1
|
Lai S, Wang P, Gong J, Zhang S. New insights into the role of GSK-3β in the brain: from neurodegenerative disease to tumorigenesis. PeerJ 2023; 11:e16635. [PMID: 38107562 PMCID: PMC10722984 DOI: 10.7717/peerj.16635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3β is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3β in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.
Collapse
Affiliation(s)
- Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
3
|
Mu L, Xia D, Cai J, Gu B, Liu X, Friedman V, Liu QS, Zhao L. Treadmill Exercise Reduces Neuroinflammation, Glial Cell Activation and Improves Synaptic Transmission in the Prefrontal Cortex in 3 × Tg-AD Mice. Int J Mol Sci 2022; 23:12655. [PMID: 36293516 PMCID: PMC9604030 DOI: 10.3390/ijms232012655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Physical exercise improves memory and cognition in physiological aging and Alzheimer's disease (AD), but the mechanisms remain poorly understood. Here, we test the hypothesis that Aβ oligomer accumulation, neuroinflammation, and glial cell activation may lead to disruption of synaptic transmission in the prefrontal cortex of 3 × Tg-AD Mice, resulting in impairment of learning and memory. On the other hand, treadmill exercise could prevent the pathogenesis and exert neuroprotective effects. Here, we used immunohistochemistry, western blotting, enzyme-linked immunosorbent assay, and slice electrophysiology to analyze the levels of GSK3β, Aβ oligomers (Aβ dimers and trimers), pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), the phosphorylation of CRMP2 at Thr514, and synaptic currents in pyramidal neurons in the prefrontal cortex. We show that 12-week treadmill exercise beginning in three-month-old mice led to the inhibition of GSK3β kinase activity, decreases in the levels of Aβ oligomers, pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), and the phosphorylation of CRMP2 at Thr514, reduction of microglial and astrocyte activation, and improvement of excitatory and inhibitory synaptic transmission of pyramidal neurons in the prefrontal cortex of 3 × Tg-AD Mice. Thus, treadmill exercise reduces neuroinflammation, glial cell activation and improves synaptic transmission in the prefrontal cortex in 3 × Tg-AD mice, possibly related to the inhibition of GSK3β kinase activity.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Exercise Physiology, Guangzhou Sport University, Guangzhou 510500, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Dongdong Xia
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
4
|
Guzzetta KE, Cryan JF, O’Leary OF. Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis. Brain Plast 2022; 8:97-119. [PMID: 36448039 PMCID: PMC9661352 DOI: 10.3233/bpl-220141] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
The birth, maturation, and integration of new neurons in the adult hippocampus regulates specific learning and memory processes, responses to stress, and antidepressant treatment efficacy. This process of adult hippocampal neurogenesis is sensitive to environmental stimuli, including peripheral signals from certain cytokines, hormones, and metabolites, which can promote or hinder the production and survival of new hippocampal neurons. The trillions of microorganisms resident to the gastrointestinal tract, collectively known as the gut microbiota, also demonstrate the ability to modulate adult hippocampal neurogenesis. In doing so, the microbiota-gut-brain axis can influence brain functions regulated by adult hippocampal neurogenesis. Unlike the hippocampus, the gut microbiota is highly accessible to direct interventions, such as prebiotics, probiotics, and antibiotics, and can be manipulated by lifestyle choices including diet. Therefore, understanding the pathways by which the gut microbiota shapes hippocampal neurogenesis may reveal novel targets for non-invasive therapeutics to treat disorders in which alterations in hippocampal neurogenesis have been implicated. This review first outlines the factors which influence both the gut microbiome and adult hippocampal neurogenesis, with cognizance that these effects might happen either independently or due to microbiota-driven mechanisms. We then highlight approaches for investigating the regulation of adult hippocampal neurogenesis by the microbiota-gut-brain axis. Finally, we summarize the current evidence demonstrating the gut microbiota's ability to influence adult hippocampal neurogenesis, including mechanisms driven through immune pathways, microbial metabolites, endocrine signalling, and the nervous system, and postulate implications for these effects in disease onset and treatment.
Collapse
Affiliation(s)
- Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F. O’Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Komleva YK, Lopatina OL, Gorina YV, Chernykh AI, Trufanova LV, Vais EF, Kharitonova EV, Zhukov EL, Vahtina LY, Medvedeva NN, Salmina AB. Expression of NLRP3 Inflammasomes in Neurogenic Niche Contributes to the Effect of Spatial Learning in Physiological Conditions but Not in Alzheimer's Type Neurodegeneration. Cell Mol Neurobiol 2022; 42:1355-1371. [PMID: 33392919 PMCID: PMC11421703 DOI: 10.1007/s10571-020-01021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
A common feature of neurodegenerative disorders, in particular Alzheimer's disease (AD), is a chronic neuroinflammation associated with aberrant neuroplasticity. Development of neuroinflammation affects efficacy of stem and progenitor cells proliferation, differentiation, migration, and integration of newborn cells into neural circuitry. However, precise mechanisms of neurogenesis alterations in neuroinflammation are not clear yet. It is well established that expression of NLRP3 inflammasomes in glial cells marks neuroinflammatory events, but less is known about contribution of NLRP3 to deregulation of neurogenesis within neurogenic niches and whether neural stem cells (NSCs), neural progenitor cells (NPCs) or immature neuroblasts may express inflammasomes in (patho)physiological conditions. Thus, we studied alterations of neurogenesis in rats with the AD model (intra-hippocampal injection of Aβ1-42). We found that in Aβ-affected brain, number of CD133+ cells was elevated after spatial training in the Morris water maze. The number of PSA-NCAM+ neuroblasts diminished by Aβ injection was completely restored by subsequent spatial learning. Spatial training leads to elevated expression of NLRP3 inflammasomes in the SGZ (subgranular zones): CD133+ and PSA-NCAM+ cells started to express NLRP3 in sham-operated, but not AD rats. Taken together, our data suggest that expression of NLRP3 inflammasomes in CD133+ and PSA-NCAM+ cells may contribute to stimulation of adult neurogenesis in physiological conditions, whereas Alzheimer's type neurodegeneration abolishes stimuli-induced overexpression of NLRP3 within the SGZ neurogenic niche.
Collapse
Affiliation(s)
- Yulia K Komleva
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.
| | - O L Lopatina
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Ya V Gorina
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A I Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - L V Trufanova
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E F Vais
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E V Kharitonova
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E L Zhukov
- Department of Pathological Anatomy Named After Prof. P.G. Podzolkov, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - L Yu Vahtina
- Department of Human Anatomy, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - N N Medvedeva
- Department of Human Anatomy, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A B Salmina
- The Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Ministry of Health of the Russian Federation, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
6
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
7
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to clarify discrepant and confusing findings reported in the past.
Collapse
Affiliation(s)
- Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
8
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
9
|
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: A review. Eur J Neurosci 2020; 53:151-171. [DOI: 10.1111/ejn.14720] [Citation(s) in RCA: 614] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Pascal Barone
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Samuel Leman
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Thomas Desmidt
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Bruno Brizard
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Wissam El Hage
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Vincent Camus
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| |
Collapse
|
10
|
Xiong Q, Wu Y, Yang M, Wu G, Wang Y, Wang H, Feng J, Song L, Tong B, He G, Xu Y. Nr2e1 ablation impairs liver glucolipid metabolism and induces inflammation, high-fat diets amplify the damage. Biomed Pharmacother 2019; 120:109503. [DOI: 10.1016/j.biopha.2019.109503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
|
11
|
The orphan nuclear receptor TLX: an emerging master regulator of cross-talk between microglia and neural precursor cells. Neuronal Signal 2019; 3:NS20180208. [PMID: 32271856 PMCID: PMC7104320 DOI: 10.1042/ns20180208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation and neurogenesis have both been the subject of intensive investigation over the past 20 years. The sheer complexity of their regulation and their ubiquity in various states of health and disease have sometimes obscured the progress that has been made in unraveling their mechanisms and regulation. A recent study by Kozareva et al. (Neuronal Signaling (2019) 3), provides evidence that the orphan nuclear receptor TLX is central to communication between microglia and neural precursor cells and could help us understand how inflammation, mediated by microglia, influences the development of new neurons in the adult hippocampus. Here, we put recent studies on TLX into the context of what is known about adult neurogenesis and microglial activation in the brain, along with the many hints that these processes must be inter-related.
Collapse
|
12
|
Avinun R, Nevo A, Knodt AR, Elliott ML, Hariri AR. A genome-wide association study-derived polygenic score for interleukin-1β is associated with hippocampal volume in two samples. Hum Brain Mapp 2019; 40:3910-3917. [PMID: 31119842 DOI: 10.1002/hbm.24639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022] Open
Abstract
Accumulating research suggests that the pro-inflammatory cytokine interleukin-1β (IL-1β) has a modulatory effect on the hippocampus, a brain structure important for learning and memory as well as linked with both psychiatric and neurodegenerative disorders. Here, we used an imaging genetics strategy to test an association between an IL-1β polygenic score and hippocampal volume in two independent samples. Our polygenic score was derived using summary statistics from a recent genome-wide association study of circulating cytokines that included IL-1β (N = 3,309). In the first sample of 512 non-Hispanic Caucasian university students (274 women, mean age 19.78 ± 1.24 years) from the Duke Neurogenetics Study, we identified a significant positive correlation between IL-1β polygenic scores and hippocampal volume. This positive association was successfully replicated in a second sample of 7,960 white British volunteers (4,158 women, mean age 62.63 ± 7.45 years) from the UK Biobank. Our results lend further support in humans, to the link between IL-1β and the structure of the hippocampus.
Collapse
Affiliation(s)
- Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Adam Nevo
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Maxwell L Elliott
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| |
Collapse
|
13
|
Hill JD, Zuluaga-Ramirez V, Gajghate S, Winfield M, Sriram U, Persidsky Y, Persidsky Y. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun 2019; 76:165-181. [PMID: 30465881 PMCID: PMC6398994 DOI: 10.1016/j.bbi.2018.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022] Open
Abstract
New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia. Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult. In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury. NSC differentiation and neurogenesis was determined via immunofluorescence and flow cytometric analysis of NSC markers (Nestin, Sox2, DCX, S100β, βIII Tubulin, GFAP). GPR55 agonist treatment protected against IL-1β induced reductions in neurogenesis rates. Moreover, inflammatory cytokine receptor mRNA expression was down regulated by GPR55 activation in a neuroprotective manner. To determine inflammatory responses in vivo, we treated C57BL/6 and GPR55-/- mice with LPS (0.2 mg/kg/day) continuously for 14 days via osmotic mini-pump. Reductions in NSC survival (as determined by BrdU incorporation), immature neurons, and neuroblast formation due to LPS were attenuated by concurrent direct intrahippocampal administration of the GPR55 agonist, O-1602 (4 µg/kg/day). Molecular analysis of the hippocampal region showed a suppressed ability to regulate immune responses by GPR55-/- animals manifesting in a prolonged inflammatory response (IL-1β, IL-6, TNFα) after chronic, systemic inflammation as compared to C57BL/6 animals. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.
Collapse
Affiliation(s)
- Jeremy D. Hill
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Hueston CM, O'Leary JD, Hoban AE, Kozareva DA, Pawley LC, O'Leary OF, Cryan JF, Nolan YM. Chronic interleukin-1β in the dorsal hippocampus impairs behavioural pattern separation. Brain Behav Immun 2018; 74:252-264. [PMID: 30217534 DOI: 10.1016/j.bbi.2018.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023] Open
Abstract
Understanding the long-term consequences of chronic inflammation in the hippocampus may help to develop therapeutic targets for the treatment of cognitive disorders related to stress, ageing and neurodegeneration. The hippocampus is particularly vulnerable to increases in the pro-inflammatory cytokine interleukin-1β (IL-1β), a mediator of neuroinflammation, with elevated levels implicated in the aetiology of neurodegenerative diseases such as Alzheimer's and Parkinson's, and in stress-related disorders such as depression. Acute increases in hippocampal IL-1β have been shown to impair cognition and reduce adult hippocampal neurogenesis, the birth of new neurons. However, the impact of prolonged increases in IL-1β, as evident in clinical conditions, on cognition has not been fully explored. Therefore, the present study utilized a lentiviral approach to induce long-term overexpression of IL-1β in the dorsal hippocampus of adult male Sprague Dawley rats and examine its impact on cognition. Following three weeks of viral integration, pattern separation, a process involving hippocampal neurogenesis, was impaired in IL-1β-treated rats in both object-location and touchscreen operant paradigms. This was coupled with a decrease in the number and neurite complexity of immature neurons in the hippocampus. Conversely, tasks involving the hippocampus, but not sensitive to disruption of hippocampal neurogenesis, including spontaneous alternation, novel object and location recognition were unaffected. Touchscreen operant visual discrimination, a cognitive task involving the prefrontal cortex, was largely unaffected by IL-1β overexpression. In conclusion, these findings suggest that chronically elevated IL-1β in the hippocampus selectively impairs pattern separation. Inflammatory-mediated disruption of adult hippocampal neurogenesis may contribute to the cognitive decline associated with neurodegenerative and stress-related disorders.
Collapse
Affiliation(s)
- Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - James D O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Lauren C Pawley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
15
|
Yue N, Li B, Yang L, Han QQ, Huang HJ, Wang YL, Wang J, Yu R, Wu GC, Liu Q, Yu J. Electro-Acupuncture Alleviates Chronic Unpredictable Stress-Induced Depressive- and Anxiety-Like Behavior and Hippocampal Neuroinflammation in Rat Model of Depression. Front Mol Neurosci 2018; 11:149. [PMID: 29946236 PMCID: PMC6007169 DOI: 10.3389/fnmol.2018.00149] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Depression is the second leading cause of disability worldwide. The effects of clinical depression may be mediated by neuroinflammation such as activation of microglia and high levels of proinflammatory cytokines in certain brain areas. Traditional Chinese medicine techniques such as electro-acupuncture (EA) are used extensively in Asia to treat mental health disorders. However, EA has not been rigorously studied in treatment of depression. This study was designed to assess the effectiveness of EA on depressive-like behavior and explore the role of hippocampal neuroinflammation in the potential antidepressant effect of EA. In this study, we used six chronic unpredictable stressors daily in a random sequence for 10 weeks. EA were performed on “Bai-Hui” (Du-20) (+) and “Yang-Ling-Quan” (GB-34, the right side; −) acupoints by an EA apparatus (HANS Electronic Apparatus, LH202H, 2/100 Hz, 0.3 mA) for 30 min once every other day for last 4 weeks. The behavior tests including open field test and forced swimming test, which are widely used to assess depressive and anxiety-like behavior were performed on the Monday and Tuesday of the eleventh week. The results showed that 10 week of chronic unpredictable stress (CUS) caused behavioral deficits in rats and neuroinflammation in hippocampus, such as increased expression of NLRP3 inflammasome components, upregulated mRNA level of IL-1β and the protein level of IL-1β mature form (p17) and activation of microglia. Moreover, 4 weeks of EA treatment significantly attenuated behavioral deficits caused by CUS. EA’s antidepressant effect was accompanied by markedly decreased expression of certain NLRP3 inflammasome components and matured IL-1β. Meanwhile, EA treatment can significantly reverse CUS-induced increases in P2X7 receptor, Iba-1, IL-18, TNFα and IL-6 expression and decreases in GFAP expression. In conclusion, EA exhibited the antidepressant effect and alleviated the hippocampal neuroinflammation. These findings may provide insight into the role of hippocampal neuroinflammation in the antidepressant effect of EA.
Collapse
Affiliation(s)
- Na Yue
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai, China
| | - Liu Yang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Jie Huang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Lin Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Ó'Léime CS, Hoban AE, Hueston CM, Stilling R, Moloney G, Cryan JF, Nolan YM. The orphan nuclear receptor TLX regulates hippocampal transcriptome changes induced by IL-1β. Brain Behav Immun 2018. [PMID: 29518529 DOI: 10.1016/j.bbi.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TLX is an orphan nuclear receptor highly expressed within neural progenitor cells (NPCs) in the hippocampus where is regulates proliferation. Inflammation has been shown to have negative effects on hippocampal function as well as on NPC proliferation. Specifically, the pro-inflammatory cytokine IL-1β suppresses NPC proliferation as well as TLX expression in the hippocampus. However, it is unknown whether TLX itself is involved in regulating the inflammatory response in the hippocampus. To explore the role of TLX in inflammation, we assessed changes in the transcriptional landscape of the hippocampus of TLX knockout mice (TLX-/-) compared to wildtype (WT) littermate controls with and without intrahippocampal injection of IL-1β using a whole transcriptome RNA sequencing approach. We demonstrated that there is an increase in the transcription of genes involved in the promotion of inflammation and regulation of cell chemotaxis (Tnf, Il1b, Cxcr1, Cxcr2, Tlr4) and a decrease in the expression of genes relating to synaptic signalling (Lypd1, Syt4, Cplx2) in cannulated TLX-/- mice compared to WT controls. We demonstrate that mice lacking in TLX share a similar increase in 176 genes involved in regulating inflammation (e.g. Cxcl1, Tnf, Il1b) as WT mice injected with IL-1β into the hippocampus. Moreover, TLX-/- mice injected with IL-1β displayed a blunted transcriptional profile compared to WT mice injected with IL-1β. Thus, TLX-/- mice, which already have an exaggerated inflammatory profile after cannulation surgery, are primed to respond differently to an inflammatory stimulus such as IL-1β. Together, these results demonstrate that TLX regulates hippocampal inflammatory transcriptome response to brain injury (in this case cannulation surgery) and cytokine stimulation.
Collapse
Affiliation(s)
- Ciarán S Ó'Léime
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Roman Stilling
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Ó’Léime CS, Kozareva DA, Hoban AE, Long‐Smith CM, Cryan JF, Nolan YM. TLX is an intrinsic regulator of the negative effects of IL‐1β on proliferating hippocampal neural progenitor cells. FASEB J 2018; 32:613-624. [DOI: 10.1096/fj.201700495r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ciarán S. Ó’Léime
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Danka A. Kozareva
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Alan E. Hoban
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Caitriona M. Long‐Smith
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- Alimentary Pharmabiotic Centre (APC) Microbiome InstituteUniversity College CorkCorkIreland
| | - John F. Cryan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- Alimentary Pharmabiotic Centre (APC) Microbiome InstituteUniversity College CorkCorkIreland
| | - Yvonne M. Nolan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- Alimentary Pharmabiotic Centre (APC) Microbiome InstituteUniversity College CorkCorkIreland
| |
Collapse
|
18
|
Chen JJ, Wang T, An CD, Jiang CY, Zhao J, Li S. Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer's disease. Rev Neurosci 2018; 27:793-811. [PMID: 27508959 DOI: 10.1515/revneuro-2016-0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022]
Abstract
In early- or late-onset Alzheimer's disease (AD), inflammation, which is triggered by pathologic conditions, influences the progression of neurodegeneration. Brain-derived neurotrophic factor (BDNF) has emerged as a crucial mediator of neurogenesis, because it exhibits a remarkable activity-dependent regulation of expression, which suggests that it may link inflammation to neurogenesis. Emerging evidence suggests that acute and chronic inflammation in AD differentially modulates neurotrophin functions, which are related to the roles of inflammation in neuroprotection and neurodegeneration. Recent studies also indicate novel mechanisms of BDNF-mediated neuroprotection, including the modulation of autophagy. Numerous research studies have demonstrated reverse parallel alterations between proinflammatory cytokines and BDNF during neurodegeneration; thus, we hypothesize that one mechanism that underlies the negative impact of chronic inflammation on neurogenesis is the reduction of BDNF production and function by proinflammatory cytokines.
Collapse
|
19
|
Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior. Rev Neurosci 2017; 29:1-20. [DOI: 10.1515/revneuro-2017-0024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Abstract
The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.
Collapse
|
20
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
21
|
O'Léime CS, Cryan JF, Nolan YM. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 2017; 66:394-412. [PMID: 28751020 DOI: 10.1016/j.bbi.2017.07.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function.
Collapse
Affiliation(s)
- Ciarán S O'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
22
|
Kozareva DA, Hueston CM, Ó'Léime CS, Crotty S, Dockery P, Cryan JF, Nolan YM. Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus. J Neuroimmunol 2017; 331:87-96. [PMID: 28844503 DOI: 10.1016/j.jneuroim.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis.
Collapse
Affiliation(s)
- Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Ciarán S Ó'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Suzanne Crotty
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Peter Dockery
- Department of Anatomy, National University of Ireland, Galway, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
23
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
24
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
Affiliation(s)
- A. Ardura-Fabregat
- grid.5963.9Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - E. W. G. M. Boddeke
- 0000 0004 0407 1981grid.4830.fDepartment of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Boza-Serrano
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - S. Brioschi
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - S. Castro-Gomez
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Ceyzériat
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Dansokho
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - T. Dierkes
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dBiomedical Centre, Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - G. Gelders
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Michael T. Heneka
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - L. Hoeijmakers
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - L. Iaccarino
- grid.15496.3fVita-Salute San Raffaele University, Milan, Italy ,0000000417581884grid.18887.3eIn Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S. Jahnert
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Landreth
- 0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - N. Lonnemann
- 0000 0001 1090 0254grid.6738.aDepartment of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - R. M. McManus
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Paulus
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - K. Reemst
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. M. Sanchez-Caro
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Tiberi
- grid.6093.cBio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - A. Van der Perren
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - A. Vautheny
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Venegas
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - A. Webers
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - P. Weydt
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - T. S. Wijasa
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - X. Xiang
- 0000 0004 1936 973Xgrid.5252.0Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, 82152 Munich, Germany
| | - Y. Yang
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| |
Collapse
|
25
|
Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming. Stem Cell Reports 2016; 5:805-815. [PMID: 26607952 PMCID: PMC4649261 DOI: 10.1016/j.stemcr.2015.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/26/2022] Open
Abstract
The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming. An evolutionarily conserved enhancer drives Tlx expression in neural stem cells SOX2 directly activates the identified enhancer and Tlx expression SOX2-mediated in vivo reprogramming of astrocytes to neuroblasts requires TLX
Collapse
|
26
|
Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neurosci Biobehav Rev 2016; 61:121-31. [DOI: 10.1016/j.neubiorev.2015.12.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/20/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023]
|
27
|
TLX-Its Emerging Role for Neurogenesis in Health and Disease. Mol Neurobiol 2016; 54:272-280. [PMID: 26738856 PMCID: PMC5219886 DOI: 10.1007/s12035-015-9608-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
The orphan nuclear receptor TLX, also called NR2E1, is a factor important in the regulation of neural stem cell (NSC) self-renewal, neurogenesis, and maintenance. As a transcription factor, TLX is vital for the expression of genes implicated in neurogenesis, such as DNA replication, cell cycle, adhesion and migration. It acts by way of repressing or activating target genes, as well as controlling protein-protein interactions. Growing evidence suggests that dysregulated TLX acts in the initiation and progression of human disorders of the nervous system. This review describes recent knowledge about TLX expression, structure, targets, and biological functions, relevant to maintaining adult neural stem cells related to both neuropsychiatric conditions and certain nervous system tumours.
Collapse
|
28
|
Pusceddu MM, Nolan YM, Green HF, Robertson RC, Stanton C, Kelly P, Cryan JF, Dinan TG. The Omega-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid (DHA) Reverses Corticosterone-Induced Changes in Cortical Neurons. Int J Neuropsychopharmacol 2015; 19:pyv130. [PMID: 26657646 PMCID: PMC4926793 DOI: 10.1093/ijnp/pyv130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic exposure to the glucocorticoid hormone corticosterone exerts cellular stress-induced toxic effects that have been associated with neurodegenerative and psychiatric disorders. Docosahexaenoic acid is a polyunsaturated fatty acid that has been shown to be of benefit in stress-related disorders, putatively through protective action in neurons. METHODS We investigated the protective effect of docosahexaenoic acid against glucocorticoid hormone corticosterone-induced cellular changes in cortical cell cultures containing both astrocytes and neurons. RESULTS We found that glucocorticoid hormone corticosterone (100, 150, 200 μM) at different time points (48 and 72 hours) induced a dose- and time-dependent reduction in cellular viability as assessed by methyl thiazolyl tetrazolium. Moreover, glucocorticoid hormone corticosterone (200 μM, 72 hours) decreased the percentage composition of neurons while increasing the percentage of astrocytes as assessed by βIII-tubulin and glial fibrillary acidic protein immunostaining, respectively. In contrast, docosahexaenoic acid treatment (6 μM) increased docosahexaenoic acid content and attenuated glucocorticoid hormone corticosterone (200 μM)-induced cell death (72 hours) in cortical cultures. This translates into a capacity for docosahexaenoic acid to prevent neuronal death as well as astrocyte overgrowth following chronic exposure to glucocorticoid hormone corticosterone. Furthermore, docosahexaenoic acid (6 μM) reversed glucocorticoid hormone corticosterone-induced neuronal apoptosis as assessed by terminal deoxynucleotidyl transferase-mediated nick-end labeling and attenuated glucocorticoid hormone corticosterone-induced reductions in brain derived neurotrophic factor mRNA expression in these cultures. Finally, docosahexaenoic acid inhibited glucocorticoid hormone corticosterone-induced downregulation of glucocorticoid receptor expression on βIII- tubulin-positive neurons. CONCLUSIONS This work supports the view that docosahexaenoic acid may be beneficial in ameliorating stress-related cellular changes in the brain and may be of value in psychiatric disorders.
Collapse
Affiliation(s)
- Matteo M Pusceddu
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly)
| | - Yvonne M Nolan
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly)
| | - Holly F Green
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly)
| | - Ruairi C Robertson
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly)
| | - Catherine Stanton
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly)
| | - Philip Kelly
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly)
| | - John F Cryan
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly).
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science (Dr Pusceddu and Prof. Dinan), APC Microbiome Institute (Drs Pusceddu and Stanton and Profs Cryan and Dinan), Department of Anatomy and Neuroscience (Drs Nolan and Green and Prof. Cryan), and School of Microbiology, University College Cork, Cork, Ireland (Mr Robertson); Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland (Mr Robertson and Drs Stanton and Kelly)
| |
Collapse
|
29
|
Song J, Kang SM, Kim E, Kim CH, Song HT, Lee JE. Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: an in vivo and in vitro study. Cell Death Dis 2015; 6:e1844. [PMID: 26247729 PMCID: PMC4558511 DOI: 10.1038/cddis.2015.220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.
Collapse
Affiliation(s)
- J Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - S M Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - E Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - C-H Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - H-T Song
- Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - J E Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| |
Collapse
|
30
|
Microglia-derived IL-1β triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis 2015; 6:e1779. [PMID: 26043079 PMCID: PMC4669832 DOI: 10.1038/cddis.2015.151] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Abstract
Neurogenesis persists in the adult brain and can contribute to learning and memory processes and potentially to regeneration and repair of the affected nervous system. Deregulated neurogenesis has been observed in neuropathological conditions including neurodegenerative diseases, trauma and stroke. However, the survival of neural precursor cells (NPCs) and newly born neurons is adversely affected by the inflammatory environment that arises as a result of microglial activation associated with injury or disease processes. In the present study, we have investigated the mechanisms by which microglia affect NPC proliferation and survival. Importantly, we demonstrate that interleukin-1β (IL-1β) produced by lipopolysaccharide/interferon-γ-activated microglia is necessary to induce cell cycle arrest and apoptosis in NPCs in vitro. Mechanistically, we show that IL-1β activates the tumor suppressor p53 through an oxidative stress-dependent mechanism resulting in p53-mediated induction of the cyclin-dependent kinase inhibitor p21 and the proapoptotic Bcl-2 (B-cell lymphoma-2) family members Puma (p53-upregulated modulator of apoptosis) and Noxa. Furthermore, we demonstrate that cell cycle arrest and apoptosis induced by recombinant IL-1β or activated microglia is attenuated in p53-deficient NPCs. Finally, we have determined that IL-1β induces NPC death via the p53-dependent induction of Puma leading to the activation of a Bax (Bcl-2-associated X protein)-mediated mitochondrial apoptotic pathway. In summary, we have elucidated a novel role for p53 in the regulation of NPC proliferation and survival during neuroinflammatory conditions that could be targeted to promote neurogenesis and repair in a number of neurological conditions.
Collapse
|
31
|
Egeland M, Zunszain PA, Pariante CM. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 2015; 16:189-200. [PMID: 25790864 DOI: 10.1038/nrn3855] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coping with stress is fundamental for mental health, but understanding of the molecular neurobiology of stress is still in its infancy. Adult neurogenesis is well known to be regulated by stress, and conversely adult neurogenesis regulates stress responses. Recent studies in neurogenic cells indicate that molecular pathways activated by glucocorticoids, the main stress hormones, are modulated by crosstalk with other stress-relevant mechanisms, including inflammatory mediators, neurotrophic factors and morphogen signalling pathways. This Review discusses the pathways that are involved in this crosstalk and thus regulate this complex relationship between adult neurogenesis and stress.
Collapse
Affiliation(s)
- Martin Egeland
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Patricia A Zunszain
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
32
|
Sun L, Deng H, He L, Hu X, Huang Q, Xue J, Chen J, Shi X, Xu Y. The relationship between NR2E1 and subclinical inflammation in newly diagnosed type 2 diabetic patients. J Diabetes Complications 2015; 29:589-94. [PMID: 25813674 DOI: 10.1016/j.jdiacomp.2014.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 02/06/2023]
Abstract
AIMS To evaluate the expression level of NR2E1 (nuclear receptor subfamily 2,group E,member 1) and its correlation with type 2 diabetes (T2DM). METHODS Plasma and peripheral blood mononuclear cells (PBMCs) were collected from 54 T2DM and 88 healthy individuals. The levels of free fatty acids (FFAs), total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL-c), low density lipoprotein (LDL-c), fasting insulin (FIN), and fasting blood glucose (FBG) were measured. The insulin resistance index was calculated using the homeostasis model assessment (HOMA). NR2E1 in PBMCs were analyzed using real-time RT-PCR and Western blots. Tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in the plasma were measured by enzyme-linked immunosorbent assay (ELISA). PBMCs isolated from healthy volunteers were treated with glucose or palmitate for 24h, followed by analysis for the expression level of NR2E1.The amount of TNF-α and IL-6 secreted into the supernatant were measured by ELISA. RESULTS FIN, FBG, HOMA and TNF-α, IL-6 were significantly higher in diabetic patients, compared to the control group. Levels of NR2E1 were significantly higher in the PBMCs isolated from the diabetic group, compared to the control group. NR2E1 expression was positively correlated with FBG, FIN, HOMA, FFAs, TNF-α and IL-6. Glucose and palmitate treatment significantly increased NR2E1 gene expression and inflammatory cytokines production in PBMCs in vitro. CONCLUSIONS Increased NR2E1 level may be closely associated with inflammation and disorder of lipid and glucose metabolism in diabetic patients.
Collapse
Affiliation(s)
- Li Sun
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Haohua Deng
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Lanjie He
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Xuemei Hu
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Qi Huang
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Junli Xue
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Jin Chen
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Xiaoli Shi
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China
| | - Yancheng Xu
- Department of Endocrinology Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, Hubei 430071 China.
| |
Collapse
|
33
|
The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 2015; 38:145-57. [PMID: 25579391 DOI: 10.1016/j.tins.2014.12.006] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/20/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Neurogenesis is an important process in the regulation of brain function and behaviour, highly active in early development and continuing throughout life. Recent studies have shown that neurogenesis is modulated by inflammatory cytokines in response to an activated immune system. To disentangle the effects of the different cytokines on neurogenesis, here we summarise and discuss in vitro studies on individual cytokines. We show that inflammatory cytokines have both a positive and negative role on proliferation and neuronal differentiation. Hence, this strengthens the notion that inflammation is involved in molecular and cellular mechanisms associated with complex cognitive processes and, therefore, that alterations in brain-immune communication are relevant to the development of neuropsychiatric disorders.
Collapse
|
34
|
Islam MM, Zhang CL. TLX: A master regulator for neural stem cell maintenance and neurogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:210-6. [PMID: 24930777 DOI: 10.1016/j.bbagrm.2014.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/22/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
The orphan nuclear receptor TLX, also known as NR2E1, is an essential regulator of neural stem cell (NSC) self-renewal, maintenance, and neurogenesis. In vertebrates, TLX is specifically localized to the neurogenic regions of the forebrain and retina throughout development and adulthood. TLX regulates the expression of genes involved in multiple pathways, such as the cell cycle, DNA replication, and cell adhesion. These roles are primarily performed through the transcriptional repression or activation of downstream target genes. Emerging evidence suggests that the misregulation of TLX might play a role in the onset and progression of human neurological disorders making this factor an ideal therapeutic target. Here, we review the current understanding of TLX function, expression, regulation, and activity significant to NSC maintenance, adult neurogenesis, and brain plasticity. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Watanabe S, Iga J, Nishi A, Numata S, Kinoshita M, Kikuchi K, Nakataki M, Ohmori T. Microarray analysis of global gene expression in leukocytes following lithium treatment. Hum Psychopharmacol 2014; 29:190-8. [PMID: 24590544 DOI: 10.1002/hup.2381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To elucidate the molecular effects of lithium, we studied global gene expression changes induced by lithium in leukocytes from healthy subjects. METHODS Eight healthy male subjects participated in this study. Lithium was prescribed for weeks to reach a therapeutic serum concentration. Leukocyte counts and serum lithium concentrations were determined at baseline (before medication), after 1 and 2 weeks of medication and at 2 weeks after stopping medication. Gene expression profiling was performed at each time point using Agilent G4112F Whole Human Genome arrays (The Agilent Technologies, Santa Clara, CA, USA). Expression of some candidate genes was also assessed by real-time polymerase chain reaction (PCR). RESULTS Gene ontology analysis revealed that the cellular and immune responses to stimulus and stress indeed played a major role in the cellular response to lithium treatment. Pathway analysis revealed that the interleukin 6 pathway, the inhibitor of differentiation pathway, and the methane metabolism pathway were regulated by lithium. Using real-time PCR, we also confirmed that five candidate genes in these pathways were significantly changed, including suppressor of cytokine signaling 3 and myeloperoxidase. CONCLUSIONS Our investigation suggests that the molecular action of lithium is mediated in part by its effects on the cellular and immune response to stimulus and stress followed by the interleukin 6, inhibitor of differentiation, and methane metabolism pathways.
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Psychiatry, Course of Integrated Brain Sciences, School of Medicine, University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Green HF, Nolan YM. Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 40:20-34. [DOI: 10.1016/j.neubiorev.2014.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
|
37
|
Song J, Kumar BK, Kang S, Park KA, Lee WT, Lee JE. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors. Exp Neurobiol 2013; 22:268-276. [PMID: 24465142 PMCID: PMC3897688 DOI: 10.5607/en.2013.22.4.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Bokara Kiran Kumar
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Somang Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
38
|
Willi R, Harmeier A, Giovanoli S, Meyer U. Altered GSK3β signaling in an infection-based mouse model of developmental neuropsychiatric disease. Neuropharmacology 2013; 73:56-65. [PMID: 23707483 DOI: 10.1016/j.neuropharm.2013.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/17/2022]
Abstract
Protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK3β) are two protein kinases involved in dopaminergic signaling. Dopamine-associated neuropsychiatric illnesses such as schizophrenia and bipolar disorder seem to be characterized by impairments in the AKT/GSK3β network. Here, we sought evidence for the presence of molecular and functional changes in the AKT/GSK3β pathway using an established infection-based mouse model of developmental neuropsychiatric disease that is based on prenatal administration of the viral mimetic poly(I:C) (=polyriboinosinic-polyribocytidilic acid). We found that adult offspring of poly(I:C)-exposed mothers displayed decreased total levels of AKT protein and reduced phosphorylation at AKT threonine residues in the medial prefrontal cortex. Prenatally immune challenged offspring also exhibited increased GSK3β protein expression and activation status, the latter of which was evidenced by a decrease in the ratio between phosphorylated and total GSK3β protein in the medial prefrontal cortex. These molecular changes were not associated with overt signs of inflammatory processes in the adult brain. We further found that acute pre-treatment with the selective GSK3β inhibitor TDZD-8 dose-dependently normalized aberrant behavior typically emerging following prenatal immune activation, including deficient spontaneous alternation in the Y-maze and increased locomotor responses to systemic amphetamine treatment. Taken together, the present mouse model demonstrates that prenatal exposure to viral-like immune activation leads to long-term alterations in GSK3β signaling, some of which are critically implicated in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Roman Willi
- Neuroscience Discovery, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | | | | | | |
Collapse
|