1
|
Begni V, Marchesin A, Riva MA. IUPHAR review - Novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res 2025; 214:107690. [PMID: 40073951 DOI: 10.1016/j.phrs.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models. Among these, some novel drugs still employ multimodal mechanisms, simultaneously targeting dopaminergic and serotonergic systems to enhance efficacy and tolerability. Given the well-documented excitatory/inhibitory imbalance in schizophrenia, significant efforts have been directed toward addressing NMDA receptor hypofunctionality. However, strategies targeting this pathway have yet to demonstrate consistent clinical efficacy. In contrast, therapies targeting the cholinergic system have shown greater promise. For instance, the xanomeline-trospium combination, which modulates muscarinic receptors, has recently gained approval, and other molecules with similar mechanisms are currently under development. Beyond these approaches, novel strategies are being explored to target innovative pathways, including neuroplasticity, neuroinflammation, and mitochondrial dysfunction. These efforts are often designed as part of a combinatorial strategy to enhance the efficacy of currently available antipsychotic drugs. Despite significant progress, challenges remain in translating experimental discoveries into effective clinical applications. Future research should prioritize biomarker-driven approaches and precision medicine to optimize individualized treatment outcomes. By integrating these emerging therapeutic targets, schizophrenia treatment may evolve toward a more comprehensive and personalized approach, addressing the disorder's full spectrum of symptoms and improving patient quality of life.
Collapse
Affiliation(s)
- Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
2
|
Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia's secrets using models. Mol Psychiatry 2025; 30:659-678. [PMID: 39245692 DOI: 10.1038/s41380-024-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Sonego AB, Prado DS, Uliana DL, Cunha TM, Grace AA, Resstel LBM. Pioglitazone attenuates behavioral and electrophysiological dysfunctions induced by two-hit model of schizophrenia in adult rodent offspring. Eur Neuropsychopharmacol 2024; 89:28-40. [PMID: 39332147 PMCID: PMC11606766 DOI: 10.1016/j.euroneuro.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/29/2024]
Abstract
Maternal infection and stress exposure, especially during childhood and adolescence, have been implicated as risk factors for schizophrenia. Both insults induce an exacerbated inflammatory response, which could mediate disturbance of neurodevelopmental processes and, ultimately, malfunctioning of neural systems observed in this disorder. Thus, anti-inflammatory drugs, such as PPARγ agonists, may potentially be used to prevent the development of schizophrenia. Microglia culture was prepared from the offspring of saline or poly(I:C)-injected mice. The cells were pretreated with pioglitazone and then, stimulated by LPS. Proinflammatory mediators and phagocytic activity were measured. Also, pregnant rats were injected with saline or poly(I:C) on GD17. The offspring were subjected to footshock during adolescence and subsequently injected with pioglitazone or vehicle. At adulthood, behavior and dopaminergic activity were evaluated. Pioglitazone reduced proinflammatory mediators induced by poly(I:C) microglia stimulated by LPS without affecting their decreased phagocytic activity. The PPARγ agonist also prevented the emergence of social and cognitive impairments, as well as attenuated the increased number of spontaneously active dopamine neurons in the VTA, observed in both males and females from poly(I:C) and stress group. Therefore, pioglitazone could potentially prevent the emergence of the schizophrenia-like alterations induced by the two-hit model via reduction of microglial activation.
Collapse
Affiliation(s)
- Andreza B Sonego
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA.
| | - Douglas S Prado
- Department of Immunology, University of Pittsburgh, The Assembly Building, 15213, Pittsburgh, PA, USA
| | - Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, 15260, Pittsburgh, PA, USA
| | - Leonardo B M Resstel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Collins B, Lemanski EA, Wright-Jin E. The Importance of Including Maternal Immune Activation in Animal Models of Hypoxic-Ischemic Encephalopathy. Biomedicines 2024; 12:2559. [PMID: 39595123 PMCID: PMC11591850 DOI: 10.3390/biomedicines12112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain injury that is the leading cause of cerebral palsy, developmental delay, and poor cognitive outcomes in children born at term, occurring in about 1.5 out of 1000 births. The only proven therapy for HIE is therapeutic hypothermia. However, despite this treatment, many children ultimately suffer disability, brain injury, and even death. Barriers to implementation including late diagnosis and lack of resources also lead to poorer outcomes. This demonstrates a critical need for additional treatments for HIE, and to facilitate this, we need translational models that accurately reflect risk factors and interactions present in HIE. Maternal or amniotic infection is a significant risk factor and possible cause of HIE in humans. Maternal immune activation (MIA) is a well-established model of maternal infection and inflammation that has significant developmental consequences largely characterized within the context of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. MIA can also lead to long-lasting changes within the neuroimmune system, which lead to compounding negative outcomes following a second insult. This supports the importance of understanding the interaction of maternal inflammation and hypoxic-ischemic outcomes. Animal models have been invaluable to understanding the pathophysiology of this injury and to the development of therapeutic hypothermia. However, each model system has its own limitations. Large animal models such as pigs may more accurately represent the brain and organ development and complexity in humans, while rodent models are more cost-effective and offer more possible molecular techniques. Recent studies have utilized MIA or direct inflammation prior to HIE insult. Investigators should thoughtfully consider the risk factors they wish to include in their HIE animal models. In the incorporation of MIA, investigators should consider the type, timing, and dose of the inflammatory stimulus, as well as the timing, severity, and type of hypoxic insult. Using a variety of animal models that incorporate the maternal-placental-fetal system of inflammation will most likely lead to a more robust understanding of the mechanisms of this injury that can guide future clinical decisions and therapies.
Collapse
Affiliation(s)
- Bailey Collins
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elise A. Lemanski
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elizabeth Wright-Jin
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Division of Neurology, Nemours Children’s Health, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Tagliatti E, Bizzotto M, Morini R, Filipello F, Rasile M, Matteoli M. Prenatal drivers of microglia vulnerability in the adult. Immunol Rev 2024; 327:100-110. [PMID: 39508795 DOI: 10.1111/imr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Environmental insults during early development heavily affect brain trajectories. Among these, maternal infections, high-fat diet regimens, and sleep disturbances pose a significant risk for neurodevelopmental derangements in the offspring. Notably, scattered evidence is starting to emerge that also paternal lifestyle habits may impact the offspring development. Given their key role in controlling neurogenesis, synaptogenesis and shaping neuronal circuits, microglia represent the most likely suspects of mediating the detrimental effects of prenatal insults. For some of these environmental triggers, like maternal infections, ample literature evidence demonstrates the central role of microglia, also delineating the specific transcriptomic and proteomic profiles induced by these insults. In other contexts, the analysis of microglia is still in its infancy. Fostering these studies is needed to define microglia as potential therapeutic target in the frame of disorders consequent to maternal immune activation.
Collapse
Affiliation(s)
| | | | | | | | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
6
|
Mastenbroek LJM, Kooistra SM, Eggen BJL, Prins JR. The role of microglia in early neurodevelopment and the effects of maternal immune activation. Semin Immunopathol 2024; 46:1. [PMID: 38990389 PMCID: PMC11239780 DOI: 10.1007/s00281-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- L J M Mastenbroek
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - S M Kooistra
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B J L Eggen
- Department of BioMedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J R Prins
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Yao X, Yang C, Jia X, Yu Z, Wang C, Zhao J, Chen Y, Xie B, Zhuang H, Sun C, Li Q, Kang X, Xiao Y, Liu L. High-fat diet consumption promotes adolescent neurobehavioral abnormalities and hippocampal structural alterations via microglial overactivation accompanied by an elevated serum free fatty acid concentration. Brain Behav Immun 2024; 119:236-250. [PMID: 38604269 DOI: 10.1016/j.bbi.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xirui Jia
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Debs SR, Conn I, Navaneethan B, Penklis AG, Meyer U, Killcross S, Weickert CS, Purves-Tyson TD. Maternal immune activation and estrogen receptor modulation induce sex-specific dopamine-related behavioural and molecular alterations in adult rat offspring. Brain Behav Immun 2024; 118:236-251. [PMID: 38431238 DOI: 10.1016/j.bbi.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Illya Conn
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Brendan Navaneethan
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Andriane G Penklis
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland; Switzerland Neuroscience Centre Zürich, Zürich, Switzerland
| | - Simon Killcross
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
9
|
Rezaei A, Moqadami A, Khalaj-Kondori M. Minocycline as a prospective therapeutic agent for cancer and non-cancer diseases: a scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2835-2848. [PMID: 37991540 DOI: 10.1007/s00210-023-02839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Minocycline is an FDA-approved secondary-generation tetracycline antibiotic. It is a synthetic antibiotic having many biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective functions. This study discusses the pharmacological mechanisms of preventive and therapeutic effects of minocycline. Specifically, it provides a comprehensive overview of the molecular pathways by which minocycline acts on the different cancers, including ovarian, breast, glioma, colorectal, liver, pancreatic, lung, prostate, melanoma, head and neck, leukemia, and non-cancer diseases such as Alzheimer's disease, Parkinson, schizophrenia, multiple sclerosis, Huntington, polycystic ovary syndrome, and coronavirus disease 19. Minocycline may be a potential medication for these disorders due to its strong blood-brain barrier penetrance. It is also widely accepted as a specific medication, has a well-known side-effect characteristic, is reasonably priced, making it appropriate for continuous use in managing diseases, and has been demonstrated as an oral approach because it is effectively absorbed and accomplished almost all of the body's parts.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
10
|
Romero-Miguel D, Casquero-Veiga M, Lamanna-Rama N, Torres-Sánchez S, MacDowell KS, García-Partida JA, Santa-Marta C, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. N-acetylcysteine during critical neurodevelopmental periods prevents behavioral and neurochemical deficits in the Poly I:C rat model of schizophrenia. Transl Psychiatry 2024; 14:14. [PMID: 38191622 PMCID: PMC10774365 DOI: 10.1038/s41398-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
Schizophrenia is a chronic neurodevelopmental disorder with an inflammatory/prooxidant component. N-acetylcysteine (NAC) has been evaluated in schizophrenia as an adjuvant to antipsychotics, but its role as a preventive strategy has not been sufficiently explored. We aimed to evaluate the potential of NAC administration in two-time windows before the onset of symptoms in a schizophrenia-like maternal immune stimulation (MIS) rat model. Pregnant Wistar rats were injected with Poly I:C or Saline on gestational day (GD) 15. Three different preventive approaches were evaluated: 1) NAC treatment during periadolescence in the offspring (from postnatal day [PND] 35 to 49); 2) NAC treatment during pregnancy after MIS challenge until delivery (GD15-21); and 3) NAC treatment throughout all pregnancy (GD1-21). At postnatal day (PND) 70, prepulse inhibition (PPI) and anxiety levels were evaluated. In vivo magnetic resonance (MR) imaging was acquired on PND100 to assess structural changes in gray and white matter, and brain metabolite concentrations. Additionally, inflammation and oxidative stress (IOS) markers were measured ex vivo in selected brain regions. MIS offspring showed behavioral, neuroanatomical, and biochemical alterations. Interestingly, NAC treatment during periadolescence prevented PPI deficits and partially counteracted some biochemical imbalances. Moreover, NAC treatments during pregnancy not only replicated the beneficial outcomes reported by the treatment in periadolescence, but also prevented some neuroanatomical deficits, including reductions in hippocampal and corpus callosum volumes. This study suggests that early reduction of inflammation and prooxidation could help prevent the onset of schizophrenia-like symptoms, supporting the importance of anti-IOS compounds in ameliorating this disorder.
Collapse
Grants
- MLS was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (project number PI17/01766, and grant number BA21/00030), co-financed by the European Regional Development Fund (ERDF), “A way to make Europe”; project PID2021-128862OB-I00 funded by MCIN /AEI /10.13039/501100011033 / FEDER, UE, CIBER de Salud Mental - Instituto de Salud Carlos III (project number CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (project number 2017/085, 2022/008917); and Fundación Alicia Koplowitz.
- DRM was supported by Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social Fund “Investing in your future” (grant, PEJD-2018-PRE/BMD-7899).
- MCV was supported by a predoctoral grant from Fundación Tatiana Pérez de Guzmán el Bueno.
- NLR was supported by the Instituto de investigación Sanitaria Gregorio Marañón, “Programa Intramural de Impulso a la I+D+I 2019”.
- EBD, JAG-P and ST-S work was supported by the “Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad” (RTI2018-099778-B-I00); from the “Plan Nacional sobre Drogas, Ministerio de Sanidad, Consumo y Bienestar Social” (2019I041); from the “Ministerio de Salud-Instituto de Salud Carlos III” (PI18/01691); from the “Programa Operativo de Andalucía FEDER, Iniciativa Territorial Integrada ITI 2014-2020 Consejería Salud y Familias, Junta de Andalucía” (PI-0080-2017, PI-0009-2017), "Consejería de Salud y Familias, Junta de Andalucía" (PI-0134-2018 and PEMP-0008-2020); from the "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía" (P20_00958 and CTS-510); from the CEIMAR (CEIJ-003); from the “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (LI19/06IN-CO22; IN-C09); from the “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red- (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955684.
- JCL was supported by the Ministerio de Economía y Competitividad, MINECO-EU-FEDER (SAF2016-75500-R) and Ministerio de Ciencia e Innovación (PID2019-109033RB-I00).
- MD work was supported by Ministerio de Ciencia e Innovación (MCIN) and Instituto de Salud Carlos III (PT20/00044). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).
Collapse
Affiliation(s)
- Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, 28040, Madrid, Spain
- Cardiovascular Imaging and Population Studies, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - José A García-Partida
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Grupo de Fisiopatología y Farmacología del Sistema Digestivo de la Universidad Rey Juan Carlos (NeuGut), Alcorcón (Madrid), 28922, Spain.
| |
Collapse
|
11
|
Guerrin CG, Prasad K, Vazquez-Matias DA, Zheng J, Franquesa-Mullerat M, Barazzuol L, Doorduin J, de Vries EF. Prenatal infection and adolescent social adversity affect microglia, synaptic density, and behavior in male rats. Neurobiol Stress 2023; 27:100580. [PMID: 37920548 PMCID: PMC10618826 DOI: 10.1016/j.ynstr.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Maternal infection during pregnancy and childhood social trauma have been associated with neurodevelopmental and affective disorders, such as schizophrenia, autism spectrum disorders, bipolar disorder and depression. These disorders are characterized by changes in microglial cells, which play a notable role in synaptic pruning, and synaptic deficits. Here, we investigated the effect of prenatal infection and social adversity during adolescence - either alone or in combination - on behavior, microglia, and synaptic density. Male offspring of pregnant rats injected with poly I:C, mimicking prenatal infection, were exposed to repeated social defeat during adolescence. We found that maternal infection during pregnancy prevented the reduction in social behavior and increase in anxiety induced by social adversity during adolescence. Furthermore, maternal infection and social adversity, alone or in combination, induced hyperlocomotion in adulthood. Longitudinal in vivo imaging with [11C]PBR28 positron emission tomography revealed that prenatal infection alone and social adversity during adolescence alone induced a transient increase in translocator protein TSPO density, an indicator of glial reactivity, whereas their combination induced a long-lasting increase that remained until adulthood. Furthermore, only the combination of prenatal infection and social adversity during adolescence induced an increase in microglial cell density in the frontal cortex. Prenatal infection increased proinflammatory cytokine IL-1β protein levels in hippocampus and social adversity reduced anti-inflammatory cytokine IL-10 protein levels in hippocampus during adulthood. This reduction in IL-10 was prevented if rats were previously exposed to prenatal infection. Adult offspring exposed to prenatal infection or adolescent social adversity had a higher synaptic density in the frontal cortex, but not hippocampus, as evaluated by synaptophysin density. Interestingly, such an increase in synaptic density was not observed in rats exposed to the combination of prenatal infection and social adversity, perhaps due to the long-lasting increase in microglial density, which may lead to an increase in microglial synaptic pruning. These findings suggest that changes in microglia activity and cytokine release induced by prenatal infection and social adversity during adolescence may be related to a reduced synaptic pruning, resulting in a higher synaptic density and behavioral changes in adulthood.
Collapse
Affiliation(s)
- Cyprien G.J. Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel A. Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jing Zheng
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Maria Franquesa-Mullerat
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| |
Collapse
|
12
|
Juckel G, Freund N. Microglia and microbiome in schizophrenia: can immunomodulation improve symptoms? J Neural Transm (Vienna) 2023; 130:1187-1193. [PMID: 36810627 PMCID: PMC10460707 DOI: 10.1007/s00702-023-02605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
In this overview, influences of microglia activation and disturbances of the microbiome in the devastating disorder schizophrenia are discussed. Despite previous assumptions of a primary neurodegenerative character of this disorder, current research underlines the important autoimmunological and inflammatory processes here. Early disturbances of microglial cells as well as cytokines could lead to weakness of the immunological system in the prodromal phase and then fully manifest in patients with schizophrenia. Measurements of microbiome features might allow identifying the prodromal phase. In conclusion, such thinking would imply several new therapeutic options regulating immune processes by old or new anti-inflammatory agents in patients.
Collapse
Affiliation(s)
- Georg Juckel
- Department of Psychiatry, Ruhr-University Bochum, LWL-University Hospital, Alexandrinenstr.1, 44791, Bochum, Germany.
| | - Nadja Freund
- Department of Psychiatry, Ruhr-University Bochum, LWL-University Hospital, Alexandrinenstr.1, 44791, Bochum, Germany
| |
Collapse
|
13
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
14
|
Messina A, Concerto C, Rodolico A, Petralia A, Caraci F, Signorelli MS. Is It Time for a Paradigm Shift in the Treatment of Schizophrenia? The Use of Inflammation-Reducing and Neuroprotective Drugs-A Review. Brain Sci 2023; 13:957. [PMID: 37371435 DOI: 10.3390/brainsci13060957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Comprehending the pathogenesis of schizophrenia represents a challenge for global mental health. To date, although it is evident that alterations in dopaminergic, serotonergic, and glutamatergic neurotransmission underlie the clinical expressiveness of the disease, neuronal disconnections represent only an epiphenomenon. In recent years, several clinical studies have converged on the hypothesis of microglia hyperactivation and a consequent neuroinflammatory state as a pathogenic substrate of schizophrenia. Prenatal, perinatal, and postnatal factors can cause microglia to switch from M2 anti-inflammatory to M1 pro-inflammatory states. A continuous mild neuroinflammatory state progressively leads to neuronal loss, a reduction in dendritic spines, and myelin degeneration. The augmentation of drugs that reduce neuroinflammation to antipsychotics could be an effective therapeutic modality in managing schizophrenia. This review will consider studies in which drugs with anti-inflammatory and neuroprotective properties have been used in addition to antipsychotic treatment in patients with schizophrenia.
Collapse
Affiliation(s)
- Antonino Messina
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Translational Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| |
Collapse
|
15
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Smucny J, Vlasova RM, Lesh TA, Rowland DJ, Wang G, Chaudhari AJ, Chen S, Iosif AM, Hogrefe CE, Bennett JL, Shumann CM, Van de Water JA, Maddock RJ, Styner MA, Geschwind DH, McAllister AK, Bauman MD, Carter CS. Increased Striatal Presynaptic Dopamine in a Nonhuman Primate Model of Maternal Immune Activation: A Longitudinal Neurodevelopmental Positron Emission Tomography Study With Implications for Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:505-513. [PMID: 36805246 PMCID: PMC10164700 DOI: 10.1016/j.bpsc.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epidemiological studies suggest that maternal immune activation (MIA) is a significant risk factor for future neurodevelopmental disorders, including schizophrenia (SZ), in offspring. Consistent with findings in SZ research and work in rodent systems, preliminary cross-sectional findings in nonhuman primates suggest that MIA is associated with dopaminergic hyperfunction in young adult offspring. METHODS In this unique prospective longitudinal study, we used [18F]fluoro-l-m-tyrosine positron emission tomography to examine the developmental time course of striatal presynaptic dopamine synthesis in male rhesus monkeys born to dams (n = 13) injected with a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid [poly(I:C)], in the late first trimester. Striatal (caudate, putamen, and nucleus accumbens) dopamine from these animals was compared with that of control offspring born to dams that received saline (n = 10) or no injection (n = 4). Dopamine was measured at 15, 26, 38, and 48 months of age. Prior work with this cohort found decreased prefrontal gray matter volume in MIA offspring versus controls between 6 and 45 months of age. Based on theories of the etiology and development of SZ-related pathology, we hypothesized that there would be a delayed (relative to the gray matter decrease) increase in striatal fluoro-l-m-tyrosine signal in the MIA group versus controls. RESULTS [18F]fluoro-l-m-tyrosine signal showed developmental increases in both groups in the caudate and putamen. Group comparisons revealed significantly greater caudate dopaminergic signal in the MIA group at 26 months. CONCLUSIONS These findings are highly relevant to the known pathophysiology of SZ and highlight the translational relevance of the MIA model in understanding mechanisms by which MIA during pregnancy increases risk for later illness in offspring.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California.
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California; Center for Neuroscience, University of California, Davis, California
| | - Douglas J Rowland
- Center for Genomic and Molecular Imaging, University of California, Davis, California
| | - Guobao Wang
- Department of Radiology, University of California, Davis, California
| | - Abhijit J Chaudhari
- Center for Genomic and Molecular Imaging, University of California, Davis, California; Department of Radiology, University of California, Davis, California
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California
| | - Jeffrey L Bennett
- Department of Psychology, University of California, Davis, California
| | - Cynthia M Shumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California
| | - Judy A Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina; Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
| | | | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California; California National Primate Research Center, University of California, Davis, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California; Center for Neuroscience, University of California, Davis, California.
| |
Collapse
|
17
|
DeRosa H, Smith A, Geist L, Cheng A, Hunter RG, Kentner AC. Maternal immune activation alters placental histone-3 lysine-9 tri-methylation, offspring sensorimotor processing, and hypothalamic transposable element expression in a sex-specific manner. Neurobiol Stress 2023; 24:100538. [PMID: 37139465 PMCID: PMC10149420 DOI: 10.1016/j.ynstr.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Animal models of maternal immune activation (MIA) are central to identifying the biological mechanisms that underly the association between prenatal infection and neuropsychiatric disorder susceptibility. Many studies, however, have limited their scope to protein coding genes and their role in mediating this inherent risk, while much less attention has been directed towards exploring the roles of the epigenome and transposable elements (TEs). In Experiment 1, we demonstrate the ability of MIA to alter the chromatin landscape of the placenta. We induced MIA by injecting 200 μg/kg (i.p.) of lipopolysaccharide (LPS) on gestational day 15 in Sprague-Dawley rats. We found a sex-specific rearrangement of heterochromatin 24-h after exposure to MIA, as evidenced by an increase in histone-3 lysine-9 trimethylation (H3K9me3). In Experiment 2, MIA was associated with long-term sensorimotor processing deficits as indicated by reduced prepulse inhibition (PPI) of the acoustic startle reflex in adult male and female offspring and an increased mechanical allodynia threshold in males. Analyses of gene expression within the hypothalamus-chosen for its involvement in the sex-specific pathogenesis of schizophrenia and the stress response-revealed significantly higher levels of the stress-sensitive genes Gr and Fkbp5. Deleterious TE expression is often a hallmark of neuropsychiatric disease and we found sex-specific increases in the expression of several TEs including IAP, B2 SINE, and LINE-1 ORF1. The data from this study warrant the future consideration of chromatin stability and TEs as part of the mechanism that drives MIA-associated changes in the brain and behavior.
Collapse
Affiliation(s)
- Holly DeRosa
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Arianna Smith
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Ada Cheng
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Richard G. Hunter
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| |
Collapse
|
18
|
Abdolmaleky HM, Martin M, Zhou JR, Thiagalingam S. Epigenetic Alterations of Brain Non-Neuronal Cells in Major Mental Diseases. Genes (Basel) 2023; 14:896. [PMID: 37107654 PMCID: PMC10137903 DOI: 10.3390/genes14040896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The tissue-specific expression and epigenetic dysregulation of many genes in cells derived from the postmortem brains of patients have been reported to provide a fundamental biological framework for major mental diseases such as autism, schizophrenia, bipolar disorder, and major depression. However, until recently, the impact of non-neuronal brain cells, which arises due to cell-type-specific alterations, has not been adequately scrutinized; this is because of the absence of techniques that directly evaluate their functionality. With the emergence of single-cell technologies, such as RNA sequencing (RNA-seq) and other novel techniques, various studies have now started to uncover the cell-type-specific expression and DNA methylation regulation of many genes (e.g., TREM2, MECP2, SLC1A2, TGFB2, NTRK2, S100B, KCNJ10, and HMGB1, and several complement genes such as C1q, C3, C3R, and C4) in the non-neuronal brain cells involved in the pathogenesis of mental diseases. Additionally, several lines of experimental evidence indicate that inflammation and inflammation-induced oxidative stress, as well as many insidious/latent infectious elements including the gut microbiome, alter the expression status and the epigenetic landscapes of brain non-neuronal cells. Here, we present supporting evidence highlighting the importance of the contribution of the brain's non-neuronal cells (in particular, microglia and different types of astrocytes) in the pathogenesis of mental diseases. Furthermore, we also address the potential impacts of the gut microbiome in the dysfunction of enteric and brain glia, as well as astrocytes, which, in turn, may affect neuronal functions in mental disorders. Finally, we present evidence that supports that microbiota transplantations from the affected individuals or mice provoke the corresponding disease-like behavior in the recipient mice, while specific bacterial species may have beneficial effects.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Marian Martin
- Department of Neurology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
19
|
Tejkalová H, Jakob L, Kvasnová S, Klaschka J, Sechovcová H, Mrázek J, Páleníček T, Fliegerová KO. The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon 2023; 9:e15417. [PMID: 37123951 PMCID: PMC10130227 DOI: 10.1016/j.heliyon.2023.e15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.
Collapse
Affiliation(s)
- Hana Tejkalová
- National Institute of Mental Health; Klecany, Czech Republic
| | - Lea Jakob
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
- Corresponding author. National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic,
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science of the Czech Academy of Sciences, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
- Czech University of Life Sciences in Prague, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
| | | |
Collapse
|
20
|
Gervasi MT, Romero R, Cainelli E, Veronese P, Tran MR, Jung E, Suksai M, Bosco M, Gotsch F. Intra-amniotic inflammation in the mid-trimester of pregnancy is a risk factor for neuropsychological disorders in childhood. J Perinat Med 2023; 51:363-378. [PMID: 36173676 PMCID: PMC10010737 DOI: 10.1515/jpm-2022-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Intra-amniotic inflammation is a subclinical condition frequently caused by either microbial invasion of the amniotic cavity or sterile inflammatory stimuli, e.g., alarmins. An accumulating body of evidence supports a role for maternal immune activation in the genesis of fetal neuroinflammation and the occurrence of neurodevelopmental disorders such as cerebral palsy, schizophrenia, and autism. The objective of this study was to determine whether fetal exposure to mid-trimester intra-amniotic inflammation is associated with neurodevelopmental disorders in children eight to 12 years of age. METHODS This is a retrospective case-control study comprising 20 children with evidence of prenatal exposure to intra-amniotic inflammation in the mid-trimester and 20 controls matched for gestational age at amniocentesis and at delivery. Amniotic fluid samples were tested for concentrations of interleukin-6 and C-X-C motif chemokine ligand 10, for bacteria by culture and molecular microbiologic methods as well as by polymerase chain reaction for eight viruses. Neuropsychological testing of children, performed by two experienced psychologists, assessed cognitive and behavioral domains. Neuropsychological dysfunction was defined as the presence of an abnormal score (<2 standard deviations) on at least two cognitive tasks. RESULTS Neuropsychological dysfunction was present in 45% (9/20) of children exposed to intra-amniotic inflammation but in only 10% (2/20) of those in the control group (p=0.03). The relative risk (RR) of neuropsychological dysfunction conferred by amniotic fluid inflammation remained significant after adjusting for gestational age at delivery [aRR=4.5 (1.07-16.7)]. Of the 11 children diagnosed with neuropsychological dysfunction, nine were delivered at term and eight of them had mothers with intra-amniotic inflammation. Children exposed to intra-amniotic inflammation were found to have abnormalities in neuropsychological tasks evaluating complex skills, e.g., auditory attention, executive functions, and social skills, whereas the domains of reasoning, language, and memory were not affected in the cases and controls. CONCLUSIONS Asymptomatic sterile intra-amniotic inflammation in the mid-trimester of pregnancy, followed by a term birth, can still confer to the offspring a substantial risk for neurodevelopmental disorders in childhood. Early recognition and treatment of maternal immune activation in pregnancy may be a strategy for the prevention of subsequent neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women’s and Children’s Health, AOPD, Padua, Italy
| | - Maria Rosa Tran
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
21
|
Shin SH, Kim YK. Early Life Stress, Neuroinflammation, and Psychiatric Illness of Adulthood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:105-134. [PMID: 36949308 DOI: 10.1007/978-981-19-7376-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Stress exposure during early stages of life elevates the risk of developing psychopathologies and psychiatric illness in later life. The brain and immune system are not completely developed by birth and therefore continue develop after birth; this post birth development is influenced by several psychosocial factors; hence, early life stress (ELS) exposure can alter brain structural development and function. A growing number of experimental animal and observational human studies have investigated the link between ELS exposure and increased risk of psychopathology through alternations in the immune system, by evaluating inflammation biomarkers. Recent studies, including brain imaging, have also shed light on the mechanisms by which both the innate and adaptive immune systems interact with neural circuits and neurotransmitters, which affect psychopathology. Herein, we discuss the link between the experience of stress in early life and lifelong alterations in the immune system, which subsequently lead to the development of various psychiatric illnesses.
Collapse
Affiliation(s)
- Sang Ho Shin
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Korea University, Ansan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Korea University, Ansan, Republic of Korea.
| |
Collapse
|
22
|
Cheng D, Qin ZS, Zheng Y, Xie JY, Liang SS, Zhang JL, Feng YB, Zhang ZJ. Minocycline, a classic antibiotic, exerts psychotropic effects by normalizing microglial neuroinflammation-evoked tryptophan-kynurenine pathway dysregulation in chronically stressed male mice. Brain Behav Immun 2023; 107:305-318. [PMID: 36332817 DOI: 10.1016/j.bbi.2022.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of tryptophan-kynurenine pathway (TKP) is extensively involved in the pathophysiology of Alzheimer's disease, depression, and neurodegenerative disorders. Minocycline, a classic antibiotic, may exert psychotropic effects associated with the modulation of TKP. In this study, we examined the effects of minocycline in improving behaviour and modulating TKP components in chronically stressed male mice. Following repeated treatment with 22.5 mg/kg and 45 mg/kg minocycline for 27 days, the stressed mice particularly with higher dose displayed significant improvement on cognitive impairment, depression- and anxiety-like behaviour. Minocycline suppressed stress-induced overexpression of pro-inflammatory cytokines and restored anti-inflammatory cytokines. Chronic stress dramatically suppressed blood and prefrontal cortical levels of the primary substrate tryptophan (TRP), the neuroprotective metabolite kynurenic acid (KYNA), and KYNA/KYN ratio, but increased the intermediate kynurenine (KYN), 3-hydroxykynurenine (3-HK), KYN/TRP ratio, and the neurotoxic metabolite quinolinic acid (QUIN). Minocycline partially or completely reversed changes in these components. Minocycline also inhibited stress-induced overexpression of QUIN-related enzymes, indoleamine 2, 3-dioxygenase 1(iDO-1), kynureninase (KYNU), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilate 3,4-dioxygenase (3-HAO), but rescued the decreased expression of kynurenine aminotransferase (KAT) in brain regions. Behavioral improvements were correlated with multiple TKP metabolites and enzymes. These results suggest that the psychotropic effects of minocycline are mainly associated with the restoration of biodistribution of the primary substrate in the brain and normalization of neuroinflammation-evoked TKP dysregulation.
Collapse
Affiliation(s)
- Dan Cheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun-Ya Xie
- Department of Statistics and Actuarial Science, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Sui-Sha Liang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jia-Ling Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi-Bin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| |
Collapse
|
23
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
24
|
Li J, Wang Y, Yuan X, Kang Y, Song X. New insight in the cross-talk between microglia and schizophrenia: From the perspective of neurodevelopment. Front Psychiatry 2023; 14:1126632. [PMID: 36873215 PMCID: PMC9978517 DOI: 10.3389/fpsyt.2023.1126632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Characterized by psychotic symptoms, negative symptoms and cognitive deficits, schizophrenia had a catastrophic effect on patients and their families. Multifaceted reliable evidence indicated that schizophrenia is a neurodevelopmental disorder. Microglia, the immune cells in central nervous system, related to many neurodevelopmental diseases. Microglia could affect neuronal survival, neuronal death and synaptic plasticity during neurodevelopment. Anomalous microglia during neurodevelopment may be associated with schizophrenia. Therefore, a hypothesis proposes that the abnormal function of microglia leads to the occurrence of schizophrenia. Nowadays, accumulating experiments between microglia and schizophrenia could afford unparalleled probability to assess this hypothesis. Herein, this review summarizes the latest supporting evidence in order to shed light on the mystery of microglia in schizophrenia.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- College of First Clinical, Chongqing Medical University, Chongqing, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Long-term effects of prenatal stress on the development of prefrontal cortex in the adolescent offspring. J Chem Neuroanat 2022; 125:102169. [DOI: 10.1016/j.jchemneu.2022.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
|
26
|
Meyer U. Sources and Translational Relevance of Heterogeneity in Maternal Immune Activation Models. Curr Top Behav Neurosci 2022; 61:71-91. [PMID: 36306055 DOI: 10.1007/7854_2022_398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The epidemiological literature reporting increased risk for neurodevelopmental and psychiatric disorders after prenatal exposure to maternal immune activation (MIA) is still evolving, and so are the attempts to model this association in animals. Epidemiological studies of MIA offer the advantage of directly evaluating human populations but are often limited in their ability to uncover pathogenic mechanisms. Animal models, on the other hand, are limited in their generalizability to psychiatric disorders but have made significant strides toward discovering causal relationships and biological pathways between MIA and neurobiological phenotypes. Like in any other model system, both planned and unplanned sources of variability exist in animal models of MIA. Therefore, the design, implementation, and interpretation of MIA models warrant a careful consideration of these sources, so that appropriate strategies can be developed to handle them satisfactorily. While every research group may have its own strategy to this aim, it is essential to report the methodological details of the chosen MIA model in order to enhance the transparency and comparability of models across research laboratories. Even though it poses a challenge for attempts to compare experimental findings across laboratories, variability does not undermine the utility of MIA models for translational research. In fact, variability and heterogenous outcomes in MIA models offer unique opportunities for new discoveries and developments in this field, including the identification of disease pathways and molecular mechanisms determining susceptibility and resilience to MIA. This review summarizes the most important sources of variability in animal models of MIA and discusses how model variability can be used to investigate neurobiological and immunological factors causing phenotypic heterogeneity in offspring exposed to MIA.
Collapse
Affiliation(s)
- Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Giongo FK, Gallas-Lopes M, Benvenutti R, Sachett A, Bastos LM, Rosa AR, Herrmann AP. Effects of Taurine in Mice and Zebrafish Behavioral Assays With Translational Relevance to Schizophrenia. Int J Neuropsychopharmacol 2022; 26:125-136. [PMID: 36239455 PMCID: PMC9926054 DOI: 10.1093/ijnp/pyac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Altered redox state and developmental abnormalities in glutamatergic and GABAergic transmission during development are linked to the behavioral changes associated with schizophrenia. As an amino acid that exerts antioxidant and inhibitory actions in the brain, taurine is a potential candidate to modulate biological targets relevant to this disorder. Here, we investigated in mice and zebrafish assays whether taurine prevents the behavioral changes induced by acute administration of MK-801 (dizocilpine), a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist. METHODS C57BL/6 mice were i.p. administered with saline or taurine (50, 100, and 200 mg/kg) followed by MK-801 (0.15 mg/kg). Locomotor activity, social interaction, and prepulse inhibition of the acoustic startle reflex were then assessed in different sets of animals. Zebrafish were exposed to tank water or taurine (42, 150, and 400 mg/L) followed by MK-801 (5 µM); social preference and locomotor activity were evaluated in the same test. RESULTS MK-801 induced hyperlocomotion and disrupted sensorimotor gating in mice; in zebrafish, it reduced sociability and increased locomotion. Taurine was mostly devoid of effects and did not counteract NMDA antagonism in mice or zebrafish. DISCUSSION Contradicting previous clinical and preclinical data, taurine did not show antipsychotic-like effects in the present study. However, it still warrants consideration as a preventive intervention in animal models relevant to the prodromal phase of schizophrenia; further studies are thus necessary to evaluate whether and how taurine might benefit patients.
Collapse
Affiliation(s)
- Franciele Kich Giongo
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia,Programa de Pós-Graduação em Farmacologia e Terapêutica
| | - Matheus Gallas-Lopes
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia
| | | | | | - Leonardo Marensi Bastos
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia
| | - Adriane Ribeiro Rosa
- Programa de Pós-Graduação em Farmacologia e Terapêutica,Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Herrmann
- Correspondence: Ana Paula Herrmann, PhD, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil ()
| |
Collapse
|
28
|
Wang Y, Hu Z, Liu H, Gu Y, Ye M, Lu Q, Lu X, Huang C. Adolescent microglia stimulation produces long-lasting protection against chronic stress-induced behavioral abnormalities in adult male mice. Brain Behav Immun 2022; 105:44-66. [PMID: 35781008 DOI: 10.1016/j.bbi.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Our previous studies had reported that microglia activation one day before stress exposure prevented the behavioral abnormalities induced by chronic stress in adult mice, and a 10-day interval between microglia stimulation and stress exposure can abolish the prophylactic effect of LPS preinjection on the behavioral abnormalities induced by chronic stress, which, however, could be rescued by repeated LPS injection. This suggests that increased stimulation of microglia results in animals developing a strong ability to prevent deleterious stress stimuli. Because microglia in the adolescent brain exhibit flexible immunological plasticity, we hypothesize that a single low-dose LPS injection during adolescence may provide long-lasting protection against behavioral abnormalities induced by chronic stress in adult mice. As expected, our results showed that a single injection of LPS (100 μg/kg) at post-natal day 28 (PND 28) prevented the development of abnormal behaviors and shifted neuroinflammatory responses toward an anti-inflammatory phenotype in adult mice treated with CSDS at their different stages of the age (PND 56, 140, and 252). Moreover, pretreatment with minocycline or PLX3397 to inhibit microglial activation abolished the prophylactic effect of LPS preinjection after PND 28 on behavioral abnormalities and neuroinflammatory responses induced by CSDS in adult mice at their different stages of the age, PND 56, 140, and 252. These results indicate that stimulation of microglia in adolescence may confer long-lasting protection against neuroinflammatory responses and behavioral abnormalities induced by chronic stress in adult mice. This may offer the potential for the development of a "vaccine-like strategy" to prevent mental disorders.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224006, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
29
|
Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry 2022; 92:501-513. [PMID: 36008036 DOI: 10.1016/j.biopsych.2022.06.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/23/2022]
Abstract
The neurodevelopmental and dopamine hypotheses are leading theories of the pathoetiology of schizophrenia, but they were developed in isolation. However, since they were originally proposed, there have been considerable advances in our understanding of the normal neurodevelopmental refinement of synapses and cortical excitation-inhibition (E/I) balance, as well as preclinical findings on the interrelationship between cortical and subcortical systems and new in vivo imaging and induced pluripotent stem cell evidence for lower synaptic density markers in patients with schizophrenia. Genetic advances show that schizophrenia is associated with variants linked to genes affecting GABA (gamma-aminobutyric acid) and glutamatergic signaling as well as neurodevelopmental processes. Moreover, in vivo studies on the effects of stress, particularly during later development, show that it leads to synaptic elimination. We review these lines of evidence as well as in vivo evidence for altered cortical E/I balance and dopaminergic dysfunction in schizophrenia. We discuss mechanisms through which frontal cortex circuitry may regulate striatal dopamine and consider how frontal E/I imbalance may cause dopaminergic dysregulation to result in psychotic symptoms. This integrated neurodevelopmental and dopamine hypothesis suggests that overpruning of synapses, potentially including glutamatergic inputs onto frontal cortical interneurons, disrupts the E/I balance and thus underlies cognitive and negative symptoms. It could also lead to disinhibition of excitatory projections from the frontal cortex and possibly other regions that regulate mesostriatal dopamine neurons, resulting in dopamine dysregulation and psychotic symptoms. Together, this explains a number of aspects of the epidemiology and clinical presentation of schizophrenia and identifies new targets for treatment and prevention.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom
| |
Collapse
|
30
|
Hanson KL, Grant SE, Funk LH, Schumann CM, Bauman MD. Impact of Maternal Immune Activation on Nonhuman Primate Prefrontal Cortex Development: Insights for Schizophrenia. Biol Psychiatry 2022; 92:460-469. [PMID: 35773097 PMCID: PMC9888668 DOI: 10.1016/j.biopsych.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
Abstract
Late adolescence is a period of dynamic change in the brain as humans learn to navigate increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young adulthood. Challenges in early development, including prenatal exposure to infection, may set the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity and function before symptoms emerge. A growing body of research suggests that activation of the mother's immune system during pregnancy may act as a disease primer, in combination with other environmental and genetic factors, contributing to an increased risk of neurodevelopmental disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine the course of brain and behavioral changes in offspring exposed to maternal immune activation (MIA). Although the vast majority of MIA research has been carried out in rodents, here we highlight the translational utility of the nonhuman primate (NHP) as a model species more closely related to humans in PFC structure and function. In this review, we consider the protracted period of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP offspring in the context of rodent preclinical models, and lastly explore the translational relevance of the NHP MIA model to expand understanding of the etiology and developmental course of PFC pathology in schizophrenia.
Collapse
Affiliation(s)
- Kari L Hanson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Simone E Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California.
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California.
| |
Collapse
|
31
|
Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, Henneberg M, Wolf R. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci 2022; 272:929-945. [PMID: 34595576 PMCID: PMC9388452 DOI: 10.1007/s00406-021-01334-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Szymon Wojtylak
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arthur Saniotis
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Rainer Wolf
- Department of Nursing and Health, Hochschule Fulda, University of Applied Sciences, Fulda, Germany.
| |
Collapse
|
32
|
Tassinari M, Mottolese N, Galvani G, Ferrara D, Gennaccaro L, Loi M, Medici G, Candini G, Rimondini R, Ciani E, Trazzi S. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2022; 23:ijms23158719. [PMID: 35955854 PMCID: PMC9369425 DOI: 10.3390/ijms23158719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. Although pharmacotherapy has shown promise in the CDD mouse model, safe and effective clinical treatments are still far off. Recently, we found increased microglial activation in the brain of a mouse model of CDD, the Cdkl5 KO mouse, suggesting that a neuroinflammatory state, known to be involved in brain maturation and neuronal dysfunctions, may contribute to the pathophysiology of CDD. The present study aims to evaluate the possible beneficial effect of treatment with luteolin, a natural flavonoid known to have anti-inflammatory and neuroprotective activities, on brain development and behavior in a heterozygous Cdkl5 (+/−) female mouse, the mouse model of CDD that best resembles the genetic clinical condition. We found that inhibition of neuroinflammation by chronic luteolin treatment ameliorates motor stereotypies, hyperactive profile and memory ability in Cdkl5 +/− mice. Luteolin treatment also increases hippocampal neurogenesis and improves dendritic spine maturation and dendritic arborization of hippocampal and cortical neurons. These findings show that microglia overactivation exerts a harmful action in the Cdkl5 +/− brain, suggesting that treatments aimed at counteracting the neuroinflammatory process should be considered as a promising adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Domenico Ferrara
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
33
|
Desbonnet L, Konkoth A, Laighneach A, McKernan D, Holleran L, McDonald C, Morris DW, Donohoe G, Kelly J. Dual hit mouse model to examine the long-term effects of maternal immune activation and post-weaning social isolation on schizophrenia endophenotypes. Behav Brain Res 2022; 430:113930. [DOI: 10.1016/j.bbr.2022.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/27/2022] [Accepted: 05/14/2022] [Indexed: 11/02/2022]
|
34
|
Effect of dimethyl fumarate on the changes in the medial prefrontal cortex structure and behavior in the poly(I:C)-induced maternal immune activation model of schizophrenia in the male mice. Behav Brain Res 2022; 417:113581. [PMID: 34530042 DOI: 10.1016/j.bbr.2021.113581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The link between maternal immune activation (MIA) and the risk of developing schizophrenia (SCZ) later in life has been of major focus in recent years. This link could be bridged by activated inflammatory pathways and excessive cytokine release resulting in adverse effects on behavior, histology, and cytoarchitecture. The down-regulatory effects of immunomodulatory agents on the activated glial cells and their therapeutic effects on schizophrenic patients are consistent with this hypothesis. OBJECTIVE We investigated whether treatment with the anti-inflammatory drug dimethyl fumarate (DMF) could rescue impacts of prenatal exposure to polyinosinic:polycytidylic acid [poly (I:C)]. METHODS Pregnant dams were administered poly(I:C) at gestational day 9.5. Offspring born from these mothers were treated with DMF for fourteen consecutive days from postnatal day 80 and were assessed behaviorally before and after treatment. The brains were then stained with Cresyl Violet or Golgi-Cox. In addition to the estimation of stereological parameters, cytoarchitectural changes were also evaluated in the medial prefrontal cortex. RESULTS MIA caused some abnormalities in behavior, as well as changes in the number of neurons and non-neurons. These alterations were also extended to pyramidal layer III neurons with a significant decrease in dendritic complexity and spine density which DMF treatment could prevent these changes. Furthermore, DMF treatment was also effective against abnormal exploratory and depression-related behavior, but not the changes in the number of cells. CONCLUSION These findings support the idea of using anti-inflammatory agents as adjunctive therapy in patients with SCZ.
Collapse
|
35
|
Chen L, Zheng WH, Du Y, Li XS, Yu Y, Wang H, Cheng Y. Altered Peripheral Immune Profiles in First-Episode, Drug-Free Patients With Schizophrenia: Response to Antipsychotic Medications. Front Med (Lausanne) 2021; 8:757655. [PMID: 34901070 PMCID: PMC8652082 DOI: 10.3389/fmed.2021.757655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Previous research has demonstrated aberrations in the levels of inflammatory cytokines in patients with schizophrenia (SCZ), but most of the respective studies have tested a narrow set of inflammatory cytokines. Here, we aimed to analyze broad immune profiles in the peripheral blood of the first-episode drug-free (FEDF) patients with SCZ at baseline and after an 8-week treatment with atypical antipsychotics. Serum samples from 24 FEDF patients with SCZ and 25 healthy control (HC) subjects were tested using Luminex multiplex analysis for 30 cytokines, chemokines, and growth factors. Multiple comparison tests demonstrated that interleukin-2 (IL-2), IL-4, interferon-gamma (IFN-γ), monokine induced by IFN-γ, and granulocyte colony-stimulating factor (G-CSF) levels were significantly increased, whereas those of the epidermal growth factor were significantly decreased in the FEDF patients with SCZ. Moreover, the levels of the 6 dysregulated cytokines as well as those of 12 additional soluble factors in FEDF patients with SCZ were significantly decreased after 8 weeks of antipsychotic treatment. Furthermore, the transcription of G-CSF and IFN-γ was significantly increased in FEDF patients with SCZ when compared with controls, and G-CSF and IFN-γ mRNA levels were highly correlated with their respective protein concentrations. Receiver operating characteristic curves showed that G-CSF and IFN-γ had good performance in differentiating between FEDF patients with SCZ and HC subjects. Taken together, our data revealed that FEDF patients with SCZ were accompanied by a unique pattern of immune profile, and antipsychotic medications seemed to suppress the immune function in these patients, which could be used to develop novel targets for the diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Lei Chen
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Wen-Hui Zheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Xue-Song Li
- The Third People's Hospital of Foshan, Guangdong, China
| | - Yun Yu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Hua Wang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yong Cheng
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| |
Collapse
|
36
|
Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54:2611-2631.e8. [PMID: 34758338 PMCID: PMC8585508 DOI: 10.1016/j.immuni.2021.10.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Sara Mancinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuliana Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marija Markicevic
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Christina Grimm
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Clara Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alberto Termanini
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20089 Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Graziella di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Valerio Zerbi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland; Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
37
|
Guerrin CGJ, Doorduin J, Sommer IE, de Vries EFJ. The dual hit hypothesis of schizophrenia: Evidence from animal models. Neurosci Biobehav Rev 2021; 131:1150-1168. [PMID: 34715148 DOI: 10.1016/j.neubiorev.2021.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder, which can severely impact social and professional functioning. Epidemiological and clinical studies show that schizophrenia has a multifactorial aetiology comprising genetic and environmental risk factors. Although several risk factors have been identified, it is still not clear how they result in schizophrenia. This knowledge gap, however, can be investigated in animal studies. In this review, we summarise animal studies regarding molecular and cellular mechanisms through which genetic and environmental factors may affect brain development, ultimately causing schizophrenia. Preclinical studies suggest that early environmental risk factors can affect the immune, GABAergic, glutamatergic, or dopaminergic system and thus increase the susceptibility to another risk factor later in life. A second insult, like social isolation, stress, or drug abuse, can further disrupt these systems and the interactions between them, leading to behavioural abnormalities. Surprisingly, first insults like maternal infection and early maternal separation can also have protective effects. Single gene mutations associated with schizophrenia did not have a major impact on the susceptibility to subsequent environmental hits.
Collapse
Affiliation(s)
- Cyprien G J Guerrin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
38
|
Lins B. Maternal immune activation as a risk factor for psychiatric illness in the context of the SARS-CoV-2 pandemic. Brain Behav Immun Health 2021; 16:100297. [PMID: 34308388 PMCID: PMC8279925 DOI: 10.1016/j.bbih.2021.100297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Inflammation, due to infectious pathogens or other non-infectious stimuli, during pregnancy is associated with elevated risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. Although historically identified through retrospective epidemiologic studies, the relationship between maternal immune activation and offspring neurodevelopmental disease risk is now well established because of clinical studies which utilized prospective birth cohorts, serologically confirmed infection records, and subsequent long-term offspring follow-up. These efforts have been corroborated by preclinical research which demonstrates anatomical, biochemical, and behavioural alterations that resemble the clinical features of psychiatric illnesses. Intervention studies further demonstrate causal roles of inflammatory mediators, such as cytokines, in these long-lasting changes in behaviour and brain. This review summarizes a selection of maternal immune activation literature that explores the relationship between these inflammatory mediators and the neuropsychiatric-like effects later observed in the offspring. This literature is presented alongside emerging information regarding SARS-CoV-2 infection in pregnancy, with discussion of how these data may inform future research regarding the effects of the present coronavirus pandemic on emerging birth cohorts.
Collapse
Affiliation(s)
- Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
39
|
Smith BL. Improving translational relevance: The need for combined exposure models for studying prenatal adversity. Brain Behav Immun Health 2021; 16:100294. [PMID: 34589787 PMCID: PMC8474200 DOI: 10.1016/j.bbih.2021.100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Prenatal environmental adversity is a risk factor for neurodevelopmental disorders (NDDs), with the neuroimmune environment proposed to play a role in this risk. Adverse maternal exposures are associated with cognitive consequences in the offspring that are characteristics of NDDs and simultaneous neuroimmune changes that may underlie NDD risk. In both animal models and human studies the association between prenatal environmental exposure and NDD risk has been shown to be complex. Maternal overnutrition/obesity and opioid use are two different examples of complex exposure epidemics, each with their own unique comorbidities. This review will examine maternal obesity and maternal opioid use separately, illustrating the pervasive comorbidities with each exposure to argue a need for animal models of compound prenatal exposures. Many of these comorbidities can impact neuroimmune function, warranting systematic investigation of combined exposures to begin to understand this complexity. While traditional approaches in animal models have focused on modeling a single prenatal exposure or second exposure later in life, a translational approach would begin to incorporate the most prevalent co-occurring prenatal exposures. Long term follow-up in humans is extremely challenging, so animal models can provide timely insight into neurodevelopmental consequences of complex prenatal exposures. Animal models that represent this translational context of comorbid exposures behind maternal obesity or comorbid exposures behind maternal opioid use may reveal potential synergistic neuroimmune interactions that contribute to cognitive consequences and NDD risk. Finally, translational co-exposure models can identify concerning exposure combinations to guide treatment in complex cases, and identify high risk children starting in the prenatal period where early interventions improve prognosis.
Collapse
Affiliation(s)
- Brittany L. Smith
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
40
|
Analysis of Molecular Networks in the Cerebellum in Chronic Schizophrenia: Modulation by Early Postnatal Life Stressors in Murine Models. Int J Mol Sci 2021; 22:ijms221810076. [PMID: 34576238 PMCID: PMC8469990 DOI: 10.3390/ijms221810076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Despite the growing importance of the cerebellum as a region highly vulnerable to accumulating molecular errors in schizophrenia, limited information is available regarding altered molecular networks with potential therapeutic targets. To identify altered networks, we conducted one-shot liquid chromatography–tandem mass spectrometry in postmortem cerebellar cortex in schizophrenia and healthy individuals followed by bioinformatic analysis (PXD024937 identifier in ProteomeXchange repository). A total of 108 up-regulated proteins were enriched in stress-related proteins, half of which were also enriched in axonal cytoskeletal organization and vesicle-mediated transport. A total of 142 down-regulated proteins showed an enrichment in proteins involved in mitochondrial disease, most of which were also enriched in energy-related biological functions. Network analysis identified a mixed module of mainly axonal-related pathways for up-regulated proteins with a high number of interactions for stress-related proteins. Energy metabolism and neutrophil degranulation modules were found for down-regulated proteins. Further, two double-hit postnatal stress murine models based on maternal deprivation combined with social isolation or chronic restraint stress were used to investigate the most robust candidates of generated networks. CLASP1 from the axonal module in the model of maternal deprivation was combined with social isolation, while YWHAZ was not altered in either model. METTL7A from the degranulation pathway was reduced in both models and was identified as altered also in previous gene expression studies, while NDUFB9 from the energy network was reduced only in the model of maternal deprivation combined with social isolation. This work provides altered stress- and mitochondrial disease-related proteins involved in energy, immune and axonal networks in the cerebellum in schizophrenia as possible novel targets for therapeutic interventions and suggests that METTL7A is a possible relevant altered stress-related protein in this context.
Collapse
|
41
|
Dziabis JE, Bilbo SD. Microglia and Sensitive Periods in Brain Development. Curr Top Behav Neurosci 2021; 53:55-78. [PMID: 34463934 DOI: 10.1007/7854_2021_242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From embryonic neuronal migration to adolescent circuit refinement, the immune system plays an essential role throughout central nervous system (CNS) development. Immune signaling molecules serve as a common language between the immune system and CNS, allowing them to work together to modulate brain function both in health and disease. As the resident CNS macrophage, microglia comprise the majority of immune cells in the brain. Much like their peripheral counterparts, microglia survey their environment for pathology, clean up debris, and propagate inflammatory responses when necessary. Beyond this, recent studies have highlighted that microglia perform a number of complex tasks during neural development, from directing neuronal and axonal positioning to pruning synapses, receptors, and even whole cells. In this chapter, we discuss this literature within the framework that immune activation during discrete windows of neural development can profoundly impact brain function long-term, and thus the risk of neurodevelopmental and neuropsychiatric disorders. In this chapter, we review three sensitive developmental periods - embryonic wiring, early postnatal synaptic pruning, and adolescent circuit refinement - in order to highlight the diversity of functions that microglia perform in building a brain. In reviewing this literature, it becomes obvious that timing matters, perhaps more so than the nature of the immune activation itself; largely conserved patterns of microglial response to diverse insults result in different functional impacts depending on the stage of brain maturation at the time of the challenge.
Collapse
Affiliation(s)
- Julia E Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
42
|
Cao P, Chen C, Liu A, Shan Q, Zhu X, Jia C, Peng X, Zhang M, Farzinpour Z, Zhou W, Wang H, Zhou JN, Song X, Wang L, Tao W, Zheng C, Zhang Y, Ding YQ, Jin Y, Xu L, Zhang Z. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron 2021; 109:2573-2589.e9. [PMID: 34233151 DOI: 10.1016/j.neuron.2021.06.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/02/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Early-life inflammation increases the risk for depression in later life. Here, we demonstrate how early-life inflammation causes adolescent depressive-like symptoms: by altering the long-term neuronal spine engulfment capacity of microglia. For mice exposed to lipopolysaccharide (LPS)-induced inflammation via the Toll-like receptor 4/NF-κB signaling pathway at postnatal day (P) 14, ongoing longitudinal imaging of the living brain revealed that later stress (delivered during adolescence on P45) increases the extent of microglial engulfment around anterior cingulate cortex (ACC) glutamatergic neuronal (ACCGlu) spines. When the ACC microglia of LPS-treated mice were deleted or chemically inhibited, the mice did not exhibit depressive-like behaviors during adolescence. Moreover, we show that the fractalkine receptor CX3CR1 mediates stress-induced engulfment of ACCGlu neuronal spines. Together, our findings establish that early-life inflammation causes dysregulation of microglial engulfment capacity, which encodes long-lasting maladaptation of ACCGlu neurons to stress, thus promoting development of depression-like symptoms during adolescence.
Collapse
Affiliation(s)
- Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Changmao Chen
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Qinghong Shan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Chunhui Jia
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Xiaoqi Peng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Zahra Farzinpour
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Wenjie Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Haitao Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Jiang-Ning Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Xiaoyuan Song
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Changjian Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Yan Zhang
- Stroke Center & Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Yan Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China.
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China.
| |
Collapse
|
43
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
44
|
Romero-Miguel D, Casquero-Veiga M, MacDowell KS, Torres-Sanchez S, Garcia-Partida JA, Lamanna-Rama N, Romero-Miranda A, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. A Characterization of the Effects of Minocycline Treatment During Adolescence on Structural, Metabolic, and Oxidative Stress Parameters in a Maternal Immune Stimulation Model of Neurodevelopmental Brain Disorders. Int J Neuropsychopharmacol 2021; 24:734-748. [PMID: 34165516 PMCID: PMC8453277 DOI: 10.1093/ijnp/pyab036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Minocycline (MIN) is a tetracycline with antioxidant, anti-inflammatory, and neuroprotective properties. Given the likely involvement of inflammation and oxidative stress (IOS) in schizophrenia, MIN has been proposed as a potential adjuvant treatment in this pathology. We tested an early therapeutic window, during adolescence, as prevention of the schizophrenia-related deficits in the maternal immune stimulation (MIS) animal model. METHODS On gestational day 15, Poly I:C or vehicle was injected in pregnant Wistar rats. A total 93 male offspring received MIN (30 mg/kg) or saline from postnatal day (PND) 35-49. At PND70, rats were submitted to the prepulse inhibition test. FDG-PET and T2-weighted MRI brain studies were performed at adulthood. IOS markers were evaluated in frozen brain tissue. RESULTS MIN treatment did not prevent prepulse inhibition test behavioral deficits in MIS offspring. However, MIN prevented morphometric abnormalities in the third ventricle but not in the hippocampus. Additionally, MIN reduced brain metabolism in cerebellum and increased it in nucleus accumbens. Finally, MIN reduced the expression of iNOS (prefrontal cortex, caudate-putamen) and increased the levels of KEAP1 (prefrontal cortex), HO1 and NQO1 (amygdala, hippocampus), and HO1 (caudate-putamen). CONCLUSIONS MIN treatment during adolescence partially counteracts volumetric abnormalities and IOS deficits in the MIS model, likely via iNOS and Nrf2-ARE pathways, also increasing the expression of cytoprotective enzymes. However, MIN treatment during this peripubertal stage does not prevent sensorimotor gating deficits. Therefore, even though it does not prevent all the MIS-derived abnormalities evaluated, our results suggest the potential utility of early treatment with MIN in other schizophrenia domains.
Collapse
Affiliation(s)
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Sonia Torres-Sanchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - José Antonio Garcia-Partida
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain,Correspondence: Manuel Desco, PhD, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46. E-28007 Madrid, Spain ()
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| |
Collapse
|
45
|
Ikezu S, Yeh H, Delpech JC, Woodbury ME, Van Enoo AA, Ruan Z, Sivakumaran S, You Y, Holland C, Guillamon-Vivancos T, Yoshii-Kitahara A, Botros MB, Madore C, Chao PH, Desani A, Manimaran S, Kalavai SV, Johnson WE, Butovsky O, Medalla M, Luebke JI, Ikezu T. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol Psychiatry 2021; 26:1808-1831. [PMID: 32071385 PMCID: PMC7431382 DOI: 10.1038/s41380-020-0671-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
Abstract
Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.
Collapse
Affiliation(s)
- Seiko Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Hana Yeh
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Jean-Christophe Delpech
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Maya E Woodbury
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Alicia A Van Enoo
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Ruan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sudhir Sivakumaran
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Yang You
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Carl Holland
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Asuka Yoshii-Kitahara
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Mina B Botros
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pin-Hao Chao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Ankita Desani
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Solaiappan Manimaran
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Srinidhi Venkatesan Kalavai
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - W Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Medalla
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer I Luebke
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Tsuneya Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Department of Neurology and Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
46
|
Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. Cell Rep 2021; 31:107699. [PMID: 32492415 DOI: 10.1016/j.celrep.2020.107699] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/08/2019] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
Cranial irradiation (IR), an effective tool to treat malignant brain tumors, triggers a chronic pro-inflammatory microglial response, at least in the adult brain. Using single-cell and bulk RNA sequencing, combined with histology, we show that the microglial response in the juvenile mouse hippocampus is rapid but returns toward normal within 1 week. The response is characterized by a series of temporally distinct homeostasis-, sensome-, and inflammation-related molecular signatures. We find that a single microglial cell simultaneously upregulates transcripts associated with pro- and anti-inflammatory microglial phenotypes. Finally, we show that juvenile and adult irradiated microglia are already transcriptionally distinct in the early phase after IR. Our results indicate that microglia are involved in the initial stages but may not be responsible for driving long-term inflammation in the juvenile brain.
Collapse
|
47
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
48
|
Chaves Filho AJM, Mottin M, Soares MVR, Jucá PM, Andrade CH, Macedo DS. Tetracyclines, a promise for neuropsychiatric disorders: from adjunctive therapy to the discovery of new targets for rational drug design in psychiatry. Behav Pharmacol 2021; 32:123-141. [PMID: 33595954 DOI: 10.1097/fbp.0000000000000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Major mental disorders, such as schizophrenia, bipolar disorder, and major depressive disorder, represent the leading cause of disability worldwide. Nevertheless, the current pharmacotherapy has several limitations, and a large portion of patients do not respond appropriately to it or remain with disabling symptoms overtime. Traditionally, pharmacological interventions for psychiatric disorders modulate dysfunctional neurotransmitter systems. In the last decades, compelling evidence has advocated for chronic inflammatory mechanisms underlying these disorders. Therefore, the repurposing of anti-inflammatory agents has emerged as an attractive therapeutic tool for mental disorders. Minocycline (MINO) and doxycycline (DOXY) are semisynthetic second-generation tetracyclines with neuroprotective and anti-inflammatory properties. More recently, the most promising results obtained in clinical trials using tetracyclines for major psychiatric disorders were for schizophrenia. In a reverse translational approach, tetracyclines inhibit microglial reactivity and toxic inflammation by mechanisms related to the inhibition of nuclear factor kappa B signaling, cyclooxygenase 2, and matrix metalloproteinases. However, the molecular mechanism underlying the effects of these tetracyclines is not fully understood. Therefore, the present review sought to summarize the latest findings of MINO and DOXY use for major psychiatric disorders and present the possible targets to their molecular and behavioral effects. In conclusion, tetracyclines hold great promise as (ready-to-use) agents for being used as adjunctive therapy for human neuropsychiatric disorders. Hence, the understanding of their molecular mechanisms may contribute to the discovery of new targets for the rational drug design of novel psychoactive agents.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| |
Collapse
|
49
|
Cannabinoid receptor 1 signalling modulates stress susceptibility and microglial responses to chronic social defeat stress. Transl Psychiatry 2021; 11:164. [PMID: 33723234 PMCID: PMC7961142 DOI: 10.1038/s41398-021-01283-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Psychosocial stress is one of the main environmental factors contributing to the development of psychiatric disorders. In humans and rodents, chronic stress is associated with elevated inflammatory responses, indicated by increased numbers of circulating myeloid cells and activation of microglia, the brain-resident immune cells. The endocannabinoid system (ECS) regulates neuronal and endocrine stress responses via the cannabinoid receptor 1 (CB1). CB1-deficient mice (Cnr1-/-) are highly sensitive to stress, but if this involves altered inflammatory responses is not known. To test this, we exposed Cnr1+/+ and Cnr1-/- mice to chronic social defeat stress (CSDS). Cnr1-/- mice were extremely sensitive to a standard protocol of CSDS, indicated by an increased mortality rate. Therefore, a mild CSDS protocol was established, which still induced a behavioural phenotype in susceptible Cnr1-/- mice. These mice also showed altered glucocorticoid levels after mild CSDS, suggesting dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Mild CSDS induced weak myelopoiesis in the periphery, but no recruitment of myeloid cells to the brain. In contrast, mild CSDS altered microglial activation marker expression and morphology in Cnr1-/- mice. These microglial changes correlated with the severity of the behavioural phenotype. Furthermore, microglia of Cnr1-/- mice showed increased expression of Fkbp5, an important regulator of glucocorticoid signalling. Overall, the results confirm that CB1 signalling protects the organism from the physical and emotional harm of social stress and implicate endocannabinoid-mediated modulation of microglia in the development of stress-related pathologies.
Collapse
|
50
|
Shelton HW, Gabbita SP, Gill WD, Burgess KC, Whicker WS, Brown RW. The effects of a novel inhibitor of tumor necrosis factor (TNF) alpha on prepulse inhibition and microglial activation in two distinct rodent models of schizophrenia. Behav Brain Res 2021; 406:113229. [PMID: 33684425 DOI: 10.1016/j.bbr.2021.113229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Increased neuroinflammation has been shown in individuals diagnosed with schizophrenia (SCHZ). This study evaluated a novel immune modulator (PD2024) that targets the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) to alleviate sensorimotor gating deficits and microglial activation employing two different rodent models of SCHZ. In Experiment 1, rats were neonatally treated with saline or the dopamine D2-like agonist quinpirole (NQ; 1 mg/kg) from postnatal day (P) 1-21 which produces increases of dopamine D2 receptor sensitivity throughout the animal's lifetime. In Experiment 2, rats were neonatally treated with saline or the immune system stimulant polyinosinic:polycytidylic acid (Poly I:C) from P5-7. Neonatal Poly I:C treatment mimics immune system activation associated with SCHZ. In both experiments, rats were raised to P30 and administered a control diet or a novel TNFα inhibitor PD2024 (10 mg/kg) in the diet from P30 until P67. At P45-46 and from P60-67, animals were behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI). NQ or Poly I:C treatment resulted in PPI deficits, and PD2024 treatment alleviated PPI deficits in both models. Results also revealed that increased hippocampal and prefrontal cortex microglial activation produced by neonatal Poly I:C was significantly reduced to control levels by PD2024. In addition, a separate group of animals neonatally treated with saline or Poly I:C from P5-7 demonstrated increased TNFα protein levels in the hippocampus but not prefrontal cortex, verifying increased TNFα in the brain produced by Poly I:C. Results from this study suggests that that brain TNFα is a viable pharmacological target to treat the neuroinflammation known to be associated with SCHZ.
Collapse
Affiliation(s)
- Heath W Shelton
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | | | - W Drew Gill
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Katherine C Burgess
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Wyatt S Whicker
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States.
| |
Collapse
|