1
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
DiCecco L, Tang T, Sone ED, Grandfield K. Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407539. [PMID: 39523734 PMCID: PMC11735904 DOI: 10.1002/smll.202407539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Liquid transmission electron microscopy (TEM) is a newly established technique broadly used to study reactions in situ. Since its emergence, complex and multifaceted biomineralization processes have been revealed with real-time resolution, where classical and non-classical mineralization pathways have been dynamically observed primarily for Ca and Fe-based mineral systems in situ. For years, classical crystallization pathways have dominated theories on biomineralization progression despite observations of non-traditional routes involving precursor phases using traditional- and cryo-TEM. The new dynamic lens provided by liquid TEM is a key correlate to techniques limited to time-stamped, static observations - helping shift paradigms in biomineralization toward non-classical theories with dynamic mechanistic visualization. Liquid TEM provides new insights into fundamental biomineralization processes and essential physiological and pathological processes for a wide range of organisms. This review critically reviews a summary of recent in situ liquid TEM research related to the biomineralization field. Key liquid TEM preparation and imaging parameters are provided as a foundation for researchers while technical challenges are discussed. In future, the expansion of liquid TEM research in the biomineralization field will lead to transformative discoveries, providing complementary dynamic insights into biological systems.
Collapse
Affiliation(s)
- Liza‐Anastasia DiCecco
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkPA16802USA
| | - Tengteng Tang
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Center for Applied Biomechanics and Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22911USA
| | - Eli D. Sone
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONM5S 3G9Canada
- Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
- Faculty of DentistryUniversity of TorontoTorontoONM5G 1G6Canada
| | - Kathryn Grandfield
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| |
Collapse
|
3
|
Zhou L, Wen H, Kuschnerus IC, Chang SLY. Efficientand Robust Automated Segmentation of Nanoparticles and Aggregates from Transmission Electron Microscopy Images with Highly Complex Backgrounds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1169. [PMID: 39057846 PMCID: PMC11279516 DOI: 10.3390/nano14141169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Morphologies of nanoparticles and aggregates play an important role in their properties for a range of applications. In particular, significant synthesis efforts have been directed toward controlling nanoparticle morphology and aggregation behavior in biomedical applications, as their size and shape have a significant impact on cellular uptake. Among several techniques for morphological characterization, transmission electron microscopy (TEM) can provide direct and accurate characterization of nanoparticle/aggregate morphology details. Nevertheless, manually analyzing a large number of TEM images is still a laborious process. Hence, there has been a surge of interest in employing machine learning methods to analyze nanoparticle size and shape. In order to achieve accurate nanoparticle analysis using machine learning methods, reliable and automated nanoparticle segmentation from TEM images is critical, especially when the nanoparticle image contrast is weak and the background is complex. These challenges are particularly pertinent in biomedical applications. In this work, we demonstrate an efficient, robust, and automated nanoparticle image segmentation method suitable for subsequent machine learning analysis. Our method is robust for noisy, low-electron-dose cryo-TEM images and for TEM cell images with complex, strong-contrast background features. Moreover, our method does not require any a priori training datasets, making it efficient and general. The ability to automatically, reliably, and efficiently segment nanoparticle/aggregate images is critical for advancing precise particle/aggregate control in biomedical applications.
Collapse
Affiliation(s)
- Lishi Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
| | - Haotian Wen
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
| | - Inga C. Kuschnerus
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
- Electron Microscope Unit, Mark Wrainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shery L. Y. Chang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
- Electron Microscope Unit, Mark Wrainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Koo K, Li Z, Liu Y, Ribet SM, Fu X, Jia Y, Chen X, Shekhawat G, Smeets PJM, Dos Reis R, Park J, Yuk JM, Hu X, Dravid VP. Ultrathin silicon nitride microchip for in situ/operando microscopy with high spatial resolution and spectral visibility. SCIENCE ADVANCES 2024; 10:eadj6417. [PMID: 38232154 DOI: 10.1126/sciadv.adj6417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Utilization of in situ/operando methods with broad beams and localized probes has accelerated our understanding of fluid-surface interactions in recent decades. The closed-cell microchips based on silicon nitride (SiNx) are widely used as "nanoscale reactors" inside the high-vacuum electron microscopes. However, the field has been stalled by the high background scattering from encapsulation (typically ~100 nanometers) that severely limits the figures of merit for in situ performance. This adverse effect is particularly notorious for gas cell as the sealing membranes dominate the overall scattering, thereby blurring any meaningful signals and limiting the resolution. Herein, we show that by adopting the back-supporting strategy, encapsulating membrane can be reduced substantially, down to ~10 nanometers while maintaining structural resiliency. The systematic gas cell work demonstrates advantages in figures of merit for hitherto the highest spatial resolution and spectral visibility. Furthermore, this strategy can be broadly adopted into other types of microchips, thus having broader impact beyond the in situ/operando fields.
Collapse
Affiliation(s)
- Kunmo Koo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Internaional Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yukun Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Internaional Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Internaional Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ying Jia
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Xinqi Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Gajendra Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Paul J M Smeets
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
- Internaional Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Han Y, Wang L, Cao K, Zhou J, Zhu Y, Hou Y, Lu Y. In Situ TEM Characterization and Modulation for Phase Engineering of Nanomaterials. Chem Rev 2023; 123:14119-14184. [PMID: 38055201 DOI: 10.1021/acs.chemrev.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Solid-state phase transformation is an intriguing phenomenon in crystalline or noncrystalline solids due to the distinct physical and chemical properties that can be obtained and modified by phase engineering. Compared to bulk solids, nanomaterials exhibit enhanced capability for phase engineering due to their small sizes and high surface-to-volume ratios, facilitating various emerging applications. To establish a comprehensive atomistic understanding of phase engineering, in situ transmission electron microscopy (TEM) techniques have emerged as powerful tools, providing unprecedented atomic-resolution imaging, multiple characterization and stimulation mechanisms, and real-time integrations with various external fields. In this Review, we present a comprehensive overview of recent advances in in situ TEM studies to characterize and modulate nanomaterials for phase transformations under different stimuli, including mechanical, thermal, electrical, environmental, optical, and magnetic factors. We briefly introduce crystalline structures and polymorphism and then summarize phase stability and phase transformation models. The advanced experimental setups of in situ techniques are outlined and the advantages of in situ TEM phase engineering are highlighted, as demonstrated via several representative examples. Besides, the distinctive properties that can be obtained from in situ phase engineering are presented. Finally, current challenges and future research opportunities, along with their potential applications, are suggested.
Collapse
Affiliation(s)
- Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ke Cao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yingxin Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Białas M, Grzebyk T, Krysztof M, Górecka-Drzazga A. Signal detection and imaging methods for MEMS electron microscope. Ultramicroscopy 2023; 244:113653. [PMID: 36459864 DOI: 10.1016/j.ultramic.2022.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/26/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
In the paper, new detection methods that can be used to detect signals in a miniature MEMS (Micro-Electro-Mechanical System) electron microscope were presented. The methods were designed to fit the structure of the developed MEMS microscope, equipped with an electron-optical microcolumn and a scanning system based on an octupole deflector. In the experiments carried out, imaging was performed using a system of three silicon detectors placed above, below, and at the sample level and integrated with the octupole deflection system. Measurements were carried out under different pressure conditions (vacuum and atmospheric pressure) and for different detector bias voltage and electron beam energy. Good quality images were obtained using all three detectors, both in vacuum and in air. The results presented indicate that in the final implementation of the MEMS electron microscope, all three detection systems can be successfully incorporated.
Collapse
Affiliation(s)
- M Białas
- Faculty of Electronics, Photonics and Microsystem, Wroclaw University of Science and Technology, Janiszewskiego 11/17, Wroclaw 50-372, Poland
| | - T Grzebyk
- Faculty of Electronics, Photonics and Microsystem, Wroclaw University of Science and Technology, Janiszewskiego 11/17, Wroclaw 50-372, Poland
| | - M Krysztof
- Faculty of Electronics, Photonics and Microsystem, Wroclaw University of Science and Technology, Janiszewskiego 11/17, Wroclaw 50-372, Poland.
| | - A Górecka-Drzazga
- Faculty of Electronics, Photonics and Microsystem, Wroclaw University of Science and Technology, Janiszewskiego 11/17, Wroclaw 50-372, Poland
| |
Collapse
|
7
|
Wang L, Li C, Li J, Zhang X, Li X, Cui Y, Xia Y, Zhang Y, Mao S, Ji Y, Sheng W, Han X. Liquid-phase scanning electron microscopy for single membrane protein imaging. Biochem Biophys Res Commun 2022; 590:163-168. [PMID: 34979317 DOI: 10.1016/j.bbrc.2021.12.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
Abstract
Liquid-phase electron microscopy is highly desirable for observing biological samples in their native liquid state at high resolution. We developed liquid imaging approaches for biological cells using scanning electron microscopy. Novel approaches included scanning transmission electron imaging using a liquid-cell apparatus (LC-STEM), as well as correlative cathodoluminescence and electron microscopy (CCLEM) imaging. LC-STEM enabled imaging at a ∼2 nm resolution and excellent contrast for the precise recognition of localization, distribution, and configuration of individually labeled membrane proteins on the native cells in solution. CCLEM improved the resolution of fluorescent images down to 10 nm. Liquid SEM technologies will bring unique and wide applications to the study of the structure and function of cells and membrane proteins in their near-native states at the monomolecular level.
Collapse
Affiliation(s)
- Li Wang
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Changshuo Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Jintao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiaofei Zhang
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xiaochen Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yiran Cui
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yang Xia
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Yinqi Zhang
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shengcheng Mao
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yuan Ji
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China.
| | - Wang Sheng
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
8
|
Cherednichenko K, Kopitsyn D, Batasheva S, Fakhrullin R. Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers (Basel) 2021; 13:3510. [PMID: 34685269 PMCID: PMC8538282 DOI: 10.3390/polym13203510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| |
Collapse
|
9
|
Gosse C, Stanescu S, Frederick J, Lefrançois S, Vecchiola A, Moskura M, Swaraj S, Belkhou R, Watts B, Haltebourg P, Blot C, Daillant J, Guenoun P, Chevallard C. A pressure-actuated flow cell for soft X-ray spectromicroscopy in liquid media. LAB ON A CHIP 2020; 20:3213-3229. [PMID: 32735308 DOI: 10.1039/c9lc01127g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present and fully characterize a flow cell dedicated to imaging in liquid at the nanoscale. Its use as a routine sample environment for soft X-ray spectromicroscopy is demonstrated, in particular through the spectral analysis of inorganic particles in water. The care taken in delineating the fluidic pathways and the precision associated with pressure actuation ensure the efficiency of fluid renewal under the beam, which in turn guarantees a successful utilization of this microfluidic tool for in situ kinetic studies. The assembly of the described flow cell necessitates no sophisticated microfabrication and can be easily implemented in any laboratory. Furthermore, the design principles we relied on are transposable to all microscopies involving strongly absorbed radiation (e.g. X-ray, electron), as well as to all kinds of X-ray diffraction/scattering techniques.
Collapse
Affiliation(s)
- Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France.
| | - Stefan Stanescu
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Joni Frederick
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Stéphane Lefrançois
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Aymeric Vecchiola
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Mélanie Moskura
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Sufal Swaraj
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Rachid Belkhou
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Patrick Haltebourg
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Christian Blot
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Jean Daillant
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
A Novel Microchip Technique for Quickly Identifying Nanogranules in an Aqueous Solution by Transmission Electron Microscopy: Imaging of Platelet Granules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrastructural observation of biological specimens or nanogranules usually requires the use of electron microscopy. Electron microscopy takes a lot of time, requires many steps, and uses many chemicals, which may affect the native state of biological specimens. A novel microchip (K-kit) was used as a specimen kit for in situ imaging of human platelet granules in an aqueous solution using a transmission electron microscope. This microchip enabled us to observe the native human platelet granules very quickly and easily. The protocols included blood collection, platelet purification, platelet granule isolation, sample loading into this microchip, and then observation by a transmission electron microscope. In addition, these granules could still remain in aqueous solution, and only a very small amount of the sample was required for observation and analysis. We used this microchip to identify the native platelet granules by negative staining. Furthermore, we used this microchip to perform immunoelectron microscopy and successfully label α-granules of platelets with the anti-P-selectin antibody. These results demonstrate that the novel microchip can provide researchers with faster and better choices when using a transmission electron microscope to examine nanogranules of biological specimens in aqueous conditions.
Collapse
|
11
|
Abstract
As a promising tool over the optical resolution limits, liquid electron microscopy is practically utilized to visualize the structural information on wet biological specimens, such as cells, proteins, and nucleic acids. However, the functionality of biomolecules during their observation is still controversial. Here we show the feasibility of live-cell electron microscopy using graphene veils. We demonstrate that the electron dose resistivity of live bacterial cells increases to 100-fold in graphene veils, and thus they maintain their structures and functions after electron microscopy experiments. Our results provide the guidelines and show possibilities for the electron microscopy imaging of live cells and functional biomolecules.
Collapse
Affiliation(s)
- Kunmo Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 355 Science Road, Daejeon 34141, Republic of Korea
| | - Kyun Seong Dae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 355 Science Road, Daejeon 34141, Republic of Korea
| | - Young Ki Hahn
- Biomedical Convergence Science & Technology, Industrial Technology Advances, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 355 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
13
|
Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its applications. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191204. [PMID: 32218950 PMCID: PMC7029903 DOI: 10.1098/rsos.191204] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Transmission electron microscopy (TEM) has long been an essential tool for understanding the structure of materials. Over the past couple of decades, this venerable technique has undergone a number of revolutions, such as the development of aberration correction for atomic level imaging, the realization of cryogenic TEM for imaging biological specimens, and new instrumentation permitting the observation of dynamic systems in situ. Research in the latter has rapidly accelerated in recent years, based on a silicon-chip architecture that permits a versatile array of experiments to be performed under the high vacuum of the TEM. Of particular interest is using these silicon chips to enclose fluids safely inside the TEM, allowing us to observe liquid dynamics at the nanoscale. In situ imaging of liquid phase reactions under TEM can greatly enhance our understanding of fundamental processes in fields from electrochemistry to cell biology. Here, we review how in situ TEM experiments of liquids can be performed, with a particular focus on microchip-encapsulated liquid cell TEM. We will cover the basics of the technique, and its strengths and weaknesses with respect to related in situ TEM methods for characterizing liquid systems. We will show how this technique has provided unique insights into nanomaterial synthesis and manipulation, battery science and biological cells. A discussion on the main challenges of the technique, and potential means to mitigate and overcome them, will also be presented.
Collapse
|
14
|
Petruk AA, Allen C, Rivas N, Pichugin K, Sciaini G. High flow rate nanofluidics for in-liquid electron microscopy and diffraction. NANOTECHNOLOGY 2019; 30:395703. [PMID: 31242474 DOI: 10.1088/1361-6528/ab2cf2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We introduce a nanofluidic platform that can be used to carry out femtosecond electron diffraction (FED) and transmission electron microscopy (TEM) measurements in liquid samples or in-liquid specimens, respectively. The nanofluidic cell (NFC) system presented herein has been designed to withstand high sample refreshing rates (over one kilohertz), a prerequisite to succeed with FED experiments in our lab. Short beam paths, below 1 μm, in combination with ultrathin membranes (less than 100 nm thick) are necessary conditions for in-liquid FED and TEM studies due to the strongly interacting nature of electrons. Depending on the application, the beam path in our NFC can be tuned between 50 nm and 10 μm with ultrathin stoichiometric silicon nitride (Si3N4) windows as thin as 20 nm. Stoichiometric Si3N4 has been selected to reduce membrane bulging owing to its higher tensile stress and transparency in the UV-vis-NIR region to allow for laser excitation in FED experiments. Key design parameters and improvements made over previous NFC systems are discussed, and some preliminary electron images obtained by 200 kV scanning TEM are presented.
Collapse
Affiliation(s)
- Ariel A Petruk
- The Ultrafast electron Imaging Lab (UeIL), Department of Chemistry and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. W., N2L 3G1, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Keskin S, Kunnas P, de Jonge N. Liquid-Phase Electron Microscopy with Controllable Liquid Thickness. NANO LETTERS 2019; 19:4608-4613. [PMID: 31244240 DOI: 10.1021/acs.nanolett.9b01576] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid-phase electron microscopy (LPEM) is capable of imaging nanostructures and processes in a liquid environment. The spatial resolution achieved with LPEM critically depends on the thickness of the liquid layer surrounding the object of interest. An excessively thick liquid results in broadening of the electron beam and a high background signal that decreases the resolution and contrast of the object in an image. The liquid thickness in a standard liquid cell, consisting of two liquid enclosing membranes separated by spacers, is mainly defined by the deformation of the SiN membrane windows toward the vacuum side, and the effective thickness may differ from the spacer height. Here, we present a method involving a pressure controller setup to balance the pressure difference over the membrane windows, thus manipulating the shape profiles of the used silicon nitride membrane windows. Electron energy loss spectroscopy (EELS) measurements to determine the liquid thickness showed that it is possible to control the thickness precisely during an LPEM experiment by regulating the interior pressure of the liquid cell. We demonstrated atomic resolution on gold nanoparticles and the phase contrast using silica nanoparticles in liquid with controlled thickness.
Collapse
Affiliation(s)
- Sercan Keskin
- INM - Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
| | - Peter Kunnas
- INM - Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials , D-66123 Saarbrücken , Germany
- Department of Physics , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
16
|
He K, Shokuhfar T, Shahbazian-Yassar R. Imaging of soft materials using in situ liquid-cell transmission electron microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:103001. [PMID: 30524096 DOI: 10.1088/1361-648x/aaf616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This review summarizes the breakthroughs in the field of soft material characterization by in situ liquid-cell transmission electron microscopy (TEM). The focus of this review is mostly on soft biological species such as cells, bacteria, viruses, proteins and polymers. The comparison between the two main liquid-cell systems (silicon nitride membranes liquid cell and graphene liquid cell) is also discussed in terms of their spatial resolution and imaging/analytical capabilities. We have showcased how liquid-cell TEM can reveal the structural details of whole cells, enable the chemical probing of proteins, detect the structural conformation of viruses, and monitor the dynamics of polymerization. In addition, the challenges faced by decoupling electron beam effect on beam-sensitive soft materials are discussed. At the end, future perspectives of in situ liquid-cell TEM studies of soft materials are outlined.
Collapse
Affiliation(s)
- Kun He
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | | | | |
Collapse
|
17
|
Hutzler A, Schmutzler T, Jank MPM, Branscheid R, Unruh T, Spiecker E, Frey L. Unravelling the Mechanisms of Gold-Silver Core-Shell Nanostructure Formation by in Situ TEM Using an Advanced Liquid Cell Design. NANO LETTERS 2018; 18:7222-7229. [PMID: 30346790 DOI: 10.1021/acs.nanolett.8b03388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The growth of silver shells on gold nanorods is investigated by in situ liquid cell transmission electron microscopy using an advanced liquid cell architecture. The design is based on microwells in which the liquid is confined between a thin Si3N4 membrane on one side and a few-layer graphene cap on the other side. A well-defined specimen thickness and an ultraflat cell top allow for the application of high-resolution TEM and the application of analytical TEM techniques on the same sample. The combination of high-resolution data with chemical information is validated by radically new insights into the growth of silver shells on cetrimonium bromide stabilized gold nanorods. It is shown that silver bromide particles already formed in the stock solution play an important role in the exchange of silver ions. The Ag shell growth can be directly correlated with the layer-by-layer dissolution of AgBr nanocrystals, which can be controlled by the electron flux density via distinctly generated chemical species in the solvent. The derived model framework is confirmed by in situ UV-vis absorption spectroscopy evaluating the blue shift in the longitudinal surface plasmon resonance of anisotropic NRs in a complementary batch experiment.
Collapse
Affiliation(s)
- Andreas Hutzler
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany
| | - Tilo Schmutzler
- Institute for Crystallography and Structural Physics (ICSP), Department of Physics , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Staudtstraße 3 , 91058 Erlangen , Germany
| | - Michael P M Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISB , Schottkystraße 10 , 91058 Erlangen , Germany
| | - Robert Branscheid
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science and Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP), Department of Physics , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Staudtstraße 3 , 91058 Erlangen , Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science and Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany
| | - Lothar Frey
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB , Schottkystraße 10 , 91058 Erlangen , Germany
| |
Collapse
|
18
|
Yan X, Remond M, Zheng Z, Hoibian E, Soulage C, Chambert S, Andraud C, Van der Sanden B, Ganachaud F, Bretonnière Y, Bernard J. General and Scalable Approach to Bright, Stable, and Functional AIE Fluorogen Colloidal Nanocrystals for in Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25154-25165. [PMID: 29979019 DOI: 10.1021/acsami.8b07859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Maxime Remond
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Zheng Zheng
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Elsa Hoibian
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Christophe Soulage
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Stéphane Chambert
- Univ Lyon, INSA-Lyon, CNRS, Université Lyon 1, CPE Lyon, ICBMS, UMR 5246 , Bâtiment Jules Verne, 20 Avenue Albert Einstein , F-69621 Villeurbanne , France
| | - Chantal Andraud
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Boudewijn Van der Sanden
- Intravital Microscopy Plateform, France Life Imaging, Unit Biomedical Radio-Pharmaceutics, Medical Faculty , INSERM U1039 and University Grenoble Alpes , 38706 La Tronche , France
| | - François Ganachaud
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Yann Bretonnière
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Julien Bernard
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| |
Collapse
|
19
|
Abstract
Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.
Collapse
Affiliation(s)
- Hong-Gang Liao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; .,Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| |
Collapse
|
20
|
Dwyer JR, Harb M. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. APPLIED SPECTROSCOPY 2017; 71:2051-2075. [PMID: 28714316 DOI: 10.1177/0003702817715496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.
Collapse
Affiliation(s)
- Jason R Dwyer
- 1 Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Maher Harb
- 2 Department of Physics and Materials, Science & Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Zeng Z, Zheng W, Zheng H. Visualization of Colloidal Nanocrystal Formation and Electrode-Electrolyte Interfaces in Liquids Using TEM. Acc Chem Res 2017; 50:1808-1817. [PMID: 28782932 DOI: 10.1021/acs.accounts.7b00161] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transmission electron microscopy (TEM) has become a powerful analytical tool for addressing unique scientific problems in chemical sciences as well as in materials sciences and other disciplines. There has been a lot of recent interest in the development and applications of liquid phase environmental TEM. In this Account, we review the development and applications of liquid cell TEM for the study of dynamic phenomena at liquid-solid interfaces, focusing on two areas: (1) nucleation, growth, and self-assembly of colloidal nanocrystals and (2) electrode-electrolyte interfaces during charge and discharge processes. We highlight the achievements and progress that have been made in these two topical areas of our studies. For example, tracking single platinum particle growth trajectories revealed that two different pathways of growth, either by monomer attachment or coalescence between nanoparticles, led to the same particle size. With the improved spatial resolution and fast electron detection, we were able to trace individual facet development during platinum nanocube platinum nanocube growth. The results showed that different from the surface energy minimization rule prediction, the growth rates of all low-energy facets, such as {100}, {110}, and {111}, were similar. The {100} facets stopped growth early, and the continuous growth of the rest facets resulted in a nanocube. Density functional theory calculations showed that the amine ligands with low mobility on the {100} facets blocked the further growth of the facets. The effect of the ligand on nanoparticle shape evolution were further studied systematically using a Pt-Fe nanoparticle system by changing the oleylamine concentration. With 20%, 30%, or 50% oleylamine, Pt-Fe nanowires or nanoparticles with different morphologies and stabilities were achieved. Real-time imaging of nanoparticles in solution also enabled the study of interactions between nanoparticles during self-assembly. We further compared the study of noble-metal nanoparticles and transition-metal oxides in a liquid cell to elucidate the nanoparticle formation mechanisms. In the second part of this Account, we review the study of electrolyte-electrode interfaces by the development of electrochemical liquid cell TEM. The formation of single-crystalline Pb dendrites from polycrystalline branches and Li dendrite growth in a commercial electrolyte for Li ion batteries were observed. We also studied lithiation reactions of MoS2 and Au electrodes. MoS2 nanoflakes on the Ti electrode underwent irreversible decomposition, resulting in the vanishing of the MoS2 active nanoflakes. More detailed study using nanobeam diffraction indicated that the MoS2 nanoflakes were broken down into small nanoparticles as a result of the fast discharge. For the lithiation of Au electrodes, three distinct types of morphology changes during reactions were revealed, including gradual dissolution, explosive reaction, and local expansion/shrinkage. Additionally, we studied electrolyte decomposition reactions such as bubble formation and solid electrolyte interphase formation. At the end, our perspective on the challenges and opportunities in the applications of liquid phase environmental TEM for the study of liquid chemical reactions is provided.
Collapse
Affiliation(s)
- Zhiyuan Zeng
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wenjing Zheng
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Haimei Zheng
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Chen NT, Souris JS, Cheng SH, Chu CH, Wang YC, Konda V, Dougherty U, Bissonnette M, Mou CY, Chen CT, Lo LW. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1941-1952. [PMID: 28363770 DOI: 10.1016/j.nano.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-deaths worldwide. Methods for the early in situ detection of colorectal adenomatous polyps and their precursors - prior to their malignancy transformation into CRC - are urgently needed. Unfortunately at present, the primary diagnostic method, colonoscopy, can only detect polyps and carcinomas by shape/morphology; with sessile polyps more likely to go unnoticed than polypoid lesions. Here we describe our development of polyp-targeting, fluorescently-labeled mesoporous silica nanoparticles (MSNs) that serve as targeted endoscopic contrast agents for the early detection of colorectal polyps and cancer. In vitro cell studies, ex vivo histopathological analysis, and in vivo colonoscopy and endoscopy of murine colorectal cancer models, demonstrate significant binding specificity of our nanoconstructs to pathological lesions via targeting aberrant α-L-fucose expression. Our findings strongly suggest that lectin-functionalized fluorescent MSNs could serve as a promising endoscopic contrast agent for in situ diagnostic imaging of premalignant colonic lesions.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Chemistry, National Taiwan University Taipei, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA; Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Shih-Hsun Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Vani Konda
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University Taipei, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan.
| |
Collapse
|
23
|
Besztejan S, Keskin S, Manz S, Kassier G, Bücker R, Venegas-Rojas D, Trieu HK, Rentmeister A, Miller RJD. Visualization of Cellular Components in a Mammalian Cell with Liquid-Cell Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:46-55. [PMID: 28137345 DOI: 10.1017/s1431927616012708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present liquid-cell transmission electron microscopy (liquid-cell TEM) imaging of fixed and non-fixed prostate cancer cells (PC3 and LNCaP) with high resolution in a custom developed silicon nitride liquid cell. Fixed PC3 cells were imaged for 90-120 min without any discernable damage. High contrast on the cellular structures was obtained even at low electron doses (~2.5 e-/nm2 per image). The images show distinct structures of cell compartments (nuclei and nucleoli) and cell boundaries without any further sample embedding, dehydration, or staining. Furthermore, we observed dynamics of vesicles trafficking from the cell membrane in consecutive still frames in a non-fixed cell. Our findings show that liquid-cell TEM, operated at low electron dose, is an excellent tool to investigate dynamic events in non-fixed cells with enough spatial resolution (few nm) and natural amplitude contrast to follow key intracellular processes.
Collapse
Affiliation(s)
- Stephanie Besztejan
- 1Chemistry Department,Institute for Biochemistry and Molecular Biology,University of Hamburg,Martin-Luther-King Platz 6,20146 Hamburg,Germany
| | - Sercan Keskin
- 3Max Planck Institute for the Structure and Dynamics of Matter,Luruper Chaussee 149,Geb. 99 (CFEL),22761 Hamburg,Germany
| | - Stephanie Manz
- 3Max Planck Institute for the Structure and Dynamics of Matter,Luruper Chaussee 149,Geb. 99 (CFEL),22761 Hamburg,Germany
| | - Günther Kassier
- 3Max Planck Institute for the Structure and Dynamics of Matter,Luruper Chaussee 149,Geb. 99 (CFEL),22761 Hamburg,Germany
| | - Robert Bücker
- 3Max Planck Institute for the Structure and Dynamics of Matter,Luruper Chaussee 149,Geb. 99 (CFEL),22761 Hamburg,Germany
| | - Deybith Venegas-Rojas
- 4Institute of Microsystems Technology,Hamburg University of Technology (TUHH),Eißendorfer Straße 42,21073 Hamburg,Germany
| | - Hoc K Trieu
- 4Institute of Microsystems Technology,Hamburg University of Technology (TUHH),Eißendorfer Straße 42,21073 Hamburg,Germany
| | - Andrea Rentmeister
- 5Institute of Biochemistry,Westfälische Wilhelms-Universität Münster,Wilhelm-Klemm-Strasse 2,48149 Muenster,Germany
| | - R J Dwayne Miller
- 2The Hamburg Centre for Ultrafast Imaging,University of Hamburg, Luruper Chaussee 149,22761 Hamburg,Germany
| |
Collapse
|
24
|
Kennedy E, Nelson EM, Damiano J, Timp G. Gene Expression in Electron-Beam-Irradiated Bacteria in Reply to "Live Cell Electron Microscopy Is Probably Impossible". ACS NANO 2017; 11:3-7. [PMID: 28114765 DOI: 10.1021/acsnano.6b06616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Eamonn Kennedy
- Department of Electrical Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Edward M Nelson
- Department of Electrical Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - John Damiano
- Protochips, Inc. , Morrisville, North Carolina 27560, United States
| | - Gregory Timp
- Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Zečević J, Hermannsdörfer J, Schuh T, de Jong KP, de Jonge N. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 27735131 DOI: 10.1002/smll.201602466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/25/2016] [Indexed: 05/11/2023]
Abstract
Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid.
Collapse
Affiliation(s)
- Jovana Zečević
- Inorganic Chemistry and Catalysis, Debye Institute of Nanomaterials Science, Utrecht University, 3584, CG Utrecht, The Netherlands
| | | | - Tobias Schuh
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Krijn P de Jong
- Inorganic Chemistry and Catalysis, Debye Institute of Nanomaterials Science, Utrecht University, 3584, CG Utrecht, The Netherlands
| | - Niels de Jonge
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Department of Physics, University of Saarland, Campus A5 1, 66123, Saarbrücken, Germany
| |
Collapse
|
26
|
Wu J, Shan H, Chen W, Gu X, Tao P, Song C, Shang W, Deng T. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9686-9712. [PMID: 27628711 DOI: 10.1002/adma.201602519] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/10/2016] [Indexed: 05/26/2023]
Abstract
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Xin Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| |
Collapse
|
27
|
Abstract
Electron microscopy of biological cells in liquid provides unique nanoscale information. A highly attractive idea is the capability to also study physiological processes of live cells with electron microscopy. However, this idea seems unrealistic because the minimal needed electron dose to obtain contrast is already many orders of magnitude above the lethal dose known to cause reproductive-cell death. We show here that claims of electron microscopy of viable cells in recent reports are based on a questionable interpretation of the used fluorescence live/dead assay. A practical alternative to study biological processes is correlative light and electron microscopy.
Collapse
Affiliation(s)
| | - Diana B Peckys
- Department of Biophysics, Saarland University , D-66421 Homburg/Saar, Germany
| |
Collapse
|
28
|
Efficient preparation of graphene liquid cell utilizing direct transfer with large-area well-stitched graphene. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Hong YJ, Tai LA, Chen HJ, Chang P, Yang CS, Yew TR. Stable water layers on solid surfaces. Phys Chem Chem Phys 2016; 18:5905-9. [DOI: 10.1039/c5cp07866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water layer adhered to a microchannel wall is 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique.
Collapse
Affiliation(s)
- Ying-Jhan Hong
- Department of Materials Science and Engineering
- National Tsing-Hua University
- Kuang-Fu Road Hsinchu
- Taiwan
| | - Lin-Ai Tai
- Bio Materials Analysis Technology
- Hsinchu County
- Taiwan
| | - Hung-Jen Chen
- Bio Materials Analysis Technology
- Hsinchu County
- Taiwan
| | - Pin Chang
- Bio Materials Analysis Technology
- Hsinchu County
- Taiwan
| | | | - Tri-Rung Yew
- Department of Materials Science and Engineering
- National Tsing-Hua University
- Kuang-Fu Road Hsinchu
- Taiwan
| |
Collapse
|
30
|
Tanase M, Winterstein J, Sharma R, Aksyuk V, Holland G, Liddle JA. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the Transmission Electron Microscope. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1629-1638. [PMID: 26650072 PMCID: PMC4763102 DOI: 10.1017/s1431927615015482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid-layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200×200 µm.
Collapse
Affiliation(s)
- Mihaela Tanase
- Center for Nanoscale Science and Technology, National Institute of Science and Technology, Gaithersburg, Maryland 20899
- Institute for Research in Electronics and Applied Physics, University of Maryland College Park, MD 20742
| | - Jonathan Winterstein
- Center for Nanoscale Science and Technology, National Institute of Science and Technology, Gaithersburg, Maryland 20899
| | - Renu Sharma
- Center for Nanoscale Science and Technology, National Institute of Science and Technology, Gaithersburg, Maryland 20899
| | - Vladimir Aksyuk
- Center for Nanoscale Science and Technology, National Institute of Science and Technology, Gaithersburg, Maryland 20899
| | - Glenn Holland
- Center for Nanoscale Science and Technology, National Institute of Science and Technology, Gaithersburg, Maryland 20899
| | - J. Alexander Liddle
- Center for Nanoscale Science and Technology, National Institute of Science and Technology, Gaithersburg, Maryland 20899
| |
Collapse
|
31
|
Lai SE, Hong YJ, Chen YT, Kang YT, Chang P, Yew TR. Direct-Writing of Cu Nano-Patterns with an Electron Beam. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1639-1643. [PMID: 26381450 DOI: 10.1017/s1431927615015111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate direct electron beam writing of a nano-scale Cu pattern on a surface with a thin aqueous layer of CuSO4 solution. Electron beams are highly maneuverable down to nano-scales. Aqueous solutions facilitate a plentiful metal ion supply for practical industrial applications, which may require continued reliable writing of sophisticated patterns. A thin aqueous layer on a surface helps to confine the writing on the surface. For this demonstration, liquid sample holder (K-kit) for transmission electron microscope (TEM) was employed to form a sealed space in a TEM. The aqueous CuSO4 solution inside the sample holder was allowed to partially dry until a uniform thin layer was left on the surface. The electron beam thus reduced Cu ions in the solution to form the desired patterns. Furthermore, the influence of e-beam exposure time and CuSO4(aq) concentration on the Cu reduction was studied in this work. Two growth stages of Cu were shown in the plot of Cu thickness versus e-beam exposure time. The measured Cu reduction rate was found to be proportional to the CuSO4(aq) concentration.
Collapse
Affiliation(s)
- Shih-En Lai
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Ying-Jhan Hong
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Yu-Ting Chen
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Yu-Ting Kang
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Pin Chang
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| | - Tri-Rung Yew
- Department of Materials Science and Engineering,National Tsing-Hua University,Hsinchu 30013,Taiwan,R.O.C
| |
Collapse
|
32
|
Hong YJ, Tai LA, Chen HJ, Yang CS, Chang P, Yew TR. B11-P-03Interactions of TEM electron beam with liquid and nanoparticles in the liquid. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Ramachandramoorthy R, Bernal R, Espinosa HD. Pushing the envelope of in situ transmission electron microscopy. ACS NANO 2015; 9:4675-85. [PMID: 25942405 DOI: 10.1021/acsnano.5b01391] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent major improvements to the transmission electron microscope (TEM) including aberration-corrected electron optics, light-element-sensitive analytical instrumentation, sample environmental control, and high-speed and sensitive direct electron detectors are becoming more widely available. When these advances are combined with in situ TEM tools, such as multimodal testing based on microelectromechanical systems, key measurements and insights on nanoscale material phenomena become possible. In particular, these advances enable metrology that allows for unprecedented correlation to quantum mechanics and the predictions of atomistic models. In this Perspective, we provide a summary of recent in situ TEM research that has leveraged these new TEM capabilities as well as an outlook of the opportunities that exist in the different areas of in situ TEM experimentation. Although these advances have improved the spatial and temporal resolution of TEM, a critical analysis of the various in situ TEM fields reveals that further progress is needed to achieve the full potential of the technology.
Collapse
Affiliation(s)
- Rajaprakash Ramachandramoorthy
- †Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- ‡Department of Theoretical and Applied Mechanics, Northwestern University, Evanston, Illinois 60208, United States
| | - Rodrigo Bernal
- †Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Horacio D Espinosa
- †Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- ‡Department of Theoretical and Applied Mechanics, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
34
|
Wang Y, Chen X, Cao H, Deng C, Cao X, Wang P. A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:829302. [PMID: 25734023 PMCID: PMC4334870 DOI: 10.1155/2015/829302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 05/29/2023]
Abstract
Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.
Collapse
Affiliation(s)
- Yibing Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| | - Hongliang Cao
- Key Laboratory for Ultrafine Materials of Ministry of Education and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodan Cao
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
35
|
Chen YT, Wang CY, Hong YJ, Kang YT, Lai SE, Chang P, Yew TR. Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv 2014. [DOI: 10.1039/c4ra03350g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Abstract
An understanding of nanocrystal growth mechanisms is of significant importance for the design of novel materials. The development of liquid cells for transmission electron microscopy (TEM) has enabled direct observation of nanoparticle growth in a liquid phase. By tracking single particle growth trajectories with high spatial resolution, novel growth mechanisms have been revealed. In recent years, there has been an increasing interest in liquid cell TEM and its applications include real time imaging of nanoparticles, biological materials, liquids, and so on. This paper reviews the development of liquid cell TEM and the progress made in using such a wonderful tool to study the growth of nanoparticles (mostly metal nanoparticles). Achievements in the understanding of coalescence, shape control mechanisms, surfactant effects, etc. are highlighted. Other studies relevant to metal precipitation in liquids, such as electrochemical deposition, nanoparticle motion and electron beam effects, are also included. At the end, our perspectives on future challenges and opportunities in liquid cell TEM are provided.
Collapse
Affiliation(s)
- Hong-Gang Liao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
37
|
Jensen E, Burrows A, Mølhave K. Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:445-451. [PMID: 24717178 DOI: 10.1017/s1431927614000300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electron microscopy of enclosed liquid samples requires the thinnest possible membranes as enclosing windows as well as nanoscale liquid sample thickness to achieve the best possible resolution. Today liquid sample systems for transmission electron microscopy (TEM) are typically made from two sandwiched microchips with thin membranes. We report on a new microfabricated chip system based on a monolithic design that enables membrane geometry on the scale of a few micrometers. The design is intended to reduce membrane deflection when the system is under pressure, a microfluidic channel for improved flow geometry, and a better space angle for auxiliary detectors such as energy-dispersive X-ray spectroscopy. We explain the system design and fabrication and show the first successful TEM images of liquid samples in the chips.
Collapse
Affiliation(s)
- Eric Jensen
- 1 Technical University of Denmark, DTU Nanotech, Ørsteds Plads, Building 345E, 2800 Kgs Lyngby, Denmark
| | - Andrew Burrows
- 2 Technical University of Denmark, DTU Cen, Fysikvej, Building 307, 2800 Kgs. Lyngby, Denmark
| | - Kristian Mølhave
- 1 Technical University of Denmark, DTU Nanotech, Ørsteds Plads, Building 345E, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
38
|
Zaluzec NJ, Burke MG, Haigh SJ, Kulzick MA. X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:323-329. [PMID: 24564969 DOI: 10.1017/s1431927614000154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of analytical spectroscopies during scanning/transmission electron microscope (S/TEM) investigations of micro- and nano-scale structures has become a routine technique in the arsenal of tools available to today's materials researchers. Essential to implementation and successful application of spectroscopy to characterization is the integration of numerous technologies, which include electron optics, specimen holders, and associated detectors. While this combination has been achieved in many instrument configurations, the integration of X-ray energy-dispersive spectroscopy and in situ liquid environmental cells in the S/TEM has to date been elusive. In this work we present the successful incorporation/modifications to a system that achieves this functionality for analytical electron microscopy.
Collapse
Affiliation(s)
- Nestor J Zaluzec
- 1 Argonne National Laboratory, Electron Microscopy Center, Argonne, IL 60439, USA
| | - M Grace Burke
- 2 School of Materials, Materials Performance Centre and Electron Microscopy Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- 2 School of Materials, Materials Performance Centre and Electron Microscopy Centre, University of Manchester, Manchester, M13 9PL, UK
| | | |
Collapse
|
39
|
Peckys DB, de Jonge N. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:346-65. [PMID: 24548636 DOI: 10.1017/s1431927614000099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.
Collapse
Affiliation(s)
- Diana B Peckys
- 1 Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany
| | - Niels de Jonge
- 1 Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany
| |
Collapse
|
40
|
Abellan P, Woehl TJ, Parent LR, Browning ND, Evans JE, Arslan I. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem Commun (Camb) 2014; 50:4873-80. [DOI: 10.1039/c3cc48479c] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An overview of beam–sample interactions identified for changing imaging and experimental conditions using a visual approach.
Collapse
Affiliation(s)
- P. Abellan
- Fundamental and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland, USA
| | - T. J. Woehl
- Department of Chemical Engineering and Materials Science
- University of California-Davis
- Davis, USA
| | - L. R. Parent
- Fundamental and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland, USA
| | - N. D. Browning
- Fundamental and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland, USA
| | - J. E. Evans
- Environ. Molecular Sci. Lab
- Pacific Northwest National Laboratory
- Richland, USA
| | - I. Arslan
- Energy and Environmental Directorate
- Pacific Northwest National Laboratory
- Richland, USA
| |
Collapse
|
41
|
de Jonge N, Pfaff M, Peckys DB. Practical Aspects of Transmission Electron Microscopy in Liquid. ADVANCES IN IMAGING AND ELECTRON PHYSICS 2014. [DOI: 10.1016/b978-0-12-800264-3.00001-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Miyazaki HT, Kasaya T, Takemura T, Hanagata N, Yasuda T, Miyazaki H. Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells. OPTICS EXPRESS 2013; 21:28198-28218. [PMID: 24514332 DOI: 10.1364/oe.21.028198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.
Collapse
|
43
|
Chen Q, Smith JM, Park J, Kim K, Ho D, Rasool HI, Zettl A, Alivisatos AP. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. NANO LETTERS 2013; 13:4556-61. [PMID: 23944844 DOI: 10.1021/nl402694n] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution.
Collapse
Affiliation(s)
- Qian Chen
- Department of Chemistry, ∥Miller Institute for Basic Research in Science, and §Department of Physics, University of California , Berkeley, California 94720, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yoshida K, Tominaga T, Hanatani T, Tagami A, Sasaki Y, Yamasaki J, Saitoh K, Tanaka N. Key factors for the dynamic ETEM observation of single atoms. Microscopy (Oxf) 2013; 62:571-82. [DOI: 10.1093/jmicro/dft033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Jensen E, Købler C, Jensen P, Mølhave K. In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy 2013; 129:63-9. [DOI: 10.1016/j.ultramic.2013.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 01/08/2023]
|
46
|
Woehl TJ, Jungjohann KL, Evans JE, Arslan I, Ristenpart WD, Browning ND. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 2013; 127:53-63. [DOI: 10.1016/j.ultramic.2012.07.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
In Situ Real-Time TEM Reveals Growth, Transformation and Function in One-Dimensional Nanoscale Materials: From a Nanotechnology Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/893060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper summarises recent developments in in situ TEM instrumentation and operation conditions. The focus of the discussion is on demonstrating how improved understanding of fundamental physical phenomena associated with nanowire or nanotube materials, revealed by following transformations in real time and high resolution, can assist the engineering of emerging electronic and optoelectronic devices. Special attention is given to Si, Ge, and compound semiconductor nanowires and carbon nanotubes (CNTs) as one of the most promising building blocks for devices inspired by nanotechnology.
Collapse
|
48
|
Chen X, Zhou L, Wang P, Zhao C, Miao X. A Study of Nano Materials and Their Reactions in Liquid Usingin situWet Cell TEM Technology. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201201036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Tai LA, Kang YT, Chen YC, Wang YC, Wang YJ, Wu YT, Liu KL, Wang CY, Ko YF, Chen CY, Huang NC, Chen JK, Hsieh YF, Yew TR, Yang CS. Quantitative characterization of nanoparticles in blood by transmission electron microscopy with a window-type microchip nanopipet. Anal Chem 2012; 84:6312-6. [PMID: 22816618 DOI: 10.1021/ac301523n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transmission electron microscopy (TEM) is a unique and powerful tool for observation of nanoparticles. However, due to the uneven spatial distribution of particles conventionally dried on copper grids, TEM is rarely employed to evaluate the spatial distribution of nanoparticles in aqueous solutions. Here, we present a microchip nanopipet with a narrow chamber width for sorting nanoparticles from blood and preventing the aggregation of the particles during the drying process, enabling quantitative analysis of their aggregation/agglomeration states and the particle concentration in aqueous solutions. This microchip is adaptable to all commercial TEM holders. Such a nanopipet proves to be a simple and convenient sampling device for TEM image-based quantitative characterization.
Collapse
|
50
|
Jungjohann KL, Evans JE, Aguiar JA, Arslan I, Browning ND. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:621-7. [PMID: 22640968 DOI: 10.1017/s1431927612000104] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.
Collapse
Affiliation(s)
- Katherine L Jungjohann
- Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|