1
|
Liu J, Dai Y, Robinson D, Li B, Miqueu K, Liu SY. Synthesis of Chiral δ-Aminoboronic Esters by Enantioselective Hydrogenation of 1,2-Azaborines. Angew Chem Int Ed Engl 2025:e202504419. [PMID: 40192605 DOI: 10.1002/anie.202504419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
We describe herein an iridium-catalyzed highly diastereo- and enantioselective hydrogenation of 1,2-azaborines to access δ-aminoboronic esters of potential biological importance. This method represents the first enantioselective hydrogenation of a boron-containing heteroarene and features diverse substitution patterns and wide scope. The synthetic utility of our method was demonstrated by the synthesis of (-)-phenibut and the formal synthesis of (+)-3-PPP and fluvirucinine A1.
Collapse
Affiliation(s)
- Jiangpeng Liu
- Department of Chemistry, Boston College, 2609 Beacon Street, Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - Yuping Dai
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Pau Cedex 09, 64053, France
| | - Devon Robinson
- Department of Chemistry, Boston College, 2609 Beacon Street, Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - Bo Li
- Department of Chemistry, Boston College, 2609 Beacon Street, Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - Karinne Miqueu
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Pau Cedex 09, 64053, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, 2609 Beacon Street, Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Pau Cedex 09, 64053, France
| |
Collapse
|
2
|
Zhang P, Duan CB, Xu HL, Zhao XY, Huang DC, Jin B, Sha Q, Miu S, Bian Q, Guo DL, Deng F, Gao J, Sukhbaatar O, Sun Q, Zhang MZ, Zhang WH, Gu YC. Dual-Target Inhibitors─Discovery of Novel Diphenyl-(Thio)ether-Containing Benzoxaborole Derivatives as Potential Antifungal and Herbicidal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4497-4506. [PMID: 39935368 DOI: 10.1021/acs.jafc.4c06951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
LeuRS and PPO are important targets in the development of green pesticides; novel diphenyl-(thio)ether-containing benzoxaborole derivatives were designed and synthesized as novel dual-target enzyme inhibitors; their antifungal activities against six kinds of common plant pathogens in vitro and their herbicidal activities against purslane and barnyard grass were studied. Most of the target compounds showed excellent antifungal activity against six kinds of plant pathogenic fungi in vitro, and this is highlighted by compounds 6c and 6h, both displayed 100.0% inhibition effects against three kinds of the tested plant pathogenic fungi under the concentrations of 50.0 μg/mL, and the EC50 value of compound 6r against Rhizoctonia solani was 0.763 μg/mL, significantly lower than that of boscalid (1.20 μg/mL). In addition, compound 6c was also used in negative control experiments, and the results revealed that compound 6c had no significant effect on the growth of noninfected plants. Meanwhile, most of the compounds also demonstrated promising herbicidal activity, as compounds 6b, 6h, 6m, and 7e showed effective control on purslane and barnyard grass. Beyond that, compound 6s demonstrated certain safety against rape. Enzymatic inhibition experiments further confirmed that compound 7e exhibited remarkable inhibitory activity against NtPPO. Moreover, the molecular docking results between 6c and 7g and tLeuRS and NtPPO further revealed the mechanisms of action for their biological activities. In summary, compounds 6b, 6c, 6h, 7e, and 7g showed excellent antifungal and herbicidal activities and can be further studied as new antifungal and herbicidal agents in the next step.
Collapse
Affiliation(s)
- Pei Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Bao Duan
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui-Lin Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ying Zhao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dai-Chuan Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Jin
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiji Miu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Le Guo
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Otgonpurev Sukhbaatar
- Department of Chemistry, School of Applied Sciences, Mongolian University of Life Sciences, Zaisan, 17024 Ulaanbaatar, Mongolia
| | - Qi Sun
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, Bracknell RG42 6EY, U.K
| |
Collapse
|
3
|
Kao CY, Chen YW, Liu YC, Wei JH, Wang TSA. Versatile Stimuli-Responsive Controlled Release of Pinanediol-Caged Boronic Esters for Spatiotemporal and Nitroreductase-Selective Glucose Bioimaging. ACS Sens 2025; 10:470-479. [PMID: 39750141 PMCID: PMC11773560 DOI: 10.1021/acssensors.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Boronic acids have been widely applied in various biological fields, particularly achieving significant practical progress in boronic acid-based glucose sensing. However, boronic acids exhibit nonspecific binding to other nucleophiles, and the inherent lability of boronic esters in biological systems limits their further applications. Herein, we developed a stimuli-responsive controllable caging strategy to achieve photoresponsive spatiotemporally and nitroreductase-responsive cancer cell-selective glucose sensing. We introduced o-/p-nitroaryl-containing self-immolative linkers onto δ-pinanediol derivatives, effectively caging boronic acids and blocking glucose recognition. Upon triggering by specific stimuli, the caged boronic esters decompose, releasing boronic acids and thereby restoring glucose recognition of the diboronic acid-based sensor. The proof of concept was confirmed through intracellular glucose bioimaging in living cells. Upon regional UV irradiation, we could monitor intracellular glucose with excellent spatiotemporal selectivity. Furthermore, we used the cancer biomarker nitroreductases as the internal stimuli and utilized the caged glucose sensor to selectively label hypoxic cancer cells in a cocultured living cell sample. We believe that our stimuli-responsive caging strategies will hold promising potential for the controlled release of other boronic acids in various biological contexts.
Collapse
Affiliation(s)
- Chih-Yao Kao
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Ying-Wei Chen
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Yu-Cheng Liu
- Institute
of Molecular Biology, Academia Sinica, Nankang, Taipei 115201, Taiwan (R.O.C.)
| | - Jen-Hsuan Wei
- Institute
of Molecular Biology, Academia Sinica, Nankang, Taipei 115201, Taiwan (R.O.C.)
| | - Tsung-Shing Andrew Wang
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| |
Collapse
|
4
|
Gao Q, Li Y, Chen L, Xie LJ, Shao X, Ke Z, Xu S. Enantioselective α-C(sp 3)-H Borylation of Masked Primary Alcohols Enabled by Iridium Catalysis. J Am Chem Soc 2025; 147:88-95. [PMID: 39696793 DOI: 10.1021/jacs.4c14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Functional group-directed site- and enantioselective C(sp3)-H functionalization of alcohols or masked alcohols represents a formidable challenge. We herein report the first example of iridium-catalyzed asymmetric α-C(sp3)-H borylation of primary alcohol-derived carbamates by the judicious choice of directing groups. A variety of chiral borylated carbamates were obtained with good to high enantioselectivities. We also demonstrated the synthetic utility by taking advantage of the highly transformable feature of C-B bonds and the leaving ability of carbamates.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510006, China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liang-Jun Xie
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510006, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Alhthlol L, Orme CL, Jefferis BS, Herter SA, Kemper HE, Tomsho JW. Synthesis of Boron-Containing Nucleoside Analogs. J Org Chem 2024; 89:1556-1566. [PMID: 38227951 PMCID: PMC10845115 DOI: 10.1021/acs.joc.3c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Over the last century, nucleoside-based therapeutics have demonstrated remarkable effectiveness in the treatment of a wide variety of diseases from cancer to HIV. In addition, boron-containing drugs have recently emerged as an exciting and fruitful avenue for medicinal therapies. However, borononucleosides have largely been unexplored in the context of medicinal applications. Herein, we report the synthesis, isolation, and characterization of two novel boron-containing nucleoside compound libraries which may find utility as therapeutic agents. Our synthetic strategy employs efficient one-step substitution reactions between a diverse variety of nucleoside scaffolds and an assortment of n-alkyl potassium trifluoroborate-containing electrophiles. We demonstrated that these alkylation reactions are compatible with cyclic and acyclic nucleoside substrates, as well as increasing alkyl chain lengths. Furthermore, regioselective control of product formation can be readily achieved through manipulation of base identity and reaction temperature conditions.
Collapse
Affiliation(s)
- Latifah
M. Alhthlol
- Department
of Chemistry & Biochemistry, St Joseph’s
University, University City Campus, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, King Saud bin Abdulaziz University
for Health Sciences, Al Mubarraz, Alahsa 36428, Saudi Arabia
| | - Christopher L. Orme
- Department
of Chemistry & Biochemistry, St Joseph’s
University, University City Campus, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Ben S. Jefferis
- Department
of Chemistry & Biochemistry, St Joseph’s
University, University City Campus, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Sarah A. Herter
- Department
of Chemistry & Biochemistry, St Joseph’s
University, University City Campus, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Halee E. Kemper
- Department
of Chemistry & Biochemistry, St Joseph’s
University, University City Campus, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - John W. Tomsho
- Department
of Chemistry & Biochemistry, St Joseph’s
University, University City Campus, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Ocampo-Gallego JS, Pedroza-Escobar D, Caicedo-Ortega AR, Berumen-Murra MT, Novelo-Aguirre AL, de Sotelo-León RD, Delgadillo-Guzmán D. Human neutrophil elastase inhibitors: Classification, biological-synthetic sources and their relevance in related diseases. Fundam Clin Pharmacol 2024; 38:13-32. [PMID: 37609718 DOI: 10.1111/fcp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Human neutrophil elastase is a multifunctional protease enzyme whose function is to break the bonds of proteins and degrade them to polypeptides or amino acids. In addition, it plays an essential role in the immune mechanism against bacterial infections and represents a key mediator in tissue remodeling and inflammation. However, when the extracellular release of this enzyme is dysregulated in response to low levels of its physiological inhibitors, it ultimately leads to the degradation of proteins, in particular elastin, as well as other components of the extracellular matrix, producing injury to epithelial cells, which can promote sustained inflammation and affect the innate immune system, and, therefore, be the basis for the development of severe inflammatory diseases, especially those associated with the cardiopulmonary system. OBJECTIVE This review aims to provide an update on the elastase inhibitory properties of several molecules, either synthetic or biological sources, as well as their classification and relevance in related pathologies since a clear understanding of the function of these molecules with the inhibitory capacity of this protease can provide valuable information for the development of pharmacological therapies that manage to modify the prognosis and survival of various inflammatory diseases. METHODS Collected data from scientific databases, including PubMed, Google Scholar, Science Direct, Nature, Wiley, Scopus, and Scielo. Articles published in any country and language were included. RESULTS We reviewed and included 132 articles conceptualizing neutrophil elastase activity and known inhibitors. CONCLUSION Understanding the mechanism of action of elastase inhibitors based on particular aspects such as their kinetic behavior, structure-function relationship, chemical properties, origin, pharmacodynamics, and experimental progress has allowed for a broad classification of HNE inhibitors.
Collapse
Affiliation(s)
| | - David Pedroza-Escobar
- Departamento de Bioquimica, Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Ruth Caicedo-Ortega
- Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota, Colombia
| | - María Teresa Berumen-Murra
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Lucía Novelo-Aguirre
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Rebeca Denis de Sotelo-León
- Departmento de Nutricion. Unidad de Medicina Familiar, UMAA 53, Instituto Mexicano del Seguro Social, Durango, Mexico
| | - Dealmy Delgadillo-Guzmán
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| |
Collapse
|
7
|
Doyduk D, Derkus B, Sari B, Eylem CC, Nemutlu E, Yıldırır Y. Molecular docking, synthesis, anticancer activity, and metabolomics study of boronic acid ester-containing fingolimod derivatives. Arch Pharm (Weinheim) 2023; 356:e2300382. [PMID: 37768844 DOI: 10.1002/ardp.202300382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
In recent years, drugs that contain boronic acid groups, such as ixazomib (Ninlaro™) and bortezomib (Velcade™), have been used in the treatment of bone marrow cancer. The activity of compounds has been found to increase with the addition of boron atoms to the structure. In addition to these compounds, studies have found that fingolimod (FTY720) is more effective against breast cancer than cisplatin. Therefore, in this study, the first examples of boron-containing derivatives of fingolimod were designed and synthesized; in addition, their structures were confirmed by spectroscopic techniques. The synthesized boron-containing drug candidates were found to significantly inhibit cell proliferation and induce apoptosis-mediated cell death in HT-29 (colorectal cells), SaOs-2 (osteosarcoma cells), and U87-MG (glioblastoma cells). Moreover, we revealed that the anticancer effects of boron-containing fingolimod compounds were found to be significantly enhanced over boron-free control groups and, strikingly, over the widely used anticancer drug 5-fluorouracil. The metabolomic analysis confirmed that administration of the boron-containing drug candidates induces significant changes in the metabolite profiles in HT-29, SaOs-2, and U87-MG cells. Altogether, our results showed that boron-containing fingolimod compounds can be further examined to reveal their potential as anticancer drug candidates.
Collapse
Affiliation(s)
- Doğukan Doyduk
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Buse Sari
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yılmaz Yıldırır
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther 2023; 251:108548. [PMID: 37858628 DOI: 10.1016/j.pharmthera.2023.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Dyuti Bhandary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
9
|
Jing R, Powell WC, Fisch KJ, Walczak MA. Desulfurative Borylation of Small Molecules, Peptides, and Proteins. J Am Chem Soc 2023; 145:22354-22360. [PMID: 37812507 PMCID: PMC10594600 DOI: 10.1021/jacs.3c09081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We introduce a direct conversion of alkyl thiols into boronic acids, facilitated by a water-soluble phosphine, 1,3,5-triaza-7-phosphaadamantane (PTA), in conjunction with tetrahydroxydiboron (B2(OH)4), acting as both a radical initiator and a boron source. This desulfurative borylation reaction has been successfully applied to various substrates, including cysteine residues in oligopeptides and small proteins, primary alkyl thiols found in pharmaceutical compounds, disulfides, and selenocysteine. Optimization of reaction conditions was undertaken to reduce the formation of unwanted reactions, such as the reduction of alanyl or other primary radicals, and to prevent deleterious reactions between the phosphine and N-terminal amine that lead to methylene adducts by utilizing a buffer containing glycine-glycine (GG) dipeptide. The developed method is characterized by its operational simplicity and robustness. Moreover, its compatibility with various functional groups present in peptides and proteins makes it a promising tool for late-stage functionalization, extending its potential application across a broad spectrum of chemical and biological targets.
Collapse
Affiliation(s)
- Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Kyle J Fisch
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Liu Y, Zhang W, Gai L, Zhou Z, Tian J, Lu H. Novel organoboron complexes with robust core: Synthesis, functionalization, and subcellular targeting. Bioorg Chem 2023; 138:106662. [PMID: 37307714 DOI: 10.1016/j.bioorg.2023.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
The construction of novel organoboron complexes with facile synthesis and unique advantages for biological imaging remains a challenge and thus has garnered considerable attention. Herein, we developed a new molecular platform, boron indolin-3-one-pyrrol (BOIN3OPY) via a two-step sequential reaction. The molecular core is robust enough to allow for post-functionalization to produce versatile dyes. When compared to the standard BODIPY, these dyes feature an N,O-bidentate seven-membered ring center, significantly redshifted absorption, and a larger Stokes shift. This study establishes a new molecular platform that provides more flexibility for the functional regulation of dyes.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Wenze Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| | - Zhikuan Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| |
Collapse
|
11
|
Zhu D, Lu Y, Hu B, Pang Y, Liu B, Zhang M, Wang W, Wang Y. Highly-tumor-targeted PAD4 inhibitors with PBA modification inhibit tumors in vivo by specifically inhibiting the PAD4-H3cit-NETs pathway in neutrophils. Eur J Med Chem 2023; 258:115619. [PMID: 37421890 DOI: 10.1016/j.ejmech.2023.115619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
As a new target for tumor therapy, PAD4 protein, shows excellent antitumor activity, and phenylboronic acid (PBA) could combine with sialic acid on the tumor surface to achieve dual targeting in situ and for metastatic tumors. The purpose of this study was therefore to modify PAD4 protein inhibitors with different phenylboronic acid groups in order to obtain highly-targeted PAD4 inhibitors. The activity and mechanism of these PBA-PAD4 inhibitors were studied in vitro by MTT assay, laser confocal analysis, and flow cytometry. The effects of the compounds on primary tumor and lung metastasis in mice were evaluated in vivo using a S180 sarcoma model and a 4T1 breast cancer model. In addition, cytometry mass (CyTOF) was used to analyze the immune microenvironment, and the results show that the PAD4 inhibitor 5i modified by m-PBA at the carboxyl terminal of ornithine skeleton had the best antitumor activity. In vitro evaluation of this activity revealed that 5i could not directly kill tumor cells but had a significant inhibitory effect on tumor cell metastasis. Further mechanism studies showed that 5i could be taken up by 4T1 cells in a time-dependent manner and distributed around the cell membrane but could not be taken up by normal cells. In addition, although 5i was distributed in the cytoplasm of tumor cells while in the nucleus of neutrophils, it could both decrease the histone 3 citrullination (H3cit) in the nucleus. In vivo 4T1 tumor-bearing mouse models, 5i inhibited breast cancer growth and metastasis in a concentration-dependent manner, and NET formation in tumor tissues was significantly reduced. In conclusion, PBA-PAD4 inhibitors show high targeting of tumor cells and good safety in vivo. By specifically inhibiting PAD4 protein in the neutrophil nucleus, PBA-PAD4 inhibitors also show excellent antitumor activity toward growth and metastasis in vivo, which provides a new idea for the design of highly-targeted PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, PR China
| | - Bingru Liu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Miao Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, PR China.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China; Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
12
|
Huang DC, He Z, Guo D, Deng F, Bian Q, Zhang H, Ali AS, Zhang MZ, Zhang WH, Gu YC. Discovery of Novel Benzoxaborole-Containing Streptochlorin Derivatives as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6226-6235. [PMID: 37053087 DOI: 10.1021/acs.jafc.2c08053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Streptochlorin is a kind of indole alkaloid derived from marine microorganisms. It is a promising lead compound due to its potent bioactivity in preventing many phytopathogens, as shown in our previous study. To explore the potential applications of this natural product, a series of novel benzoxaborole-containing streptochlorin derivatives were designed and synthesized through a one-step and catalyst-free reaction in water at room temperature. All target compounds were first screened for their antifungal profiles in vitro against six common phytopathogenic fungi. The results of bioassay revealed that most of the designed compounds exhibited more significant antifungal activities against Botrytis cinrea, Gibberella zeae, Rhizoctorzia solani, Colletotrichum lagenarium, and alternaria leaf spot under the concentration of 50 μg/mL, and this is highlighted by compounds 4i and 5f, which demonstrated impressive antifungal effects against G. zeae and R. solani, with their corresponding EC50 values 0.2983 and 0.2657 μg/mL, which are obviously better than positive control flutriafol and boscalid (5.2606 and 1.2048 μg/mL, respectively). Scanning electron microscopy on the hyphae morphology showed that compound 5b might cause mycelial abnormalities of G. zeae. 3D-QSAR studies of CoMFA and CoMSIA were carried out on 29 target compounds with antifungal activity against B. cinrea. The analysis results indicated that introducing appropriate electronegative groups at the 5-position of benzoxaborole and the 4,5-positions of the indole ring could effectively improve the anti-B. cinrea activity. Moreover, compound 5b showed good antifungal activities in vivo against Phytophthora capsici. Molecular docking was further explored to ascertain the practical value of the active compound as a potential inhibitor of LeuRS. The abovementioned results indicate that the designed benzoxaborole-containing streptochlorin derivatives could be further studied as template molecules of novel antifungal agents.
Collapse
Affiliation(s)
- Dai-Chuan Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuo He
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dale Guo
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdallah S Ali
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| |
Collapse
|
13
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
14
|
Mandal D, Hussain Z, Luo YA, Wu Y, Stephan DW. Transient hydroboration and hydroalumination of activated azo-species: avenues to NBO and NAlO-heterobicycles. Chem Commun (Camb) 2023; 59:780-783. [PMID: 36562320 DOI: 10.1039/d2cc06207k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactions of the boranes, BH(C6F5)2 or 9-BBN, with azodicarboxylates or an azodicarbonylamide provide facile access to NBO heterocyclic compounds. The products [(C6F5)2BOC(X)N]2 X = OEt 1, OiPr 2, OCH2CCl33, OCH2Ph 4, NC5H105) and [(9-BBN)OC(X)N]2 (X = OEt 6, OiPr 7, NC5H108) and [Ph2B)OC(OtBu)N]29 were prepared. In another variation, (nacnac)AlH2 (nacnac = (C6H3iPr2NC(Me))2CH) afforded the Al-heterobicycle [(nacnac)Al(H)OC(OEt)N]210. The mechanism for the formation of these products is proposed to involve transient hydroboration or hydroalumination of the NN double bond.
Collapse
Affiliation(s)
- Dipendu Mandal
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China. .,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Zahid Hussain
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China.
| | - Yong-An Luo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China.
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, 315211, China. .,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
15
|
Liao S, Liu K, Wu H, Kuang Q, Hu X, Li Y, Lu H, Yuan J. A rapid construction of 1,3,2-benzodiazaborininones [R-B(aam)] from boronic acids and anthranilamides. RSC Adv 2023; 13:2570-2573. [PMID: 36741161 PMCID: PMC9847347 DOI: 10.1039/d2ra06573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
A simple, efficient and mild methodology for the synthesis of 1,3,2-benzodiazaborininones [R-B(aam)] from boronic acids and anthranilamides on ethyl acetate is described. A series of 1,3,2-benzodiazaborininones were prepared in moderate to excellent yields at room temperature without dehydrating agents, metal catalysts, corrosive acids or other additives. Meanwhile, a multi-gram scale reaction is also performed to ensure the scalability of the reaction, and the product can be conveniently isolated by simple filtration.
Collapse
Affiliation(s)
- Siwei Liao
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Kai Liu
- Department of Pharmacy, Chongqing Public Health Medical CenterPR China
| | - Huili Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Qiulin Kuang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Xueyuan Hu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Yihao Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Hongxiao Lu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical UniversityChongqing 400016PR China
| |
Collapse
|
16
|
Haas R, Nikel PI. Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends Biotechnol 2023; 41:27-45. [PMID: 35786519 DOI: 10.1016/j.tibtech.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
The relatively narrow spectrum of chemical elements within the microbial 'biochemical palate' limits the reach of biotechnology, because several added-value compounds can only be produced with traditional organic chemistry. Synthetic biology offers enabling tools to tackle this issue by facilitating 'biologization' of non-canonical chemical atoms. The interplay between xenobiology and synthetic metabolism multiplies routes for incorporating nonbiological atoms into engineered microbes. In this review, we survey natural assimilation routes for elements beyond the essential biology atoms [i.e., carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S)], discussing how these mechanisms could be repurposed for biotechnology. Furthermore, we propose a computational framework to identify chemical elements amenable to biologization, ranking reactions suitable to build synthetic metabolism. When combined and deployed in robust microbial hosts, these approaches will offer sustainable alternatives for smart chemical production.
Collapse
Affiliation(s)
- Robert Haas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Krajewska J, Nowicki K, Durka K, Marek-Urban PH, Wińska P, Stępniewski T, Woźniak K, Laudy AE, Luliński S. Oxazoline scaffold in synthesis of benzosiloxaboroles and related ring-expanded heterocycles: diverse reactivity, structural peculiarities and antimicrobial activity. RSC Adv 2022; 12:23099-23117. [PMID: 36090419 PMCID: PMC9379557 DOI: 10.1039/d2ra03910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two isomeric benzosiloxaborole derivatives 3a and 5a bearing fluorine and 4,4-dimethyl-2-oxazolin-2-yl substituents attached to the aromatic rings were obtained. Both compounds were prone to hydrolytic cleavage of the oxazoline ring after initial protonation or methylation of the nitrogen atom. The derivative 3c featuring N-methylammoniumalkyl ester functionality was successfully subjected to N-sulfonylation and N-acylation reactions to give respective derivatives which demonstrates its potential for modular synthesis of structurally extended benzosiloxaboroles. Compound 5c bearing N-ammoniumalkyl ester underwent conversion to a unique macrocyclic dimer due to siloxaborole ring opening. Furthermore, an unexpected 4-electron reduction of the oxazoline ring occurred during an attempted synthesis of 5a. The reaction gave rise to an unprecedented 7-membered heterocyclic system 4a comprising a relatively stable B-O-B-O-Si linkage and stabilized by an intramolecular N-B coordination. It could be cleaved to derivative 4c bearing BOH and SiMe2OH groups which acts as a pseudo-diol as demonstrated by formation of an adduct with Tavaborole. Apart from the multinuclear NMR spectroscopy characterization, crystal structures of the obtained products were determined in many cases by X-ray diffraction. Investigation of biological activity of the obtained compounds revealed that derivatives 3e and 3f with pendant N-methyl arylsulfonamide groups exhibit high activity against Gram-positive cocci such as methicillin-sensitive Staphylococcus aureus ATCC 6538P, methicillin-resistant S. aureus (MRSA) ATCC 43300 as well as the MRSA clinical strains, with MIC values in the range of 3.12-6.25 mg L-1. These two compounds also showed activity against Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 6057 (with MICs of 25-50 mg L-1). The results of the antimicrobial activity and cytotoxicity studies indicate that 3e and 3f can be considered as potential antibacterial agents, especially against S. aureus MRSA.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Krzysztof Nowicki
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Durka
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H Marek-Urban
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Stępniewski
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Experimental and Health Sciences of Pompeu Fabra University (UPF) Carrer del Dr Aiguader, 88 08003 Barcelona Spain
| | - Krzysztof Woźniak
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Sergiusz Luliński
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
18
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt AM, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022; 61:e202205454. [PMID: 35587213 PMCID: PMC9296615 DOI: 10.1002/anie.202205454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 07/27/2023]
Abstract
In this paper is described an easily synthesized chiral diazaborolidine that is inexpensive, stable, and provides excellent stereoselection across a number of reaction classes. These versatile compounds possess utility in four different classes of cycloaddition reactions, offering good yield and stereoselectivity. X-ray structure analysis provides insight about the origin of stereocontrol.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Peilin Xu
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Alex J Vendola
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | | | - Robert A Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06430, USA
| | - James P Morken
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
19
|
Koeritz MT, Banovetz HK, Prell SA, Stanley LM. Synthesis of oxaboranes via nickel-catalyzed dearylative cyclocondensation. Chem Sci 2022; 13:7790-7795. [PMID: 35865885 PMCID: PMC9258507 DOI: 10.1039/d2sc01840c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
We report Ni-catalyzed dearylative cyclocondensation of aldehydes, alkynes, and triphenylborane. The reaction is initiated by oxidative cyclization of the aldehyde and alkyne coupling partners to generate an oxanickelacyclopentene which reacts with triphenylborane to form oxaboranes. This formal dearylative cyclocondensation reaction generates oxaboranes in moderate-to-high yields (47–99%) with high regioselectivities under mild reaction conditions. This approach represents a direct and modular synthesis of oxaboranes which are difficult to access using current methods. These oxaboranes are readily transformed into valuable building blocks for organic synthesis and an additional class of boron heterocycles. Selective homocoupling forms oxaboroles, oxidation generates aldol products, and reduction and arylation form substituted allylic alcohols. Oxaboranes are prepared via a nickel-catalyzed dearylative cyclocondensation reaction in up to 99% yield and excellent regioselectivity. These oxaborane products can be further transformed into a variety of synthetically useful building blocks.![]()
Collapse
Affiliation(s)
- Mason T Koeritz
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Haley K Banovetz
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Sean A Prell
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Levi M Stanley
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| |
Collapse
|
20
|
Zeng D, Zhang L, Wang W, Li G, Zhao XJ, He Y. Electrochemical Synthesis of Azaborininones under Metal‐Catalyst‐Free Mild Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongwen Zeng
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | - Lizhu Zhang
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | - Wei Wang
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | - Ganpeng Li
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | | | - Yonghui He
- Yunnan Minzu University School of Ethnic Medicine 2929 Yuehua Street 650500 Kunming CHINA
| |
Collapse
|
21
|
Zhang M, Xu P, Vendola AJ, Allais C, Dechert Schmitt A, Singer RA, Morken JP. Stereocontrolled Pericyclic and Radical Cycloaddition Reactions of Readily Accessible Chiral Alkenyl Diazaborolidines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Peilin Xu
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Alex J. Vendola
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Christophe Allais
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | | | - Robert A. Singer
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06430 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
22
|
Nandwana V, Nandwana NK, Das Y, Saito M, Panda T, Das S, Almaguel F, Hosmane NS, Das BC. The Role of Microbiome in Brain Development and Neurodegenerative Diseases. Molecules 2022; 27:3402. [PMID: 35684340 PMCID: PMC9182002 DOI: 10.3390/molecules27113402] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut-Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers.
Collapse
Affiliation(s)
- Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Tanisha Panda
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Das BC, Nandwana NK, Das S, Nandwana V, Shareef MA, Das Y, Saito M, Weiss LM, Almaguel F, Hosmane NS, Evans T. Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules 2022; 27:2615. [PMID: 35565972 PMCID: PMC9104566 DOI: 10.3390/molecules27092615] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure-activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer's agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Louis M. Weiss
- Department of Pathology, Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| |
Collapse
|
24
|
Dannatt JE, Yadav A, Smith MR, Maleczka RE. Amide directed iridium C(sp 3)-H borylation catalysis with high N-methyl selectivity. Tetrahedron 2022; 109:132578. [PMID: 36684041 PMCID: PMC9854009 DOI: 10.1016/j.tet.2021.132578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A bidentate monoanionic ligand system was developed to enable iridium catalyzed C(sp3)-H activation borylation of N-methyl amides. Borylated amides were obtained in moderate to good isolated yields, and exclusive mono-borylation allowed the amide to be the limiting reagent. Selectivity for C(sp3)-H activation was demonstrated in the presence of sterically available C(sp3)-H bonds. Competitive kinetic isotope studies revealed a large primary isotope effect, implicating C-H activation as the rate limiting step.
Collapse
Affiliation(s)
- Jonathan E. Dannatt
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824-1322, USA,Department of Chemistry, University of Dallas, 1845 East Northgate Drive, Irving, TX, 75062, USA
| | - Anshu Yadav
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824-1322, USA
| | - Milton R. Smith
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824-1322, USA,Corresponding author. (M.R. Smith), (R.E. Maleczka)
| | - Robert E. Maleczka
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824-1322, USA,Corresponding author
| |
Collapse
|
25
|
Šterman A, Sosič I, Časar Z. Primary trifluoroborate-iminiums enable facile access to chiral α-aminoboronic acids via Ru-catalyzed asymmetric hydrogenation and simple hydrolysis of the trifluoroborate moiety. Chem Sci 2022; 13:2946-2953. [PMID: 35432849 PMCID: PMC8905798 DOI: 10.1039/d1sc07065g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 01/22/2023] Open
Abstract
This work describes the first preparation and application of primary trifluoroborate-iminiums (pTIMs) as a new, easily accessible and valuable class of organoboron derivatives. An array of structurally diverse pTIMs was prepared from potassium acyltrifluoroborates in excellent yields. Highly efficient and enantioselective [(R,R)-TethTsDpen-RuCl] complex-catalyzed hydrogenation of pTIMs provided direct access to chiral primary trifluoroborate-ammoniums (pTAMs). Moreover, facile synthesis of a series of structurally diverse chiral α-aminoboronic acids from chiral pTAMs was accomplished through novel, operationally simple and efficient conversion using hexamethyldisiloxane/aqueous HCl. Using no chromatography at any point, this work allowed easy access to chiral α-aminoboronic acids, as exemplified by the synthesis of optically pure anti-cancer drugs bortezomib and ixazomib.
Collapse
Affiliation(s)
- Andrej Šterman
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
| | - Zdenko Časar
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia Verovškova ulica 57 SI-1526 Ljubljana Slovenia
| |
Collapse
|
26
|
Das BC, Nandwana NK, Ojha DP, Das S, Evans T. Synthesis of a boron-containing amidoxime reagent and its application to synthesize functionalized oxadiazole and quinazolinone derivatives. Tetrahedron Lett 2022; 92:153657. [PMID: 35935920 PMCID: PMC9348647 DOI: 10.1016/j.tetlet.2022.153657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, we report the design, synthesis and application of a borylated amidoxime reagent for the direct synthesis of functionalized oxadiazole and quinazolinone derivatives. This reagent exhibits broad synthetic utility to obtain a variety of biologically relevant drug-like molecules. It can be easily prepared at large scale from relatively inexpensive reagents, and can undergo facile transformations to obtain target compounds. The developed amidoxime reagent was synthesized from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile and hydroxyl amine hydrochloride using N,N-diisopropylethylamine as a base in ethanol under reflux conditions. Overall advantages include a metal-free route to boronated oxadiazoles, quinazolinone derivatives, and restriction of the multistep sequences. Importantly, the boron-rich pharmacophore derived compounds were obtained through an efficient and inexpensive strategy.
Collapse
Affiliation(s)
- Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY-11201, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Nitesh K Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY-11201, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Devi P Ojha
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasmita Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
27
|
Li Z, Xu R, Guo H, Yang H, Xu G, Shi E, Xiao J, Tang W. Enantioselective Rhodium-Catalyzed Hydrogenation of ( Z)- N-Sulfonyl-α-dehydroamido Boronic Esters. Org Lett 2022; 24:714-719. [PMID: 34978454 DOI: 10.1021/acs.orglett.1c04157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Highly enantioselective rhodium-catalyzed hydrogenation of (Z)-N-sulfonyl-α-dehydroamido boronic esters is realized for the first time using a JosiPhos-type ligand. This method has enabled convenient synthesis of a series of enantio-enriched N-sulfonyl-α-amido boronic esters in good yields and excellent enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Zhenya Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ronghua Xu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai 200032, China
| | - Huichuang Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai 200032, China
| | - Guangqing Xu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai 200032, China
| | - Enxue Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Junhua Xiao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
28
|
Chatterjee S, Tripathi NM, Bandyopadhyay A. The modern role of boron as a 'magic element' in biomedical science: chemistry perspective. Chem Commun (Camb) 2021; 57:13629-13640. [PMID: 34846393 DOI: 10.1039/d1cc05481c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Boron was misconstrued as a toxic element for animals, which retarded the growth of boron-containing drug discovery in the last century. Nevertheless, modern applications of boronic acid derivatives are attractive in biomedical applications after the declaration that boron is a 'probable essential element' for humans by the WHO. Additionally, the approval of five boronic acid-containing drugs by the FDA has vastly impacted the use of boron in medicinal chemistry, chemical biology, drug delivery, biomaterial exploration, pharmacological improvements, and nutrition. This review article focuses on the chemistries attributed to boronic acids at physiological pH, enticing chemists to multidisciplinary applications. Prospective uses of boronic acid in pharma and chemical biology, along with prospects and challenges, are also part of the deliberation. Understanding these fundamental chemistries and interactions of boronic acid in biological systems will enable solving future challenges in drug discovery and executing space-age applications.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| |
Collapse
|
29
|
Dasgupta A, Pahar S, Babaahmadi R, Gierlichs L, Yates BF, Ariafard A, Melen RL. Borane Catalyzed Selective Diazo Cross‐Coupling Towards Pyrazoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales United Kingdom
| | - Sanjukta Pahar
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales United Kingdom
| | - Rasool Babaahmadi
- School of Natural Sciences (Chemistry) University of Tasmania Private Bag 75 Hobart Tasmania 7001 Australia
| | - Lukas Gierlichs
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales United Kingdom
| | - Brian F. Yates
- School of Natural Sciences (Chemistry) University of Tasmania Private Bag 75 Hobart Tasmania 7001 Australia
| | - Alireza Ariafard
- School of Natural Sciences (Chemistry) University of Tasmania Private Bag 75 Hobart Tasmania 7001 Australia
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales United Kingdom
| |
Collapse
|
30
|
Post-translational insertion of boron in proteins to probe and modulate function. Nat Chem Biol 2021; 17:1245-1261. [PMID: 34725511 PMCID: PMC8604732 DOI: 10.1038/s41589-021-00883-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Boron is absent in proteins, yet is a micronutrient. It possesses unique bonding that could expand biological function including modes of Lewis acidity not available to typical elements of life. Here we show that post-translational Cβ–Bγ bond formation provides mild, direct, site-selective access to the minimally sized residue boronoalanine (Bal) in proteins. Precise anchoring of boron within complex biomolecular systems allows dative bond-mediated, site-dependent protein Lewis acid–base-pairing (LABP) by Bal. Dynamic protein-LABP creates tunable inter- and intramolecular ligand–host interactions, while reactive protein-LABP reveals reactively accessible sites through migratory boron-to-oxygen Cβ–Oγ covalent bond formation. These modes of dative bonding can also generate de novo function, such as control of thermo- and proteolytic stability in a target protein, or observation of transient structural features via chemical exchange. These results indicate that controlled insertion of boron facilitates stability modulation, structure determination, de novo binding activities and redox-responsive ‘mutation’. ![]()
Post-translational site-selective formation of boronoalanine in proteins enables applications of boron for binding partner capture, footprinting of interactions with reactive oxygen species, proteolytic control and mapping of transient structures.
Collapse
|
31
|
Borane-catalysed S–H insertion reaction of thiophenols and thiols with α-aryl-α-diazoesters. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Ming W, Soor HS, Liu X, Trofimova A, Yudin AK, Marder TB. α-Aminoboronates: recent advances in their preparation and synthetic applications. Chem Soc Rev 2021; 50:12151-12188. [PMID: 34585200 DOI: 10.1039/d1cs00423a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Aminoboronic acids and their derivatives are useful as bioactive agents. Thus far, three compounds containing an α-aminoboronate motif have been approved by the Food and Drug Administration (FDA) as protease inhibitors, and more are currently undergoing clinical trials. In addition, α-aminoboronic acids and their derivatives have found applications in organic synthesis, e.g. as α-aminomethylation reagents for the synthesis of chiral nitrogen-containing molecules, as nucleophiles for preparing valuable vicinal amino alcohols, and as bis-nucleophiles in the construction of valuable small molecule scaffolds. This review summarizes new methodology for the preparation of α-aminoboronates, including highlights of asymmetric synthetic methods and mechanistic explanations of reactivity. Applications of α-aminoboronates as versatile synthetic building blocks are also discussed.
Collapse
Affiliation(s)
- Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Harjeet S Soor
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
33
|
Affiliation(s)
- Ximei Zhao
- School of Chemistry and Materials Science Ludong University Yantai 264025 P. R. China
| | - Guanghui Wang
- School of Chemistry and Materials Science Ludong University Yantai 264025 P. R. China
| | | |
Collapse
|
34
|
Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. Electrochemical Borylation of Alkyl Halides: Fast, Scalable Access to Alkyl Boronic Esters. J Am Chem Soc 2021; 143:12985-12991. [PMID: 34374534 DOI: 10.1021/jacs.1c06473] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a fast, scalable, and transition-metal-free borylation of alkyl halides (X = I, Br, Cl) enabled by electroreduction is reported. This process provides an efficient and practical access to primary, secondary, and tertiary boronic esters at a high current. More than 70 examples, including the late-stage borylation of natural products and drug derivatives, are furnished at room temperature, thereby demonstrating the broad utility and functional-group tolerance of this protocol. Mechanistic studies disclosed that B2cat2 serves as both a reagent and a cathodic mediator, enabling electroreduction of difficult-to-reduce alkyl bromides or chlorides at a low potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingquan Lu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
35
|
Nakano M, Nakamura R, Sumida Y, Nagao K, Furuyama T, Inagaki F, Ohmiya H. Fluorescent-Oxaboroles: Synthesis and Optical Property by Sugar Recognition. Chem Pharm Bull (Tokyo) 2021; 69:526-528. [PMID: 34078798 DOI: 10.1248/cpb.c21-00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The optical property of fluorescent unit-conjugated aliphatic oxaboroles has been investigated. The oxaboroles provide good fluorescence quantum yields and selective recognition toward D-ribose and D-ribose containing molecules. The molecular recognition induced significant fluorescence quenching. The property of the boroles showed the possibility of the boron-based nicotinamide adenine dinucleotide (NAD) sensor probe.
Collapse
Affiliation(s)
- Misaki Nakano
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Rikako Nakamura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | | | | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
36
|
Douglas CD, Grandinetti L, Easton NM, Kuehm OP, Hayden JA, Hamilton MC, St Maurice M, Bearne SL. Slow-Onset, Potent Inhibition of Mandelate Racemase by 2-Formylphenylboronic Acid. An Unexpected Adduct Clasps the Catalytic Machinery. Biochemistry 2021; 60:2508-2518. [PMID: 34339165 DOI: 10.1021/acs.biochem.1c00374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
o-Carbonyl arylboronic acids such as 2-formylphenylboronic acid (2-FPBA) are employed in biocompatible conjugation reactions with the resulting iminoboronate adduct stabilized by an intramolecular N-B interaction. However, few studies have utilized these reagents as active site-directed enzyme inhibitors. We show that 2-FPBA is a potent reversible, slow-onset inhibitor of mandelate racemase (MR), an enzyme that has served as a valuable paradigm for understanding enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. Kinetic analysis of the progress curves for the slow onset of inhibition of wild-type MR using a two-step kinetic mechanism gave Ki and Ki* values of 5.1 ± 1.8 and 0.26 ± 0.08 μM, respectively. Hence, wild-type MR binds 2-FPBA with an affinity that exceeds that for the substrate by ∼3000-fold. K164R MR was inhibited by 2-FPBA, while K166R MR was not inhibited, indicating that Lys 166 was essential for inhibition. Unexpectedly, mass spectrometric analysis of the NaCNBH3-treated enzyme-inhibitor complex did not yield evidence of an iminoboronate adduct. 11B nuclear magnetic resonance spectroscopy of the MR·2-FPBA complex indicated that the boron atom was sp3-hybridized (δ 6.0), consistent with dative bond formation. Surprisingly, X-ray crystallography revealed the formation of an Nζ-B dative bond between Lys 166 and 2-FPBA with intramolecular cyclization to form a benzoxaborole, rather than the expected iminoboronate. Thus, when o-carbonyl arylboronic acid reagents are employed to modify proteins, the structure of the resulting product depends on the protein architecture at the site of modification.
Collapse
Affiliation(s)
- Colin D Douglas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lia Grandinetti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicole M Easton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Meghan C Hamilton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
37
|
Chen CH, Zheng WH. Planar Chiral B-N Heteroarenes Based on [2.2]Paracyclophane as Circularly Polarized Luminescence Emitters. Org Lett 2021; 23:5554-5558. [PMID: 34196557 DOI: 10.1021/acs.orglett.1c01924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Planar chiral boron-nitrogen heteroarenes based on [2.2]paracyclophane were successfully synthesized in a few steps as a new family of circularly polarized luminescence emitters. It represents the first case of boron-nitrogen heteroarenes with planar chirality. Those compounds have been demonstrated to exhibit strong circularly polarized luminescence signals and high quantum yields, in both solution and doped film (with glum up to 5.0 × 10-3 and Φsolution up to 73%).
Collapse
Affiliation(s)
- Chun-Hua Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
38
|
Stefkova K, Heard MJ, Dasgupta A, Melen RL. Borane catalysed cyclopropenation of arylacetylenes. Chem Commun (Camb) 2021; 57:6736-6739. [PMID: 34132279 DOI: 10.1039/d1cc01856f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triarylboranes have gained substantial attention as catalysts for C-C bond forming reactions due to their remarkable catalytic activities. Herein, we report B(C6F5)3 catalysed cyclopropenation of a wide variety of arylacetylenes using donor-acceptor diazoesters. A mild reaction protocol has been developed for the synthesis of functionalised cyclopropenes (33 examples) in good to excellent yields.
Collapse
Affiliation(s)
- Katarina Stefkova
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Matthew J Heard
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Ayan Dasgupta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
39
|
Van den Kerkhof M, Leprohon P, Mabille D, Hendrickx S, Tulloch LB, Wall RJ, Wyllie S, Chatelain E, Mowbray CE, Braillard S, Ouellette M, Maes L, Caljon G. Identification of Resistance Determinants for a Promising Antileishmanial Oxaborole Series. Microorganisms 2021; 9:microorganisms9071408. [PMID: 34210040 PMCID: PMC8305145 DOI: 10.3390/microorganisms9071408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada; (P.L.); (M.O.)
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Lindsay B. Tulloch
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Richard J. Wall
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Susan Wyllie
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Charles E. Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Stéphanie Braillard
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada; (P.L.); (M.O.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
- Correspondence: ; Tel.: +32-32652610
| |
Collapse
|
40
|
Prattes M, Grishkovskaya I, Hodirnau VV, Rössler I, Klein I, Hetzmannseder C, Zisser G, Gruber CC, Gruber K, Haselbach D, Bergler H. Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nat Commun 2021; 12:3483. [PMID: 34108481 PMCID: PMC8190095 DOI: 10.1038/s41467-021-23854-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | | | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Klein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
41
|
Coghi PS, Zhu Y, Xie H, Hosmane NS, Zhang Y. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules 2021; 26:3309. [PMID: 34072937 PMCID: PMC8199504 DOI: 10.3390/molecules26113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Paolo Saul Coghi
- School of Pharmacy Macau, University of Science and Technology, Taipa Macau 999078, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa Macau 999078, China
| | - Yinghuai Zhu
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Hongming Xie
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| |
Collapse
|
42
|
Kubota K, Miura D, Takeuchi T, Osaki S, Ito H. Synthesis of Chiral α-Amino Tertiary Boronates via the Catalytic Enantioselective Nucleophilic Borylation of Dialkyl Ketimines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Daiyo Miura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takumi Takeuchi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Shun Osaki
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
43
|
Estevez-Fregoso E, Farfán-García ED, García-Coronel IH, Martínez-Herrera E, Alatorre A, Scorei RI, Soriano-Ursúa MA. Effects of boron-containing compounds in the fungal kingdom. J Trace Elem Med Biol 2021; 65:126714. [PMID: 33453473 DOI: 10.1016/j.jtemb.2021.126714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated. METHODS In this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed. RESULTS It is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions. CONCLUSIONS New BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Eunice D Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| | - Itzel H García-Coronel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico; Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Alberto Alatorre
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Romulus I Scorei
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| |
Collapse
|
44
|
Golovanov IS, Sukhorukov AY. Merging Boron with Nitrogen-Oxygen Bonds: A Review on BON Heterocycles. Top Curr Chem (Cham) 2021; 379:8. [PMID: 33544252 DOI: 10.1007/s41061-020-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022]
Abstract
Cyclic boronate esters play important roles in organic synthesis, pharmacology, supramolecular chemistry and materials science owing to their stability in air and versatile reactivity. Most of these compounds contain a B-O-C linkage with an alkoxy- or carboxylate group bound to the boron atom (e.g. boronate-diol esters, MIDA boronates). Boron chelates comprising a B-O-N motif (BON heterocycles) are much less explored, although first representatives of this class were prepared in the early 1960s. In recent years, there has been a growing interest in BON heterocycles as new chemotypes for drug design. The exocyclic B-O-N linkage, which is readily formed under mild conditions, shows surprising hydrolytic and thermal resistance. This allows the formation of BON heterocycles to be used as click-type reactions for the preparation of bioconjugates and functionally modified polymers. We believe that BON heterocycles are promising yet underrated organoboron derivatives. This review summarizes the scattered information about known types of BON heterocycles, including their synthesis, reactivity and structural data. Available applications of BON heterocycles in materials science and medicinal chemistry, along with their prospects, are also discussed. The bibliography contains 289 references.
Collapse
Affiliation(s)
- Ivan S Golovanov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
- Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Stremyanny lane, 36, 117997, Moscow, Russia.
| |
Collapse
|
45
|
Shere H, Hill MS, Pécharman AF, Mahon MF. Reactivity of a magnesium diboranate with organic nitriles. Dalton Trans 2021; 50:1283-1292. [PMID: 33393542 DOI: 10.1039/d0dt04016a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of complexes generated through reactions of the β-diketiminato magnesium diboranate species, [(BDI)Mg{(n-Bu)pinB-Bpin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-di-iso-propylphenyl), and a variety of organic nitriles are reported. Although, in every case, the diboranate anion acts as a surrogate source of the {Bpin} nucleophile, resulting in B-C bond formation at the electrophilic sp-hydridised nitrile carbon, the resultant compounds display a variable propensity to undergo subsequent reaction with additional nitrile equivalents. This behaviour is rationalised to be a consequence of substituent-dependent modulation in the basicity and resultant electrophilicity of magnesium-coordinated nitrile intermediates.
Collapse
Affiliation(s)
- Henry Shere
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
46
|
|
47
|
Hao G, Li H, Yang F, Dong D, Li Z, Ding Y, Pan W, Wang E, Liu R, Zhou H. Discovery of benzhydrol-oxaborole derivatives as Streptococcus pneumoniae leucyl-tRNA synthetase inhibitors. Bioorg Med Chem 2020; 29:115871. [PMID: 33221064 DOI: 10.1016/j.bmc.2020.115871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 01/24/2023]
Abstract
Pneumonia caused by bacterium S. pneumoniae is a severe acute respiratory infectious disease with high morbidity and mortality, especially for children and immunity-compromised patients. The emergence of multidrug-resistant S. pneumoniae also presents a challenge to human health. Leucyl-tRNA synthetase (LeuRS) catalyzes the attachment of l-leucine to tRNALeu, which plays an essential role in protein translation and is considered an attractive antimicrobial drug target. In the present work, benzhydrol-oxaborole hybrid compounds were designed and synthesized as inhibitors of S. pneumoniae LeuRS. Exploration of the phenyl ring near Lysine 389 eventually yielded compounds 46 and 54 with submicromolar inhibitory potency. The co-crystal of compound 54 in the editing domain pocket of SpLeuRS was obtained and confirmed the formation of an additional hydrogen bond between the carbonyl of 54 and Lysine 389. It also showed anti-pneumococcal activity in vitro. The structure-activity relationship was discussed. This work will provide an essential foundation for the further development of anti-pneumococcal agents by targeting LeuRS.
Collapse
Affiliation(s)
- Guiyun Hao
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Fei Yang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Duoling Dong
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zezhong Li
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yingying Ding
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wei Pan
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Enduo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China.
| | - Rujuan Liu
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, People's Republic of China.
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
48
|
Xue W, Oestreich M. Beyond Carbon: Enantioselective and Enantiospecific Reactions with Catalytically Generated Boryl- and Silylcopper Intermediates. ACS CENTRAL SCIENCE 2020; 6:1070-1081. [PMID: 32724842 PMCID: PMC7379128 DOI: 10.1021/acscentsci.0c00738] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Catalytic asymmetric C-C bond formation with alkylcopper intermediates as carbon nucleophiles is now textbook chemistry. Related chemistry with boron and silicon nucleophiles where the boryl- and accordingly silylcopper intermediates are catalytically regenerated from bench-stable pronucleophiles had been underdeveloped for years or did not even exist until recently. Over the past decade, asymmetric copper catalysis employing those main-group elements as nucleophiles rapidly transformed into a huge field in its own right with an impressive breadth of enantioselective C-B and C-Si bond-forming reactions, respectively. Its current state of the art does not have to shy away from comparison with that of boron's and silicon's common neighbor in the periodic table, carbon. This Outlook is not meant to be a detailed summary of those manifold advances. It rather aims at providing a brief conceptual summary of what forms the basis of the latest exciting progress, especially in the area of three-component reactions and cross-coupling reactions.
Collapse
Affiliation(s)
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
49
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
50
|
Takale BS, Thakore RR, Etemadi-Davan E, Lipshutz BH. Recent advances in Cu-catalyzed C(sp 3)-Si and C(sp 3)-B bond formation. Beilstein J Org Chem 2020; 16:691-737. [PMID: 32362947 PMCID: PMC7176932 DOI: 10.3762/bjoc.16.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Numerous reactions generating C-Si and C-B bonds are in focus owing to the importance of incorporating silicon or boron into new or existing drugs, in addition to their use as building blocks in cross-coupling reactions en route to various targets of both natural and unnatural origins. In this review, recent protocols relying on copper-catalyzed sp3 carbon-silicon and carbon-boron bond-forming reactions are discussed.
Collapse
Affiliation(s)
- Balaram S Takale
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Ruchita R Thakore
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Elham Etemadi-Davan
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|