1
|
Shao Y, Wang J, Jin A, Jiang S, Lei L, Liu L. Biomaterial-assisted organoid technology for disease modeling and drug screening. Mater Today Bio 2025; 30:101438. [PMID: 39866785 PMCID: PMC11757232 DOI: 10.1016/j.mtbio.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research. This innovative approach enables the cultivation of three-dimensional cellular structures in vitro that closely emulate the structural and functional attributes of organs, offering physiologically superior models compared to conventional techniques. The evolution of biomaterials plays a pivotal role in supporting the culture and development of organ tissues, thereby facilitating more accurate disease state modeling and the rigorous evaluation of drug efficacy and safety profiles. In this review, we will explore the roles that various biomaterials play in organoid development, examine the fundamental principles and advantages of utilizing these technologies in constructing disease models, and highlight recent advances and practical applications in drug screening using disease-specific organoid models. Additionally, the challenges and future directions of organoid technology are discussed. Through continued research and innovation, we aim to make remarkable strides in disease treatment and drug development, ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Juncheng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
2
|
Kim J, Kim S, Song I. Octacalcium phosphate, a promising bone substitute material: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:4-12. [PMID: 37157781 PMCID: PMC10834270 DOI: 10.12701/jyms.2023.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Biomaterials have been used to supplement and restore function and structure by replacing or restoring parts of damaged tissues and organs. In ancient times, the medical use of biomaterials was limited owing to infection during surgery and poor surgical techniques. However, in modern times, the medical applications of biomaterials are diversifying owing to great developments in material science and medical technology. In this paper, we introduce biomaterials, focusing on calcium phosphate ceramics, including octacalcium phosphate, which has recently attracted attention as a bone graft material.
Collapse
Affiliation(s)
| | | | - Inhwan Song
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
3
|
Tafti MF, Aghamollaei H, Moghaddam MM, Jadidi K, Alio JL, Faghihi S. Emerging tissue engineering strategies for the corneal regeneration. J Tissue Eng Regen Med 2022; 16:683-706. [PMID: 35585479 DOI: 10.1002/term.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Cornea as the outermost layer of the eye is at risk of various genetic and environmental diseases that can damage the cornea and impair vision. Corneal transplantation is among the most applicable surgical procedures for repairing the defected tissue. However, the scarcity of healthy tissue donations as well as transplantation failure has remained as the biggest challenges in confront of corneal grafting. Therefore, alternative approaches based on stem-cell transplantation and classic regenerative medicine have been developed for corneal regeneration. In this review, the application and limitation of the recently-used advanced approaches for regeneration of cornea are discussed. Additionally, other emerging powerful techniques such as 5D printing as a new branch of scaffold-based technologies for construction of tissues other than the cornea are highlighted and suggested as alternatives for corneal reconstruction. The introduced novel techniques may have great potential for clinical applications in corneal repair including disease modeling, 3D pattern scheming, and personalized medicine.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge L Alio
- Department of Research and Development, VISSUM, Alicante, Spain.,Cornea, Cataract and Refractive Surgery Department, VISSUM, Alicante, Spain.,Department of Pathology and Surgery, Division of Ophthalmology, Faculty of Medicine, Miguel Hernández University, Alicante, Spain
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
4
|
Ramesh P, Moskwa N, Hanchon Z, Koplas A, Nelson DA, Mills KL, Castracane J, Larsen M, Sharfstein ST, Xie Y. Engineering cryoelectrospun elastin-alginate scaffolds to serve as stromal extracellular matrices. Biofabrication 2022; 14:10.1088/1758-5090/ac6b34. [PMID: 35481854 PMCID: PMC9973022 DOI: 10.1088/1758-5090/ac6b34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Scaffold-based regenerative strategies that emulate physical, biochemical, and mechanical properties of the native extracellular matrix (ECM) of the region of interest can influence cell growth and function. Existing ECM-mimicking scaffolds, including nanofiber (NF) mats, sponges, hydrogels, and NF-hydrogel composites are unable to simultaneously mimic typical composition, topography, pore size, porosity, and viscoelastic properties of healthy soft-tissue ECM. In this work, we used cryoelectrospinning to fabricate 3D porous scaffolds with minimal fibrous backbone, pore size and mechanical properties similar to soft-tissue connective tissue ECM. We used salivary glands as our soft tissue model and found the decellularized adult salivary gland (DSG) matrix to have a fibrous backbone, 10-30μm pores, 120 Pa indentation modulus, and ∼200 s relaxation half time. We used elastin and alginate as natural, compliant biomaterials and water as the solvent for cryoelectrospinning scaffolds to mimic the structure and viscoelasticity of the connective tissue ECM of the DSG. Process parameters were optimized to produce scaffolds with desirable topography and compliance similar to DSG, with a high yield of >100 scaffolds/run. Using water as solvent, rather than organic solvents, was critical to generate biocompatible scaffolds with desirable topography; further, it permitted a green chemistry fabrication process. Here, we demonstrate that cryoelectrospun scaffolds (CESs) support penetration of NIH 3T3 fibroblasts 250-450µm into the scaffold, cell survival, and maintenance of a stromal cell phenotype. Thus, we demonstrate that elastin-alginate CESs mimic many structural and functional properties of ECM and have potential for future use in regenerative medicine applications.
Collapse
Affiliation(s)
- Pujhitha Ramesh
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Zachary Hanchon
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Adam Koplas
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Kristen L. Mills
- Department of Mechanical, Aerospace, and Nuclear Engineering (MANE), Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, USA
| | - James Castracane
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Melinda Larsen
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Susan T. Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Corresponding Authors: Yubing Xie, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA, , Susan Sharfstein, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Corresponding Authors: Yubing Xie, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA, , Susan Sharfstein, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,
| |
Collapse
|
5
|
Rengaraj A, Bosc L, Machillot P, McGuckin C, Milet C, Forraz N, Paliard P, Barbier D, Picart C. Engineering of a Microscale Niche for Pancreatic Tumor Cells Using Bioactive Film Coatings Combined with 3D-Architectured Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13107-13121. [PMID: 35275488 PMCID: PMC7614000 DOI: 10.1021/acsami.2c01747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-photon polymerization has recently emerged as a promising technique to fabricate scaffolds for three-dimensional (3D) cell culture and tissue engineering. Here, we combined 3D-printed microscale scaffolds fabricated using two-photon polymerization with a bioactive layer-by-layer film coating. This bioactive coating consists of hyaluronic acid and poly(l-lysine) of controlled stiffness, loaded with fibronectin and bone morphogenic proteins 2 and 4 (BMP2 and BMP4) as matrix-bound proteins. Planar films were prepared using a liquid handling robot directly in 96-well plates to perform high-content studies of cellular processes, especially cell adhesion, proliferation, and BMP-induced signaling. The behaviors of two human pancreatic cell lines PANC1 (immortalized) and PAN092 (patient-derived cell line) were systematically compared and revealed important context-specific cell responses, notably in response to film stiffness and matrix-bound BMPs (bBMPs). Fibronectin significantly increased cell adhesion, spreading, and proliferation for both cell types on soft and stiff films; BMP2 increased cell adhesion and inhibited proliferation of PANC1 cells and PAN092 on soft films. BMP4 enhanced cell adhesion and proliferation of PANC1 and showed a bipolar effect on PAN092. Importantly, PANC1 exhibited a strong dose-dependent BMP response, notably for bBMP2, while PAN092 was insensitive to BMPs. Finally, we proved that it is possible to combine a microscale 3D Ormocomp scaffold fabricated using the two-photon polymerization technique with the bioactive film coating to form a microscale tumor tissue and mimic the early stages of metastatic cancer.
Collapse
Affiliation(s)
- Arunkumar Rengaraj
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Lauriane Bosc
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Colin McGuckin
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Clément Milet
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Nico Forraz
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Philippe Paliard
- Microlight 3D, 5 avenue du Grand Sablon, 38700 La Tronche, France
| | - Denis Barbier
- Microlight 3D, 5 avenue du Grand Sablon, 38700 La Tronche, France
| | - Catherine Picart
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
- Institut Universitaire de France (IUF), Ministère de l’Enseignement Supérieur, de la Recherche et de I’Industrie, 1 rue Descartes, 75 231 Paris Cedex 05, France
| |
Collapse
|
6
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
7
|
Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines 2021; 9:biomedicines9091137. [PMID: 34572322 PMCID: PMC8468019 DOI: 10.3390/biomedicines9091137] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
Bioprinting is a modern tool suitable for creating cell scaffolds and tissue or organ carriers from polymers that mimic tissue properties and create a natural environment for cell development. A wide range of polymers, both natural and synthetic, are used, including extracellular matrix and collagen-based polymers. Bioprinting technologies, based on syringe deposition or laser technologies, are optimal tools for creating precise constructs precisely from the combination of collagen hydrogel and cells. This review describes the different stages of bioprinting, from the extraction of collagen hydrogels and bioink preparation, over the parameters of the printing itself, to the final testing of the constructs. This study mainly focuses on the use of physically crosslinked high-concentrated collagen hydrogels, which represents the optimal way to create a biocompatible 3D construct with sufficient stiffness. The cell viability in these gels is mainly influenced by the composition of the bioink and the parameters of the bioprinting process itself (temperature, pressure, cell density, etc.). In addition, a detailed table is included that lists the bioprinting parameters and composition of custom bioinks from current studies focusing on printing collagen gels without the addition of other polymers. Last but not least, our work also tries to refute the often-mentioned fact that highly concentrated collagen hydrogel is not suitable for 3D bioprinting and cell growth and development.
Collapse
|
8
|
Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Yang H, Song L, Zou Y, Sun D, Wang L, Yu Z, Guo J. Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:311-324. [PMID: 35014286 DOI: 10.1021/acsabm.0c01364] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skin can protect the body from external harm, sense environmental changes, and maintain physiological homeostasis. Cutaneous repair and regeneration associated with surgical wounds, acute traumas, and chronic diseases are a central concern of healthcare. Patients may experience the failure of current treatments due to the complexity of the healing process; therefore, emerging strategies are needed. Hyaluronic acids (HAs, also known as hyaluronan), a glycosaminoglycan (GAG) of the extracellular matrix (ECM), play key roles in cell differentiation, proliferation, and migration throughout tissue development and regeneration. Recently, HA derivatives have been developed as regenerative biomaterials for treating skin damage and injury. In this review, the healing process, namely, hemostasis, inflammation, proliferation, and maturation, is described and the role of HAs in the healing process is discussed. This review also provides recent examples in the development of HA derivatives for wound healing.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- Department of Pharmacy, The General Hospital of FAW, Changchun 130011, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
10
|
Zuniga K, Gadde M, Scheftel J, Senecal K, Cressman E, Van Dyke M, Rylander MN. Collagen/kerateine multi-protein hydrogels as a thermally stable extracellular matrix for 3D in vitro models. Int J Hyperthermia 2021; 38:830-845. [PMID: 34058945 PMCID: PMC10523628 DOI: 10.1080/02656736.2021.1930202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: To determine whether the addition of kerateine (reduced keratin) in rat tail collagen type I hydrogels increases thermal stability and changes material properties and supports cell growth for use in cellular hyperthermia studies for tumor treatment.Methods: Collagen type I extracted from rat tail tendon was combined with kerateine extracted from human hair fibers. Thermal, mechanical, and biocompatibility properties and cell behavior was assessed and compared to 100% collagen type I hydrogels to demonstrate their utility as a tissue model for 3D in vitro testing.Results: A combination (i.e., containing both collagen 'C/KNT') hydrogel was more thermally stable than pure collagen hydrogels and resisted thermal degradation when incubated at a hyperthermic temperature of 47°C for heating durations up to 60 min with a higher melting temperature measured by DSC. An increase in the storage modulus was only observed with an increased collagen concentration rather than an increased KTN concentration; however, a change in ECM structure was observed with greater fiber alignment and width with an increase in KTN concentration. The C/KTN hydrogels, specifically 50/50 C/KTN hydrogels, also supported the growth and of fibroblasts and MDA-MB-231 breast cancer cells similar to those seeded in 100% collagen hydrogels.Conclusion: This multi-protein C/KTN hydrogel shows promise for future studies involving thermal stress studies without compromising the 3D ECM environment or cell growth.
Collapse
Affiliation(s)
- Kameel Zuniga
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Manasa Gadde
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jacob Scheftel
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kris Senecal
- Natick Soldier Center, U.S. Army Soldier and Biological Chemical Command, Natick, MA, USA
| | - Erik Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Van Dyke
- College of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Roelianto M, Wahjuningrum DA, Pamungkas YB, Zubaidah N, Permatasari RI, Dianti E. In vivo Study of Sealing Capability of Raw Propolis Extract and Calcium Hydroxide on Dentin Surface. Clin Cosmet Investig Dent 2020; 12:335-341. [PMID: 32884357 PMCID: PMC7442967 DOI: 10.2147/ccide.s243714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/31/2020] [Indexed: 01/30/2023] Open
Abstract
Aim This research aimed to investigate the differences in the sealing capability of propolis extracts and Ca(OH)2 on dentin surfaces. Materials and Methods Eighteen mandible incisors of Wistar rats were prepared at a depth of 0.5 mm after which they were randomly divided into 3 groups (n=6) including control (C), pulp-capped with Ca(OH)2 group (P1), and indirect pulp-capped with propolis extract group (P2). All the cavities were sealed with glass ionomer restorative cement. Moreover, the sections of the teeth were obtained after six Wistar Rats from each group were sacrificed on the second day after treatment. The rats’ incisors were cleaved transversally to the area where Ca(OH)2 and propolis extract bonded with dentin for the SEM (scanning electron microscope) analysis and examined using microphotographs test with 5000x magnification. All the samples were measured and examined with spectrophotometry test to determine the bonding distance between Ca(OH)2 and dentin, as well as propolis extract and dentin. The result from the two tests was analyzed with SPSS using an independent t-test at p <0.05. Results There were significant differences between the calcium hydroxide and propolis extract groups (p<0.05) based on the results obtained in the form of spectrums chemical functional groups of spectrophotometry examination. No new chemical bonding or compound was also observed to have been formed between propolis extract with dentin as well as calcium hydroxide with dentin. Conclusion The adaptation or sealing capability of propolis extract was found to be better than calcium hydroxide to the dentin surface.
Collapse
Affiliation(s)
- Muhamad Roelianto
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Jawa Timur 60132, Indonesia
| | - Dian Agustin Wahjuningrum
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Jawa Timur 60132, Indonesia
| | - Yusuf Bagus Pamungkas
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Jawa Timur 60132, Indonesia
| | - Nanik Zubaidah
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Jawa Timur 60132, Indonesia
| | - Ryza Indah Permatasari
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Jawa Timur 60132, Indonesia
| | - Eska Dianti
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Jawa Timur 60132, Indonesia
| |
Collapse
|
12
|
Kanda P, Benavente-Babace A, Parent S, Connor M, Soucy N, Steeves A, Lu A, Cober ND, Courtman D, Variola F, Alarcon EI, Liang W, Stewart DJ, Godin M, Davis DR. Deterministic paracrine repair of injured myocardium using microfluidic-based cocooning of heart explant-derived cells. Biomaterials 2020; 247:120010. [PMID: 32259654 DOI: 10.1016/j.biomaterials.2020.120010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
While encapsulation of cells within protective nanoporous gel cocoons increases cell retention and pro-survival integrin signaling, the influence of cocoon size and intra-capsular cell-cell interactions on therapeutic repair are unknown. Here, we employ a microfluidic platform to dissect the impact of cocoon size and intracapsular cell number on the regenerative potential of transplanted heart explant-derived cells. Deterministic increases in cocoon size boosted the proportion of multicellular aggregates within cocoons, reduced vascular clearance of transplanted cells and enhanced stimulation of endogenous repair. The latter being attributable to cell-cell stimulation of cytokine and extracellular vesicle production while also broadening of the miRNA cargo within extracellular vesicles. Thus, by tuning cocoon size and cell occupancy, the paracrine signature and retention of transplanted cells can be enhanced to promote paracrine stimulation of endogenous tissue repair.
Collapse
Affiliation(s)
- Pushpinder Kanda
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | | | - Sandrine Parent
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Michie Connor
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Nicholas Soucy
- Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, K1N6N5, Canada
| | - Alexander Steeves
- Department of Mechanical Engineering, University of Ottawa, K1N6N5, Canada
| | - Aizhu Lu
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Nicholas David Cober
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - David Courtman
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, K1N6N5, Canada
| | - Emilio I Alarcon
- University of Ottawa Heart Institute, Division of Cardiac Surgery, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, K1H8M5, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - Michel Godin
- Department of Physics, University of Ottawa, K1N6N5, Canada; Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, K1N6N5, Canada; Department of Mechanical Engineering, University of Ottawa, K1N6N5, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada.
| |
Collapse
|
13
|
Chen Y, Ma M, Cao H, Wang Y, Xu Y, Teng Y, Sun Y, Liang J, Fan Y, Zhang X. Identification of endogenous migratory MSC-like cells and their interaction with the implant materials guiding osteochondral defect repair. J Mater Chem B 2019. [DOI: 10.1039/c9tb00674e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abundant BMSCs and MSC-like cells move up to the defect area and interact with the implant materials, guiding the osteochondral defect repair.
Collapse
Affiliation(s)
- Yafang Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Mengcheng Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hongfu Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yang Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yingying Teng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
14
|
Li W, Hu X, Yang S, Wang S, Zhang C, Wang H, Cheng YY, Wang Y, Liu T, Song K. A novel tissue-engineered 3D tumor model for anti-cancer drug discovery. Biofabrication 2018; 11:015004. [DOI: 10.1088/1758-5090/aae270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Smith LR, Cho S, Discher DE. Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology (Bethesda) 2018; 33:16-25. [PMID: 29212889 DOI: 10.1152/physiol.00026.2017] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Stem cells mechanosense the stiffness of their microenvironment, which impacts differentiation. Although tissue hydration anti-correlates with stiffness, extracellular matrix (ECM) stiffness is clearly transduced into gene expression via adhesion and cytoskeleton proteins that tune fates. Cytoskeletal reorganization of ECM can create heterogeneity and influence fates, with fibrosis being one extreme.
Collapse
Affiliation(s)
- Lucas R Smith
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sangkyun Cho
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018; 132:235-251. [PMID: 29935988 PMCID: PMC6226327 DOI: 10.1016/j.addr.2018.06.011] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/04/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
3D bioprinting is emerging as a promising technology for fabricating complex tissue constructs with tailored biological components and mechanical properties. Recent advances have enabled scientists to precisely position materials and cells to build functional tissue models for in vitro drug screening and disease modeling. This review presents state-of-the-art 3D bioprinting techniques and discusses the choice of cell source and biomaterials for building functional tissue models that can be used for personalized drug screening and disease modeling. In particular, we focus on 3D-bioprinted liver models, cardiac tissues, vascularized constructs, and cancer models for their promising applications in medical research, drug discovery, toxicology, and other pre-clinical studies.
Collapse
Affiliation(s)
- Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin Liu
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Natalie Lawrence
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Claire Yu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China.
| |
Collapse
|
17
|
Xia YJ, Xia H, Chen L, Ying QS, Yu X, Li LH, Wang JH, Zhang Y. Efficient delivery of recombinant human bone morphogenetic protein (rhBMP-2) with dextran sulfate-chitosan microspheres. Exp Ther Med 2018; 15:3265-3272. [PMID: 29545844 PMCID: PMC5840956 DOI: 10.3892/etm.2018.5849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/22/2018] [Indexed: 11/23/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) serves an important role in the development of bone and cartilage. However, administration of BMP-2 protein alone by intravenous delivery is not very effective. Sustained delivery of stabilized BMP-2 by carriers has been proven necessary to improve the osteogenesis effect of BMP-2. The present study constructed a novel drug delivery system using dextran sulfate (DS)-chitosan (CS) microspheres and investigated the efficiency of the delivery system on recombinant human bone morphogenetic protein (rhBMP-2). The microsphere morphology, optimal ratio of DS/CS/rhBMP-2, and drug loading rate and entrapment efficiency of rhBMP-2 CS nanoparticles were determined. L929 cells were used to evaluate the cytotoxicity and effect of DS/CS/rhBMP-2 microspheres on cell proliferation. Differentiation study was conducted using bone marrow mesenchymal stem cells (BMSCs-C57) cells treated with DS/CS/rhBMP-2 microspheres or the control microspheres. The DS/CS/rhBMP-2 microspheres delivery system was successfully established. Subsequent complexation of rhBMP-2-bound DS with polycations afforded well defined microspheres with a diameter of ~250 nm. High protein entrapment efficiency (85.6%) and loading ratio (47.245) µg/mg were achieved. Release of rhBMP-2 from resultant microspheres persisted for over 20 days as determined by ELISA assay. The bioactivity of rhBMP-2 encapsulated in the CS/DS microsphere was observed to be well preserved as evidenced by the alkaline phosphatase activity assay and calcium nodule formation of BMSCs-C57 incubated with rhBMP-2-loaded microspheres. The results demonstrated that microspheres based on CS-DS polyion complexes were a highly efficient vehicle for delivery of rhBMP-2 protein. The present study may provide novel orientation for bone tissue engineering for repairing and regenerating bone defects.
Collapse
Affiliation(s)
- Yuan-Jun Xia
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Hong Xia
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Ling Chen
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing-Shui Ying
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Xiang Yu
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Li-Hua Li
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Jian-Hua Wang
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Ying Zhang
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
18
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
19
|
Colpitts C, Ektesabi AM, Wyatt RA, Crawford BD, Kiani A. Mammalian fibroblast cells avoid residual stress zone caused by nanosecond laser pulses. J Mech Behav Biomed Mater 2017. [PMID: 28622607 DOI: 10.1016/j.jmbbm.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigates the effects of laser irradiation on crystalline silicon and its application in biomaterials. We used an analytical model to predict the ablation depth and pit size resulting from laser exposure of silicon samples. The temperatures generated are predicted correlate with laser power, and to result in the formation of a residual stress zone bordering the ablated groove. Different crystal orientations found in the substrate confirm that there was crystal distortion, which consequently induces these residual stress zones. Mouse embryonic fibroblasts avoid the stress areas and accumulate outside of these zones. Higher laser power results in broader residual stress zone and a larger zone of cellular exclusion. We argue that residual stress resulting from high-energy laser ablation of silicon may be a promising avenue to explore as a method for patterning cell growth on these materials.
Collapse
Affiliation(s)
- Candace Colpitts
- Silicon Hall: Laser Micro/Nano Fabrication Facility, Department of Mechanical Engineering, University of New Brunswick, NB, Canada
| | - Amin M Ektesabi
- Silicon Hall: Laser Micro/Nano Fabrication Facility, Department of Mechanical Engineering, University of New Brunswick, NB, Canada; Department of Biology, University of New Brunswick, NB, Canada
| | - Rachael A Wyatt
- Department of Biology, University of New Brunswick, NB, Canada
| | | | - Amirkianoosh Kiani
- Silicon Hall: Laser Micro/Nano Fabrication Facility, Department of Mechanical Engineering, University of New Brunswick, NB, Canada; Department of Automotive, Mechanical and Manufacturing Engineering, University of Ontario Institute of Technology (UOIT), ON, Canada.
| |
Collapse
|
20
|
Leight JL, Drain AP, Weaver VM. Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jennifer L. Leight
- Department of Biomedical Engineering and The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Allison P. Drain
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
21
|
Velk N, Uhlig K, Vikulina A, Duschl C, Volodkin D. Mobility of lysozyme in poly(l-lysine)/hyaluronic acid multilayer films. Colloids Surf B Biointerfaces 2016; 147:343-350. [DOI: 10.1016/j.colsurfb.2016.07.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/24/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023]
|
22
|
Keshavarz M, Tan B, Venkatakrishnan K. Functionalized Stress Component onto Bio-template as a Pathway of Cytocompatibility. Sci Rep 2016; 6:35425. [PMID: 27759054 PMCID: PMC5069693 DOI: 10.1038/srep35425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
This in-vitro study introduces residual stress as a third dimension of cell stimulus to modulate the interaction between cells and bio-template, without the addition of either chemical or physical stimuli onto the bio-template surface. Ultrashort Pulsed Laser (USPL) irradiation of silicon-based bio-template causes recrystallization of silicon, which mismatches the original crystal orientation of the virgin silicon. Consequently, subsurface Induced Residual Stress (IRS) is generated. The IRS components demonstrated a strong cytocompatibility, whereas the peripheral of IRS, which is the interface between the IRS component and the virgin silicon surface, a significant directional cell alignment was observed. Fibroblast cells shown to be more sensitive to the stress component than Hela cancer cells. It revealed that cytocompatibility in terms of cell migration and directional cell alignment is directly proportional to the level of the IRS component. Higher stress level results in more cell alignment and border migration width. There is a stress threshold below which the stress component completely loses the functionality. These results pointed to a functionalized bio-template with tunable cytocompatibility. This study may lead to a new tool for the designing and engineering of bio-template.
Collapse
Affiliation(s)
- Meysam Keshavarz
- Micro/Nanofabrication Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Bo Tan
- Micro/Nanofabrication Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Ultrashort laser nanomanufacturing research facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
23
|
Lee JP, Kassianidou E, MacDonald JI, Francis MB, Kumar S. N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels. Biomaterials 2016; 102:268-76. [PMID: 27348850 PMCID: PMC4939314 DOI: 10.1016/j.biomaterials.2016.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Polyacrylamide hydrogels have been used extensively to study cell responses to the mechanical and biochemical properties of extracellular matrix substrates. A key step in fabricating these substrates is the conjugation of cell adhesion proteins to the polyacrylamide surfaces, which typically involves nonspecifically anchoring these proteins via side-chain functional groups. This can result in a loss of presentation control and altered bioactivity. Here, we describe a new functionalization strategy in which we anchor full-length extracellular matrix proteins to polyacrylamide substrates using 2-pyridinecarboxaldehyde, which can be co-polymerized into polyacrylamide gels and used to immobilize proteins by their N-termini. This one-step reaction proceeds under mild aqueous conditions and does not require additional reagents. We demonstrate that these substrates can readily conjugate to various extracellular matrix proteins, as well as promote cell adhesion and spreading. Notably, this chemistry supports the assembly and cellular remodeling of large collagen fibers, which is not observed using conventional side-chain amine-conjugation chemistry.
Collapse
Affiliation(s)
- Jessica P Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - James I MacDonald
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley CA 94720, USA.
| |
Collapse
|
24
|
Molino D, Quignard S, Gruget C, Pincet F, Chen Y, Piel M, Fattaccioli J. On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets. Sci Rep 2016; 6:29113. [PMID: 27373558 PMCID: PMC4931467 DOI: 10.1038/srep29113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023] Open
Abstract
The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement.
Collapse
Affiliation(s)
- D. Molino
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - S. Quignard
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - C. Gruget
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - F. Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique UMR8550, 24 rue Lhomond, Paris 75005, France
| | - Y. Chen
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - M. Piel
- Institut Curie, CNRS UMR 144, 26 rue d’Ulm, 75005, Paris, France
| | - J. Fattaccioli
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France
- CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| |
Collapse
|
25
|
Ariga K, Li J, Fei J, Ji Q, Hill JP. Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1251-86. [PMID: 26436552 DOI: 10.1002/adma.201502545] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/27/2015] [Indexed: 05/21/2023]
Abstract
Objects in all dimensions are subject to translational dynamism and dynamic mutual interactions, and the ability to exert control over these events is one of the keys to the synthesis of functional materials. For the development of materials with truly dynamic functionalities, a paradigm shift from "nanotechnology" to "nanoarchitectonics" is proposed, with the aim of design and preparation of functional materials through dynamic harmonization of atomic-/molecular-level manipulation and control, chemical nanofabrication, self-organization, and field-controlled organization. Here, various examples of dynamic functional materials are presented from the atom/molecular-level to macroscopic dimensions. These systems, including atomic switches, molecular machines, molecular shuttles, motional crystals, metal-organic frameworks, layered assemblies, gels, supramolecular assemblies of biomaterials, DNA origami, hollow silica capsules, and mesoporous materials, are described according to their various dynamic functions, which include short-term plasticity, long-term potentiation, molecular manipulation, switchable catalysis, self-healing properties, supramolecular chirality, morphological control, drug storage and release, light-harvesting, mechanochemical transduction, molecular tuning molecular recognition, hand-operated nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Junbai Li
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Qingmin Ji
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jonathan P Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
26
|
Miotto M, Gouveia RM, Connon CJ. Peptide Amphiphiles in Corneal Tissue Engineering. J Funct Biomater 2015; 6:687-707. [PMID: 26258796 PMCID: PMC4598678 DOI: 10.3390/jfb6030687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration.
Collapse
Affiliation(s)
- Martina Miotto
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - Ricardo M Gouveia
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
27
|
Zhao D, Lei L, Wang S, Nie H. Understanding cell homing-based tissue regeneration from the perspective of materials. J Mater Chem B 2015; 3:7319-7333. [DOI: 10.1039/c5tb01188d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The triad of cell homing-based tissue engineering.
Collapse
Affiliation(s)
- Dapeng Zhao
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| | - Lei Lei
- Department of Orthodontics
- Xiangya Stomatological Hospital
- Central South University
- Changsha 410008
- China
| | - Shuo Wang
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| | - Hemin Nie
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
28
|
Wang S, Zhong S, Lim CT, Nie H. Effects of fiber alignment on stem cells–fibrous scaffold interactions. J Mater Chem B 2015; 3:3358-3366. [DOI: 10.1039/c5tb00026b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fiber alignment-induced enhancement of cell adhesion and scaffold remodelling, and alignment of secreted ECM in differentiation.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| | - Shaoping Zhong
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117575
| | - Chwee Teck Lim
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117575
| | - Hemin Nie
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
29
|
Yang D, Peng X, Zhong L, Cao X, Chen W, Wang S, Liu C, Sun R. Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals. RSC Adv 2015. [DOI: 10.1039/c4ra10748a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A new and efficient strategy was first employed to fabricate highly elastic nanocomposite hydrogels by surface modification of cellulose nanocrystals.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Xuefei Cao
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Wei Chen
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Sha Wang
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Runcang Sun
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- P. R. China
- Beijing Key Laboratory of Lignocellulosic Chemistry
| |
Collapse
|
30
|
Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:683-96. [PMID: 24923709 PMCID: PMC4241868 DOI: 10.1089/ten.teb.2014.0086] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023]
Abstract
Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments.
Collapse
Affiliation(s)
| | - Pavlos P. Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
31
|
Zhang L, Yang H, Liu H, Ni Q, Gong F. Preparation and characterization of polystyrene-grafted attapulgite via surface-initiated redox polymerization. POLYM ENG SCI 2014. [DOI: 10.1002/pen.23956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liu Zhang
- School of Materials Science and Engineering, Changzhou University; Changzhou 213164 People's Republic of China
| | - Haicun Yang
- Institute of Functional Polymers; School of Materials Science and Engineering, Tongji University; Shanghai 201804 People's Republic of China
| | - Hui Liu
- School of Materials Science and Engineering, Changzhou University; Changzhou 213164 People's Republic of China
| | - Qingting Ni
- School of Materials Science and Engineering, Changzhou University; Changzhou 213164 People's Republic of China
| | - Fanghong Gong
- School of Materials Science and Engineering, Changzhou University; Changzhou 213164 People's Republic of China
| |
Collapse
|
32
|
Gill BJ, West JL. Modeling the tumor extracellular matrix: Tissue engineering tools repurposed towards new frontiers in cancer biology. J Biomech 2013; 47:1969-78. [PMID: 24300038 DOI: 10.1016/j.jbiomech.2013.09.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Cancer progression is mediated by complex epigenetic, protein and structural influences. Critical among them are the biochemical, mechanical and architectural properties of the extracellular matrix (ECM). In recognition of the ECM's important role, cancer biologists have repurposed matrix mimetic culture systems first widely used by tissue engineers as new tools for in vitro study of tumor models. In this review we discuss the pathological changes in tumor ECM, the limitations of 2D culture on both traditional and polyacrylamide hydrogel surfaces in modeling these characteristics and advances in both naturally derived and synthetic scaffolds to facilitate more complex and controllable 3D cancer cell culture. Studies using naturally derived matrix materials like Matrigel and collagen have produced significant findings related to tumor morphogenesis and matrix invasion in a 3D environment and the mechanotransductive signaling that mediates key tumor-matrix interaction. However, lack of precise experimental control over important matrix factors in these matrices have increasingly led investigators to synthetic and semi-synthetic scaffolds that offer the engineering of specific ECM cues and the potential for more advanced experimental manipulations. Synthetic scaffolds composed of poly(ethylene glycol) (PEG), for example, facilitate highly biocompatible 3D culture, modular bioactive features like cell-mediated matrix degradation and complete independent control over matrix bioactivity and mechanics. Future work in PEG or similar reductionist synthetic matrix systems should enable the study of increasingly complex and dynamic tumor-ECM relationships in the hopes that accurate modeling of these relationships may reveal new cancer therapeutics targeting tumor progression and metastasis.
Collapse
Affiliation(s)
- Bartley J Gill
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, USA.
| |
Collapse
|
33
|
Adsorbed BMP-2 in polyelectrolyte multilayer films for enhanced early osteogenic differentiation of mesenchymal stem cells. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Gribova V, Gauthier-Rouvière C, Albigès-Rizo C, Auzely-Velty R, Picart C. Effect of RGD functionalization and stiffness modulation of polyelectrolyte multilayer films on muscle cell differentiation. Acta Biomater 2013; 9:6468-80. [PMID: 23261924 DOI: 10.1016/j.actbio.2012.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 02/06/2023]
Abstract
Skeletal muscle tissue engineering holds promise for the replacement of muscle damaged by injury and for the treatment of muscle diseases. Although arginylglycylaspartic acid (RGD) substrates have been widely explored in tissue engineering, there have been no studies aimed at investigating the combined effects of RGD nanoscale presentation and matrix stiffness on myogenesis. In the present work we use polyelectrolyte multilayer films made of poly(L-lysine) (PLL) and poly(L-glutamic) acid (PGA) as substrates of tunable stiffness that can be functionalized by a RGD adhesive peptide to investigate important events in myogenesis, including adhesion, migration, proliferation and differentiation. C2C12 myoblasts were used as cellular models. RGD presentation on soft films and increasing film stiffness could both induce cell adhesion, but the integrins involved in adhesion were different in the case of soft and stiff films. Soft films with RGD peptide appeared to be the most appropriate substrate for myogenic differentiation, while the stiff PLL/PGA films induced significant cell migration and proliferation and inhibited myogenic differentiation. ROCK kinase was found to be involved in the myoblast response to the different films. Indeed, its inhibition was sufficient to rescue differentiation on stiff films, but no significant changes were observed on stiff films with the RGD peptide. These results suggest that different signaling pathways may be activated depending on the mechanical and biochemical properties of multilayer films. This study emphasizes the advantage of soft PLL/PGA films presenting the RGD peptide in terms of myogenic differentiation. This soft RGD-presenting film may be further used as a coating of various polymeric scaffolds for muscle tissue engineering.
Collapse
|
35
|
Diederich VE, Studer P, Kern A, Lattuada M, Storti G, Sharma RI, Snedeker JG, Morbidelli M. Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness. Biotechnol Bioeng 2013; 110:1508-19. [DOI: 10.1002/bit.24810] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/23/2022]
|
36
|
Gouveia RM, Castelletto V, Alcock SG, Hamley IW, Connon CJ. Bioactive films produced from self-assembling peptide amphiphiles as versatile substrates for tuning cell adhesion and tissue architecture in serum-free conditions. J Mater Chem B 2013; 1:6157-6169. [DOI: 10.1039/c3tb21031f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Gill BJ, Gibbons DL, Roudsari LC, Saik JE, Rizvi ZH, Roybal JD, Kurie JM, West JL. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res 2012; 72:6013-23. [PMID: 22952217 DOI: 10.1158/0008-5472.can-12-0895] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Better understanding of the biophysical and biochemical cues of the tumor extracellular matrix environment that influence metastasis may have important implications for new cancer therapeutics. Initial exploration into this question has used naturally derived protein matrices that suffer from variability, poor control over matrix biochemistry, and inability to modify the matrix biochemistry and mechanics. Here, we report the use of a synthetic polymer-based scaffold composed primarily of poly(ethylene glycol), or PEG, modified with bioactive peptides to study murine models of lung adenocarcinoma. In this study, we focus on matrix-derived influences on epithelial morphogenesis of a metastatic cell line (344SQ) that harbors mutations in Kras and p53 (trp53) and is prone to a microRNA-200 (miR-200)-dependent epithelial-mesenchymal transition (EMT) and metastasis. The modified PEG hydrogels feature biospecific cell adhesion and cell-mediated proteolytic degradation with independently adjustable matrix stiffness. 344SQ encapsulated in bioactive peptide-modified, matrix metalloproteinase-degradable PEG hydrogels formed lumenized epithelial spheres comparable to that seen with three-dimensional culture in Matrigel. Altering both matrix stiffness and the concentration of cell-adhesive ligand significantly influenced epithelial morphogenesis as manifest by differences in the extent of lumenization, in patterns of intrasphere apoptosis and proliferation, and in expression of epithelial polarity markers. Regardless of matrix composition, exposure to TGF-β induced a loss of epithelial morphologic features, shift in expression of EMT marker genes, and decrease in mir-200 levels consistent with EMT. Our findings help illuminate matrix-derived cues that influence epithelial morphogenesis and highlight the potential utility that this synthetic matrix-mimetic tool has for cancer biology.
Collapse
Affiliation(s)
- Bartley J Gill
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Eisele NB, Andersson FI, Frey S, Richter RP. Viscoelasticity of Thin Biomolecular Films: A Case Study on Nucleoporin Phenylalanine-Glycine Repeats Grafted to a Histidine-Tag Capturing QCM-D Sensor. Biomacromolecules 2012; 13:2322-32. [DOI: 10.1021/bm300577s] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nico B. Eisele
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009
Donostia - San Sebastian, Spain
- Department of Cellular
Logistics, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen,
Germany
| | | | - Steffen Frey
- Department of Cellular
Logistics, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen,
Germany
| | - Ralf P. Richter
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009
Donostia - San Sebastian, Spain
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569
Stuttgart, Germany
| |
Collapse
|
39
|
Wang X, Boire TC, Bronikowski C, Zachman AL, Crowder SW, Sung HJ. Decoupling polymer properties to elucidate mechanisms governing cell behavior. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:396-404. [PMID: 22536977 DOI: 10.1089/ten.teb.2012.0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Determining how a biomaterial interacts with cells ("structure-function relationship") reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Wu J, Kang G, Zhao M, Gui L, Li N, Peng L, Zhang X, Li L, Peng S. Novel nano-materials, RGD-tetrapeptide-modified 17β-amino-11α-hydroxyandrost-1,4-diene-3-one: synthesis, self-assembly based nano-images and in vivo anti-osteoporosis evaluation. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm13983a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Kang G, Wang Y, Liu J, Wu J, Zhao M, Li G, Li N, Peng L, Zhang X, Li L, Mair N, Peng S. Development of three-component conjugates: to get nano-globes with porous surfaces, high in vivo anti-osteoporosis activity and minimal side effects. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34370c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC, Xie XM. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). JOURNAL OF MATERIALS CHEMISTRY 2012; 22:22467. [DOI: 10.1039/c2jm35498e] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|