1
|
Walker EF, Aberizk K, Yuan E, Bilgrami Z, Ku BS, Guest RM. Developmental perspectives on the origins of psychotic disorders: The need for a transdiagnostic approach. Dev Psychopathol 2024; 36:2559-2569. [PMID: 38406831 PMCID: PMC11345878 DOI: 10.1017/s0954579424000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Research on serious mental disorders, particularly psychosis, has revealed highly variable symptom profiles and developmental trajectories prior to illness-onset. As Dante Cicchetti pointed out decades before the term "transdiagnostic" was widely used, the pathways to psychopathology emerge in a system involving equifinality and multifinality. Like most other psychological disorders, psychosis is associated with multiple domains of risk factors, both genetic and environmental, and there are many transdiagnostic developmental pathways that can lead to psychotic syndromes. In this article, we discuss our current understanding of heterogeneity in the etiology of psychosis and its implications for approaches to conceptualizing etiology and research. We highlight the need for examining risk factors at multiple levels and to increase the emphasis on transdiagnostic developmental trajectories as a key variable associated with etiologic subtypes. This will be increasingly feasible now that large, longitudinal datasets are becoming available and researchers have access to more sophisticated analytic tools, such as machine learning, which can identify more homogenous subtypes with the ultimate goal of enhancing options for treatment and preventive intervention.
Collapse
Affiliation(s)
- Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Emerald Yuan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Zarina Bilgrami
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan M Guest
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Baum ML, Wilton DK, Fox RG, Carey A, Hsu YHH, Hu R, Jäntti HJ, Fahey JB, Muthukumar AK, Salla N, Crotty W, Scott-Hewitt N, Bien E, Sabatini DA, Lanser TB, Frouin A, Gergits F, Håvik B, Gialeli C, Nacu E, Lage K, Blom AM, Eggan K, McCarroll SA, Johnson MB, Stevens B. CSMD1 regulates brain complement activity and circuit development. Brain Behav Immun 2024; 119:317-332. [PMID: 38552925 DOI: 10.1016/j.bbi.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.
Collapse
Affiliation(s)
- Matthew L Baum
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; MD-PhD Program of Harvard & MIT, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel G Fox
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alanna Carey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Han H Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruilong Hu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Henna J Jäntti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jaclyn B Fahey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allie K Muthukumar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikkita Salla
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William Crotty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nicole Scott-Hewitt
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Bien
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sabatini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arnaud Frouin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick Gergits
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chrysostomi Gialeli
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden; Cardiovascular Research - Translational Studies Research Group, Department of Clinical Sciences, Lund University, S-214 28 Malmö, Sweden
| | - Eugene Nacu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew B Johnson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
3
|
Almodóvar-Payá C, Guardiola-Ripoll M, Giralt-López M, Oscoz-Irurozqui M, Canales-Rodríguez EJ, Madre M, Soler-Vidal J, Ramiro N, Callado LF, Arias B, Gallego C, Pomarol-Clotet E, Fatjó-Vilas M. NRN1 epistasis with BDNF and CACNA1C: mediation effects on symptom severity through neuroanatomical changes in schizophrenia. Brain Struct Funct 2024; 229:1299-1315. [PMID: 38720004 PMCID: PMC11147852 DOI: 10.1007/s00429-024-02793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
The expression of Neuritin-1 (NRN1), a neurotrophic factor crucial for neurodevelopment and synaptic plasticity, is enhanced by the Brain Derived Neurotrophic Factor (BDNF). Although the receptor of NRN1 remains unclear, it is suggested that NRN1's activation of the insulin receptor (IR) pathway promotes the transcription of the calcium voltage-gated channel subunit alpha1 C (CACNA1C). These three genes have been independently associated with schizophrenia (SZ) risk, symptomatology, and brain differences. However, research on how they synergistically modulate these phenotypes is scarce. We aimed to study whether the genetic epistasis between these genes affects the risk and clinical presentation of the disorder via its effect on brain structure. First, we tested the epistatic effect of NRN1 and BDNF or CACNA1C on (i) the risk for SZ, (ii) clinical symptoms severity and functionality (onset, PANSS, CGI and GAF), and (iii) brain cortical structure (thickness, surface area and volume measures estimated using FreeSurfer) in a sample of 86 SZ patients and 89 healthy subjects. Second, we explored whether those brain clusters influenced by epistatic effects mediate the clinical profiles. Although we did not find a direct epistatic impact on the risk, our data unveiled significant effects on the disorder's clinical presentation. Specifically, the NRN1-rs10484320 x BDNF-rs6265 interplay influenced PANSS general psychopathology, and the NRN1-rs4960155 x CACNA1C-rs1006737 interaction affected GAF scores. Moreover, several interactions between NRN1 SNPs and BDNF-rs6265 significantly influenced the surface area and cortical volume of the frontal, parietal, and temporal brain regions within patients. The NRN1-rs10484320 x BDNF-rs6265 epistasis in the left lateral orbitofrontal cortex fully mediated the effect on PANSS general psychopathology. Our study not only adds clinical significance to the well-described molecular relationship between NRN1 and BDNF but also underscores the utility of deconstructing SZ into biologically validated brain-imaging markers to explore their mediation role in the path from genetics to complex clinical manifestation.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERER (Biomedical Research Network in Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Giralt-López
- Department of Child and Adolescent Psychiatry, Germans Trias i Pujol University Hospital (HUGTP), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Erick Jorge Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Benito Menni, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - Núria Ramiro
- Hospital San Rafael, Germanes Hospitalàries, Barcelona, Spain
| | - Luis F Callado
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Bárbara Arias
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Carme Gallego
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
5
|
Chung IH, Huang YS, Fang TH, Chen CH. Whole Genome Sequencing Revealed Inherited Rare Oligogenic Variants Contributing to Schizophrenia and Major Depressive Disorder in Two Families. Int J Mol Sci 2023; 24:11777. [PMID: 37511534 PMCID: PMC10380944 DOI: 10.3390/ijms241411777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Schizophrenia and affective disorder are two major complex mental disorders with high heritability. Evidence shows that rare variants with significant clinical impacts contribute to the genetic liability of these two disorders. Also, rare variants associated with schizophrenia and affective disorders are highly personalized; each patient may carry different variants. We used whole genome sequencing analysis to study the genetic basis of two families with schizophrenia and major depressive disorder. We did not detect de novo, autosomal dominant, or recessive pathogenic or likely pathogenic variants associated with psychiatric disorders in these two families. Nevertheless, we identified multiple rare inherited variants with unknown significance in the probands. In family 1, with singleton schizophrenia, we detected four rare variants in genes implicated in schizophrenia, including p.Arg1627Trp of LAMA2, p.Pro1338Ser of CSMD1, p.Arg691Gly of TLR4, and Arg182X of AGTR2. The p.Arg691Gly of TLR4 was inherited from the father, while the other three were inherited from the mother. In family 2, with two affected sisters diagnosed with major depressive disorder, we detected three rare variants shared by the two sisters in three genes implicated in affective disorders, including p.Ala4551Gly of FAT1, p.Val231Leu of HOMER3, and p.Ile185Met of GPM6B. These three rare variants were assumed to be inherited from their parents. Prompted by these findings, we suggest that these rare inherited variants may interact with each other and lead to psychiatric conditions in these two families. Our observations support the conclusion that inherited rare variants may contribute to the heritability of psychiatric disorders.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
- Department of Psychiatry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Hsuan Fang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Onu JU, Olatayo TI, Okorie AC, Ohaeri JU. Family, twin and adoption studies of severe mental disorders in sub-Saharan Africa: a scoping review. Soc Psychiatry Psychiatr Epidemiol 2023; 58:685-692. [PMID: 36542114 DOI: 10.1007/s00127-022-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE The traditional genetic epidemiological studies are necessary to improve accurate risk communication to service users and their families. This scoping review aimed to describe the volume and scope of existing research evidence on family, twin and adoption studies of severe mental disorders (SMDs) in SSA. This is with a view to identifying gaps in the literature and the adequacy of data for a systematic review and meta-analysis. METHODS Literature search was done for all original peer-reviewed research articles on the topic in SSA using PubMed and MEDLINE. Publications included were peer-reviewed original articles, irrespective of their quality, carried out in the region from the 1970s till 9th March, 2022, which were available in English or translated to English. Case reports, abstracts, and studies among populations living outside the region were excluded. RESULTS A total of five studies that met the inclusion criteria across the 46 countries in the region were identified. Of the three thematic areas of focus, only family studies on SMDs had research work in SSA. These studies provided evidence of familial clustering of SMDs in SSA. There were no twin and adoption studies on SMDs in the region. However, the review noted the establishment of two twin registries in Guinea-Bissau and Nigeria. A huge gap exists in the area of twin and adoption studies on SMDs in SSA. CONCLUSION The volume of research evidence on traditional family genetic studies of SMDs is grossly inadequate to consider a systematic review in SSA. We have suggested studies to remedy the situation.
Collapse
Affiliation(s)
- Justus U Onu
- Department of Mental Health, Nnamdi Azikiwe University, Nnewi Campus, Awka, Anambra State, Nigeria.
| | - Temitope I Olatayo
- Department of Clinical Services, Federal Neuropsychiatric Hospital, Enugu, Enugu State, Nigeria
| | | | - Jude U Ohaeri
- Department of Psychological Medicine, University of Nigeria, Enugu Campus, Nsukka, Nigeria
| |
Collapse
|
7
|
Kurishev AO, Karpov DS, Nadolinskaia NI, Goncharenko AV, Golimbet VE. CRISPR/Cas-Based Approaches to Study Schizophrenia and Other Neurodevelopmental Disorders. Int J Mol Sci 2022; 24:241. [PMID: 36613684 PMCID: PMC9820593 DOI: 10.3390/ijms24010241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The study of diseases of the central nervous system (CNS) at the molecular level is challenging because of the complexity of neural circuits and the huge number of specialized cell types. Moreover, genomic association studies have revealed the complex genetic architecture of schizophrenia and other genetically determined mental disorders. Investigating such complex genetic architecture to decipher the molecular basis of CNS pathologies requires the use of high-throughput models such as cells and their derivatives. The time is coming for high-throughput genetic technologies based on CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas systems to manipulate multiple genomic targets. CRISPR/Cas systems provide the desired complexity, versatility, and flexibility to create novel genetic tools capable of both altering the DNA sequence and affecting its function at higher levels of genetic information flow. CRISPR/Cas tools make it possible to find and investigate the intricate relationship between the genotype and phenotype of neuronal cells. The purpose of this review is to discuss innovative CRISPR-based approaches for studying the molecular mechanisms of CNS pathologies using cellular models.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Nonna I. Nadolinskaia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
| |
Collapse
|
8
|
Martinez ME, Stohn JP, Mutina EM, Whitten RJ, Hernandez A. Thyroid hormone elicits intergenerational epigenetic effects on adult social behavior and fetal brain expression of autism susceptibility genes. Front Neurosci 2022; 16:1055116. [PMID: 36419462 PMCID: PMC9676973 DOI: 10.3389/fnins.2022.1055116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic mutations identified in genome-wide association studies can only explain a small percentage of the cases of complex, highly heritable human conditions, including neurological and neurodevelopmental disorders. This suggests that intergenerational epigenetic effects, possibly triggered by environmental circumstances, may contribute to their etiology. We previously described altered DNA methylation signatures in the sperm of mice that experienced developmental overexposure to thyroid hormones as a result of a genetic defect in hormone clearance (DIO3 deficiency). Here we studied fetal brain gene expression and adult social behavior in genetically normal F2 generation descendants of overexposed mice. The brain of F2 generation E13.5 fetuses exhibited abnormal expression of genes associated with autism in humans, including Auts2, Disc1, Ldlr, Per2, Shank3, Oxtr, Igf1, Foxg1, Cd38, Grid2, Nrxn3, and Reln. These abnormal gene expression profiles differed depending on the sex of the exposed ancestor. In the three-chamber social box test, adult F2 generation males manifested significantly decreased interest in social interaction and social novelty, as revealed by decrease total time, distance traveled and time immobile in the area of interaction with novel strangers. F1 generation mice, compared to appropriate controls also exhibited altered profiles in fetal brain gene expression, although these profiles were substantially different to those in the F2 generation. Likewise adult F1 generation mice showed some abnormalities in social behavior that were sexually dimorphic and milder than those in F2 generation mice. Our results indicate that developmental overexposure to thyroid hormone causes intergenerational epigenetic effects impacting social behavior and the expression of autism-related genes during early brain development. Our results open the possibility that altered thyroid hormone states, by eliciting changes in the epigenetic information of the germ line, contribute to the susceptibility and the missing-but heriTables-etiology of complex neurodevelopmental conditions characterized by social deficits, including autism and schizophrenia.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Julia Patrizia Stohn
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Elizabeth M. Mutina
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Rayne J. Whitten
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Maggio AG, Shu HT, Laufer BI, Bi C, Lai Y, LaSalle JM, Hu VW. Elevated exposures to persistent endocrine disrupting compounds impact the sperm methylome in regions associated with autism spectrum disorder. Front Genet 2022; 13:929471. [PMID: 36035158 PMCID: PMC9403863 DOI: 10.3389/fgene.2022.929471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental exposures to endocrine disrupting compounds (EDCs) such as the organochlorines have been linked with various diseases including neurodevelopmental disorders. Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder that is considered strongly genetic in origin due to its high heritability. However, the rapidly rising prevalence of ASD suggests that environmental factors may also influence risk for ASD. In the present study, whole genome bisulfite sequencing was used to identify genome-wide differentially methylated regions (DMRs) in a total of 52 sperm samples from a cohort of men from the Faroe Islands (Denmark) who were equally divided into high and low exposure groups based on their serum levels of the long-lived organochlorine 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a primary breakdown product of the now banned insecticide dichlorodiphenyltrichloroethane (DDT). Aside from being considered a genetic isolate, inhabitants of the Faroe Islands have a native diet that potentially exposes them to a wide range of seafood neurotoxicants in the form of persistent organic pollutants (POPs). The DMRs were mapped to the human genome using Bismark, a 3-letter aligner used for methyl-seq analyses. Gene ontology, functional, and pathway analyses of the DMR-associated genes showed significant enrichment for genes involved in neurological functions and neurodevelopmental processes frequently impacted by ASD. Notably, these genes also significantly overlap with autism risk genes as well as those previously identified in sperm from fathers of children with ASD in comparison to that of fathers of neurotypical children. These results collectively suggest a possible mechanism involving altered methylation of a significant number of neurologically relevant ASD risk genes for introducing epigenetic changes associated with environmental exposures into the sperm methylome. Such changes may provide the potential for transgenerational inheritance of ASD as well as other disorders.
Collapse
Affiliation(s)
- Angela G. Maggio
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Henry T. Shu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- The Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Benjamin I. Laufer
- Genome Center, Perinatal Origins of Disparities Center, Environmental Health Sciences Center, Medical Microbiology and Immunology, MIND Institute, UC Davis School of Medicine, Davis, CA, United States
| | - Chongfeng Bi
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yinglei Lai
- Department of Statistics, The George Washington University, Washington, DC, United States
| | - Janine M. LaSalle
- Genome Center, Perinatal Origins of Disparities Center, Environmental Health Sciences Center, Medical Microbiology and Immunology, MIND Institute, UC Davis School of Medicine, Davis, CA, United States
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
10
|
How Variation in Risk Allele Output and Gene Interactions Shape the Genetic Architecture of Schizophrenia. Genes (Basel) 2022; 13:genes13061040. [PMID: 35741803 PMCID: PMC9222307 DOI: 10.3390/genes13061040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Schizophrenia is a highly heritable polygenic psychiatric disorder. Characterization of its genetic architecture may lead to a better understanding of the overall burden of risk variants and how they determine susceptibility to disease. A major goal of this project is to develop a modeling approach to compare and quantify the relative effects of single nucleotide polymorphisms (SNPs), copy number variants (CNVs) and other factors. We derived a mathematical model for the various genetic contributions based on the probability of expressing a combination of risk variants at a frequency that matched disease prevalence. The model included estimated risk variant allele outputs (VAOs) adjusted for population allele frequency. We hypothesized that schizophrenia risk genes would be more interactive than random genes and we confirmed this relationship. Gene–gene interactions may cause network ripple effects that spread and amplify small individual effects of risk variants. The modeling revealed that the number of risk alleles required to achieve the threshold for susceptibility will be determined by the average functional locus output (FLO) associated with a risk allele, the risk allele frequency (RAF), the number of protective variants present and the extent of gene interactions within and between risk loci. The model can account for the quantitative impact of protective variants as well as CNVs on disease susceptibility. The fact that non-affected individuals must carry a non-trivial burden of risk alleles suggests that genetic susceptibility will inevitably reach the threshold for schizophrenia at a recurring frequency in the population.
Collapse
|
11
|
Martins J, Yusupov N, Binder EB, Brückl TM, Czamara D. Early adversity as the prototype gene × environment interaction in mental disorders? Pharmacol Biochem Behav 2022; 215:173371. [PMID: 35271857 DOI: 10.1016/j.pbb.2022.173371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Childhood adversity (CA) as a significant stressor has consistently been associated with the development of mental disorders. The interaction between CA and genetic variants has been proposed to play a substantial role in disease etiology. In this review, we focus on the gene by environment (GxE) paradigm, its background and interpretation and stress the necessity of its implementation in psychiatric research. Further, we discuss the findings supporting GxCA interactions, ranging from candidate gene studies to polygenic and genome-wide approaches, their strengths and limitations. To illustrate potential underlying epigenetic mechanisms by which GxE effects are translated, we focus on results from FKBP5 × CA studies and discuss how molecular evidence can supplement previous GxE findings. In conclusion, while GxE studies constitute a valuable line of investigation, more harmonized GxE studies in large, deep-phenotyped, longitudinal cohorts, and across different developmental stages are necessary to further substantiate and understand reported GxE findings.
Collapse
Affiliation(s)
- Jade Martins
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany.
| | - Natan Yusupov
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Tanja M Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| |
Collapse
|
12
|
Lori A, Coppedè F, Pellegrini S. Editorial: Shared Genetic Risk Factors Among Psychiatric Diseases and Other Medical Diseases and Traits. Front Neurosci 2022; 15:802064. [PMID: 35153661 PMCID: PMC8825864 DOI: 10.3389/fnins.2021.802064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- *Correspondence: Adriana Lori
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Swart PC, van den Heuvel LL, Lewis CM, Seedat S, Hemmings SMJ. A Genome-Wide Association Study and Polygenic Risk Score Analysis of Posttraumatic Stress Disorder and Metabolic Syndrome in a South African Population. Front Neurosci 2021; 15:677800. [PMID: 34177453 PMCID: PMC8222611 DOI: 10.3389/fnins.2021.677800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-related disorder that frequently co-occurs with metabolic syndrome (MetS). MetS is characterized by obesity, dyslipidemia, and insulin resistance. To provide insight into these co-morbidities, we performed a genome-wide association study (GWAS) meta-analysis to identify genetic variants associated with PTSD, and determined if PTSD polygenic risk scores (PRS) could predict PTSD and MetS in a South African mixed-ancestry sample. The GWAS meta-analysis of PTSD participants (n = 260) and controls (n = 343) revealed no SNPs of genome-wide significance. However, several independent loci, as well as five SNPs in the PARK2 gene, were suggestively associated with PTSD (p < 5 × 10-6). PTSD-PRS was associated with PTSD diagnosis (Nagelkerke's pseudo R 2 = 0.0131, p = 0.00786), PTSD symptom severity [as measured by CAPS-5 total score (R 2 = 0.00856, p = 0.0367) and PCL-5 score (R 2 = 0.00737, p = 0.0353)], and MetS (Nagelkerke's pseudo R 2 = 0.00969, p = 0.0217). These findings suggest an association between PTSD and PARK2, corresponding with results from the largest PTSD-GWAS conducted to date. PRS analysis suggests that genetic variants associated with PTSD are also involved in the development of MetS. Overall, the results contribute to a broader goal of increasing diversity in psychiatric genetics.
Collapse
Affiliation(s)
- Patricia C. Swart
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L. van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sian M. J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
St Clair D, Lang B. Schizophrenia: a classic battle ground of nature versus nurture debate. Sci Bull (Beijing) 2021; 66:1037-1046. [PMID: 36654248 DOI: 10.1016/j.scib.2021.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023]
Abstract
Much has been learned about the etiology and pathogenesis of schizophrenia since the term was first used by Eugene Bleuler over a century ago to describe one of the most important forms of major mental illness to affect mankind. Both nature and nurture feature prominently in our understanding of the genesis of the overall risk of developing schizophrenia. We now have a firm grasp of the broad structure of the genetic architecture and several key environmental risk factors have been identified and delineated. However, much of the heritability of schizophrenia remains unexplained and the reported environmental risk factors do not explain all the variances not attributable to genetic risk factors. The biggest problem at present is that our understanding of the causal mechanisms involved is still in its infancy. In this review, we describe the extent and limits of our knowledge of the specific genetic/constitutional and non-genetic/environmental factors that contribute to the overall risk of schizophrenia. We suggest novel methods may be required to understand the almost certainly immensely complex multi-level causal mechanisms that contribute to the generation of the schizophrenia phenotype.
Collapse
Affiliation(s)
- David St Clair
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China; Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China; Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
15
|
Wendt FR, Pathak GA, Levey DF, Nuñez YZ, Overstreet C, Tyrrell C, Adhikari K, De Angelis F, Tylee DS, Goswami A, Krystal JH, Abdallah CG, Stein MB, Kranzler HR, Gelernter J, Polimanti R. Sex-stratified gene-by-environment genome-wide interaction study of trauma, posttraumatic-stress, and suicidality. Neurobiol Stress 2021; 14:100309. [PMID: 33665242 PMCID: PMC7905234 DOI: 10.1016/j.ynstr.2021.100309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Epidemiologic studies recognize that trauma and posttraumatic stress are associated with heightened suicidal behavior severity, yet examination of these associations from a genetic perspective is limited. We performed a multivariate gene-by-environment genome-wide interaction study (GEWIS) of suicidality in 123,633 individuals using a covariance matrix based on 26 environments related to traumatic experiences, posttraumatic stress, social support, and socioeconomic status. We discovered five suicidality risk loci, including the male-associated rs2367967 (CWC22), which replicated in an independent cohort. All GEWIS-significant loci exhibited interaction effects where at least 5% of the sample had environmental profiles conferring opposite SNP effects from the majority. We identified PTSD as a primary driving environment for GxE at suicidality risk loci. The male suicidality GEWIS was enriched for three middle-temporal-gyrus inhibitory neuron transcriptomic profiles: SCUBE- and PVALB-expressing cells (β = 0.028, p = 3.74 × 10-4), OPRM1-expressing cells (β = 0.030, p = 0.001), and SPAG17-expressing cells (β = 0.029, p = 9.80 × 10-4). Combined with gene-based analyses (CNTN5 p association = 2.38 × 10-9, p interaction = 1.51 × 10-3; PSMD14 p association = 2.04 × 10-7, p interaction = 7.76 × 10-6; HEPACAM p association = 2.43 × 10-6, p interaction = 3.82 × 10-7) including information about brain chromatin interaction profiles (UBE2E3 in male neuron p = 1.07 × 10-5), our GEWIS points to extracellular matrix biology and synaptic plasticity as biological interactors with the effects of potentially modifiable lifetime traumatic experiences on genetic risk for suicidality. Characterization of molecular basis for the effects of traumatic experience and posttraumatic stress on risk of suicidal behaviors may help to identify novel targets for which more effective treatments can be developed for use in high-risk populations.
Collapse
Affiliation(s)
- Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel F. Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Yaira Z. Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven CT, 06520, USA
| | - Chelsea Tyrrell
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Keyrun Adhikari
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel S. Tylee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Family Medicine & Public Health, University of California San Diego, La Jolla, CA, USA
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| |
Collapse
|
16
|
Reiner BC, Doyle GA, Weller AE, Levinson RN, Rao AM, Davila Perea E, Namoglu E, Pigeon A, Arauco-Shapiro G, Weickert CS, Turecki G, Crist RC, Berrettini WH. Inherited L1 Retrotransposon Insertions Associated With Risk for Schizophrenia and Bipolar Disorder. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab031. [PMID: 34901866 PMCID: PMC8650070 DOI: 10.1093/schizbullopen/sgab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies of the genetic heritability of schizophrenia and bipolar disorder examining single nucleotide polymorphisms (SNPs) and copy number variations have failed to explain a large portion of the genetic liability, resulting in substantial missing heritability. Long interspersed element 1 (L1) retrotransposons are a type of inherited polymorphic variant that may be associated with risk for schizophrenia and bipolar disorder. We performed REBELseq, a genome wide assay for L1 sequences, on DNA from male and female persons with schizophrenia and controls (n = 63 each) to identify inherited L1 insertions and validated priority insertions. L1 insertions of interest were genotyped in DNA from a replication cohort of persons with schizophrenia, bipolar disorder, and controls (n = 2268 each) to examine differences in carrier frequencies. We identified an inherited L1 insertion in ARHGAP24 and a quadallelic SNP (rs74169643) inside an L1 insertion in SNTG2 that are associated with risk for developing schizophrenia and bipolar disorder (all odds ratios ~1.2). Pathway analysis identified 15 gene ontologies that were differentially affected by L1 burden, including multiple ontologies related to glutamatergic signaling and immune function, which have been previously associated with schizophrenia. These findings provide further evidence supporting the role of inherited repetitive genetic elements in the heritability of psychiatric disorders.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Glenn A Doyle
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E Weller
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel N Levinson
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditya M Rao
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emilie Davila Perea
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Esin Namoglu
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alicia Pigeon
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriella Arauco-Shapiro
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cyndi Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia & School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Richard C Crist
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wade H Berrettini
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Blokhin IO, Khorkova O, Saveanu RV, Wahlestedt C. Molecular mechanisms of psychiatric diseases. Neurobiol Dis 2020; 146:105136. [PMID: 33080337 DOI: 10.1016/j.nbd.2020.105136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
For most psychiatric diseases, pathogenetic concepts as well as paradigms underlying neuropsychopharmacologic approaches currently revolve around neurotransmitters such as dopamine, serotonin, and norepinephrine. However, despite the fact that several generations of neurotransmitter-based psychotropics including atypical antipsychotics, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors are available, the effectiveness of these medications is limited, and relapse rates in psychiatric diseases are relatively high, indicating potential involvement of other pathogenetic pathways. Indeed, recent high-throughput studies in genetics and molecular biology have shown that pathogenesis of major psychiatric illnesses involves hundreds of genes and numerous pathways via such fundamental processes as DNA methylation, transcription, and splicing. Current review summarizes these and other molecular mechanisms of such psychiatric illnesses as schizophrenia, major depressive disorder, and alcohol use disorder and suggests a conceptual framework for future studies.
Collapse
Affiliation(s)
- Ilya O Blokhin
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America; Jackson Memorial Hospital, Miami, FL, United States of America
| | - Olga Khorkova
- OPKO Health Inc., Miami, FL, United States of America
| | - Radu V Saveanu
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
18
|
Perry BI, Jones HJ, Richardson TG, Zammit S, Wareham NJ, Lewis G, Jones PB, Khandaker GM. Common mechanisms for type 2 diabetes and psychosis: Findings from a prospective birth cohort. Schizophr Res 2020; 223:227-235. [PMID: 32828613 PMCID: PMC7758839 DOI: 10.1016/j.schres.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psychosis and type 2 diabetes mellitus (T2DM) are commonly comorbid and may share pathophysiologic mechanisms. To investigate shared genetic variation and inflammation as potential common mechanisms, we tested: (i) associations between genetic predisposition for T2DM and psychotic experiences and psychotic disorder in young adults; (ii) the association between genetic predisposition for schizophrenia and insulin resistance (IR), a precursor of T2DM; and (iii) whether these associations are mediated by childhood inflammation. METHODS Psychotic experiences (PEs), psychotic disorder and IR were assessed at age 18. Polygenic risk scores (PRS) for T2DM and schizophrenia were derived based on large genome-wide association studies. Associations between PRS and psychotic/IR outcomes were assessed using regression analysis based on 3768 ALSPAC birth cohort participants with complete data. Inflammatory markers C-reactive protein (CRP) and interleukin 6 (IL-6) measured at age 9 were used in regression and mediation analyses. RESULTS Genetic predisposition for T2DM was associated with PEs (adjusted OR = 1.21; 95% CI, 1.01-1.45) and psychotic disorder (adjusted OR = 1.51; 95% CI, 1.04-2.03) at age 18 in a linear dose-response fashion. Genetic predisposition for schizophrenia was weakly associated with IR (adjusted OR = 1.10; 95% C·I, 0.99-1.22) at age 18. The association between genetic risk for T2DM and PEs was partly mediated by childhood CRP (p = .040). CONCLUSIONS Comorbidity between psychosis and T2DM may be partly underpinned by shared genes and inflammation. A summation of minor genetic variation representing lifetime risk for T2DM at conception may predispose individuals to psychosis in adulthood by influencing physiologic changes, such as low-grade inflammation, detectable as early as childhood.
Collapse
Affiliation(s)
- Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, England, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, England, UK.
| | - Hannah J Jones
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, UK; NIHR Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, UK
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, UK; NIHR Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, England, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, England, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, England, UK
| | - Golam M Khandaker
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, England, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, England, UK
| |
Collapse
|
19
|
Douglas GM, Bielawski JP, Langille MGI. Re-evaluating the relationship between missing heritability and the microbiome. MICROBIOME 2020; 8:87. [PMID: 32513310 PMCID: PMC7282175 DOI: 10.1186/s40168-020-00839-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/15/2020] [Indexed: 06/07/2023]
Abstract
Human genome-wide association studies (GWASs) have recurrently estimated lower heritability estimates than familial studies. Many explanations have been suggested to explain these lower estimates, including that a substantial proportion of genetic variation and gene-by-environment interactions are unmeasured in typical GWASs. The human microbiome is potentially related to both of these explanations, but it has been more commonly considered as a source of unmeasured genetic variation. In particular, it has recently been argued that the genetic variation within the human microbiome should be included when estimating trait heritability. We outline issues with this argument, which in its strictest form depends on the holobiont model of human-microbiome interactions. Instead, we argue that the microbiome could be leveraged to help control for environmental variation across a population, although that remains to be determined. We discuss potential approaches that could be explored to determine whether integrating microbiome sequencing data into GWASs is useful. Video abstract.
Collapse
Affiliation(s)
- Gavin M. Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS Canada
| | - Joseph P. Bielawski
- Department of Biology, Dalhousie University, Halifax, NS Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS Canada
| | - Morgan G. I. Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
20
|
Schwab SG. Dissecting the molecular biology of schizophrenia: A call for emphasising genetic and phenotypic heterogeneity: commentary on Torrey and Yolken (this issue). Psychiatry Res 2020; 287:112430. [PMID: 31200949 DOI: 10.1016/j.psychres.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Sibylle G Schwab
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine & Health, University of Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute, Australia.
| |
Collapse
|
21
|
Perkins DO, Olde Loohuis L, Barbee J, Ford J, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Mathalon DH, McGlashan TH, Seidman LJ, Tsuang M, Walker EF, Woods SW. Polygenic Risk Score Contribution to Psychosis Prediction in a Target Population of Persons at Clinical High Risk. Am J Psychiatry 2020; 177:155-163. [PMID: 31711302 PMCID: PMC7202227 DOI: 10.1176/appi.ajp.2019.18060721] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The 2-year risk of psychosis in persons who meet research criteria for a high-risk syndrome is about 15%-25%; improvements in risk prediction accuracy would benefit the development and implementation of preventive interventions. The authors sought to assess polygenic risk score (PRS) prediction of subsequent psychosis in persons at high risk and to determine the impact of adding the PRS to a previously validated psychosis risk calculator. METHODS Persons meeting research criteria for psychosis high risk (N=764) and unaffected individuals (N=279) were followed for up to 2 years. The PRS was based on the latest schizophrenia and bipolar genome-wide association studies. Variables in the psychosis risk calculator included stressful life events, trauma, disordered thought content, verbal learning, information processing speed, and family history of psychosis. RESULTS For Europeans, the PRS varied significantly by group and was higher in the psychosis converter group compared with both the nonconverter and unaffected groups, but was similar for the nonconverter group compared with the unaffected group. For non-Europeans, the PRS varied significantly by group; the difference between the converters and nonconverters was not significant, but the PRS was significantly higher in converters than in unaffected individuals, and it did not differ between nonconverters and unaffected individuals. The R2liability (R2 adjusted for the rate of disease risk in the population being studied, here assuming a 2-year psychosis risk between 10% and 30%) for Europeans varied between 9.2% and 12.3% and for non-Europeans between 3.5% and 4.8%. The amount of risk prediction information contributed by the addition of the PRS to the risk calculator was less than severity of disordered thoughts and similar to or greater than for other variables. For Europeans, the PRS was correlated with risk calculator variables of information processing speed and verbal memory. CONCLUSIONS The PRS discriminates psychosis converters from nonconverters and modestly improves individualized psychosis risk prediction when added to a psychosis risk calculator. The schizophrenia PRS shows promise in enhancing risk prediction in persons at high risk for psychosis, although its potential utility is limited by poor performance in persons of non-European ancestry.
Collapse
Affiliation(s)
- Diana O Perkins
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Loes Olde Loohuis
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Jenna Barbee
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - John Ford
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Clark D Jeffries
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Jean Addington
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Carrie E Bearden
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Kristin S Cadenhead
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Tyrone D Cannon
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Barbara A Cornblatt
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Daniel H Mathalon
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Thomas H McGlashan
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Larry J Seidman
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Ming Tsuang
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Elaine F Walker
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| | - Scott W Woods
- Department of Psychiatry (Perkins, Barbee), Lineberger Bioinformatics Core (Ford), Renaissance Computing Institute (Jeffries), University of North Carolina, Chapel Hill; Center for Neurobehavioral Genetics (Olde Loohuis) and Departments of Psychiatry and Biobehavioral Sciences and Psychology (Bearden), University of California, Los Angeles; Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Alberta, Canada (Addington); Department of Psychiatry (Cadenhead) and Center for Behavioral Genomics, Department of Psychiatry (Tsuang), University of California, San Diego; Department of Psychology, Yale University, New Haven, Conn. (Cannon); Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, N.Y. (Cornblatt); Department of Psychiatry, University of California, San Francisco (Mathalon); Department of Psychiatry, Yale University, New Haven, Conn. (McGlashan, Woods); Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston (Seidman); and Departments of Psychology and Psychiatry, Emory University, Atlanta (Walker)
| |
Collapse
|
22
|
Tiihonen J, Koskuvi M, Storvik M, Hyötyläinen I, Gao Y, Puttonen KA, Giniatullina R, Poguzhelskaya E, Ojansuu I, Vaurio O, Cannon TD, Lönnqvist J, Therman S, Suvisaari J, Kaprio J, Cheng L, Hill AF, Lähteenvuo M, Tohka J, Giniatullin R, Lehtonen Š, Koistinaho J. Sex-specific transcriptional and proteomic signatures in schizophrenia. Nat Commun 2019; 10:3933. [PMID: 31477693 PMCID: PMC6718673 DOI: 10.1038/s41467-019-11797-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
It has remained unclear why schizophrenia typically manifests after adolescence and which neurobiological mechanisms are underlying the cascade leading to the actual onset of the illness. Here we show that the use of induced pluripotent stem cell-derived neurons of monozygotic twins from pairs discordant for schizophrenia enhances disease-specific signal by minimizing genetic heterogeneity. In proteomic and pathway analyses, clinical illness is associated especially with altered glycosaminoglycan, GABAergic synapse, sialylation, and purine metabolism pathways. Although only 12% of all 19,462 genes are expressed differentially between healthy males and females, up to 61% of the illness-related genes are sex specific. These results on sex-specific genes are replicated in another dataset. This implies that the pathophysiology differs between males and females, and may explain why symptoms appear after adolescence when the expression of many sex-specific genes change, and suggests the need for sex-specific treatments.
Collapse
Affiliation(s)
- Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institutet, Byggnad R5, SE-171 76, Stockholm, Sweden. .,Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland.
| | - Marja Koskuvi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, PO Box 63, FI-00271, Helsinki, Finland
| | - Markus Storvik
- Department of Pharmacology, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Ida Hyötyläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Yanyan Gao
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Katja A Puttonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Ekaterina Poguzhelskaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Ilkka Ojansuu
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland
| | - Olli Vaurio
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland
| | - Tyrone D Cannon
- Department of Psychology and Psychiatry, Yale University, 1 Prospect Street, New Haven, Connecticut, 06511, USA
| | - Jouko Lönnqvist
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland.,Department of Psychiatry, University of Helsinki, PO Box 22, FI-00014, Helsinki, Finland
| | - Sebastian Therman
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, PO Box 20, FI-00014, Helsinki, Finland.,Institute for Molecular Medicine FIMM, University of Helsinki, PO Box 20, FI-00014, Helsinki, Finland
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Science Drive, Bundoora, VIC, 3083, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Science Drive, Bundoora, VIC, 3083, Australia
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland.,Institute for Molecular Medicine FIMM, University of Helsinki, PO Box 20, FI-00014, Helsinki, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland. .,Neuroscience Center, University of Helsinki, PO Box 63, FI-00271, Helsinki, Finland.
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland. .,Neuroscience Center, University of Helsinki, PO Box 63, FI-00271, Helsinki, Finland.
| |
Collapse
|
23
|
Zhu Z, Han X, Wang Y, Liu W, Lu Y, Xu C, Wang X, Hao L, Song Y, Huang S, Rizak JD, Li Y, Han C. Identification of Specific Nuclear Genetic Loci and Genes That Interact With the Mitochondrial Genome and Contribute to Fecundity in Caenorhabditis elegans. Front Genet 2019; 10:28. [PMID: 30778368 PMCID: PMC6369210 DOI: 10.3389/fgene.2019.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Previous studies have found that fecundity is a multigenic trait regulated, in part, by mitochondrial-nuclear (mit-n) genetic interactions. However, the identification of specific nuclear genetic loci or genes interacting with the mitochondrial genome and contributing to the quantitative trait fecundity is an unsolved issue. Here, a panel of recombinant inbred advanced intercrossed lines (RIAILs), established from a cross between the N2 and CB4856 strains of C. elegans, were used to characterize the underlying genetic basis of mit-n genetic interactions related to fecundity. Sixty-seven single nucleotide polymorphisms (SNPs) were identified by association mapping to be linked with fecundity among 115 SNPs linked to mitotype. This indicated significant epistatic effects between nuclear and mitochondria genetics on fecundity. In addition, two specific nuclear genetic loci interacting with the mitochondrial genome and contributing to fecundity were identified. A significant reduction in fecundity was observed in the RIAILs that carried CB4856 mitochondria and a N2 genotype at locus 1 or a CB4856 genotype at locus 2 relative to the wild-type strains. Then, a hybrid strain (CNC10) was established, which was bred as homoplasmic for the CB4856 mtDNA genome and N2 genotype at locus 1 in the CB4856 nuclear background. The mean fecundity of CNC10 was half the fecundity of the control strain. Several functional characteristics of the mitochondria in CNC10 were also influenced by mit-n interactions. Overall, experimental evidence was presented that specific nuclear genetic loci or genes have interactions with the mitochondrial genome and are associated with fecundity. In total, 18 genes were identified using integrative approaches to have interactions with the mitochondrial genome and to contribute to fecundity.
Collapse
Affiliation(s)
- Zuobin Zhu
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxiao Han
- Center of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuechen Wang
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Yue Lu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Chang Xu
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Xitao Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yuanjian Song
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Shi Huang
- School of Life Sciences, Xiangya Medical School, Central South University, Changsha, China
| | | | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Conghui Han
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
24
|
Woo HJ, Reifman J. Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks. BMC Med Genomics 2018; 11:54. [PMID: 29925367 PMCID: PMC6011398 DOI: 10.1186/s12920-018-0373-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Common metabolic diseases, including type 2 diabetes, coronary artery disease, and hypertension, arise from disruptions of the body's metabolic homeostasis, with relatively strong contributions from genetic risk factors and substantial comorbidity with obesity. Although genome-wide association studies have revealed many genomic loci robustly associated with these diseases, biological interpretation of such association is challenging because of the difficulty in mapping single-nucleotide polymorphisms (SNPs) onto the underlying causal genes and pathways. Furthermore, common diseases are typically highly polygenic, and conventional single variant-based association testing does not adequately capture potentially important large-scale interaction effects between multiple genetic factors. METHODS We analyzed moderately sized case-control data sets for type 2 diabetes, coronary artery disease, and hypertension to characterize the genetic risk factors arising from non-additive, collective interaction effects, using a recently developed algorithm (discrete discriminant analysis). We tested associations of genes and pathways with the disease status while including the cumulative sum of interaction effects between all variants contained in each group. RESULTS In contrast to non-interacting SNP mapping, which produced few genome-wide significant loci, our analysis revealed extensive arrays of pathways, many of which are involved in the pathogenesis of these metabolic diseases but have not been directly identified in genetic association studies. They comprised cell stress and apoptotic pathways for insulin-producing β-cells in type 2 diabetes, processes covering different atherosclerotic stages in coronary artery disease, and elements of both type 2 diabetes and coronary artery disease risk factors (cell cycle, apoptosis, and hemostasis) associated with hypertension. CONCLUSIONS Our results support the view that non-additive interaction effects significantly enhance the level of common metabolic disease associations and modify their genetic architectures and that many of the expected genetic factors behind metabolic disease risks reside in smaller genotyping samples in the form of interacting groups of SNPs.
Collapse
Affiliation(s)
- Hyung Jun Woo
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA.
| |
Collapse
|
25
|
Woo HJ, Reifman J. Collective interaction effects associated with mammalian behavioral traits reveal genetic factors connecting fear and hemostasis. BMC Psychiatry 2018; 18:175. [PMID: 29871603 PMCID: PMC5989392 DOI: 10.1186/s12888-018-1753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/21/2018] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Investigation of the genetic architectures that influence the behavioral traits of animals can provide important insights into human neuropsychiatric phenotypes. These traits, however, are often highly polygenic, with individual loci contributing only small effects to the overall association. The polygenicity makes it challenging to explain, for example, the widely observed comorbidity between stress and cardiac disease. METHODS We present an algorithm for inferring the collective association of a large number of interacting gene variants with a quantitative trait. Using simulated data, we demonstrate that by taking into account the non-uniform distribution of genotypes within a cohort, we can achieve greater power than regression-based methods for high-dimensional inference. RESULTS We analyzed genome-wide data sets of outbred mice and pet dogs, and found neurobiological pathways whose associations with behavioral traits arose primarily from interaction effects: γ-carboxylated coagulation factors and downstream neuronal signaling were highly associated with conditioned fear, consistent with our previous finding in human post-traumatic stress disorder (PTSD) data. Prepulse inhibition in mice was associated with serotonin transporter and platelet homeostasis, and noise-induced fear in dogs with hemostasis. CONCLUSIONS Our findings suggest a novel explanation for the observed comorbidity between PTSD/anxiety and cardiovascular diseases: key coagulation factors modulating hemostasis also regulate synaptic plasticity affecting the learning and extinction of fear.
Collapse
Affiliation(s)
- Hyung Jun Woo
- 0000 0001 0036 4726grid.420210.5Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA.
| |
Collapse
|
26
|
Reginia A, Kucharska-Mazur J, Jabłoński M, Budkowska M, Dołȩgowska B, Sagan L, Misiak B, Ratajczak MZ, Rybakowski JK, Samochowiec J. Assessment of Complement Cascade Components in Patients With Bipolar Disorder. Front Psychiatry 2018; 9:614. [PMID: 30538645 PMCID: PMC6277457 DOI: 10.3389/fpsyt.2018.00614] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction: The immune system is undoubtedly involved in the pathogenesis of various psychiatric disorders, such as schizophrenia, bipolar disorder, or depression. Although its role is not fully understood, it appears that this area of research can help to understand the etiology of mental illness. One of the components of the human immune system is the complement system, which forms a part of the innate immune response. Physiologically, except for its essential protective role, it is a vital element in the regeneration processes, including neurogenesis. To date, few studies have tried to clarify the role of the complement cascade in mental disorders. Materials and Methods: We evaluated concentrations of C3a, C5a, and C5b-9 complement cascade components in the peripheral blood of 30 patients suffering from bipolar disorder (BD) for at least 10 years, in euthymia, who were not treated with lithium salts. In addition, we divided our study sample into BD type I (BD-I, 22 persons), and BD type II (BD-II, 8 patients). The control group consisted of 30 healthy volunteers matched for age, sex, BMI, and smoking habits. Results: Compared to healthy controls, BD patients had elevated concentrations of all the investigated components. Furthermore, in patients with BD-II, we observed higher concentrations of C5b-9 as compared to patients with BD-I. However, there was a significant effect of BD diagnosis only on the levels of C3a and C5a but not on the level of C5b-9 after adjustment for potential confounding factors. Conclusions: Increased concentrations of components C3a and C5a of the complement system in the investigated group as compared to healthy controls suggest involvement of the complement cascade in the pathogenesis of BD, and provides further evidence of immune system dysregulation in BD patients.
Collapse
Affiliation(s)
- Artur Reginia
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | | | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Dołȩgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, Szczecin, Poland
| | - Błazej Misiak
- Department of Genetics, Wroclaw Medical University, Wrocław, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|