1
|
Shu Y, Zhou X, Yang J, Lan F, Li W, Zhang Z, Li W, Guan Q, Ma S. Fragmented Ultrathin Carbon Buffed Copper Clusters for Selective Hydrogenation of N-Heteroarenes under Ambient Pressure. J Am Chem Soc 2025; 147:15578-15590. [PMID: 40266893 DOI: 10.1021/jacs.5c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Selective hydrogenation of quinolines to 1,2,3,4-tetrahydroquinolines (py-THQ) realized by cost-effective catalysts holds great importance in the pharmaceutical and agrochemical industries but is challenging due to the high requirement of antipoisoning ability and selectivity. Herein, we propose a universal strategy for the preparation of ultrathin carbon-coated Cu nanoclusters inside the channels of MCM-41 by etching the carbonized template with oxygen-containing gas. The optimized catalyst (Cu/C@MCM-A) exhibits 100% quinoline conversion and 100% py-THQ selectivity at 80 °C and atmospheric pressure. This catalyst also maintained a nearly 100% py-THQ yield at 0.3 MPa for 100 h. In situ characterizations reveal that adjusting the oxygen content in the etching gas enables precise control of the carbon layer thickness and Cu particle size. Experimental results and DFT calculations confirm that the introduction of fragmented ultrathin carbon generates numerous Cu-C interfaces, which can prevent catalyst deactivation by poisoning and reduce the H2 dissociation barrier by increasing local charge density. The synergy between Cu0 and Cu+ species ensures efficient and specific transformation. Moreover, Cu/C@MCM-A demonstrates highly selective hydrogenation activities toward other quinoline derivatives, as well as indole, naphthalene, and indene. This work unlocks a unique route for constructing carbon-confined metal clusters to achieve continuous production in selective hydrogenation.
Collapse
Affiliation(s)
- Yu Shu
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingnan Yang
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fujun Lan
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenjiang Li
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zilu Zhang
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Li
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qingxin Guan
- State Key Laboratory of Elemento-Organic Chemistry, State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
2
|
Ying Y, Fan K, Lin Z, Huang H. Facing the "Cutting Edge:" Edge Site Engineering on 2D Materials for Electrocatalysis and Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418757. [PMID: 39887476 PMCID: PMC11899551 DOI: 10.1002/adma.202418757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Indexed: 02/01/2025]
Abstract
The utilization of 2D materials as catalysts has garnered significant attention in recent years, primarily due to their exceptional features including high surface area, abundant exposed active sites, and tunable physicochemical properties. The unique geometry of 2D materials imparts them with versatile active sites for catalysis, including basal plane, interlayer, defect, and edge sites. Among these, edge sites hold particular significance as they not only enable the activation of inert 2D catalysts but also serve as platforms for engineering active sites to achieve enhanced catalytic performance. Here it is comprehensively aimed to summarize the state-of-the-art advancements in the utilization of edge sites on 2D materials for electrocatalysis and photocatalysis, with applications ranging from water splitting, oxygen reduction, and nitrogen reduction to CO2 reduction. Additionally, various approaches for harnessing and modifying edge sites are summarized and discussed. Here guidelines for the rational engineering of 2D materials for heterogeneous catalysis are provided.
Collapse
Affiliation(s)
- Yiran Ying
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Ke Fan
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- School of Materials Science and EngineeringAnhui UniversityHefei230601P. R. China
| | - Zezhou Lin
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Haitao Huang
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
3
|
Zou J, Bao L, Sun Q, Bao C, Chen H, Liu H. Oxygen Reduction Reaction Catalysts for Zinc-Air Batteries Featuring Single Cobalt Atoms in a Nitrogen-Doped 3D-Interconnected Porous Graphene Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409506. [PMID: 39811938 DOI: 10.1002/smll.202409506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs. In this 3D NrGO, the Co-N4 sites endow high-efficiency ORR activity, and the 3D-interconnected porous architectures of NrGOs guarantee numberous active sites accessibility. Compared to commercial Pt/C catalyst (≈5.8 mA cm-2), as-prepared Co-NrGO-SACs presents considerable limiting current density of ≈5.9 mA cm-2, prominent half-wave potential of ≈0.84 V, onset potential of ≈1.05 V, and as well as superior methanol resistance. Particularly, ZABs with Co-NrGO-SACs deliver remarkable power density (≈240 mW cm-2), super durability of over 233 h at 5 mA cm-2, outperforming noble-metal-based benchmarks. This work provides an effective noble-metal free carbon-based SAC nano-engineering for superdurable ZABs.
Collapse
Affiliation(s)
- Jiaxin Zou
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Lishi Bao
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Qifeng Sun
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Chenguang Bao
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hui Chen
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Advanced Carbon Materials Research Institute in Hunan Province, Changsha, Hunan, 410082, China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Advanced Carbon Materials Research Institute in Hunan Province, Changsha, Hunan, 410082, China
| |
Collapse
|
4
|
Zhang M, Wang Z, Bo X, Huang R, Deng D. Two-Dimensional Catalysts: From Model to Reality. Angew Chem Int Ed Engl 2025; 64:e202419661. [PMID: 39617995 DOI: 10.1002/anie.202419661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 12/12/2024]
Abstract
Two-dimensional (2D) materials have been utilized broadly in kinds of catalytic reactions due to their fully exposed active sites and special electronic structure. Compared with real catalysts, which are usually bulk or particle, 2D materials have more well-defined structures. With easily identified structure-modulated engineering, 2D materials become ideal models to figure out the catalytic structure-function relations, which is helpful for the precise design of catalysts. In this review, the unique function of 2D materials was summarized from model study to reality catalysis and application. It includes several typical 2D materials, such as graphene, transition metal dichalcogenides, metal, and metal (hydr)oxide materials. We introduced the structural characteristics of 2D materials and their advantages in model researches. It emphatically summarized how 2D materials serve as models to explore the structure-activity relationship by combining theoretical calculations and surface research. The opportunities of 2D materials and the challenges for fundamentals and applications they facing are also addressed. This review provides a reference for the design of catalyst structure and composition, and could inspire the realization of two-dimensional materials from model study to reality application in industry.
Collapse
Affiliation(s)
- Mo Zhang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Zifeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Bo
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Rui Huang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Wu B, Meng H, Chen X, Guo Y, Jiang L, Shi X, Zhu J, Long J, Gao W, Zeng F, Jiang WJ, Zhu Y, Wang D, Mai L. Structural Modulation of Nanographenes Enabled by Defects, Size and Doping for Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202415071. [PMID: 39533821 DOI: 10.1002/anie.202415071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Nanographenes are among the fastest-growing materials used for the oxygen reduction reaction (ORR) thanks to their low cost, environmental friendliness, excellent electrical conductivity, and scalable synthesis. The perspective of replacing precious metal-based electrocatalysts with functionalized graphene is highly desirable for reducing costs in energy conversion and storage systems. Generally, the enhanced ORR activity of the nanographenes is typically deemed to originate from the heteroatom doping effect, size effect, defects effect, and/or their synergistic effect. All these factors can efficiently modify the charge distribution on the sp2-conjugated carbon framework, bringing about optimized intermediate adsorption and accelerated electron transfer steps during ORR. In this review, the fundamental chemical and physical properties of nanographenes are first discussed about ORR applications. Afterward, the role of doping, size, defects, and their combined influence in boosting nanographenes' ORR performance is introduced. Finally, significant challenges and essential perspectives of nanographenes as advanced ORR electrocatalysts are highlighted.
Collapse
Affiliation(s)
- Bin Wu
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489, Berlin, Germany
- Present address: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- Institute of Physics, Humboldt University Berlin, Newton-Straße 15, 12489, Berlin, Germany
| | - Haibing Meng
- Present address: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024, Taiyuan
| | - Xingbao Chen
- Present address: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, 430070, Wuhan, China
| | - Ying Guo
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024, Taiyuan
| | - Li Jiang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China
| | - Xiaofeng Shi
- School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, 430070, Wuhan, China
| | - Juncai Long
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, 430070, Wuhan, China
| | - Wenliang Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Feng Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Wen-Jie Jiang
- Department of Chemical Engineering, The University of Melbourne, 3010, Melbourne, Victoria
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, 430070, Wuhan, China
| |
Collapse
|
6
|
Zhen Z, Gao X, Chen J, Chen Y, Chen X, Cui L. Research Progress on Ni-Based Electrocatalysts for the Electrochemical Reduction of Nitrogen to Ammonia. Chemistry 2024; 30:e202402562. [PMID: 39210677 DOI: 10.1002/chem.202402562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to synthesize ammonia (NH3) is considered as a promising method due to its approvable advantages of zero-pollution emission, feasible reaction proceedings, good safety and easy management. The multiple efforts have been devoted to the exploration of earth-abundant-element-based nanomaterials as high-efficiency electrocatalysts for realizing their industrial applications. Among these, the Ni-based nanomaterials is prioritized as an attractive non-noble-metal electrocatalysts for catalyzing NRR because they are earth-abundance and exceedingly easy to synthesize as well as also delivers the potential of high electrocatalytic activity and durability. In this review, after briefly elucidating the underlying mechanisms of NRR during the electrochemical process, we systematically sum up the recent research progress in representative Ni-based electrocatalysts, including monometallic Ni-based nanomaterials, bimetallic Ni-based nanomaterials, polymetallic Ni-based nanomaterials, etc. In particular, we discuss the effects of physicochemical properties, such as phases, crystallinity, morphology, composition, defects, heteroatom doping, and strain engineering, on the comprehensive performance of the abovementioned electrocatalysts, with the aim of establishing the nanostructure-function relationships of the electrocatalysts. In addition, the promising directions of Ni-based electrocatalysts for NRR are also pointed out and highlighted. The generic approach in this review may expand the frontiers of NRR and provides the inspiration for developing high-efficiently Ni-based electrocatalysts.
Collapse
Affiliation(s)
- Zheng Zhen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Gao
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Kundu J, Kwon T, Lee K, Choi S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. EXPLORATION (BEIJING, CHINA) 2024; 4:20220174. [PMID: 39175883 PMCID: PMC11335471 DOI: 10.1002/exp.20220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 08/24/2024]
Abstract
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Joyjit Kundu
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoulRepublic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
8
|
Ribeiro RS, Florent M, Delgado JJ, Pereira MFR, Bandosz TJ. Converting carbon black into an efficient and multi-site ORR electrocatalyst: the importance of bottom-up construction parameters. NANOSCALE 2023; 15:18592-18602. [PMID: 37960972 DOI: 10.1039/d3nr04244h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
To boost efficient energy transitions, alternatives to expensive and unsustainable noble metal-based electrocatalysts for the oxygen reduction reaction (ORR) are needed. Having this in mind, carbon black - Black Pearls 2000 (BP) was enriched in active nitrogen-containing centers, including single-atom Fe-N sites surrounded by Fe nanoclusters, through a synthesis methodology employing only broadly available precursors. The methodical approach taken to optimize the synthesis conditions highlighted the importance of (1) a proper choice of the Fe precursor; (2) melamine as an N source to limit the formation of magnetite crystals and modulate the charge density nearby the active sites, and glucose to chelate/isolate Fe atoms and thus allow the Fe-N coordination to be established, with a limiting formation of Fe0 clusters; and (3) a careful dosing of the Fe load. The ORR on the optimized electrocatalyst (Fe0.06-N@BP) proceeds mostly through a four-electron pathway, having an onset potential (0.912 V vs. RHE) and limiting current density (4.757 mA cm-2) above those measured on Pt/C (0.882 V and 4.657 mA cm-2, respectively). Moreover, the current density yielded by Fe0.06-N@BP after 24 h at 0.4 V vs. RHE was still above that of Pt/C at t = 0 (4.44 mA cm-2), making it a promising alternative to noble metal-containing electrocatalysts in fuel cells.
Collapse
Affiliation(s)
- Rui S Ribeiro
- Department of Chemistry and Biochemistry, The City College of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marc Florent
- Department of Chemistry and Biochemistry, The City College of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Juan J Delgado
- IMEYMAT: Institute of Research on Electron Microscopy and Materials, University of Cádiz, E11510 Puerto Real, Cádiz, Spain
- Departamento de Ciencia de Materiales, Ingeniería Metalúrgica y Química Inorgánica, University of Cádiz, E11510 Puerto Real, Cádiz, Spain
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
| |
Collapse
|
9
|
Long Y, Lin J, Ye F, Liu W, Wang D, Cheng Q, Paul R, Cheng D, Mao B, Yan R, Zhao L, Liu D, Liu F, Hu C. Tailoring the Atomic-Local Environment of Carbon Nanotube Tips for Selective H 2 O 2 Electrosynthesis at High Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303905. [PMID: 37535390 DOI: 10.1002/adma.202303905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Indexed: 08/04/2023]
Abstract
The atomic-local environment of catalytically active sites plays an important role in tuning the activity of carbon-based metal-free electrocatalysts (C-MFECs). However, the rational regulation of the environment is always impeded by synthetic limitations and insufficient understanding of the formation mechanism of the catalytic sites. Herein, the possible cleavage mechanism of carbon nanotubes (CNTs) through the crossing points during ball-milling is proposed, resulting in abundant CNT tips that are more susceptible to be modified by heteroatoms, achieving precise modulation of the atomic environment at the tips. The obtained CNTs with N,S-rich tips (N,S-TCNTs) exhibit a wide potential window of 0.59 V along with H2 O2 selectivity for over 90.0%. Even using air as the O2 source, the flow cell system with N,S-TCNTs catalyst attains high H2 O2 productivity up to 30.37 mol gcat. -1 h-1 @350 mA cm-2 , superior to most reported C-MFECs. From a practical point of view, a solid electrolyzer based on N,S-TCNTs is further employed to realize the in-situ continuous generation of pure H2 O2 solution with high productivity (up to 4.35 mmol cm-2 h-1 @300 mA cm-2 ; over 300 h). The CNTs with functionalized tips hold great promise for practical applications, even beyond H2 O2 generation.
Collapse
Affiliation(s)
- Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinguo Lin
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Mi J, Chen L, Ma J, Yang K, Hou T, Liu M, Lv W, He YB. Defect Strategy in Solid-State Lithium Batteries. SMALL METHODS 2023:e2301162. [PMID: 37821415 DOI: 10.1002/smtd.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Solid-state lithium batteries (SSLBs) have great development prospects in high-security new energy fields, but face major challenges such as poor charge transfer kinetics, high interface impedance, and unsatisfactory cycle stability. Defect engineering is an effective method to regulate the composition and structure of electrodes and electrolytes, which plays a crucial role in dominating physical and electrochemical performance. It is necessary to summarize the recent advances regarding defect engineering in SSLBs and analyze the mechanism, thus inspiring future work. This review systematically summarizes the role of defects in providing storage sites/active sites, promoting ion diffusion and charge transport of electrodes, and improving structural stability and ionic conductivity of solid-state electrolytes. The defects greatly affect the electronic structure, chemical bond strength and charge transport process of the electrodes and solid-state electrolytes to determine their electrochemical performance and stability. Then, this review presents common defect fabrication methods and the specific role mechanism of defects in electrodes and solid-state electrolytes. At last, challenges and perspectives of defect strategies in high-performance SSLBs are proposed to guide future research.
Collapse
Affiliation(s)
- Jinshuo Mi
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Likun Chen
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiabin Ma
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ke Yang
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Tingzheng Hou
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ming Liu
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wei Lv
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan-Bing He
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
11
|
Pawelski D, Plonska-Brzezinska ME. Microwave-Assisted Synthesis as a Promising Tool for the Preparation of Materials Containing Defective Carbon Nanostructures: Implications on Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6549. [PMID: 37834689 PMCID: PMC10573823 DOI: 10.3390/ma16196549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
In this review, we focus on a small section of the literature that deals with the materials containing pristine defective carbon nanostructures (CNs) and those incorporated into the larger systems containing carbon atoms, heteroatoms, and inorganic components.. Briefly, we discuss only those topics that focus on structural defects related to introducing perturbation into the surface topology of the ideal lattice structure. The disorder in the crystal structure may vary in character, size, and location, which significantly modifies the physical and chemical properties of CNs or their hybrid combination. We focus mainly on the method using microwave (MW) irradiation, which is a powerful tool for synthesizing and modifying carbon-based solid materials due to its simplicity, the possibility of conducting the reaction in solvents and solid phases, and the presence of components of different chemical natures. Herein, we will emphasize the advantages of synthesis using MW-assisted heating and indicate the influence of the structure of the obtained materials on their physical and chemical properties. It is the first review paper that comprehensively summarizes research in the context of using MW-assisted heating to modify the structure of CNs, paying attention to its remarkable universality and simplicity. In the final part, we emphasize the role of MW-assisted heating in creating defects in CNs and the implications in designing their properties and applications. The presented review is a valuable source summarizing the achievements of scientists in this area of research.
Collapse
Affiliation(s)
| | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| |
Collapse
|
12
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
13
|
Sheka EF. A Neoteric View of sp2 Amorphous Carbon. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101648. [PMID: 37242064 DOI: 10.3390/nano13101648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/28/2023]
Abstract
Presented is a concentrated synopsis of facilities of empirical and virtual analytics that, once applied, have provided a fully new vision of sp2 amorphous carbons. This study proved that the solids are multilevel structures, started with the first-level basic structural units (BSUs) and accomplished as macroscopic agglomerates of globular structures, consisting, in its turn, of stacked BSUs. BSUs present necklaced graphene molecules, size, and shape of which are governed by the relevant graphene domains while chemical composition in addition to basic carbon is controlled with heteroatoms of the necklaces. This study shows that BSUs and stacks of BSUs determine the short-range order of the solids and are the main subject of the applied analytics. The synopsis consists of two parts related to empirical and virtual analytics. The former is composed of sections related to structural determination, total and atomic chemical content evaluation and elicitation of the covalent bond composition. The second presents new analytic approaches based on the Digital Twins concept and virtual vibrational spectrometry. The synopsis is configured as an atlas composed of generalized pictures accompanied with necessary explanations to be discussed in detail in the extended references.
Collapse
Affiliation(s)
- Elena F Sheka
- Institute of Physical Researches and Technology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
14
|
Hu J, Zou Y, Li Y, Xiao Y, Li M, Lin L, Li B, Li XY. Efficacy and mechanism of peroxymonosulfate activation by single-atom transition metal catalysts for the oxidation of organic pollutants: Experimental validation and theoretical calculation. J Colloid Interface Sci 2023; 645:1-11. [PMID: 37126999 DOI: 10.1016/j.jcis.2023.04.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Single-atom catalysts can activate peroxymonosulfate (PMS) to enhance its oxidation of organic pollutants in water treatment. We synthesized a series of carbon-supported single-atom transition metal catalysts (MnN@C, FeN@C, CoN@C, NiN@C, and CuN@C) with similar compositions and structures. Their catalytic activity toward PMS activation and oxidation mechanisms were investigated using acid orange 7 (AO7) as a model pollutant. The degradation rate (min-1·mol-1·g·m-2) of AO7 followed order: FeN@C/PMS (7.576 × 103) > MnN@C/PMS (5.104 × 103) > CoN@C/PMS (1.919 × 103) ≫ NiN@C/PMS (0.058 × 103) > CuN@C/PMS (0.035 × 103). Electron transfer mediated by surface-activated PMS was found to be the main regime of AO7 oxidation in the catalytic systems. Density functional theory calculations indicated that the degradation of AO7 was promoted by the intense adsorption of PMS and the electron transfer between AO7 and the surface-activated PMS on the catalyst. The cleavage of the naphthalene ring and the azo group was the primary degradation pathway. The toxicity of the products was significantly reduced. This research provides valuable findings for preparing highly efficient single-atom transition metal catalysts for PMS-based degradation of toxic and refractory organic pollutants from water.
Collapse
Affiliation(s)
- Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yubin Zou
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yin Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yanan Xiao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Mu Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Xiao-Yan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Zhang C, Wu C, Wang L, Liu G. Selective H 2O 2 Electrosynthesis over Defective Carbon from Electrochemical Etching of Molybdenum Carbide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:838-847. [PMID: 36548982 DOI: 10.1021/acsami.2c15467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The controllable synthesis of specific defective carbon catalysts is crucial for two-electron oxygen reduction reaction (2e- ORR) to generate H2O2 due to the great potential applications. Herein, the defective carbon catalysts (Mo-CDC-ns) were prepared by an electrochemical activation (ECA) method with Mo2C/C as a parent. Electrochemical cyclic voltammetry curves, X-ray photoelectron spectroscopy, inductively coupled plasma-mass spectrometry, scanning electron microscopy, and high-resolution transmission electron microscopy confirm the evolution process of a defective carbon structure from the Mo2C phase in which Mo species are first oxidized to Mo6+ species and then the latter are dissolved into the solution and defective carbon is simultaneously formed. Raman and electron paramagnetic resonance spectra reveal that the defect types in Mo-CDC-ns are the edge defect and vacancy defect sites. Compared with the parent Mo2C/C, Mo-CDC-ns exhibit gradually increased kinetic current density and selectivity for H2O2 generation with an extension of activation cycles from 10 (Mo-CDC-10) to 30 (Mo-CDC-30). Over Mo-CDC-30, a kinetic current density of 19.4 mA cm-2 and a selectivity close to 90% in 0.1 M KOH solution were achieved, as well as good stability for H2O2 production in an extended test up to 12 h in an H-cell. Graphene planes and Stone Wales 5757-carbon were constructed as basic models for density functional theory calculations. It revealed that the obtained defective structure after the removal of Mo atoms contains the double vacancy at the edge of graphene (Edge-DVC) and the topological defect on the plane of 5757-carbon (5757C-D), which show more moderate reaction free energy for forming *OOH and smaller energy barrier of 2e- ORR.
Collapse
Affiliation(s)
- Chunyu Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Chan Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang315201, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang315201, China
| |
Collapse
|
16
|
Bhoyate SD, Kim J, de Souza FM, Lin J, Lee E, Kumar A, Gupta RK. Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Ultrasmall FeMoNi Tri-Metal Nanoparticles Confined by Tannic Acid-Derived Carbon as Bi-Functional Electrocatalyst for Oxygen Evolution and Urea Oxidation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Zhang P, Zhou P, Peng J, Liu Y, Zhang H, He C, Xiong Z, Liu W, Lai B. Insight into metal-free carbon catalysis in enhanced permanganate oxidation: Changeover from electron donor to electron mediator. WATER RESEARCH 2022; 219:118626. [PMID: 35605393 DOI: 10.1016/j.watres.2022.118626] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Reports that the exploitation of metal-free carbon materials to enhance permanganate (PM) oxidation to abate organic pollution in water have emerged in recent publications. However, the activation mechanism and active sites involved are ambiguous because of the intricate physicochemical properties of carbon. In this study, reduced graphene oxide (rGO) as a typical carbon material exhibits excellent capability to boost permanganate oxidation for removing a wide array of organic contaminants. The simultaneous two reaction pathways in the rGO/PM system were justified: i) rGO donates to electrons to decompose PM and produce highly reactive intermediate Mn species for oxidizing organic contaminants; ii) rGO mediates electron transfer from organics to PM. Oxygen-containing groups (hydroxyl, carboxyl, and carbonyl) were justified as electron-donating groups, while structural defects (vacancy and edge defects) were shown to be critical for rGO-mediated electron transfer. Therefore, the oxidation pathway of the rGO/PM system can be controlled by regulating oxygen functional groups and structural defects. The changeover from electron donor to electron mediator by decorating surface active sites of carbon materials will be of great help to the design and application of carbocatalysts.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Jiali Peng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Su LY, Huang HH, Tsai CE, Hou CH, Shyue JJ, Lu CH, Pao CW, Yu MH, Wang L, Chueh CC. Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107834. [PMID: 35532078 DOI: 10.1002/smll.202107834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/03/2022] [Indexed: 06/14/2023]
Abstract
As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T80 lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T80 lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N2 -controlled environment.
Collapse
Affiliation(s)
- Li-Yun Su
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Hsiang Huang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Material Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-En Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Department of Material Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Hao Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Wei Pao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Leeyih Wang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
20
|
Burshtein TY, Tamakuwala K, Sananis M, Grinberg I, Samala NR, Eisenberg D. Understanding hydrazine oxidation electrocatalysis on undoped carbon. Phys Chem Chem Phys 2022; 24:9897-9903. [PMID: 35416204 DOI: 10.1039/d2cp00213b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbons are ubiquitous electrocatalytic supports for various energy-related transformations, especially in fuel cells. Doped carbons such as Fe-N-C materials are particularly active towards the oxidation of hydrazine, an alternative fuel and hydrogen carrier. However, there is little discussion of the electrocatalytic role of the most abundant component - the carbon matrix - towards the hydrazine oxidation reaction (HzOR). We present a systematic investigation of undoped graphitic carbons towards the HzOR in alkaline electrolyte. Using highly oriented pyrolytic graphite electrodes, as well as graphite powders enriched in either basal planes or edge defects, we demonstrate that edge defects are the most active catalytic sites during hydrazine oxidation electrocatalysis. Theoretical DFT calculations support and explain the mechanism of HzOR on carbon edges, identifying unsaturated graphene armchair defects as the most likely active sites. Finally, these findings explain the 'double peak' voltammetric feature observed on many doped carbons during the HzOR.
Collapse
Affiliation(s)
- Tomer Y Burshtein
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Kesha Tamakuwala
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Matan Sananis
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | | - David Eisenberg
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| |
Collapse
|
21
|
Metallic glasses and metallic glass nanostructures for functional electrocatalytic applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Wang K, Chai H, Cao Y. Using Anion‐Exchange to Induce the Formation of Edge Defects in CoNx to Enhance ORR Activity. ChemCatChem 2022. [DOI: 10.1002/cctc.202200146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kun Wang
- Xinjiang University College of Chemistry CHINA
| | - Hui Chai
- Xinjiang University College of Chemistry CHINA
| | - Yali Cao
- Xinjiang University Institue of Applied Chemistry Shenli Road, No. 666 830046 Urumqi CHINA
| |
Collapse
|
23
|
A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63945-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Wang X, Chen J, Dong C, Wang D, Mao Z. Hard Carbon Derived from Graphite Anode by Mechanochemistry and the Enhanced Lithium‐Ion Storage Performance. ChemElectroChem 2022. [DOI: 10.1002/celc.202101613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaotong Wang
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Jingjing Chen
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Chenlong Dong
- Tianjin University of Technology School of Mateirals Science and Engineering CHINA
| | - Dajian Wang
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Zhiyong Mao
- School of Materials Science and Engineering, Tianjin University of Technology No 391. Binshui west road. Xiqing 300384 Tianjin CHINA
| |
Collapse
|
25
|
Fu N, Liang X, Li Z, Li Y. Single Atom Sites Catalysts based on High Specific Surface Area Supports. Phys Chem Chem Phys 2022; 24:17417-17438. [DOI: 10.1039/d2cp00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysis is the heart of modern chemical industry. Supports with high specific surface area are crucial for the fabrication of efficient catalysts with elevated metal dispersion. Single atom sites catalysts...
Collapse
|
26
|
Liu T, Jing Y, Li Y. Two-Dimensional Biphenylene: A Graphene Allotrope with Superior Activity toward Electrochemical Oxygen Reduction Reaction. J Phys Chem Lett 2021; 12:12230-12234. [PMID: 34928622 DOI: 10.1021/acs.jpclett.1c03851] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing efficient and inexpensive catalysts for the oxygen reduction reaction (ORR) is a key for sustainable development of fuel cell technologies. Herein, by means of density functional theory calculations and microkinetic modeling, we demonstrate that two-dimensional (2D) biphenylene, a recently synthesized allotrope of graphene composed of tetragonal, hexagonal, and octagonal rings, is a metal-free candidate for facilitating the electrochemical ORR. Different from semimetallic graphene, 2D biphenylene is metallic, and carbon atoms of its tetragonal rings are substantially positively charged, resulting in good ORR activity due to the enhanced binding strength with reaction intermediates. In particular, the ORR activity of 2D biphenylene is pH-dependent, and it can be significantly boosted under alkaline conditions. Moreover, 2D biphenylene possesses rather good electrochemical stability, rendering it attractive for alkaline fuel cells.
Collapse
Affiliation(s)
- Tianyang Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Jing
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
27
|
Burshtein TY, Aias D, Wang J, Sananis M, Farber EM, Gazit OM, Grinberg I, Eisenberg D. Fe-N-C electrocatalysts in the oxygen and nitrogen cycles in alkaline media: the role of iron carbide. Phys Chem Chem Phys 2021; 23:26674-26679. [PMID: 34668906 DOI: 10.1039/d1cp03650e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fe-N-C electrocatalysts hold a great promise for Pt-free energy conversion, driving the electrocatalysis of oxygen reduction and evolution, oxidation of nitrogen fuels, and reduction of N2, CO2, and NOx. Nevertheless, the catalytic role of iron carbide, a component of nearly every pyrolytic Fe-N-C material, is at the focus of a heated controversy. We now resolve the debate by examining a broad range of Fe3C sites, spanning across many typical size distributions and carbon environments. Removing Fe3C selectively by a non-oxidizing acid reveals its inactivity towards two representative reactions in alkaline media, oxygen reduction and hydrazine oxidation. The activity is assigned to other pre-existing sites, most probably Fe-Nx. DFT calculations prove that the Fe3C surface binds O and N intermediates too strongly to be catalytic. By settling the argument on the catalytic role of Fe3C in alkaline electrocatalysis, we hope to spur innovation in this critical field.
Collapse
Affiliation(s)
- Tomer Y Burshtein
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Denial Aias
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jin Wang
- Department of Chemical Engineering and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Matan Sananis
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Eliyahu M Farber
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Oz M Gazit
- Department of Chemical Engineering and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - David Eisenberg
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| |
Collapse
|
28
|
Liu Y, Bao J, Li Z, Zhang L, Zhang S, Wang L, Niu X, Sun P, Xu L. Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc-air batteries. J Colloid Interface Sci 2021; 607:1201-1214. [PMID: 34571307 DOI: 10.1016/j.jcis.2021.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022]
Abstract
Defect-engineering in transition-metal-doped carbon-based catalyst plays an essential role for improving the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, we report a ball-milling induced defect assisted with ZnCl2 strategy for fabricating defect-rich iron/nitrogen co-doped graphene-based materials (Fe-N-G). The substantial mechanical shear forces and the constant corrosion to the carbon matrix by ZnCl2 lead to the creation of abundant defects in graphene-based materials, which facilitates doping for heteroatoms. The defect-rich Fe-N-G catalyst with abundant Fe-Nx active sites displays excellent ORR performance. For OER, the over potential for Fe-N-G outperforms that of RuO2 in 1 M KOH at 10 mA cm-2. The Density Functional Theory calculations unravel that the impressive OER performance is attributable to the introduction of abundant defects. Additionally, the liquid and all-solid-state zinc-air batteries equipped with the prepared material as the air cathode demonstrate high power density, high specific capacity, and long charge-discharge stability. This work offers a practical method for manufacturing high-performance electrocatalysts for environmental and energy-related fields.
Collapse
Affiliation(s)
- Yuepeng Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Jiehua Bao
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Shenzhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xueliang Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Peng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Liping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
29
|
Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Graphene quantum dots (GQDs) have been widely investigated in recent years due to their outstanding physicochemical properties. Their remarkable characteristics allied to their capability of being easily synthesized and combined with other materials have allowed their use as electrochemical sensing platforms. In this work, we survey recent applications of GQDs-based nanocomposites in electrochemical sensors and biosensors. Firstly, the main characteristics and synthesis methods of GQDs are addressed. Next, the strategies generally used to obtain the GQDs nanocomposites are discussed. Emphasis is given on the applications of GQDs combined with distinct 0D, 1D, 2D nanomaterials, metal-organic frameworks (MOFs), molecularly imprinted polymers (MIPs), ionic liquids, as well as other types of materials, in varied electrochemical sensors and biosensors for detecting analytes of environmental, medical, and agricultural interest. We also discuss the current trends and challenges towards real applications of GQDs in electrochemical sensors.
Collapse
|
30
|
Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers (Basel) 2021; 13:polym13172869. [PMID: 34502909 PMCID: PMC8434110 DOI: 10.3390/polym13172869] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Graphene-based nanocomposites possess excellent mechanical, electrical, thermal, optical, and chemical properties. These materials have potential applications in high-performance transistors, biomedical systems, sensors, and solar cells. This paper presents a critical review of the recent developments in graphene-based nanocomposite research, exploring synthesis methods, characterizations, mechanical properties, and thermal properties. Emphasis is placed on characterization techniques and mechanical properties with detailed examples from recent literature. The importance of characterization techniques including Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) for the characterization of graphene flakes and their composites were thoroughly discussed. Finally, the effect of graphene even at very low loadings on the mechanical properties of the composite matrix was extensively reviewed.
Collapse
|
31
|
Zhang P, Yang Y, Duan X, Liu Y, Wang S. Density Functional Theory Calculations for Insight into the Heterocatalyst Reactivity and Mechanism in Persulfate-Based Advanced Oxidation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03099] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Panpan Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yangyang Yang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yunjian Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
32
|
Qian W, Xu S, Zhang X, Li C, Yang W, Bowen CR, Yang Y. Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. NANO-MICRO LETTERS 2021; 13:156. [PMID: 34264418 PMCID: PMC8282827 DOI: 10.1007/s40820-021-00681-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Suwen Xu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Xiaoming Zhang
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315016, People's Republic of China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
33
|
Tanasa E, Maxim FI, Erniyazov T, Iacob MT, Skála T, Tanase LC, Ianăși C, Moisescu C, Miron C, Ardelean I, Antohe VA, Fagadar-Cosma E, Stamatin SN. Beyond Nitrogen in the Oxygen Reduction Reaction on Nitrogen-Doped Carbons: A NEXAFS Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1198. [PMID: 34062800 PMCID: PMC8147284 DOI: 10.3390/nano11051198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Polymer electrolyte membrane fuel cells require cheap and active electrocatalysts to drive the oxygen reduction reaction. Nitrogen-doped carbons have been extensively studied regarding their oxygen reduction reaction. The work at hand looks beyond the nitrogen chemistry and brings to light the role of oxygen. Nitrogen-doped nanocarbons were obtained by a radio-frequency plasma route at 0, 100, 250, and 350 W. The lateral size of the graphitic domain, determined from Raman spectroscopy, showed that the nitrogen plasma treatment decreased the crystallite size. Synchrotron radiation photoelectron spectroscopy showed a similar nitrogen chemistry, albeit the nitrogen concentration increased with the plasma power. Lateral crystallite size and several nitrogen moieties were plotted against the onset potential determined from oxygen reduction reaction curves. There was no correlation between the electrochemical activity and the sample structure, as determine from Raman and synchrotron radiation photoelectron spectroscopy. Near-edge X-ray absorption fine structure (NEXAFS) was performed to unravel the carbon and nitrogen local structure. A difference analysis of the NEXAFS spectra showed that the oxygen surrounding the pyridinic nitrogen was critical in achieving high onset potentials. The work shows that there were more factors at play, other than carbon organization and nitrogen chemistry.
Collapse
Affiliation(s)
- Eugenia Tanasa
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Splaiul Independentei Str. No. 313, 060042 Bucharest, Romania;
| | - Florentina Iuliana Maxim
- Nano-SAE Research Centre, University of Bucharest, Atomistilor 405, 077125 Magurele, Ilfov, Romania; (F.I.M.); (T.E.); (M.-T.I.)
| | - Tugce Erniyazov
- Nano-SAE Research Centre, University of Bucharest, Atomistilor 405, 077125 Magurele, Ilfov, Romania; (F.I.M.); (T.E.); (M.-T.I.)
| | - Matei-Tom Iacob
- Nano-SAE Research Centre, University of Bucharest, Atomistilor 405, 077125 Magurele, Ilfov, Romania; (F.I.M.); (T.E.); (M.-T.I.)
| | - Tomáš Skála
- Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic;
| | - Liviu Cristian Tanase
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Ilfov, Romania;
| | - Cătălin Ianăși
- “Coriolan Drăgulescu” Institute of Chemistry, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania; (C.I.); (E.F.-C.)
| | - Cristina Moisescu
- Department of Microbiology, Institute of Biology Bucharest, Splaiul Independenței 296, 060031 Bucharest, Romania; (C.M.); (I.A.)
| | - Cristina Miron
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Ilfov, Romania; (C.M.); (V.-A.A.)
| | - Ioan Ardelean
- Department of Microbiology, Institute of Biology Bucharest, Splaiul Independenței 296, 060031 Bucharest, Romania; (C.M.); (I.A.)
| | - Vlad-Andrei Antohe
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Ilfov, Romania; (C.M.); (V.-A.A.)
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Eugenia Fagadar-Cosma
- “Coriolan Drăgulescu” Institute of Chemistry, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania; (C.I.); (E.F.-C.)
| | - Serban N. Stamatin
- Nano-SAE Research Centre, University of Bucharest, Atomistilor 405, 077125 Magurele, Ilfov, Romania; (F.I.M.); (T.E.); (M.-T.I.)
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Ilfov, Romania; (C.M.); (V.-A.A.)
| |
Collapse
|
34
|
Tareen AK, Khan K, Aslam M, Liu X, Zhang H. Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. PROG SOLID STATE CH 2021. [DOI: 10.1016/j.progsolidstchem.2020.100294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Park JJ, Heo YJ, Yun JM, Kim Y, Yoon SC, Lee SH, Kim DY. Orthogonal Printable Reduced Graphene Oxide 2D Materials as Hole Transport Layers for High-Performance Inverted Polymer Solar Cells: Sheet Size Effect on Photovoltaic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42811-42820. [PMID: 32799529 DOI: 10.1021/acsami.0c11384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Creating an orthogonal printable hole-transporting layer (HTL) without damaging the underlying layer is still a major challenge in fabricating large-area printed inverted polymer solar cells (PSCs). In this study, we prepared orthogonal-processable fluorine-functionalized reduced graphene oxide (FrGO) series with various two-dimensional sheet sizes such as large-sized FrGO (1.1 μm), medium-sized FrGO (0.7 μm), and small-sized FrGO (0.3 μm) and systematically investigated the size effect of FrGOs on the hole transport properties of PSCs. The FrGOs exhibit highly stable dispersion without change over 90 days in 2-propanol solvent, indicating very high dispersion stability. Decreasing the sheet size of FrGOs enhanced hole-transporting properties, resulting in power conversion efficiencies (PCEs) of 9.27 and 9.02% for PTB7-Th:EH-IDTBR- and PTB7-Th:PC71BM-based PSCs, respectively. Compared to devices with solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a 14% enhancement of PCEs was achieved. Interestingly, the PCEs of devices with the smallest FrGO sheet are higher than the PCE of 8.77% of a device with vacuum-deposited MoO3. The enhancement in the performance of PSCs is attributed to the enhanced charge collection efficiency, decreased leakage current, internal resistance, and minimized charge recombination. Finally, small-sized FrGO HTLs were successfully coated on the photoactive layer using the spray coating method, and they also exhibited PCEs of 9.22 and 13.26% for PTB7-Th:EH-IDTBR- and PM6:Y6-based inverted PSCs, respectively.
Collapse
Affiliation(s)
- Jong-Jin Park
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Youn-Jung Heo
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Research Institute of Sustainable Manufacturing Systems, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jin-Mun Yun
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute (KAERI), Jeongeup 562121, Republic of Korea
| | - Yunseul Kim
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Cheol Yoon
- Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Seung-Hoon Lee
- Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Dong-Yu Kim
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
36
|
Meirinho S, Ferraria A, do Rego AB, Fernandes A, Viana A, Fernandes J, Oliveira M. Electrochemical properties of oxygen-enriched carbon-based nanomaterials. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Shu Q, Liao F, Hong N, Cheng L, Lin Y, Cui H, Su J, Ma G, Wei G, Zhong Y, Xiong J, Fan H. A novel DNA sensor of homogeneous electrochemical signal amplification strategy. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Yin Z, Cui H, Shu Q, Jin C, Lin Y, Su J, Huang H, Liao F, Ma G, Hong N, Jiang Y, Fan H. Multi-signal amplification electrochemical DNA biosensor based on exonuclease III and tetraferrocene. J Mater Chem B 2020; 8:4143-4150. [PMID: 32270173 DOI: 10.1039/d0tb00204f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Homogeneous electrochemical DNA biosensors' unique qualities have been of great interest to researchers, mainly due to their high recognition efficiency in solutions. However, the processes of introducing additional markers and extra operations to obtain a signal are tedious and time consuming, which limits their overall potential applications. Herein, a novel tetraferrocene was synthesized and used as a homogeneous electrochemical DNA biosensor probe label. It contains four ferrocene units, which provide greater signaling potential compared to monoferrocene. Furthermore, the target DNA triggers the digestion of the double hairpin DNA probe with the aid of exonuclease III, promoting short single stranded DNA probe formation. With the combination of the incorporated tetraferrocene labeled short DNA probe strands and graphene's ability to adsorb single stranded DNA, the hybridization process can produce an electrode signal provided by tetraferrocene. A low detection limit of 8.2 fM toward target DNA with excellent selectivity was achieved. The proposed sensing system avoids tedious and time-consuming steps of DNA modification, making the experimental processes simpler and convenient. The advantages of high sensitivity, selectivity and simple operation make this strategy applicable to DNA detection.
Collapse
Affiliation(s)
- Zhaojiang Yin
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Hanfeng Cui
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Qingxia Shu
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Chen Jin
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Yan Lin
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Jia Su
- South University of Science and Technology of China, Shenzhen 518055, China
| | - HuiLian Huang
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Fusheng Liao
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Guangqiang Ma
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Nian Hong
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Yunfeng Jiang
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| | - Hao Fan
- The Affiliated Hospital, Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004, China.
| |
Collapse
|
39
|
Ding M, Chen W, Xu H, Lu C, Lin T, Shen Z, Tao H, Zhang K. Synergistic Features of Superoxide Molecule Anchoring and Charge Transfer on Two-Dimensional Ti 3C 2T x MXene for Efficient Peroxymonosulfate Activation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9209-9218. [PMID: 32019305 DOI: 10.1021/acsami.9b20530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The heterogeneous Fenton-like process is regarded as a promising approach to produce reactive oxygen species for water purification and environmental remediation. Here, we report a simple and rational strategy for the design of an efficient catalyst by reducing the dimensionality instead of changing the composition or structure. Based on theoretical and experimental evidence, considerable active sites were exposed on the low-dimensional Ti3C2Tx monolayer surface and showed outstanding reactivity toward peroxymonosulfate activation, which was mainly because of the superior compatibility between the highest occupied molecular orbital of catalysts and lowest unoccupied molecular orbital of Oxone. Stimulated emission depletion super-resolution microscopy innovatively provided visual insights into the spatiotemporal heterogeneous activation process and revealed that the unilaminar Ti3C2Tx nanosheet exhibited preferable reaction dynamics relative to its inert bulk counterpart, with an aqueous 2,4-dichlorophenoxyacetic acid degradation rate ∼376 times higher than that when using bulk Ti3C2Tx as the activator.
Collapse
Affiliation(s)
- Mingmei Ding
- College of Environment , Hohai University , Nanjing 210098 , China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing 210098 , China
| | - Wei Chen
- College of Environment , Hohai University , Nanjing 210098 , China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing 210098 , China
| | - Hang Xu
- College of Environment , Hohai University , Nanjing 210098 , China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing 210098 , China
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering , Hohai University , Nanjing 210098 , China
| | - Tao Lin
- College of Environment , Hohai University , Nanjing 210098 , China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing 210098 , China
| | - Zhen Shen
- College of Environment , Hohai University , Nanjing 210098 , China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing 210098 , China
| | - Hui Tao
- College of Environment , Hohai University , Nanjing 210098 , China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing 210098 , China
| | - Kai Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
40
|
Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S. Defect Engineering on Electrode Materials for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905923. [PMID: 31930593 DOI: 10.1002/adma.201905923] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Indexed: 05/21/2023]
Abstract
The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in-depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal-ion batteries, lithium-sulfur batteries, and metal-air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.
Collapse
Affiliation(s)
- Yiqiong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Ru Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yanyong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
41
|
Sheka EF. Graphene Oxyhydride Catalysts in View of Spin Radical Chemistry. MATERIALS 2020; 13:ma13030565. [PMID: 31991653 PMCID: PMC7040773 DOI: 10.3390/ma13030565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 11/21/2022]
Abstract
This article discusses carbocatalysis that are provided with amorphous carbons. The discussion is conducted from the standpoint of the spin chemistry of graphene molecules, in the framework of which the amorphous carbocatalysts are a conglomerate of graphene-oxynitrothiohydride stable radicals presenting the basic structure units (BSUs) of the species. The chemical activity of the BSUs atoms is reliably determined computationally, which allows mapping the distribution of active sites in these molecular catalysts. The presented maps reliably show the BSUs radicalization provided with carbon atoms only, the nonterminated edge part of which presents a set of active sites. Spin mapping of carbocatalysts active sites is suggested as the first step towards the spin carbocatalysis of the species.
Collapse
Affiliation(s)
- Elena F Sheka
- Institute of Physical Researches and Technologies, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| |
Collapse
|
42
|
Joshi S, Sharma P, Siddiqui R, Kaushal K, Sharma S, Verma G, Saini A. A review on peptide functionalized graphene derivatives as nanotools for biosensing. Mikrochim Acta 2019; 187:27. [PMID: 31811393 DOI: 10.1007/s00604-019-3989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Peptides exhibit unique binding behavior with graphene and its derivatives by forming bonds on its edges and planes. This makes them useful for sensing and imaging applications. This review with (155 refs.) summarizes the advances made in the last decade in the field of peptide-GO bioconjugation, and the use of these conjugates in analytical sciences and imaging. The introduction emphasizes the need for understanding the biotic-abiotic interactions in order to construct controllable peptide-functionalized graphitic material-based nanotools. The next section covers covalent and non-covalent interactions between peptide and oxidized graphene derivatives along with a discussion of the adsorption events during interfacing. We then describe applications of peptide-graphene conjugates in bioassays, with subsections on (a) detection of cancer cells, (b) monitoring protease activity, (c) determination of environmental pollutants and (d) determination of pathogenic microorganisms. The concluding section describes the current status of peptide functionalized graphitic bioconjugates and addresses future perspectives. Graphical abstractSchematic representation depicting biosensing applications of peptide functionalized graphene oxide.
Collapse
Affiliation(s)
- Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Pratibha Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ruby Siddiqui
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kanica Kaushal
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Gaurav Verma
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology (Dr.SSBUICET), Panjab University, Sector 14, Chandigarh, 160014, India
- Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
43
|
Khan K, Tareen AK, Aslam M, Zhang Y, Wang R, Ouyang Z, Gou Z, Zhang H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. NANOSCALE 2019; 11:21622-21678. [PMID: 31702753 DOI: 10.1039/c9nr05919a] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) materials have a wide platform in research and expanding nano- and atomic-level applications. This study is motivated by the well-established 2D catalysts, which demonstrate high efficiency, selectivity and sustainability exceeding that of classical noble metal catalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and/or hydrogen evolution reaction (HER). Nowadays, the hydrogen evolution reaction (HER) in water electrolysis is crucial for the cost-efficient production of a pure hydrogen fuel. We will also discuss another important point related to electrochemical carbon dioxide and nitrogen reduction (ECR and N2RR) in detail. In this review, we mainly focused on the recent progress in the fuel cell technology based on 2D materials, including graphene, transition metal dichalcogenides, black phosphorus, MXenes, metal-organic frameworks, and metal oxide nanosheets. First, the basic attributes of the 2D materials were described, and their fuel cell mechanisms were also summarized. Finally, some effective methods for enhancing the performance of the fuel cells based on 2D materials were also discussed, and the opportunities and challenges of 2D material-based fuel cells at the commercial level were also provided. This review can provide new avenues for 2D materials with properties suitable for fuel cell technology development and related fields.
Collapse
Affiliation(s)
- Karim Khan
- Advanced electromagnetic function laboratory, Dongguan University of Technology (DGUT), Dongguan, Guangdong Province, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shen Q, Chen X, Tan Y, Chen J, Chen L, Tan S. Metal-Free N-Formylation of Amines with CO 2 and Hydrosilane by Nitrogen-Doped Graphene Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38838-38848. [PMID: 31566364 DOI: 10.1021/acsami.9b14509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
N-Formylation of amines with carbon dioxide (CO2) as a carbonyl source is emerging as an important way for CO2 transformation into high-value-added chemicals; however, the developed catalytic systems mainly focused on transition-metal-based homogeneous catalysts. Herein, we reported rationally designed nitrogen-doped graphene nanosheets (NG) as metal-free catalysts for N-formylation of various amines with CO2 and hydrosilane to formamide under mild conditions. The NG catalyst displayed a wide amine scope with the desired formamide yields up to >99%, demonstrating its comparable catalytic performance to the reported transition-metal-based catalysts. Our experimental research reveals that the N-formylation of aniline involves an initial NG-promoted CO2 hydrosilylation with PhSiH3 to silyl formate and a subsequent nucleophilic attack of the aniline to give N-formanilide. Moreover, the key step of CO2 hydrosilylation can be simplified to a pseudo-first-order reaction under a high CO2 concentration with an observed reaction rate constant (kobs) of 226 h-1 at 40 °C and an apparent activation energy (Ea) of 34 kJ mol-1. In sharp contrast, a kobs of 23 h-1 and Ea of 47 kJ mol-1 were observed under catalyst-free conditions. Our theoretical investigation indicates that NG-promoted CO2 hydrosilylation corresponds to an exergonic reaction (ΔG = -0.53 eV), which is much lower in energy state than that of catalyst-free conditions (ΔG = -0.44 eV). Finally, the NG showed outstanding recyclability in the N-formylation reaction with almost unchanged catalytic performance during twelve-time recycling. This research thus represented a breakthrough in metal-free transformation of CO2 into fine chemicals with low-cost, environment-friendly, and carbon-based catalysts to replace the scarce and expensive transition-metal-based catalysts.
Collapse
Affiliation(s)
- Qiujuan Shen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Xuehua Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Yiyuan Tan
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Jinzhu Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , 382 Zhonghuan Road East , Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006 , China
| | - Shaozao Tan
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| |
Collapse
|
45
|
Savastano M, Arranz-Mascarós P, Clares MP, Cuesta R, Godino-Salido ML, Guijarro L, Gutiérrez-Valero MD, Inclán M, Bianchi A, García-España E, López-Garzón R. A New Heterogeneous Catalyst Obtained via Supramolecular Decoration of Graphene with a Pd 2+ Azamacrocyclic Complex. Molecules 2019; 24:E2714. [PMID: 31357384 PMCID: PMC6696290 DOI: 10.3390/molecules24152714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022] Open
Abstract
A new G-(H2L)-Pd heterogeneous catalyst has been prepared via a self-assembly process consisting in the spontaneous adsorption, in water at room temperature, of a macrocyclic H2L ligand on graphene (G) (G + H2L = G-(H2L)), followed by decoration of the macrocycle with Pd2+ ions (G-(H2L) + Pd2+ = G-(H2L)-Pd) under the same mild conditions. This supramolecular approach is a sustainable (green) procedure that preserves the special characteristics of graphene and furnishes an efficient catalyst for the Cu-free Sonogashira cross coupling reaction between iodobenzene and phenylacetylene. Indeed, G-(H2L)-Pd shows an excellent conversion (90%) of reactants into diphenylacetylene under mild conditions (50 °C, water, aerobic atmosphere, 14 h). The catalyst proved to be reusable for at least four cycles, although decreasing yields down to 50% were observed.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | | | - Maria Paz Clares
- Institute of Molecular Sciences, University of Valencia, Calle José Beltrán Martínez, 2, 46980 Paterna (Valencia), Spain
| | - Rafael Cuesta
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaén, Spain
| | | | - Lluis Guijarro
- Institute of Molecular Sciences, University of Valencia, Calle José Beltrán Martínez, 2, 46980 Paterna (Valencia), Spain
| | | | - Mario Inclán
- Institute of Molecular Sciences, University of Valencia, Calle José Beltrán Martínez, 2, 46980 Paterna (Valencia), Spain
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy.
| | - Enrique García-España
- Institute of Molecular Sciences, University of Valencia, Calle José Beltrán Martínez, 2, 46980 Paterna (Valencia), Spain.
| | - Rafael López-Garzón
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
46
|
|
47
|
|
48
|
Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem Rev 2018; 119:1806-1854. [PMID: 30575386 DOI: 10.1021/acs.chemrev.8b00501] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional materials and single-atom catalysts are two frontier research fields in catalysis. A new category of catalysts with the integration of both aspects has been rapidly developed in recent years, and significant advantages were established to make it an independent research field. In this Review, we will focus on the concept of two-dimensional materials confining single atoms for catalysis. The new electronic states via the integration lead to their mutual benefits in activity, that is, two-dimensional materials with unique geometric and electronic structures can modulate the catalytic performance of the confined single atoms, and in other cases the confined single atoms can in turn affect the intrinsic activity of two-dimensional materials. Three typical two-dimensional materials are mainly involved here, i.e., graphene, g-C3N4, and MoS2, and the confined single atoms include both metal and nonmetal atoms. First, we systematically introduce and discuss the classic synthesis methods, advanced characterization techniques, and various catalytic applications toward two-dimensional materials confining single-atom catalysts. Finally, the opportunities and challenges in this emerging field are featured on the basis of its current development.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Jun Mao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Xianguang Meng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) , Dalian 116023 , P. R. China
| |
Collapse
|
49
|
Chia X, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat Catal 2018. [DOI: 10.1038/s41929-018-0181-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Qiao M, Titirici MM. Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. Chemistry 2018; 24:18374-18384. [PMID: 30307068 DOI: 10.1002/chem.201804610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 01/19/2023]
Abstract
The aqueous oxygen reduction reaction (ORR) has recently received increased attention due to its critical role in clean and sustainable energy-generation technologies, such as proton exchange membranes (PEM) fuel cells, alkaline fuel cells and Zn-air batteries. The sluggish kinetics associated with ORR result from multistep electron-transfer process. The slow kinetics are partially related to the O2 adsorption process onto the catalyst, which happens at the triple-phase boundary (TPB) of the electrocatalyst-electrolyte-oxygen interface. Hence, tremendous efforts have been devoted to improving the intrinsic properties of electrocatalysts such as active sites, electrical conductivity and porosity. Engineering the electrocatalyst's interfacial properties is another critical issue in ORR, however less described in the literature. The surface of the catalyst provides the microenvironment for the triple boundary interface reaction, which directly influences its electrocatalytic activity and the kinetics. This Minireview is a summary of the existing literature on manipulating the interfacial surface of non-precious metal catalysts at the triple point between the solid catalyst, the aqueous electrolyte and the O2 gas with the aim of improving the ORR efficiency. Various approaches towards improving the wettability and nanostructuring the catalyst surface to boost the activity of the surface-active sites and provide improved stability are discussed.
Collapse
Affiliation(s)
- Mo Qiao
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Maria-Magdalena Titirici
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|