted with different tumors displaying either an increased or decreased MAO profile. MAO inhibitors are currently approved for the treatment of neurodegenerative diseases (mainly, Parkinson's disease) and as secondary/adjunctive therapeutic options for the treatment of major depression. Herein, we review the literature characterizing MAO's involvement and the putative role of MAO inhibitors in several malignancies, and also provide perspectives regarding the potential biomarker role that MAO could play in the future in oncology.
Collapse
Affiliation(s)
- Iasmina M Hâncu
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Silvia Giuchici
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adina V Furdui-Lința
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Bogdan Lolescu
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adrian Sturza
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Danina M Muntean
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Maria D Dănilă
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania.
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania.
| | - Rodica Lighezan
- Department XIII Infectious Diseases-Parasitology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| |
Collapse
|
3
|
Datta C, Das P, Dutta S, Prasad T, Banerjee A, Gehlot S, Ghosal A, Dhabal S, Biswas P, De D, Chaudhuri S, Bhattacharjee A. AMPK activation reduces cancer cell aggressiveness via inhibition of monoamine oxidase A (MAO-A) expression/activity. Life Sci 2024; 352:122857. [PMID: 38914305 DOI: 10.1016/j.lfs.2024.122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
AIM AMPK can be considered as an important target molecule for cancer for its unique ability to directly recognize cellular energy status. The main aim of this study is to explore the role of different AMPK activators in managing cancer cell aggressiveness and to understand the mechanistic details behind the process. MAIN METHODS First, we explored the AMPK expression pattern and its significance in different subtypes of lung cancer by accessing the TCGA data sets for LUNG, LUAD and LUSC patients and then established the correlation between AMPK expression pattern and overall survival of lung cancer patients using Kaplan-Meire plot. We further carried out several cell-based assays by employing different wet lab techniques including RT-PCR, Western Blot, proliferation, migration and invasion assays to fulfil the aim of the study. KEY FINDINGS SIGNIFICANCE: This study identifies the importance of AMPK activators as a repurposing agent for combating lung and colon cancer cell aggressiveness. It also suggests SRT-1720 as a potent repurposing agent for cancer treatment especially in NSCLC patients where a point mutation is present in LKB1.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Subhajit Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Tuhina Prasad
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Abhineet Banerjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sameep Gehlot
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Arpa Ghosal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India.
| |
Collapse
|
4
|
Bardaweel SK, Al-salamat H, Hajjo R, Sabbah D, Almutairi S. Unveiling the Intricacies of Monoamine Oxidase-A (MAO-A) Inhibition in Colorectal Cancer: Computational Systems Biology, Expression Patterns, and the Anticancer Therapeutic Potential. ACS OMEGA 2024; 9:35703-35717. [PMID: 39184489 PMCID: PMC11339988 DOI: 10.1021/acsomega.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, necessitating a deeper understanding of its molecular intricacies for effective therapeutic interventions. Elevated monoamine oxidase-A (MAO-A) expression has been consistently observed in CRC tissues, correlating with advanced disease stages and a poorer prognosis. This research explores the systems biology effects of MAO-A inhibition with small molecule inhibitor clorgyline regarding CRC. The applied systems biology approach starts with a chemocentric informatics approach to derive high-confidence hypotheses regarding the antiproliferative effects of MAO-A inhibitors and ends with experimental validation. Our computational results emphasized the anticancer effects of MAO-A inhibition and the chemogenomics similarities between clorgyline and structurally diverse groups of apoptosis inducers in addition to highlighting apoptotic, DNA-damage, and microRNAs in cancer pathways. Experimental validation results revealed that MAO inhibition results in antiproliferative antimigratory activities in addition to synergistic effects with doxorubicin. Moreover, the results demonstrated a putative role of MAO-A inhibition in commencing CRC cellular death by potentially mediating the induction of apoptosis.
Collapse
Affiliation(s)
- Sanaa K. Bardaweel
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Husam Al-salamat
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Rima Hajjo
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Board
Member, Jordan CDC, Amman - 11183, Jordan
| | - Dima Sabbah
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
| | - Shriefa Almutairi
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| |
Collapse
|
5
|
Chen PA, Chang PC, Yeh WW, Hu TY, Hong YC, Wang YC, Huang WJ, Lin TP. The lncRNA TPT1-AS1 promotes the survival of neuroendocrine prostate cancer cells by facilitating autophagy. Am J Cancer Res 2024; 14:2103-2123. [PMID: 38859837 PMCID: PMC11162664 DOI: 10.62347/imbv8599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/21/2024] [Indexed: 06/12/2024] Open
Abstract
The lncRNA tumor protein translationally controlled 1-antisense RNA 1 (TPT1-AS1) is known for its oncogenic role in various cancers, but its impact on the pathological progression of prostate cancer remains unclear. Our previous study demonstrated that the RE1-silencing transcription factor (REST) regulates neuroendocrine differentiation (NED) in prostate cancer (PCA) by derepressing specific long non-coding RNAs (lncRNAs), including TPT1-AS1. In this study, we revealed that TPT1-AS1 is overexpressed in LNCaP and C4-2B cells after IL-6 and enzalutamide treatment. By analyzing The Cancer Genome Atlas (TCGA) prostate adenocarcinoma dataset, we detected upregulated TPT1-AS1 expression in neuroendocrine-associated PCA but not in prostate adenocarcinoma. Single-cell RNA sequencing data further confirmed the increased TPT1-AS1 levels in neuroendocrine prostate cancer (NEPC) cells. Surprisingly, functional experiments indicated that TPT1-AS1 overexpression had no stimulatory effect on NED in LNCaP cells and that TPT1-AS1 knockdown did not inhibit IL-6-induced NED. Transcriptomic analysis revealed the essential role of TPT1-AS1 in synaptogenesis and autophagy activation in neuroendocrine differentiated PCA cells induced by IL-6 and enzalutamide treatment. TPT1-AS1 was found to regulate the expression of autophagy-related genes that maintain neuroendocrine cell survival through autophagy activation. In conclusion, our data expand the current knowledge of REST-repressed lncRNAs in NED in PCA and highlight the contribution of TPT1-AS1 to protect neuroendocrine cells from cell death rather than inducing NED. Our study suggested that TPT1-AS1 plays a cytoprotective role in NEPC cells; thus, targeting TPT1-AS1 is a potential therapeutic strategy.
Collapse
Affiliation(s)
- Po-An Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern CaliforniaLos Angeles, CA 90089, USA
| | - Tze-Yun Hu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Yung-Chih Hong
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - William J Huang
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| |
Collapse
|
6
|
Ma Y, Chen H, Li H, Zhao Z, An Q, Shi C. Targeting monoamine oxidase A: a strategy for inhibiting tumor growth with both immune checkpoint inhibitors and immune modulators. Cancer Immunol Immunother 2024; 73:48. [PMID: 38349393 PMCID: PMC10864517 DOI: 10.1007/s00262-023-03622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024]
Abstract
Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730030, Gansu, People's Republic of China
| | - Hanmu Chen
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yanan, 716000, Shaanxi, People's Republic of China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Zirbesegger K, Reyes L, Paolino A, Dapueto R, Arredondo F, Gambini JP, Savio E, Porcal W. Molecular Imaging of Monoamine Oxidase A Expression in Highly Aggressive Prostate Cancer: Synthesis and Preclinical Evaluation of Positron Emission Tomography Tracers. ACS Pharmacol Transl Sci 2023; 6:1734-1744. [PMID: 37982127 PMCID: PMC10653014 DOI: 10.1021/acsptsci.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023]
Abstract
The role of monoamine oxidase A (MAO-A) in the aggressiveness of prostate cancer (PCa) has been established in recent years. The molecular imaging of MAO-A expression could offer a noninvasive tool for the visualization and quantification of highly aggressive PCa. This study reports the synthesis and preclinical evaluation of 11C- and 18F-labeled MAO-A inhibitors as positron emission tomography (PET) tracers for proof-of-concept studies in animal models of PCa. Good manufacturing practice production and quality control of these radiotracers using an automated platform was achieved. PET imaging was performed in an LNCaP tumor model with high MAO-A expression. The tumor-to-muscle (T/M) uptake ratio of [11C]harmine (4.5 ± 0.5) was significantly higher than that for 2-[18F]fluoroethyl-harmol (2.3 ± 0.7) and [11C]clorgyline (2.0 ± 0.1). A comparable ex vivo biodistribution pattern in all radiotracers was observed. Furthermore, the tumor uptake of [11C]harmine showed a dramatic reduction (T/M = 1) in a PC3 tumor model with limited MAO-A expression, and radioactivity uptake in LNCaP tumors was blocked in the presence of nonradioactive harmine. Our findings suggest that [11C]harmine may serve as an attractive PET probe for the visualization of MAO-A expression in highly aggressive PCa. These radiotracers have the potential for clinical translation and may aid in the development of personalized therapeutic strategies for PCa patients.
Collapse
Affiliation(s)
- Kevin Zirbesegger
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
- Programa de Posgrado, Facultad de Química,
Universidad de la República, Av. General Flores 2124,
11800 Montevideo, Uruguay
| | - Laura Reyes
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Andrea Paolino
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Rosina Dapueto
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Florencia Arredondo
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Juan P. Gambini
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Eduardo Savio
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad
de Química, Universidad de la República, Av.
General Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
8
|
Chang CH, Cheng TY, Yeh WW, Luo YL, Campbell M, Kuo TC, Shen TW, Hong YC, Tsai CH, Peng YC, Pan CC, Yang MH, Shih JC, Kung HJ, Huang WJ, Chang PC, Lin TP. REST-repressed lncRNA LINC01801 induces neuroendocrine differentiation in prostate cancer via transcriptional activation of autophagy. Am J Cancer Res 2023; 13:3983-4002. [PMID: 37818052 PMCID: PMC10560947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 10/12/2023] Open
Abstract
The association between REST reduction and the development of neuroendocrine prostate cancer (NEPC), a novel drug-resistant and lethal variant of castration-resistant prostate cancer (CRPC), is well established. To better understand the mechanisms underlying this process, we aimed to identify REST-repressed long noncoding RNAs (lncRNAs) that promote neuroendocrine differentiation (NED), thus facilitating targeted therapy-induced resistance. In this study, we used data from REST knockdown RNA sequencing combined with siRNA screening to determine that LINC01801 was upregulated and played a crucial role in NED in prostate cancer (PCa). Using The Cancer Genome Atlas (TCGA) prostate adenocarcinoma database and CRPC samples collected in our laboratory, we demonstrated that LINC01801 expression is upregulated in NEPC. Functional experiments revealed that overexpression of LINC01801 had a slight stimulatory effect on the NED of LNCaP cells, while downregulation of LINC01801 significantly inhibited the induction of NED. Mechanistically, LINC01801 is transcriptionally repressed by REST, and transcriptomic analysis revealed that LINC01801 preferentially affects the autophagy pathway. LINC01801 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of autophagy-related genes by sponging hsa-miR-6889-3p in prostate cancer cells. In conclusion, our data expand the current knowledge of REST-induced NED and highlight the contribution of the REST-LINC01801-hsa-miR-6889-3p axis to autophagic induction, which may provide promising avenues for therapeutic opportunities.
Collapse
Affiliation(s)
- Ching-Hsin Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Department of Urology, Taipei Medical University HospitalTaipei 11031, Taiwan
| | - Ting-Yu Cheng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Yun-Li Luo
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Mel Campbell
- Comprehensive Cancer Center, University of California at DavisSacramento, CA 95817, USA
| | - Tse-Chun Kuo
- Institute of Molecular and Genomic Medicine, National Health Research InstitutesZhunan, Miaoli 35053, Taiwan
| | - Tsai-Wen Shen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
| | - Yung-Chih Hong
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Cheng-Han Tsai
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Yu-Ching Peng
- Department of Pathology and Laboratory Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Chin-Chen Pan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Jean-Chen Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089, USA
| | - Hsing-Jien Kung
- Comprehensive Cancer Center, University of California at DavisSacramento, CA 95817, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei 11031, Taiwan
| | - William J Huang
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityHsinchu 30010, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
| | - Tzu-Ping Lin
- Faculty of Medicine, National Yang Ming Chiao Tung UniversityTaipei 11221, Taiwan
- Department of Urology, Taipei Veterans General HospitalTaipei 11217, Taiwan
| |
Collapse
|
9
|
Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH. The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep 2023; 50:3873-3884. [PMID: 36787054 PMCID: PMC10042974 DOI: 10.1007/s11033-023-08251-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer is the second most common cancer diagnosed in men and the fifth-leading cause of cancer death in men worldwide. Like any solid tumor, the hypoxic microenvironment of prostatic cancer drives hypoxia-inducible factors (HIFs) to mediate cell adaptions to hypoxic conditions. HIFs direct different signaling pathways such as PI3K/Akt/mTOR, NOX, and Wnt/β-Catenin to tumor progression depending on the degree of hypoxia. HIFs regulate cytoskeleton protein expression, promoting epithelial-mesenchymal transition (EMT), which occurs when cancer cells lose cell-to-cell adhesions and start invasion and metastasis. Through activating pathways, the hypoxic microenvironment maintains the self-renewal, potency, and anti-apoptotic function of prostate cancer cells and induces tumor metastasis and transformation. These pathways could serve as a potential target for prostate cancer therapy. HIFs increase the expression of androgen receptors on cancer cells maintaining the growth and survival of prostate cancer and the development of its castration resistance. In this review, we elaborate on the role of hypoxia in prostatic cancer pathogenesis and different hypoxia-induced mechanisms.
Collapse
Affiliation(s)
- Osama A A Mohamed
- Biotechnology Department, Faculty of Science, Mansoura University, Dakahlia, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Heba S Tesen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Marwa Hany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aya Sherif
- Chemistry & Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Maya Magdy Abdelwahab
- Faculty of Medicine, Helwan University, Cairo, Egypt. .,Biomedical Research Department, Tetraploid Team, Cairo, Egypt.
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| |
Collapse
|
10
|
Chen CH, Wu BJ. Monoamine oxidase A: An emerging therapeutic target in prostate cancer. Front Oncol 2023; 13:1137050. [PMID: 36860320 PMCID: PMC9968829 DOI: 10.3389/fonc.2023.1137050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Monoamine oxidase A (MAOA), a mitochondrial enzyme degrading biogenic and dietary amines, has been studied in the contexts of neuropsychiatry and neurological disorders for decades, but its importance in oncology, as best exemplified in prostate cancer (PC) to date, was only realized recently. PC is the most commonly diagnosed non-skin cancer and the second deadliest malignancy for men in the United States. In PC, the increased expression level of MAOA is correlated with dedifferentiated tissue microarchitecture and a worse prognosis. A wealth of literature has demonstrated that MAOA promotes growth, metastasis, stemness and therapy resistance in PC, mainly by increasing oxidative stress, augmenting hypoxia, inducing epithelial-to-mesenchymal transition, and activating the downstream principal transcription factor Twist1-dictated multiple context-dependent signaling cascades. Cancer-cell-derived MAOA also enables cancer-stromal cell interaction involving bone stromal cells and nerve cells by secretion of Hedgehog and class 3 semaphorin molecules respectively to modulate the tumor microenvironment in favor of invasion and metastasis. Further, MAOA in prostate stromal cells promotes PC tumorigenesis and stemness. Current studies suggest that MAOA functions in PC in both cell autonomous and non-autonomous manners. Importantly, clinically available monoamine oxidase inhibitors have shown promising results against PC in preclinical models and clinical trials, providing a great opportunity to repurpose them as a PC therapy. Here, we summarize recent advances in our understanding of MAOA roles and mechanisms in PC, present several MAOA-targeted strategies that have been nominated for treating PC, and discuss the unknowns of MAOA function and targeting in PC for future exploration.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| |
Collapse
|
11
|
Biswas P, Datta C, Rathi P, Bhattacharjee A. Fatty acids and their lipid mediators in the induction of cellular apoptosis in cancer cells. Prostaglandins Other Lipid Mediat 2022; 160:106637. [PMID: 35341977 DOI: 10.1016/j.prostaglandins.2022.106637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023]
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through enzymes like lipoxygenases (LOXs) are common and often leads to the production of various bioactive lipids that are important both in acute inflammation and its resolution and thus in disease progression. Amongst the several isoforms of LOX that are expressed in mammals, 15-lipoxygenase (15-LOX) has shown to be crucial in the context of inflammation. Moreover, being expressed in cells of the immune system, as well as in epithelial cells; the enzyme has been shown to crosstalk with a number of important signalling pathways. Mounting evidences from recent reports suggest that 15-LOX has anti-cancer activities which are dependent or independent of its metabolites, and is executed through several downstream pathways like cGMP, PPAR, p53, p21 and NAG-1. However, it is still unclear whether the up-regulation of 15-LOX is associated with cancer cell apoptosis. Monoamine oxidase A (MAO-A), on the other hand, is a mitochondrial flavoenzyme which is believed to be involved in the pathogenesis of atherosclerosis and inflammation and in many other neurological disorders. MAO-A has also been reported as a potential therapeutic target in different types of cancers like prostate cancer, lung cancer etc. In this review, we discussed about the role of fatty acids and their lipid mediators in cancer cell apoptosis. Here we particularly focused on the contribution of oxidative enzymes like 15-LOX and MAO-A in mediating apoptosis in lung cancer cell after fatty acid induction.
Collapse
Affiliation(s)
- Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Parul Rathi
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India.
| |
Collapse
|
12
|
Li M, Peng Z, Wang X, Wang Y. Monoamine oxidase A attenuates chondrocyte loss and extracellular matrix degradation in osteoarthritis by inducing autophagy. Int Immunopharmacol 2022; 109:108772. [PMID: 35461155 DOI: 10.1016/j.intimp.2022.108772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by cartilage destruction and extracellular matrix (ECM) degeneration. Here, we studied the potential function of monoamine oxidase A (MAOA) in OA pathogenesis. METHODS Cartilage tissue samples were collected from 33 patients with knee OA and nine normal healthy controls. Sprague-Dawley rats with anterior cruciate ligament transection (ACLT) and primary chondrocytes treated with interleukin (IL)-1β were used as OA animal and cell models, respectively. The effects of adenovirus-mediated MAOA overexpression in OA models were studied using Safranin-O staining, immunohistochemistry, CCK-8 assay, EdU assay, flow cytometry, qRT-PCR, western blotting, and immunofluorescence. RESULTS MAOA was identified as an overlapping downregulating gene in the GSE82107, GSE1919, GSE169077, and GSE29746 datasets. MAOA expression was negatively correlated with OA severity. MAOA downregulation was confirmed in ACLT rats and IL-1β-treated chondrocytes. Notably, MAOA overexpression significantly inhibited ACLT-induced OA pathogenesis in rats, as was evidenced by the reduced Osteoarthritis Research Society International (OARSI) score and serum crosslinked C-telopeptides of type II collagen (CTX-II) and cartilage oligomeric matrix protein (COMP) levels. These findings show that MAOA overexpression inhibits extracellular matrix (ECM) degradation and promotes ACLT-induced autophagy. The effects of MAOA on ECM degradation and autophagy were also confirmed in IL-1β-treated primary chondrocytes. Additionally, MAOA protects chondrocytes against IL-1β-induced apoptosis. Furthermore, treating chondrocytes with 3-MA significantly attenuated the protective effects of MAOA. CONCLUSION MAOA was identified as a downregulated gene in OA. Restoring MAOA expression protects against chondrocyte loss and ECM degradation through autophagy regulation.
Collapse
Affiliation(s)
- Ming Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Zhibin Peng
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150070, Heilongjiang, PR China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150070, Heilongjiang, PR China.
| |
Collapse
|
13
|
Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses. J Transl Med 2022; 102:332-340. [PMID: 34937865 DOI: 10.1038/s41374-021-00716-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most common cancer among men and has a high incidence and associated mortality worldwide. It is an androgen-driven disease in which tumor growth is triggered via ligand-mediated signaling through the androgen receptor (AR). Recent evidence suggests that the widespread use of effective AR pathway inhibitors may increase the occurrence of neuroendocrine prostate cancer (NEPC), an aggressive and treatment-resistant AR-negative variant; however, mechanisms controlling NEPC development remain to be elucidated. Various preclinical models have recently been developed to investigate the mechanisms driving the NEPC differentiation. In the present study, we summarized strategies for the development of NEPC models and proposed a novel method for model evaluation, which will help in the timely and accurate identification of NEPC by virtue of its ability to recapitulate the heterogeneity of prostate cancer. Moreover, we discuss the origin and the mechanism of NEPC. The understanding of the regulatory network mediating neuroendocrine differentiation presented in this review could provide valuable insights into the identification of novel drug targets for NEPC as well as into the causes of antiandrogenic drug resistance.
Collapse
|
14
|
Chen K, Palagashvili T, Hsu W, Chen Y, Tabakoff B, Hong F, Shih AT, Shih JC. Brain injury and inflammation genes common to a number of neurological diseases and the genes involved in the genesis of GABAnergic neurons are altered in monoamine oxidase B knockout mice. Brain Res 2022; 1774:147724. [PMID: 34780749 PMCID: PMC8638699 DOI: 10.1016/j.brainres.2021.147724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Monoamine oxidase B (MAO B) oxidizes trace amine phenylethylamine (PEA), and neurotransmitters serotonin and dopamine in the brain. We reported previously that PEA levels increased significantly in all brain regions, but serotonin and dopamine levels were unchanged in MAO B knockout (KO) mice. PEA and dopamine are both synthesized from phenylalanine by aromatic L-amino acid decarboxylase in dopaminergic neurons in the striatum. A high concentration of PEA in the striatum may cause dopaminergic neuronal death in the absence of MAO B. We isolated the RNA from brain tissue of MAO B KO mice (2-month old) and age-matched wild type (WT) male mice and analyzed the altered genes by Affymetrix microarray. Differentially expressed genes (DEGs) in MAO B KO compared to WT mice were analyzed by Partek Genomics Suite, followed by Ingenuity Pathway Analysis (IPA) to assess their functional relationships. DEGs in MAO B KO mice are involved in brain inflammation and the genesis of GABAnergic neurons. The significant DEGs include four brain injury or inflammation genes (upregulated: Ido1, TSPO, AVP, Tdo2), five gamma-aminobutyric acid (GABA) receptors (down-regulated: GABRA2, GABRA3, GABRB1, GABRB3, GABRG3), five transcription factors related to adult neurogenesis (upregulated: Wnt7b, Hes5; down-regulated: Pax6, Tcf4, Dtna). Altered brain injury and inflammation genes in MAO B knockout mice are involved in various neurological disorders: attention deficit hyperactive disorder, panic disorder, obsessive compulsive disorder, autism, amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's disease, bipolar affective disorder. Many were commonly involved in these disorders, indicating that there are overlapping molecular pathways.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Tamara Palagashvili
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - W Hsu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO, USA
| | - Frank Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Abigail T Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles CA, USA.
| |
Collapse
|
15
|
Li CH, Liao CC. The Metabolism Reprogramming of microRNA Let-7-Mediated Glycolysis Contributes to Autophagy and Tumor Progression. Int J Mol Sci 2021; 23:113. [PMID: 35008539 PMCID: PMC8745176 DOI: 10.3390/ijms23010113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is usually a result of abnormal glucose uptake and imbalanced nutrient metabolization. The dysregulation of glucose metabolism, which controls the processes of glycolysis, gives rise to various physiological defects. Autophagy is one of the metabolic-related cellular functions and involves not only energy regeneration but also tumorigenesis. The dysregulation of autophagy impacts on the imbalance of metabolic homeostasis and leads to a variety of disorders. In particular, the microRNA (miRNA) Let-7 has been identified as related to glycolysis procedures such as tissue repair, stem cell-derived cardiomyocytes, and tumoral metastasis. In many cancers, the expression of glycolysis-related enzymes is correlated with Let-7, in which multiple enzymes are related to the regulation of the autophagy process. However, much recent research has not comprehensively investigated how Let-7 participates in glycolytic reprogramming or its links to autophagic regulations, mainly in tumor progression. Through an integrated literature review and omics-related profiling correlation, this review provides the possible linkage of the Let-7 network between glycolysis and autophagy, and its role in tumor progression.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chiao-Chun Liao
- Department of Tropical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Public Health and Department of Social Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
16
|
Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine Oxidase (MAO) as a Potential Target for Anticancer Drug Design and Development. Molecules 2021; 26:molecules26196019. [PMID: 34641563 PMCID: PMC8513016 DOI: 10.3390/molecules26196019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.
Collapse
Affiliation(s)
- Reem Aljanabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Lina Alsous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Yakutiye 25030, Turkey;
| | - Mustafa Gul
- Department of Physiology, School of Medicine, Ataturk University, Yakutiye 25030, Turkey;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
- Correspondence: ; Tel.: +962-6535-5000 (ext. 23318)
| |
Collapse
|
17
|
MAO-A Inhibition by Metaxalone Reverts IL-1β-Induced Inflammatory Phenotype in Microglial Cells. Int J Mol Sci 2021; 22:ijms22168425. [PMID: 34445126 PMCID: PMC8395141 DOI: 10.3390/ijms22168425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Experimental and clinical studies have suggested that several neurological disorders are associated with the occurrence of central nervous system neuroinflammation. Metaxalone is an FDA-approved muscle relaxant that has been reported to inhibit monoamine oxidase A (MAO-A). The aim of this study was to investigate whether metaxalone might exert antioxidant and anti-inflammatory effects in HMC3 microglial cells. An inflammatory phenotype was induced in HMC3 microglial cells through stimulation with interleukin-1β (IL-1β). Control cells and IL-1β-stimulated cells were subsequently treated with metaxalone (10, 20, and 40 µM) for six hours. IL-1β stimulated the release of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), but reduced the anti-inflammatory cytokine interleukin-13 (IL-13). The upstream signal consisted of an increased priming of nuclear factor-kB (NF-kB), blunted peroxisome proliferator-activated receptor gamma (PPARγ), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression. IL-1β also augmented MAO-A expression/activity and malondialdehyde levels and decreased Nrf2 mRNA expression and protein levels. Metaxalone decreased MAO-A activity and expression, reduced NF-kB, TNF-α, and IL-6, enhanced IL-13, and also increased PPARγ, PGC-1α, and Nrf2 expression. The present experimental study suggests that metaxalone has potential for the treatment of several neurological disorders associated with neuroinflammation.
Collapse
|
18
|
Mannan A, Singh TG, Singh V, Garg N, Kaur A, Singh M. Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases. Curr Drug Targets 2021; 23:286-310. [PMID: 34238153 DOI: 10.2174/1389450122666210707120256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO's hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as potential treatment for neurological diseases.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
19
|
Wang X, Li B, Kim YJ, Wang YC, Li Z, Yu J, Zeng S, Ma X, Choi IY, Di Biase S, Smith DJ, Zhou Y, Li YR, Ma F, Huang J, Clarke N, To A, Gong L, Pham AT, Moon H, Pellegrini M, Yang L. Targeting monoamine oxidase A for T cell-based cancer immunotherapy. Sci Immunol 2021; 6:eabh2383. [PMID: 33990379 DOI: 10.1126/sciimmunol.abh2383] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain, where it breaks down neurotransmitters and thereby influences mood and behavior. Small-molecule MAO inhibitors (MAOIs) have been developed and are clinically used for treating depression and other neurological disorders. However, the involvement of MAO-A in antitumor immunity has not been reported. Here, we observed induction of the Maoa gene in tumor-infiltrating immune cells. Maoa knockout mice exhibited enhanced antitumor T cell immunity and suppressed tumor growth. MAOI treatment significantly suppressed tumor growth in preclinical mouse syngeneic and human xenograft tumor models in a T cell-dependent manner. Combining MAOI and anti-PD-1 treatments generated synergistic tumor suppression effects. Clinical data correlation studies associated intratumoral MAOA expression with T cell dysfunction and decreased patient survival in a broad range of cancers. We further demonstrated that MAO-A restrains antitumor T cell immunity through controlling intratumoral T cell autocrine serotonin signaling. Together, these data identify MAO-A as an immune checkpoint and support repurposing MAOI antidepressants for cancer immunotherapy.
Collapse
Affiliation(s)
- Xi Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Bo Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Samuel Zeng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xiaoya Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - In Young Choi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Stefano Di Biase
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Drake J Smith
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Nicole Clarke
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Angela To
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Laura Gong
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Alexander T Pham
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Heesung Moon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Santin Y, Resta J, Parini A, Mialet-Perez J. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Res Rev 2021; 66:101256. [PMID: 33434685 DOI: 10.1016/j.arr.2021.101256] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Population aging is one of the most significant social changes of the twenty-first century. This increase in longevity is associated with a higher prevalence of chronic diseases, further rising healthcare costs. At the molecular level, cellular senescence has been identified as a major process in age-associated diseases, as accumulation of senescent cells with aging leads to progressive organ dysfunction. Of particular importance, mitochondrial oxidative stress and consequent organelle alterations have been pointed out as key players in the aging process, by both inducing and maintaining cellular senescence. Monoamine oxidases (MAOs), a class of enzymes that catalyze the degradation of catecholamines and biogenic amines, have been increasingly recognized as major producers of mitochondrial ROS. Although well-known in the brain, evidence showing that MAOs are also expressed in a variety of peripheral organs stimulated a growing interest in the extra-cerebral roles of these enzymes. Besides, the fact that MAO-A and/or MAO-B are frequently upregulated in aged or dysfunctional organs has uncovered new perspectives on their roles in pathological aging. In this review, we will give an overview of the major results on the regulation and function of MAOs in aging and age-related diseases, paying a special attention to the mechanisms linked to the increased degradation of MAO substrates or related to MAO-dependent ROS formation.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
21
|
Zhou J, Yang Z, Wu X, Zhang J, Zhai W, Chen Y. Identification of genes that correlate clear cell renal cell carcinoma and obesity and exhibit potential prognostic value. Transl Androl Urol 2021; 10:680-691. [PMID: 33718070 PMCID: PMC7947457 DOI: 10.21037/tau-20-891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a common urologic malignancy. Although the relationship between clear cell RCC (ccRCC) and obesity has been well-established by several large-scale retrospective studies, the molecular mechanisms and genetic characteristics behind this correlation remains unclear. In the current study, several bioinformatics tools were used to identify the key genes in ccRCC related to obesity. Methods Microarray data comparing ccRCC with normal renal tissues in patients with and without obesity were downloaded from the GEO database for screening of differentially expressed genes (DEGs). The DEGs were verified with expression level and survival analysis using several online bioinformatics tools. Results In the current study, the differential expression of five genes correlated with both ccRCC and obesity; IGHA1 and IGKC as oncogenes, and MAOA, MUC20 and TRPM3 as tumor suppressor genes. These genes were verified by comparing the relationship between the expression levels and survival outcomes from open-source data in The Cancer Genome Atlas (TCGA) dataset. Conclusions In conclusion, the five genes differentially expressed in ccRCC and obesity are related to disease progression and prognosis, and therefore could provide prognostic value for patients with ccRCC.
Collapse
Affiliation(s)
- Jiale Zhou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhaolin Yang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaorong Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
22
|
Almammadov T, Atakan G, Leylek O, Ozcan G, Gunbas G, Kolemen S. Resorufin Enters the Photodynamic Therapy Arena: A Monoamine Oxidase Activatable Agent for Selective Cytotoxicity. ACS Med Chem Lett 2020; 11:2491-2496. [PMID: 33335672 DOI: 10.1021/acsmedchemlett.0c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
A red-absorbing, water-soluble, and iodinated resorufin derivative (R1) that can be selectively activated with a monoamine oxidase (MAO) enzyme was synthesized, and its potential as a photodynamic therapy (PDT) agent was evaluated. R1 showed high 1O2 generation yields in aqueous solutions upon addition of MAO isoforms, and it was further tested in cell culture studies. R1 induced photocytotoxicity after being triggered by endogenous MAO enzyme in cancer cells with a much higher efficiency in SH-SY5Y neuroblastoma cells with high MAO-A expression. Additionally, R1 displayed differential cytotoxicity between cancer and normal cells, without any considerable dark toxicity. To the best of our knowledge, R1 marks the first example of a resorufin-based photosensitizer (PS) as well as the first anticancer drug that is activated by a MAO enzyme. Remarkably, the target PDT agent was obtained only in three steps as a result of versatile resorufin chemistry.
Collapse
Affiliation(s)
| | - Gizem Atakan
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Ozen Leylek
- Graduate School of Health Sciences, Koc University, 34450 Istanbul, Turkey
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Gorkem Gunbas
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koc University, Sariyer, 34450 Istanbul Turkey
- Surface Science and Technology Center (KUYTAM), Koc University, Sariyer, 34450 Istanbul, Turkey
- Boron and Advanced Materials Application and Research Center, Koc University, Sariyer, 34450 Istanbul, Turkey
- TUPRAS Energy Center (KUTEM), Koc University, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
23
|
Meenu M, Verma VK, Seth A, Sahoo RK, Gupta P, Arya DS. Association of Monoamine Oxidase A with Tumor Burden and Castration Resistance in Prostate Cancer. CURRENT THERAPEUTIC RESEARCH 2020; 93:100610. [PMID: 33245296 PMCID: PMC7674122 DOI: 10.1016/j.curtheres.2020.100610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/18/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Metastatic burden and aggressive behavior determine severity stratification and guide treatment decisions in prostate cancer (PCa). Monoamine oxidase A (MAOA) may promote tumor burden and drug/castration resistance in PCa. A positive association will pave the way for MAOA inhibitors such as moclobemide for PCa therapy. OBJECTIVE To analyze MAOA in peripheral blood mononuclear cells qualitatively and p38, c-Jun N-terminal kinases, nuclear factor kappa B, and their phosphorylated forms, vascular endothelial growth factor (angiogenesis), transforming growth factor beta, interleukin 6, and tumor necrosis factor-α (cytokines), Bcl-2 associated X, B-cell lymphoma 2, and P53 (apoptosis), prostate-specific membrane antigen, and epithelial cell adhesion molecules (surface markers) in plasma of patients with PCa. METHODS This was a 1-year pilot study in which patients with PCa were recruited and stratified into 2 groups and subgroups: treatment-naive with (M1) (n = 23) or without (M0) (n = 23) bone metastasis; hormone-sensitive prostate cancer (n = 26) or hormone/castration-resistant prostate cancer (n = 26). MAOA was detected using ELISA and other proteins were detected using immunoblotting technique. RESULTS MAOA was detected in 8.6% of M0 compared with 30.4% of M1 patients, and in 7.7% of hormone-sensitive compared with 27% of hormone/castration resistant PCa patients, associating it with bone metastasis and castration resistance. Multivariable regression analysis showed a correlation of MAOA with serum prostate-specific antigen, a marker for progression in PCa (Pearson correlation coefficient r = 0.30; P < 0.01). In patients with positive MAOA, there was overexpression of p38, phosphorylated-p38, c-Jun N-terminal kinases, phosphorylated c-Jun N-terminal kinases, nuclear factor kappa B, phosphorylated nuclear factor kappa B, transforming growth factor beta, vascular endothelial growth factor, interleukin 6, tumor necrosis factor α, Bcl-2 associated X, B-cell lymphoma 2, prostate-specific membrane antigen, and epithelial cell adhesion molecule in M1 compared with M0 group patients, associating these proteins with tumor burden. Overexpression of Bcl-2 associated X, tumor protein 53, c-Jun N-terminal kinases, nuclear factor kappa B, transforming growth factor beta, vascular endothelial growth factor, and prostate-specific membrane antigen and underexpression of B-cell lymphoma 2 and phosphorylated nuclear factor kappa B were observed in hormone-sensitive prostate cancer compared with hormone/castration-resistant prostate cancer, associating these proteins with castration resistance. CONCLUSIONS Association of key molecules of oncogenesis and metastasis with MAOA suggests that MAOA inhibitors such as moclobemide might be effective in the management of PCa.
Collapse
Affiliation(s)
- Meenakshi Meenu
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Yang X, Zhao D, Li Y, Li Y, Cui W, Li Y, Li H, Li X, Wang D. Potential monoamine oxidase A inhibitor suppressing paclitaxel-resistant non-small cell lung cancer metastasis and growth. Thorac Cancer 2020; 11:2858-2866. [PMID: 32875729 PMCID: PMC7529581 DOI: 10.1111/1759-7714.13617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND High expression of monoamine oxidase A (MAOA) in non-small cell lung cancer (NSCLC) is related to epithelial-mesenchymal transition (EMT) and the development of clinicopathological features of NSCLC. Nevertheless, the role of MAOA in drug resistance still remains unclear. Hence, the aim of this article was to evaluate a previously synthesized MAOA inhibitor (G11) on inhibiting paclitaxel-resistant NSCLC metastasis and growth. METHODS First, MAOA expression level was evaluated in several NSCLC cell lines. An MTT assay was used to validate the inhibitory effect of G11 on NSCLC cells in vitro. Second, gene expression in G11-treated H460/PTX cells was analyzed by microarray gene expression. Third, transwell assay was performed to assess the invasion and metastasis of G11-treated A549/PTX and H460/PTX cells and western blot assay used to analyze vital protein expression level in G11-treated H460/PTX cells. Finally, the antimetastatic effect of G11 was tested in an NSCLC in vivo model. RESULTS Our data revealed that G11 significantly inhibited the viability of paclitaxel (PTX)-resistant NSCLC cell lines (A549/PTX and H460/PTX). G11 dramatically reduced the expression of MAOA in A549/PTX and H460/PTX cells, which exhibited relatively high MAOA expression levels. Additionally, G11 was found to hinder A549/PTX and H460/PTX cell migration and invasion. Furthermore, the in vivo study indicated that the coadministration of G11 and paclitaxel significantly suppressed tumor metastasis in H460/PTX lung metastasis models. CONCLUSIONS These findings indicated G11 showed a moderate inhibitory effect on paclitaxel-resistant NSCLC metastasis and growth, and support further investigation on MAOA potentially as a promising therapeutic target for paclitaxel-resistant NSCLC treatment. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Inhibition of MAOA might contribute to the suppression of metastasis and growth in PTX-resistant NSCLC cells. What this study adds This study explored the potential function of MAOA in drug-resistant NSCLC and might consider MAOA as a promising target for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Xiaoguang Yang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Dongxue Zhao
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Yanfeng Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Yanyu Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Wei Cui
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Yuxin Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Han Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Xinyu Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Dun Wang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| |
Collapse
|
25
|
Pang YY, Li JD, Gao L, Yang X, Dang YW, Lai ZF, Liu LM, Yang J, Wu HY, He RQ, Huang ZG, Xiong DD, Yang LH, Shi L, Mo WJ, Tang D, Lu HP, Chen G. The clinical value and potential molecular mechanism of the downregulation of MAOA in hepatocellular carcinoma tissues. Cancer Med 2020; 9:8004-8019. [PMID: 32931665 PMCID: PMC7643659 DOI: 10.1002/cam4.3434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most common cancers worldwide and tends to be detected at an advanced stage. More effective biomarkers for HCC screening and prognosis assessment are needed and the mechanisms of HCC require further exploration. The role of MAOA in HCC has not been intensively investigated. Methods In‐house tissue microarrays, genechips, and RNAsequencing datasets were integrated to explore the expression status and the clinical value of MAOA in HCC. Immunohistochemical staining was utilized to determine MAOA protein expression. Intersection genes of MAOA related co‐expressed genes and differentially expressed genes were obtained to perform functional enrichment analyses. In vivo experiment was conducted to study the impact of traditional Chinese medicine nitidine chloride (NC) on MAOA in HCC. Results MAOA was downregulated and possessed an excellent discriminatory capability in HCC patients. Decreased MAOA correlated with poor prognosis in HCC patients. Downregulated MAOA protein was relevant to an advanced TNM stage in HCC patients. Co‐expressed genes that positively related to MAOA were clustered in chemical carcinogenesis, where CYP2E1 was identified as the hub gene. In vivo experiment showed that nitidine chloride significantly upregulated MAOA in a nude mouse HCC model. Conclusions A decreased MAOA level is not only correlated with aggressive behaviors in males but also serves as a promising biomarker for the diagnosis and prognosis of HCC patients. Moreover, MAOA may play a role in AFB1 toxic transformation through its synergistic action with co‐expressed genes, especially CYP3A4. MAOA also serves as a potential therapy target of NC in HCC patients.
Collapse
Affiliation(s)
- Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ze-Feng Lai
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Li-Min Liu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jie Yang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Lin Shi
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Deng Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
26
|
Gwynne WD, Shakeel MS, Girgis-Gabardo A, Kim KH, Ford E, Dvorkin-Gheva A, Aarts C, Isaac M, Al-Awar R, Hassell JA. Antagonists of the serotonin receptor 5A target human breast tumor initiating cells. BMC Cancer 2020; 20:724. [PMID: 32758183 PMCID: PMC7404930 DOI: 10.1186/s12885-020-07193-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Breast tumor initiating cells (BTIC) are stem-like cells that initiate and sustain tumor growth, and drive disease recurrence. Identifying therapies targeting BTIC has been hindered due primarily to their scarcity in tumors. We previously reported that BTIC frequency ranges between 15% and 50% in multiple mammary tumors of 3 different transgenic mouse models of breast cancer and that this frequency is maintained in tumor cell populations cultured in serum-free, chemically defined media as non-adherent tumorspheres. The latter enabled high-throughput screening of small molecules for their capacity to affect BTIC survival. Antagonists of several serotonin receptors (5-HTRs) were among the hit compounds. The most potent compound we identified, SB-699551, selectively binds to 5-HT5A, a Gαi/o protein coupled receptor (GPCR). Methods We evaluated the activity of structurally unrelated selective 5-HT5A antagonists using multiple orthogonal assays of BTIC frequency. Thereafter we used a phosphoproteomic approach to uncover the mechanism of action of SB-699551. To validate the molecular target of the antagonists, we used the CRISPR-Cas9 gene editing technology to conditionally knockout HTR5A in a breast tumor cell line. Results We found that selective antagonists of 5-HT5A reduced the frequency of tumorsphere initiating cells residing in breast tumor cell lines and those of patient-derived xenografts (PDXs) that we established. The most potent compound among those tested, SB-699551, reduced the frequency of BTIC in ex vivo assays and acted in concert with chemotherapy to shrink human breast tumor xenografts in vivo. Our phosphoproteomic experiments established that exposure of breast tumor cells to SB-699551 elicited signaling changes in the canonical Gαi/o-coupled pathway and the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis. Moreover, conditional mutation of the HTR5A gene resulted in the loss of tumorsphere initiating cells and BTIC thus mimicking the effect of SB-699551. Conclusions Our data provide genetic, pharmacological and phosphoproteomic evidence consistent with the on-target activity of SB-699551. The use of such agents in combination with cytotoxic chemotherapy provides a novel therapeutic approach to treat breast cancer.
Collapse
Affiliation(s)
- William D Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Mirza S Shakeel
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Adele Girgis-Gabardo
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Kwang H Kim
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Emily Ford
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Anna Dvorkin-Gheva
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Craig Aarts
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Methvin Isaac
- Drug Discovery Group, The Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Rima Al-Awar
- Drug Discovery Group, The Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON, M5G 0A3, Canada
| | - John A Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
27
|
The Antiproliferative Effects of Flavonoid MAO Inhibitors on Prostate Cancer Cells. Molecules 2020; 25:molecules25092257. [PMID: 32403270 PMCID: PMC7249060 DOI: 10.3390/molecules25092257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer (PCa) patients commonly experience clinical depression. Recent reports indicated that monoamine oxidase-A (MAO-A) levels elevate in PCa, and antidepressant MAO-Is show anti-PCa properties. In this work, we aimed to find potential drugs for PCa patients suffering from depression by establishing novel anti-PCa reversible monoamine oxidase-A inhibitors (MAO-AIs/RIMA); with an endeavor to understand their mechanism of action. In this investigation, twenty synthesized flavonoid derivatives, defined as KKR compounds were screened for their inhibitory potentials against human MAO-A and MAO-B isozymes. Meanwhile, the cytotoxic and antiproliferative effects were determined in three human PCa cell lines. MAO-A-kinetics, molecular docking, SAR, cell morphology, and cell migration were investigated for the most potent compounds. The screened KKRs inhibited MAO-A more potently than MAO-B, and non-toxically inhibited LNCaP cell proliferation more than the DU145 and PC3 cell lines, respectively. The results showed that the three top MAO-AI KKRs compounds (KKR11, KKR20, and KKR7 (IC50s 0.02-16 μM) overlapped with the top six antiproliferative KKRs against LNCaP (IC50s ~9.4 μM). While KKR21 (MAO-AI) and KKR2A (MAO-I) were ineffective against the PCa cells. Furthermore, KKR21 and KKR11 inhibited MAO-A competitively (Kis ≤ 7.4 nM). Molecular docking of the two compounds predicted shared hydrophobic and distinctive hydrophilic interactions-between the KKR molecule and MAO-A amino acid residues-to be responsible for their reversibility. The combined results and SAR observations indicated that the presence of specific active groups-such as chlorine and hydroxyl groups-are essential in certain MAO-AIs with anti-PCa effects. Additionally, MAO-A inhibition was found to be associated more with anti-PCa property than MAO-B. Distinctively, KKR11 [(E)-3-(3,4-dichlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one] exhibited anti-metastatic effects on the DU145 cell line. The chlorine substitution groups might play vital roles in the KKR11 multiple actions. The obtained results indicated that the flavonoid derivative KKR11 could present a novel candidate for PCa patients with depression, through safe non-selective potent inhibition of MAOs.
Collapse
|
28
|
HIV-1 Tat Interacts with a Kaposi's Sarcoma-Associated Herpesvirus Reactivation-Upregulated Antiangiogenic Long Noncoding RNA, LINC00313, and Antagonizes Its Function. J Virol 2020; 94:JVI.01280-19. [PMID: 31723026 PMCID: PMC7000985 DOI: 10.1128/jvi.01280-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
KS is a prevalent tumor associated with infections with two distinct viruses, KSHV and HIV. Since KSHV and HIV infect distinct cell types, the virus-virus interaction associated with KS formation has focused on secretory factors. HIV Tat is a well-known RNA binding protein secreted by HIV. Here, we revealed LINC00313, an lncRNA upregulated during KSHV lytic reactivation, as a novel HIV Tat-interacting lncRNA that potentially mediates HIV-KSHV interactions. We found that LINC00313 can repress endothelial cell angiogenesis-related properties potentially by interacting with chromatin remodeling complex PRC2 and downregulation of cell migration-regulating genes. An interaction between HIV Tat and LINC00313 contributed to the dissociation of PRC2 from LINC00313 and the disinhibition of LINC00313-induced repression of cell motility. Given that lncRNAs are emerging as key players in tissue physiology and disease progression, including cancer, the mechanism identified in this study may help decipher the mechanisms underlying KS pathogenesis induced by HIV and KSHV coinfection. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma (KS), an AIDS-defining cancer with abnormal angiogenesis. The high incidence of KS in human immunodeficiency virus (HIV)-infected AIDS patients has been ascribed to an interaction between HIV type 1 (HIV-1) and KSHV, focusing on secretory proteins. The HIV-1 secreted protein HIV Tat has been found to synergize with KSHV lytic proteins to induce angiogenesis. However, the impact and underlying mechanisms of HIV Tat in KSHV-infected endothelial cells undergoing viral lytic reactivation remain unclear. Here, we identified LINC00313 as a novel KSHV reactivation-activated long noncoding RNA (lncRNA) that interacts with HIV Tat. We found that LINC00313 overexpression inhibits cell migration, invasion, and tube formation, and this suppressive effect was relieved by HIV Tat. In addition, LINC00313 bound to polycomb repressive complex 2 (PRC2) complex components, and this interaction was disrupted by HIV Tat, suggesting that LINC00313 may mediate transcription repression through recruitment of PRC2 and that HIV Tat alleviates repression through disruption of this association. This notion was further supported by bioinformatics analysis of transcriptome profiles in LINC00313 overexpression combined with HIV Tat treatment. Ingenuity Pathway Analysis (IPA) showed that LINC00313 overexpression negatively regulates cell movement and migration pathways, and enrichment of these pathways was absent in the presence of HIV Tat. Collectively, our results illustrate that an angiogenic repressive lncRNA, LINC00313, which is upregulated during KSHV reactivation, interacts with HIV Tat to promote endothelial cell motility. These results demonstrate that an lncRNA serves as a novel connector in HIV-KSHV interactions. IMPORTANCE KS is a prevalent tumor associated with infections with two distinct viruses, KSHV and HIV. Since KSHV and HIV infect distinct cell types, the virus-virus interaction associated with KS formation has focused on secretory factors. HIV Tat is a well-known RNA binding protein secreted by HIV. Here, we revealed LINC00313, an lncRNA upregulated during KSHV lytic reactivation, as a novel HIV Tat-interacting lncRNA that potentially mediates HIV-KSHV interactions. We found that LINC00313 can repress endothelial cell angiogenesis-related properties potentially by interacting with chromatin remodeling complex PRC2 and downregulation of cell migration-regulating genes. An interaction between HIV Tat and LINC00313 contributed to the dissociation of PRC2 from LINC00313 and the disinhibition of LINC00313-induced repression of cell motility. Given that lncRNAs are emerging as key players in tissue physiology and disease progression, including cancer, the mechanism identified in this study may help decipher the mechanisms underlying KS pathogenesis induced by HIV and KSHV coinfection.
Collapse
|
29
|
Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:185-237. [PMID: 31900911 PMCID: PMC8096614 DOI: 10.1007/978-3-030-32656-2_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
30
|
Ugun-Klusek A, Theodosi TS, Fitzgerald JC, Burté F, Ufer C, Boocock DJ, Yu-Wai-Man P, Bedford L, Billett EE. Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation. Redox Biol 2019; 20:167-181. [PMID: 30336354 PMCID: PMC6197572 DOI: 10.1016/j.redox.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023] Open
Abstract
Monoamine oxidases (MAOs) are located on the outer mitochondrial membrane and are drug targets for the treatment of neurological disorders. MAOs control the levels of neurotransmitters in the brain via oxidative deamination and contribute to reactive oxygen species (ROS) generation through their catalytic by-product H2O2. Increased ROS levels may modulate mitochondrial function and mitochondrial dysfunction is implicated in a vast array of disorders. However, the downstream effects of MAO-A mediated ROS production in a neuronal model has not been previously investigated. In this study, using MAO-A overexpressing neuroblastoma cells, we demonstrate that higher levels of MAO-A protein/activity results in increased basal ROS levels with associated increase in protein oxidation. Increased MAO-A levels result in increased Lysine-63 linked ubiquitination of mitochondrial proteins and promotes autophagy through Bcl-2 phosphorylation. Furthermore, ROS generated locally on the mitochondrial outer membrane by MAO-A promotes phosphorylation of dynamin-1-like protein, leading to mitochondrial fragmentation and clearance without complete loss of mitochondrial membrane potential. Cellular ATP levels are maintained following MAO-A overexpression and complex IV activity/protein levels increased, revealing a close relationship between MAO-A levels and mitochondrial function. Finally, the downstream effects of increased MAO-A levels are dependent on the availability of amine substrates and in the presence of exogenous substrate, cell viability is dramatically reduced. This study shows for the first time that MAO-A generated ROS is involved in quality control signalling, and increase in MAO-A protein levels leads to a protective cellular response in order to mediate removal of damaged macromolecules/organelles, but substrate availability may ultimately determine cell fate. The latter is particularly important in conditions such as Parkinson's disease, where a dopamine precursor is used to treat disease symptoms and highlights that the fate of MAO-A containing dopaminergic neurons may depend on both MAO-A levels and catecholamine substrate availability.
Collapse
Affiliation(s)
- Aslihan Ugun-Klusek
- School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | | | - Julia C Fitzgerald
- Hertie-Institute for Clinical Brain Research, University of Tübingen and German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Florence Burté
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, Germany
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Patrick Yu-Wai-Man
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lynn Bedford
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - E Ellen Billett
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
31
|
Monoamine oxidase isoenzymes: genes, functions and targets for behavior and cancer therapy. J Neural Transm (Vienna) 2018; 125:1553-1566. [PMID: 30259128 DOI: 10.1007/s00702-018-1927-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamine neurotransmitters and dietary amines. Two pharmacological types with different substrate and inhibitor specificities were reported. Molecular cloning revealed that the two types of MAO were different genes expressed as different proteins with different functions. MAO A and B have identical intron-exon organization derived by duplication of a common ancestral gene thus they are termed isoenzymes. MAO A knockout mice exhibited aggression, the first clear evidence linking genes to behavior. MAO A KO mice exhibited autistic-like behaviors which could be prevented by reducing serotonin levels at an early developmental age (P1-P7) providing potential therapy. MAO B KO mice were non-aggressive and resistant to Parkinsongenic neurotoxin. More recently it was found that MAO A is overexpressed in prostate cancer and correlates with degree of malignancy. The oncogenic mechanism involves a ROS-activated AKT/FOXO1/TWIST1 signaling pathway. Deletion of MAO A reduced prostate cancer stem cells and suppressed invasive adenocarcinoma. MAO A was also overexpressed in classical Hodgkin lymphoma and glioma brain tumors. MAO B was overexpressed in glioma and non-small cell lung cancer. MAO A inhibitors reduce the growth of prostate cancer, drug sensitive and resistant gliomas and classical Hodgkin lymphoma, and enhance standard chemotherapy. Currently, we are developing NIR dye-conjugated clorgyline (MAO A inhibitor) as a novel dual therapeutic/diagnostic agent for cancer. A phase II clinical trial of MAO inhibitor for biochemical recurrent prostate cancer is ongoing. The role of MAO A and B in several cancer types opens new avenues for cancer therapies.
Collapse
|
32
|
Iacovino LG, Magnani F, Binda C. The structure of monoamine oxidases: past, present, and future. J Neural Transm (Vienna) 2018; 125:1567-1579. [PMID: 30167931 DOI: 10.1007/s00702-018-1915-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/11/2018] [Indexed: 12/26/2022]
Abstract
The first crystal structure of mammalian monoamine oxidases (MAOs) was solved in 2002; almost 65 years after, these FAD-dependent enzymes were discovered and classified as responsible for the oxidation of aromatic neurotransmitters. Both MAO A and MAO B feature a two-domain topology characterized by the Rossmann fold, interacting with dinucleotide cofactors, which is intimately associated to a substrate-binding domain. This globular body is endowed with a C-terminal α-helix that anchors the protein to the outer mitochondrial phospholipid bilayer. As monotopic membrane proteins, the structural elucidation of MAOs was a challenging task that required the screening of different detergent conditions for their purification and crystallization. MAO A and MAO B structures differ both in their oligomerization architecture and in details of their active sites. Purified human MAO B and rat MAO A are dimeric, whereas human MAO A was found to be monomeric, which is believed to result from the detergent treatments used to extract the protein from the membrane. The active site of MAOs consists of a hydrophobic cavity located in front of the flavin cofactor and extending to the protein surface. Some structural features are highly conserved in the two isozymes, such as a Tyr-Tyr aromatic sandwich in front of the flavin ring and a Lys residue hydrogen-bonded to the cofactor N5 atom, whereas a pair of gating residues (Phe208/Ile335 in MAO A; Ile199/Tyr326 in MAO B) specifically determines the different substrate and inhibitor properties of the two enzymes.
Collapse
Affiliation(s)
| | - Francesca Magnani
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
33
|
Dhabal S, Das P, Biswas P, Kumari P, Yakubenko VP, Kundu S, Cathcart MK, Kundu M, Biswas K, Bhattacharjee A. Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13-stimulated monocytes and A549 lung carcinoma cells. J Biol Chem 2018; 293:14040-14064. [PMID: 30021838 DOI: 10.1074/jbc.ra118.002321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Monoamine oxidase A (MAO-A) is a mitochondrial flavoenzyme implicated in the pathogenesis of atherosclerosis and inflammation and also in many neurological disorders. MAO-A also has been reported as a potential therapeutic target in prostate cancer. However, the regulatory mechanisms controlling cytokine-induced MAO-A expression in immune or cancer cells remain to be identified. Here, we show that MAO-A expression is co-induced with 15-lipoxygenase (15-LO) in interleukin 13 (IL-13)-activated primary human monocytes and A549 non-small cell lung carcinoma cells. We present evidence that MAO-A gene expression and activity are regulated by signal transducer and activator of transcription 1, 3, and 6 (STAT1, STAT3, and STAT6), early growth response 1 (EGR1), and cAMP-responsive element-binding protein (CREB), the same transcription factors that control IL-13-dependent 15-LO expression. We further established that in both primary monocytes and in A549 cells, IL-13-stimulated MAO-A expression, activity, and function are directly governed by 15-LO. In contrast, IL-13-driven expression and activity of MAO-A was 15-LO-independent in U937 promonocytic cells. Furthermore, we demonstrate that the 15-LO-dependent transcriptional regulation of MAO-A in response to IL-13 stimulation in monocytes and in A549 cells is mediated by peroxisome proliferator-activated receptor γ (PPARγ) and that signal transducer and activator of transcription 6 (STAT6) plays a crucial role in facilitating the transcriptional activity of PPARγ. We further report that the IL-13-STAT6-15-LO-PPARγ axis is critical for MAO-A expression, activity, and function, including migration and reactive oxygen species generation. Altogether, these results have major implications for the resolution of inflammation and indicate that MAO-A may promote metastatic potential in lung cancer cells.
Collapse
Affiliation(s)
- Sukhamoy Dhabal
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pradip Das
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pritam Biswas
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Priyanka Kumari
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Valentin P Yakubenko
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Suman Kundu
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Martha K Cathcart
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Manjari Kundu
- the Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| | - Kaushik Biswas
- the Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| | - Ashish Bhattacharjee
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India,
| |
Collapse
|
34
|
Liu F, Hu L, Ma Y, Huang B, Xiu Z, Zhang P, Zhou K, Tang X. Increased expression of monoamine oxidase A is associated with epithelial to mesenchymal transition and clinicopathological features in non-small cell lung cancer. Oncol Lett 2018; 15:3245-3251. [PMID: 29435065 PMCID: PMC5778774 DOI: 10.3892/ol.2017.7683] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
Monoamine oxidase A (MAOA), a mitochondrial enzyme, is closely associated with neurological disorders. Recently, MAOA has been linked to the progression of prostate cancer, hepatocellular carcinoma, and cholangiocarcinoma. However, MAOA was reported to have different effects on the progression of these types of cancer, and the role of MAOA in non-small cell lung cancer (NSCLC) progression remains unclear. The present study determined the expression of MAOA and epithelial to mesenchymal transition (EMT) markers in 45 pairs of NSCLC and matched non-tumor adjacent lung tissues, and further analyzed the correlation between MAOA expression and the EMT or the development of clinicopathological features. The results demonstrated that protein and mRNA expression levels of MAOA in NSCLC tissues were higher than those observed in the matched non-tumor adjacent lung tissues. Furthermore, the increased MAOA expression in NSCLC tissues was positively correlated with N-cadherin (r=0.525, P=0.002), Slug (r=0.515, P=0.001), and Twist (r=0.448, P=0.008) expressions, but negatively correlated with E-cadherin expression (r=-0.387, P=0.01). Additionally, the elevated MAOA expression in NSCLC tissues was associated with late stage NSCLC (Z=-2.596, P=0.029) and lymph node metastases (Z=-2.378, P=0.020). These findings suggest that MAOA may have a role in promoting NSCLC progression by mediating EMT.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liang Hu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yuefan Ma
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bingyu Huang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zihan Xiu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Keyuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
35
|
Li PC, Siddiqi IN, Mottok A, Loo EY, Wu CH, Cozen W, Steidl C, Shih JC. Monoamine oxidase A is highly expressed in classical Hodgkin lymphoma. J Pathol 2017; 243:220-229. [PMID: 28722111 DOI: 10.1002/path.4944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/26/2017] [Accepted: 07/02/2017] [Indexed: 12/16/2022]
Abstract
Monoamine oxidase A (MAOA) is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines and produces H2 O2 . It facilitates the progression of gliomas and prostate cancer, but its expression and functional relevance have not been studied in lymphoma. Here, we evaluated MAOA in 427 cases of Hodgkin and non-Hodgkin lymphoma and in a spectrum of reactive lymphoid tissues by immunohistochemistry on formalin-fixed, paraffin-embedded specimens. MAOA was expressed by Hodgkin Reed-Sternberg (HRS) cells in the majority of classical Hodgkin lymphomas (cHLs) (181/241; 75%), with 34.8% showing strong expression. Weak MAOA was also noted in a minority of primary mediastinal large B-cell lymphomas (8/47; 17%) and in a mediastinal gray-zone lymphoma. In contrast, no MAOA was found in non-neoplastic lymphoid tissues, nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL; 0/8) or any other non-Hodgkin lymphomas studied (0/123). MAOA was more common in Epstein-Barr virus (EBV)-negative compared to EBV-positive cHL (p < 0.0001) and was especially prevalent in the EBV-negative nodular sclerosing subtype. Similar to primary human lymphoma specimens, most cHL-derived cell lines displayed MAOA activity, whereas non-Hodgkin-lymphoma-derived cell lines did not. The MAOA inhibitor clorgyline reduced the growth of L1236 cells and U-HO1 cells, and shRNA knockdown of MAOA reduced the growth of L1236 cells. Conversely, ectopic overexpression of MAOA increased the growth of MAOA-negative HDLM2 cells. Combined treatment with clorgyline and ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine) was more effective in reducing cell growth than either regimen alone. In summary, MAOA is highly expressed in cHL and may reflect the distinct biology of this lymphoma. Further studies on the potential utility of MAOA as a diagnostic marker and therapeutic target are warranted. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Pei Chuan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Imran N Siddiqi
- Hematopathology Section, Department of Pathology, University of Southern California-Keck School of Medicine, Los Angeles, California, USA
| | - Anja Mottok
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, Canada
| | - Eric Y Loo
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Chieh Hsi Wu
- College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wendy Cozen
- Department of Preventive Medicine and Pathology, and Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, Canada
| | - Jean Chen Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, California, USA.,College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|