1
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
2
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
3
|
Kan LLY, Chan BCL, Leung PC, Wong CK. Natural-Product-Derived Adjunctive Treatments to Conventional Therapy and Their Immunoregulatory Activities in Triple-Negative Breast Cancer. Molecules 2023; 28:5804. [PMID: 37570775 PMCID: PMC10421415 DOI: 10.3390/molecules28155804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive and persistent subtype of breast cancer that is likely to be resistant to conventional treatments. The rise in immunotherapy has created new modalities to treat cancer, but due to high costs and unreliable efficacy, adjunctive and complementary treatments have sparked interest in enhancing the efficacy of currently available treatments. Natural products, which are bioactive compounds derived from natural sources, have historically been used to treat or ameliorate inflammatory diseases and symptoms. As TNBC patients have shown little to no response to immunotherapy, the potential of natural products as candidates for adjuvant immunotherapy is being explored, as well as their immunomodulatory effects on cancer. Due to the complexity of TNBC and the ever-changing tumor microenvironment, there are challenges in determining the feasibility of using natural products to enhance the efficacy or counteract the toxicity of conventional treatments. In view of technological advances in molecular docking, pharmaceutical networking, and new drug delivery systems, natural products show promise as potential candidates in adjunctive therapy. In this article, we summarize the mechanisms of action of selected natural-product-based bioactive compounds and analyze their roles and applications in combination treatments and immune regulation.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Martínez-Fructuoso L, Arends SJR, Freire VF, Evans JR, DeVries S, Peyser BD, Akee RK, Thornburg CC, Kumar R, Ensel S, Morgan GM, McConachie GD, Veeder N, Duncan LR, Grkovic T, O’Keefe BR. Screen for New Antimicrobial Natural Products from the NCI Program for Natural Product Discovery Prefractionated Extract Library. ACS Infect Dis 2023; 9:1245-1256. [PMID: 37163243 PMCID: PMC10262198 DOI: 10.1021/acsinfecdis.3c00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 05/11/2023]
Abstract
The continuing emergence of antibiotic-resistant microbes highlights the need for the identification of new chemotypes with antimicrobial activity. One of the most prolific sources of antimicrobial molecules has been the systematic screening of natural product samples. The National Institute of Allergy and Infectious Diseases and the National Cancer Institute here report a large screen of 326,656 partially purified natural product fractions against a panel of four microbial pathogens, resulting in the identification of >3000 fractions with antifungal and/or antibacterial activity. A small sample of these active fractions was further purified and the chemical structures responsible for the antimicrobial activity were elucidated. The proof-of-concept study identified many different chemotypes, several of which have not previously been reported to have antimicrobial activity. The results show that there remain many unidentified antibiotic compounds from nature.
Collapse
Affiliation(s)
- Lucero Martínez-Fructuoso
- Natural
Products Branch, Developmental Therapeutic Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | | | - Vitor F. Freire
- Natural
Products Branch, Developmental Therapeutic Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Jason R. Evans
- Natural
Products Branch, Developmental Therapeutic Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Sean DeVries
- JMI
Laboratories, North Liberty, Iowa 52317, United States
| | - Brian D. Peyser
- Natural
Products Branch, Developmental Therapeutic Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Rhone K. Akee
- Natural
Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United
States
| | - Christopher C. Thornburg
- Natural
Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United
States
| | - Rohitesh Kumar
- Natural
Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United
States
| | - Susan Ensel
- Natural
Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United
States
- Department
of Chemistry and Physics, Hood College, Frederick, Maryland 21701-8599, United
States
| | - Gina M. Morgan
- JMI
Laboratories, North Liberty, Iowa 52317, United States
| | - Grant D. McConachie
- Natural
Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United
States
| | - Nathan Veeder
- JMI
Laboratories, North Liberty, Iowa 52317, United States
| | | | - Tanja Grkovic
- Natural
Products Branch, Developmental Therapeutic Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Barry R. O’Keefe
- Natural
Products Branch, Developmental Therapeutic Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
5
|
Agarwal A, Selvam A, Majood M, Agrawal O, Chakrabarti S, Mukherjee M. Carbon nanosheets to unravel the production of bioactive compounds from microalgae: A robust approach in drug discovery. Drug Discov Today 2023; 28:103586. [PMID: 37080385 DOI: 10.1016/j.drudis.2023.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
The conglomeration of active pharmaceutical ingredients (APIs) has influenced the development of life-saving drugs. These APIs are customarily synthetic products, albeit with adverse side effects. Thus, to overcome the bottlenecks associated with synthetically derived APIs, the approach of photocatalytically obtaining bioactive compounds from natural ingredients has emerged. Amid the pool of photoactive nanomaterials, this short review emphasizes the intelligent strategy of exploiting photoactive carbon nanosheets to photocatalytically derive bioactive compounds from natural algal biomass to treat many acute or chronic medical conditions. Carbon nanosheets result in phototrophic harvesting of bioactive compounds from microalgae as a result of their being an effective biocatalyst that increases the rate of photosynthesis. To understand the clinical translation of bioactive compounds, the pharmacodynamics of algal bioactive compounds are highlighted to determine the practicality and feasibility of using this green approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
6
|
Khursheed A, Rather MA, Jain V, Wani AR, Rasool S, Nazir R, Malik NA, Majid SA. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog 2022; 173:105854. [DOI: 10.1016/j.micpath.2022.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
7
|
Chahal V, Kakkar R. A combination strategy of structure-based virtual screening, MM-GBSA, cross docking, molecular dynamics and metadynamics simulations used to investigate natural compounds as potent and specific inhibitors of tumor linked human carbonic anhydrase IX. J Biomol Struct Dyn 2022:1-16. [PMID: 35735269 DOI: 10.1080/07391102.2022.2087736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cancer remains a serious health concern representing one of the leading causes of deaths worldwide. The enzyme human carbonic anhydrase IX (hCA IX) is found to be over-expressed in many cancer types and its selective inhibition over its cytosolic off-target isoform, human carbonic anhydrase II (hCA II), represents a potential area of research in the development of novel anticancer compounds. This work is concerned with the use of various in silico tools for the identification of natural product based molecules that can selectively inhibit hCA IX over hCA II. MM-GBSA assisted structure-based virtual screening against hCA IX was performed for nearly 225,000 natural products imported from the ZINC15 database. The obtained hits were checked for their potency by considering acetazolamide, the bound inhibitor of hCA IX, as the reference molecule, and 121 molecules were identified as potent hCA IX inhibitors. After ensuring their potency, cross-docking, followed by MM-GBSA calculations of the hits with hCA II, was performed, and their selectivity was assessed by considering the hCA IX selective compound SLC-0111 as the reference molecule, and 50 natural products were identified as potent as well as selective hCA IX inhibitors. Molecules with the quinoline scaffold showed the highest selectivity, and their selectivity was attributed to the strong electrostatic interactions of the zinc binding group (ZBG) with the active site Zn(II) ion. Furthermore, the stability of the binding modes of the top hCA IX selective hits was ensured by performing molecular dynamics (MD) simulations, which clearly proved that one of the short-listed molecules is truly selective, as it does not interact with the active site Zn(II) ion of hCA II, but interacts strongly with this ion in hCA IX. Bonding pose metadynamics studies revealed that the ligand moves to a more stable binding site from the one predicted by the docking studies and shows stronger interaction with the protein and Zn(II) at this binding site. The ligand is not likely to have issues with bioavailability. As a result, this ligand can be taken for bioassay testing and subsequently used as a feasible therapeutic treatment for a variety of cancer types. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Varun Chahal
- Computational Chemistry Group, Department of Chemistry, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Group, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Dong D, Shi YN, Mou ZM, Chen SY, Zhao DK. Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites. HORTICULTURE RESEARCH 2022; 9:uhac050. [PMID: 35591927 PMCID: PMC9113227 DOI: 10.1093/hr/uhac050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Plant secondary metabolites make a great contribution to the agricultural and pharmaceutical industries. Their accumulation is determined by the integrated transport of target compounds and their biosynthesis-related RNA, protein, or DNA. However, it is hard to track the movement of these biomolecules in vivo. Grafting may be an ideal method to solve this problem. The differences in genetic and metabolic backgrounds between rootstock and scion, coupled with multiple omics approaches and other molecular tools, make it feasible to determine the movement of target compounds, RNAs, proteins, and DNAs. In this review, we will introduce methods of using the grafting technique, together with molecular biological tools, to reveal the differential accumulation mechanism of plant secondary metabolites at different levels. Details of the case of the transport of one diterpene alkaloid, fuziline, will be further illustrated to clarify how the specific accumulation model is shaped with the help of grafting and multiple molecular biological tools.
Collapse
Affiliation(s)
- Ding Dong
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650204, China
| | - Ya-Na Shi
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Zong-Min Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Sui-Yun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
9
|
Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8016209 DOI: 10.1016/b978-0-12-820472-6.00041-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Emerging threats to human health require a concerted effort in search of both preventive and treatment strategies, placing natural products at the center of efforts to obtain new therapies and reduce disease spread and associated mortality. The therapeutic value of compounds found in plants has been known for ages, resulting in their utilization in homes and in clinics for the treatment of many ailments ranging from common headache to serious conditions such as wounds. Despite the advancement observed in the world, plant based medicines are still being used to treat many pathological conditions or are used as alternatives to modern medicines. In most cases, these natural products or plant-based medicines are used in an un-purified state as extracts. A lot of research is underway to identify and purify the active compounds responsible for the healing process. Some of the current drugs used in clinics have their origins as natural products or came from plant extracts. In addition, several synthetic analogues are natural product-based or plant-based. With the emergence of novel infectious agents such as the SARS-CoV-2 in addition to already burdensome diseases such as diabetes, cancer, tuberculosis and HIV/AIDS, there is need to come up with new drugs that can cure these conditions. Natural products offer an opportunity to discover new compounds that can be converted into drugs given their chemical structure diversity. Advances in analytical processes make drug discovery a multi-dimensional process involving computational designing and testing and eventual laboratory screening of potential drug candidates. Lead compounds will then be evaluated for safety, pharmacokinetics and efficacy. New technologies including Artificial Intelligence, better organ and tissue models such as organoids allow virtual screening, automation and high-throughput screening to be part of drug discovery. The use of bioinformatics and computation means that drug discovery can be a fast and efficient process and enable the use of natural products structures to obtain novel drugs. The removal of potential bottlenecks resulting in minimal false positive leads in drug development has enabled an efficient system of drug discovery. This review describes the biosynthesis and screening of natural products during drug discovery as well as methods used in studying natural products.
Collapse
|
10
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
11
|
El-Elimat T, Raja HA, Figueroa M, Al Sharie AH, Bunch RL, Oberlies NH. Freshwater Fungi as a Source of Chemical Diversity: A Review. JOURNAL OF NATURAL PRODUCTS 2021; 84:898-916. [PMID: 33662206 PMCID: PMC8127292 DOI: 10.1021/acs.jnatprod.0c01340] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As their name indicates, freshwater fungi occur on submerged substrates in fresh water habitats. This review brings together the chemical diversity and biological activity of 199 of the 280 known freshwater fungal metabolites published from 1992 to 2020, representing at least seven structural classes, including polyketides, phenylpropanoids, terpenoids, meroterpenoids, alkaloids, polypeptides, and monosaccharides. In addition to describing what they are, where they are found, and what they do, we also discuss strategies for the collection, isolation, and identification of fungi from freshwater habitats, with the goal of enhancing chemists' knowledge of several mycological principles. We anticipate that this review will provide a springboard for future natural products studies from this fascinating but underexplored group of Ascomycota.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ahmed H. Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rick L. Bunch
- Department of Geography, Environment, and Sustainability, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
12
|
Matveeva T, Khafizova G, Sokornova S. In Search of Herbal Anti-SARS-Cov2 Compounds. FRONTIERS IN PLANT SCIENCE 2020; 11:589998. [PMID: 33304368 PMCID: PMC7701093 DOI: 10.3389/fpls.2020.589998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 05/14/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) announced that the spread of the new coronavirus had reached the stage of a pandemic. To date (23.10.2020), there are more than 40 million confirmed cases of the disease in the world, at the same time there is still no effective treatment for the disease. For management and treatment of SARS-Cov2, the development of an antiviral drug is needed. Since the representatives of all human cultures have used medicinal plants to treat viral diseases throughout their history, plants can be considered as sources of new antiviral drug compounds against emerging viruses. The huge metabolic potential of plants allows us to expect discovery of plant compounds for the prevention and treatment of coronavirus infection. This idea is supported by number of papers on the anti-SARS-Cov2 activity of plant extracts and specific compounds in the experiments in silico, in vitro, and in vivo. Here, we summarize information on methods and approaches aimed to search for anti-SARS-Cov2 compounds including cheminformatics, bioinformatics, genetic engineering of viral targets, interacting with drugs, biochemical approaches etc. Our mini-review may be useful for better planning future experiments (including rapid methods for screening compounds for antiviral activity, the initial assessment of the antiviral potential of various plant species in relation to certain pathogens, etc.) and giving a hand to those who are making first steps in this field.
Collapse
Affiliation(s)
- Tatiana Matveeva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Galina Khafizova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Sofia Sokornova
- Department of Toxicology and Biotechnology, All-Russian Institute of Plant Protection, St. Petersburg, Russia
| |
Collapse
|
13
|
Rao C, Huisman DH, Vieira HM, Frodyma DE, Neilsen BK, Chakraborty B, Hight SK, White MA, Fisher KW, Lewis RE. A Gene Expression High-Throughput Screen (GE-HTS) for Coordinated Detection of Functionally Similar Effectors in Cancer. Cancers (Basel) 2020; 12:E3143. [PMID: 33120942 PMCID: PMC7692652 DOI: 10.3390/cancers12113143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Genome-wide, loss-of-function screening can be used to identify novel vulnerabilities upon which specific tumor cells depend for survival. Functional Signature Ontology (FUSION) is a gene expression-based high-throughput screening (GE-HTS) method that allows researchers to identify functionally similar proteins, small molecules, and microRNA mimics, revealing novel therapeutic targets. FUSION uses cell-based high-throughput screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA libraries to identify putative protein targets and mechanisms of action (MoA) for several previously undescribed natural products. We have used FUSION to screen for functional analogues to Kinase suppressor of Ras 1 (KSR1), a scaffold protein downstream of Ras in the Raf-MEK-ERK kinase cascade, and biologically validated several proteins with functional similarity to KSR1. FUSION incorporates bioinformatics analysis that may offer higher resolution of the endpoint readout than other screens which utilize Boolean outputs regarding a single pathway activation (i.e., synthetic lethal and cell proliferation). Challenges associated with FUSION and other high-content genome-wide screens include variation, batch effects, and controlling for potential off-target effects. In this review, we discuss the efficacy of FUSION to identify novel inhibitors and oncogene-induced changes that may be cancer cell-specific as well as several potential pitfalls within FUSION and best practices to avoid them.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Dianna H. Huisman
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Heidi M. Vieira
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Beth K. Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Binita Chakraborty
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Suzie K. Hight
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA;
| | - Michael A. White
- Chief Scientific Officer, Samumed, LLC, San Diego, CA 92121, USA;
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| |
Collapse
|
14
|
Mubashir N, Fatima R, Naeem S. Identification of Novel Phyto-chemicals from Ocimum basilicum for the Treatment of Parkinson's Disease using In Silico Approach. Curr Comput Aided Drug Des 2020; 16:420-434. [PMID: 32883197 DOI: 10.2174/1573409915666190503113617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease is characterized by decreased level of dopaminergic neurotransmitters and this decrease is due to the degradation of dopamine by protein Monoamine Oxidase B (MAO-B). In order to treat Parkinson's disease, MAO-B should be inhibited. OBJECTIVE To find out the novel phytochemicals from plant Ocimum basilicum that can inhibit MAO-B by using the in silico methods. METHODS The data of chemical constituents from plant Ocimum basilicum was collected and inhibitory activity of these phytochemicals was then predicted by using the Structure-Based (SB) and Ligand-Based Virtual Screening (LBVS) methods. Molecular docking, one of the common Structure-Based Virtual Screening method, has been used during this search. Traditionally, molecular docking is used to predict the orientation and binding affinity of the ligand within the active site of the protein. Molegro Virtual Docker (MVD) software has been used for this purpose. On the other hand, Random Forest Model, one of the LBVS method, has also been used to predict the activity of these chemical constituents of Ocimum basilicum against the MAO-B. RESULTS During the docking studies, all the 108 compounds found in Ocimum basilicum were docked within the active site of MAO-B (PDB code: 4A79) out of which, 57 compounds successfully formed the hydrogen bond with tyr 435, a crucial amino acid for the biological activity of the enzyme. Rutin (-182.976 Kcal/mol), Luteolin (-163.171 Kcal/mol), Eriodictyol-7-O-glucoside (- 160.13 Kcal/mol), Rosmarinic acid (-133.484 Kcal/mol) and Isoquercitrin (-131.493 Kcal/mol) are among the top hits with the highest MolDock score along with hydrogen interaction with tyr 435. Using the RF model, ten compounds out of 108 chemical constituent of Ocimum basilicum were predicted to be active, Apigenin (1.0), Eriodictyol (1.0), Orientin (0.876), Kaempferol (0.8536), Luteolin (0.813953) and Rosmarinic-Acid (0.7738095) are predicted to be most active with the highest RF score. CONCLUSION The comparison of the two screening methods show that the ten compounds that were predicted to be active by the RF model, are also found in top hits of docking studies with the highest score. The top hits obtained during this study are predicted to be the inhibitor of MAO-B, thus, could be used further for the development of drugs for the treatment of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Nageen Mubashir
- Bioinformatics & Biophysics Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan
| | - Rida Fatima
- Bioinformatics & Biophysics Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan
| | - Sadaf Naeem
- Bioinformatics & Biophysics Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
15
|
Assessment of the antibacterial, antivirulence, and action mechanism of Copaifera pubiflora oleoresin and isolated compounds against oral bacteria. Biomed Pharmacother 2020; 129:110467. [PMID: 32603890 DOI: 10.1016/j.biopha.2020.110467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023] Open
Abstract
The microorganisms that constitute the oral microbiome can cause oral diseases, including dental caries and endodontic infections. The use of natural products could help to overcome bacterial resistance to the antimicrobials that are currently employed in clinical therapy. This study assessed the antimicrobial activity of the Copaifera pubiflora oleoresin and of the compounds isolated from this resin against oral bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays provided values ranging from 6.25 to > 400 μg/mL for the C. pubiflora oleoresin and its isolated compounds. The fractional inhibitory concentration index (FICI) assay showed that the oleoresin and chlorhexidine did not act synergistically. All the tested bacterial strains formed biofilms. MICB50 determination revealed inhibitory action: values varied from 3.12-25 μg/mL for the oleoresin, and from 0.78 to 25 μg/mL for the ent-hardwickiic acid. Concerning biofilm eradication, the C. pubiflora oleoresin and hardwickiic acid eradicated 99.9 % of some bacterial biofilms. Acid resistance determination showed that S. mutans was resistant to acid in the presence of the oleoresin and ent-hardwickiic acid at pH 4.0, 4.5, and 5.0 at all the tested concentrations. Analysis of DNA/RNA and protein release by the cell membrane demonstrated that the oleoresin and hardwiickic acid damaged the bacterial membrane irreversibly, which affected membrane integrity. Therefore, the C. pubiflora oleoresin and ent-hardwickiic acid have potential antibacterial effect and can be used as new therapeutic alternatives to treat oral diseases such as dental caries and endodontic infections.
Collapse
|
16
|
Gan H, Qi M, Chan C, Leung P, Ye G, Lei Y, Liu A, Xue F, Liu D, Ye W, Zhang D, Deng L, Chen J. Digitoxin inhibits HeLa cell growth through the induction of G2/M cell cycle arrest and apoptosis in vitro and in vivo. Int J Oncol 2020; 57:562-573. [PMID: 32468057 DOI: 10.3892/ijo.2020.5070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is the fourth most common gynecological malignancy affecting the health of women worldwide and the second most common cause of cancer‑related mortality among women in developing regions. Thus, the development of effective chemotherapeutic drugs for the treatment of cervical cancer has become an important issue in the medical field. The application of natural products for the prevention and treatment of various diseases, particularly cancer, has always attracted widespread attention. In the present study, a library of natural products composed of 78 single compounds was screened and it was found that digitoxin exhibited the highest cytotoxicity against HeLa cervical cancer cells with an IC50 value of 28 nM at 48 h. Furthermore, digitoxin exhibited extensive antitumor activities in a variety of malignant cell lines, including the lung cancer cell line, A549, the hepatoma cell line, MHCC97H, and the colon cancer cell line, HCT116. Mechanistically, digitoxin caused DNA double‑stranded breaks (DSBs), inhibited the cell cycle at the G2/M phase via the ataxia telangiectasia mutated serine/threonine kinase (ATM)/ATM and Rad3‑related serine/threonine kinase (ATR)‑checkpoint kinase (CHK1)/checkpoint kinase 2 (CHK2)‑Cdc25C pathway and ultimately triggered mitochondrial apoptosis, which was characterized by the disruption of Bax/Bcl‑2, the release of cytochrome c and the sequential activation of caspases and poly(ADP‑ribose) polymerase (PARP). In addition, the in vivo anticancer effect of digitoxin was confirmed in HeLa cell xenotransplantation models. On the whole, the findings of the present study demonstrate the efficacy of digitoxin against cervical cancer in vivo and elucidate its molecular mechanisms, including DSBs, cell cycle arrest and mitochondrial apoptosis. These results will contribute to the development of digitoxin as a chemotherapeutic agent in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Hua Gan
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chakpiu Chan
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Pan Leung
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Geni Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, P.R. China
| | - Aiai Liu
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Feifei Xue
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dongdong Liu
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lijuan Deng
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiaxu Chen
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
17
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
18
|
Wang Y, Yu X, Wang L, Zhang F, Zhang Y. Research Progress on Chemical Constituents and Anticancer Pharmacological Activities of Euphorbia lunulata Bunge. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3618941. [PMID: 32420336 PMCID: PMC7201523 DOI: 10.1155/2020/3618941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
Euphorbia lunulata Bunge (ELB) is a traditional Chinese medicine possessing the functions of expectoration, cough relief, asthma relief, detoxification, and itching relief. Modern pharmacological studies have showed that ELB exhibits a variety of activities, such as antitumor, antibacterial, and antioxidant activities. In particular, the anticancer activities of ELB have attracted much attention. In this review, we summarize the recent research progress on the chemical constituents and anticancer activities of ELB by searching the PubMed, Web of Science, and China National Knowledge Infrastructure databases. The results show that more than 151 components have been identified from extracts of ELB, including 73 terpenoids, 28 flavonoids, 8 phenylpropanoids, 7 steroids, 19 phenols, and 5 alkaloids. ELB has been shown to exhibit significant inhibitory effects on lung, cervical, gastric, breast, and liver cancers, and its anticancer effects are mainly manifested in the 3 aspects, including cell cycle arrest, cell apoptosis, and inhibition of the migration of cancer cells.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Yu
- Shandong Medicine Technician College, Tai'an 271016, China
| | - Lingna Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
19
|
Krummenauer ME, Lopes W, Garcia AWA, Schrank A, Gnoatto SCB, Kawano DF, Vainstein MH. A Highly Active Triterpene Derivative Capable |of Biofilm Damage to Control Cryptococcus spp. Biomolecules 2019; 9:E831. [PMID: 31817559 PMCID: PMC6995603 DOI: 10.3390/biom9120831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated yeast responsible for more than 180,000 deaths per year. The standard therapeutic approach against cryptococcosis is a combination of amphotericin B with flucytosine. In countries where cryptococcosis is most prevalent, 5-fluorocytosine is rarely available, and amphotericin B requires intravenous administration. C. neoformans biofilm formation is related to increased drug resistance, which is an important outcome for hospitalized patients. Here, we describe new molecules with anti-cryptococcal activity. A collection of 66 semisynthetic derivatives of ursolic acid and betulinic acid was tested against mature biofilms of C. neoformans at 25 µM. Out of these, eight derivatives including terpenes, benzazoles, flavonoids, and quinolines were able to cause damage and eradicate mature biofilms. Four terpene compounds demonstrated significative growth inhibition of C. neoformans. Our study identified a pentacyclic triterpenoid derived from betulinic acid (LAFIS13) as a potential drug for anti-cryptococcal treatment. This compound appears to be highly active with low toxicity at minimal inhibitory concentration and capable of biofilm eradication.
Collapse
Affiliation(s)
- Maria E. Krummenauer
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - William Lopes
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - Ane W. A. Garcia
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - Augusto Schrank
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - Simone C. B. Gnoatto
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil;
| | - Daniel F. Kawano
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil;
| | - Marilene H. Vainstein
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| |
Collapse
|
20
|
Teixeira A, DaCunha DC, Barros L, Caires HR, Xavier CPR, Ferreira ICFR, Vasconcelos MH. Eucalyptus globulus Labill. decoction extract inhibits the growth of NCI-H460 cells by increasing the p53 levels and altering the cell cycle profile. Food Funct 2019; 10:3188-3197. [PMID: 31165800 DOI: 10.1039/c8fo02466a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eucalyptus globulus Labill. is a widespread evergreen plant belonging to the Myrtaceae family. Several species of Eucalyptus are known to have a plethora of medicinal properties, particularly anti-tumor activity, which prompts the study of the chemical composition and bioactivity of extracts from this plant. Hereby, the main aims of this work were to (i) profile the phenolic compounds in E. globulus extracts prepared by decoction and infusion; (ii) test the cell growth inhibitory activity of E. globulus decoction and infusion, in three human tumor cell line models: colorectal, pancreatic and non-small cell lung cancer (HCT-15, PANC-1 and NCI-H460, respectively); and (iii) study the mechanism of action of the most potent extract in the most sensitive cell line. Our work demonstrated that both the decoction and infusion preparations revealed the presence of phenolic acids, flavonoids and gallotannins, the last group being the most abundant polyphenols found, especially two digalloyl-glucosides. Both extracts inhibited the growth of all the tumor cell lines tested. The decoction extract was the most potent in inhibiting the NCI-H460 cell growth (lower GI50 determined by sulforhodamine B assay), which could be due to its higher content of phenolic compounds. Hence, the effect of the decoction extract on the NCI-H460 cells was further investigated. For this, cell viability (by Trypan blue exclusion assay), the cell cycle profile and apoptosis (by flow cytometry), cell proliferation (by bromodeoxyuridine assay) and protein expression (by western blot) were analyzed. Two different concentrations of the extract (52 μg mL-1 and 104 μg mL-1, corresponding to GI50 and 2 × GI50 concentration) were tested in these studies. Remarkably, the E. globulus decoction extract caused a dose-dependent decrease in the NCI-H460 cell number, which was correlated with a cell cycle arrest in the G0/G1 phase, a decrease in cell proliferation and an increase in the expression of p53, p21 and cyclin D1 proteins. Interestingly, no differences were found in the levels of ds-DNA damage and in the levels of apoptosis. This work highlights the relevance of the Eucalyptus globulus Labill. extract as a source of bioactive compounds with potential anti-tumor activity.
Collapse
Affiliation(s)
- Alexandra Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
| | | | | | | | | | | | | |
Collapse
|
21
|
Thirupathi A, Shanmugavadivelu CM, Natarajan S. Fastidious Anatomization of Biota Procured Compounds on Cancer Drug Discovery. Curr Pharm Biotechnol 2019; 21:354-363. [PMID: 31778106 DOI: 10.2174/1389201020666191128145015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products are the rootstock for identifying new drugs since ancient times. In comparison with synthetic drugs, they have abounding beneficial effects in bestowing protection against many diseases, including cancer. Cancer has been observed as a major threat in recent decades, and its prevalence is expected to increase over the next decades. Also, current treatment methods in cancer therapy such as radiation therapy and chemotherapy cause severe adverse side effects among the cancer population. Therefore, it is exigent to find a remedy without any side effects. METHODS In recent years, research has focused on obtaining naturally derived products to encounter this complication. The current pace of investigations, such as gene identification and advancement in combinatorial chemistry, leads to the aberrant access to a wide range of new synthetic drugs. In fact, natural products act as templates in structure predictions and synthesis of new compounds with enhanced biological activities. RESULTS Recent developments in genomics have established the importance of polymorphism, which implies that patients require different drugs for their treatment. This demands the discovery of a large number of drugs, but limited sources restrict the pharmaceutical industry to overcome these major obstacles. The use of natural products and their semisynthetic and synthetic analogues could alleviate these problems. However, the lack of standardization in terms of developing methods for evaluating the chemical composition, efficacy, isolation and international approval is still a major limitation in this field. In the past few years, several drug-approval authorities, including the FDA and WHO have allowed using these naturally derived compounds in humans. CONCLUSION In this review, we described the use of some natural products from plant and marine sources in cancer treatment and shed some light on semi-synthetic and synthetic compounds derived from natural sources used in cancer therapy.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | | | - Sampathkumar Natarajan
- Department of Chemistry, SSM Institute of Engineering and Technology, Dindigul, Tamil Nadu, India
| |
Collapse
|
22
|
Neergheen-Bhujun V, Awan AT, Baran Y, Bunnefeld N, Chan K, Dela Cruz TE, Egamberdieva D, Elsässer S, Johnson MVV, Komai S, Konevega AL, Malone JH, Mason P, Nguon R, Piper R, Shrestha UB, Pešić M, Kagansky A. Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. J Glob Health 2019; 7:020304. [PMID: 29302312 PMCID: PMC5735771 DOI: 10.7189/jogh.07.020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Yusuf Baran
- Izmir Institute of Technology and Abdullah Gul University, Izmir, Turkey
| | - Nils Bunnefeld
- Stirling Conservation Science, Stirling University, Striling, UK
| | - Kit Chan
- Centre for Global Health Research, The Usher Institute for Population Health Sciences and Informatics, The University of Edinburgh, Scotland, UK
| | | | | | | | | | - Shoji Komai
- Nara Institute of Science and Technology, Ikoma, Japan
| | | | - John H Malone
- University of Connecticut, Farmington, Connecticut, USA
| | - Paul Mason
- School of Social Sciences, Monash University, Melbourne, Australia
| | | | | | | | | | - Alexander Kagansky
- University of Edinburgh, Edinburgh, UK and Far Eastern Federal University, Russia
| |
Collapse
|
23
|
Abstract
The biosynthetic talent of microorganisms has been harnessed for drug discovery for almost a century. Microbial metabolites not only account for the majority of antibiotics available today, but have also led to anticancer, immunosuppressant, and cholesterol-lowering drugs. Yet, inherent challenges of natural products-including inadequate supply and difficulties with structure diversification-contributed to their deprioritization as a source of pharmaceuticals. In recent years, advances in genome sequencing and synthetic biology spurred a renewed interest in natural products. Bacterial genomes encode an abundance of natural products awaiting discovery. Synthetic biology can facilitate not only discovery and improvements in supply, but also structure diversification. This perspective highlights prior accomplishments in the field of synthetic biology and natural products by the scientific community at large, including research from our laboratory. We also provide our opinion as to where we need to go to continue advancing the field.
Collapse
|
24
|
Sousa ML, Preto M, Vasconcelos V, Linder S, Urbatzka R. Antiproliferative Effects of the Natural Oxadiazine Nocuolin A Are Associated With Impairment of Mitochondrial Oxidative Phosphorylation. Front Oncol 2019; 9:224. [PMID: 31001482 PMCID: PMC6456697 DOI: 10.3389/fonc.2019.00224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Natural products are interesting sources for drug discovery. The natural product oxadiazine Nocuolin A (NocA) was previously isolated from the cyanobacterial strain Nodularia sp. LEGE 06071 and here we examined its cytotoxic effects against different strains of the colon cancer cell line HCT116 and the immortalized epithelial cell line hTERT RPE-1. NocA was cytotoxic against colon cancer cells and immortalized cells under conditions of exponential growth but was only weakly active against non-proliferating immortalized cells. NocA induced apoptosis by mechanism(s) resistant to overexpression of BCL family members. Interestingly, NocA affected viability and induced apoptosis of HCT116 cells grown as multicellular spheroids. Analysis of transcriptome profiles did not match signatures to any known compounds in CMap but indicated stress responses and induction of cell starvation. Evidence for autophagy was observed, and a decrease in various mitochondrial respiration parameter within 1 h of treatment. These results are consistent with previous findings showing that nutritionally compromised cells in spheroids are sensitive to impairment of mitochondrial energy production due to limited metabolic plasticity. We conclude that the antiproliferative effects of NocA are associated with effects on mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Maria Lígia Sousa
- Faculty of Sciences of University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - Vítor Vasconcelos
- Faculty of Sciences of University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - Stig Linder
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, Stockholm, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| |
Collapse
|
25
|
Secondary Metabolites of Endophytic Actinomycetes: Isolation, Synthesis, Biosynthesis, and Biological Activities. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 108 2019; 108:207-296. [DOI: 10.1007/978-3-030-01099-7_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Tewari D, Rawat P, Singh PK. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem Toxicol 2018; 123:522-535. [PMID: 30471312 DOI: 10.1016/j.fct.2018.11.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Cancer, a life threatening disease adversely affects huge population worldwide. Naturally derived drug discovery has emerged as a potential pathway in search of anticancers. Natural products-based drugs are generally considered safe, compared to their synthetic counterparts. A systematic review on adverse drugs reactions (ADRs) of the anticancer natural products has not been performed till date. We reviewed anticancer drugs, derived from plants, microbes and marine sources with their mechanistic action and reported ADRs. PubMed, ScienceDirect and Scopus were searched through Boolean information retrieval method using keywords "natural products", "cancer", "herbal", "marine drugs" and "adverse drug reaction". We documented ADRs of natural products based anticancer agents, mechanisms of action and chemical structures. It was observed that majority of the natural products based anticancer drugs possess ample adverse effects, dominantly hematological toxicities, alopecia, neurotoxicity and cardiotoxicity. These findings deviate from the preconceived notion about safer nature of herbal drugs. We also came across some anti-cancer natural products with less/no reported adverse events like Cabazitaxel and Arglabin. Comprehensive pharmacovigilance studies are needed to report ADRs and thereby predicting safety of anti-cancer drugs, either originated from natural sources or chemically synthesized.
Collapse
Affiliation(s)
- Devesh Tewari
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Autonomous Body of Department of Science and Technology, Govt. of India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pooja Rawat
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Autonomous Body of Department of Science and Technology, Govt. of India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pawan Kumar Singh
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Autonomous Body of Department of Science and Technology, Govt. of India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India.
| |
Collapse
|
27
|
Guo X, Cheng M, Hu P, Shi Z, Chen S, Liu H, Shi H, Xu Z, Tian X, Huang C. Absorption, Metabolism, and Pharmacokinetics Profiles of Norathyriol, an Aglycone of Mangiferin, in Rats by HPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12227-12235. [PMID: 30298742 DOI: 10.1021/acs.jafc.8b03763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Norathyriol, an aglycone of mangiferin, is a bioactive tetrahydroxyxanthone present in mangosteen and many medicinal plants. However, the biological fate of norathyriol in vivo remains unclear. In this study, the absorption and metabolism of norathyriol in rats were evaluated through HPLC-MS/MS. Results showed that norathyriol was well absorbed, as indicated by its absolute bioavailability of 30.4%. Besides, a total of 21 metabolites of norathyriol were identified in rats, including methylated, glucuronidated, sulfated and glycosylated conjugates, which suggested norathyriol underwent extensive phase II metabolism. Among those metabolites, 15 metabolites were also identified in hepatocytes incubated with norathyriol, indicating the presence of hepatic metabolism. Furthermore, glucuronide and sulfate conjugates, rather than their parent compound, were found to be the main forms existing in vivo after administration of norathyriol, as implicated by the great increase of exposure of norathyriol determined after hydrolysis with β-glucuronidase and sulfatase. The information obtained from this study contributes to better understanding of the pharmacological mechanism of norathyriol.
Collapse
Affiliation(s)
- Xiaozhen Guo
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mingcang Cheng
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Pei Hu
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhangpeng Shi
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Shuoji Chen
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Huan Liu
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Haoyun Shi
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhou Xu
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xiaoting Tian
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chenggang Huang
- Shanghai Institute of Material Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
28
|
Affiliation(s)
- Kamal Kumar
- Max-Planck-Institut für molekulare PhysiologieAbteilung Chemische Biologie Otto-Hahn Str. 11 44227- Dortmund Germany
| | - Herbert Waldmann
- Max-Planck-Institut für molekulare PhysiologieAbteilung Chemische Biologie Otto-Hahn Str. 11 44227- Dortmund Germany
- Technische Universität DortmundFakultät Chemie, Chemische Biologie Otto-Hahn-Straße 6 Dortmund 44221 Germany
| |
Collapse
|
29
|
Anti-Influenza A Viral Butenolide from Streptomyces sp. Smu03 Inhabiting the Intestine of Elephas maximus. Viruses 2018; 10:v10070356. [PMID: 29976861 PMCID: PMC6070878 DOI: 10.3390/v10070356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022] Open
Abstract
Actinobacteria are a phylum of bacteria known for their potential in producing structurally diversified natural products that are always associated with a broad range of biological activities. In this paper, using an H5N1 pseudo-typed virus drug screening system combined with a bioassay guided purification approach, an antiviral butanolide (1) was identified from the culture broth of Streptomyces sp. SMU03, a bacterium isolated from the feces of Elephas maximus in Yunnan province, China. This compound displayed broad and potent activity against a panel of influenza viruses including H1N1 and H3N2 subtypes, as well as influenza B virus and clinical isolates with half maximal inhibitory concentration values (IC50) in the range of 0.29 to 12 µg/mL. In addition, 1 was also active against oseltamivir-resistant influenza virus strain of A/PR/8/34 with NA-H274Y mutation. Studies on the detailed modes of action suggested that 1 functioned by interfering with the fusogenic process of hemagglutinin (HA) of influenza A virus (IAV), thereby blocking the entry of virus into host cells. Furthermore, the anti-IAV activity of 1 was assessed with infected BALB/c mice, of which the appearance, weight, and histopathological changes in the infected lungs were significantly alleviated compared with the no-drug-treated group. Conclusively, these results provide evidence that natural products derived from microbes residing in animal intestines might be a good source for antiviral drug discovery.
Collapse
|
30
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 642] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
31
|
Khan H, Marya, Amin S, Kamal MA, Patel S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed Pharmacother 2018; 101:860-870. [PMID: 29635895 DOI: 10.1016/j.biopha.2018.03.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acetylcholinesterase (AChE), a serine hydrolase, is primarily responsible for the termination of signal transmission in the cholinergic system, owing to its outstanding hydrolyzing potential. Its substrate acetylcholine (ACh), is a neurotransmitter of the cholinergic system, with a predominant effect on motor neurons involved in memory formation. So, by decreasing the activity of this enzyme by employment of specific inhibitors, a number of motor neuron disorders such as myasthenia gravis, glaucoma, Lewy body dementia, and Alzheimer's disease, among others, can be treated. However, the current-available AChE inhibitors have several limitations in terms of efficacy, therapeutic range, and safety. SCOPE AND APPROACH Primarily due to the non-compliance of current therapies, new, effective and safe inhibitors are being searched for, especially those which act through multiple receptor sites, but do not elicit undesirable effects. In this regard, the evaluation of phytochemicals such as flavonoids, can be a rational approach. The therapeutic potential of flavonoids has already been recognized agaisnt several ailments. This review deals with various plant-derived flavonoids, their preclinical potential as AChE inhibitors, in established assays, possible mechanisms of action, and structural activity relationship (SAR). RESULTS AND CONCLUSIONS Subsequently, a number of plant-derived flavonoids with outstanding efficacy and potency as AChE inhibitors, the mechanistic, their safety profiles, and pharmacokinetic attributes have been discussed. Through derivatization of these reported flavonoids, some limitation in efficacy or pharmacokinetic parameters can be addressed. The selected flavonoids ought to be tested in clinical studies to discover new neuro-therapeutic candidates.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Marya
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Surriya Amin
- Department of Botany, Islamia College Peshawar, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
32
|
Ravi SK, Ramesh BN, Mundugaru R, Vincent B. Multiple pharmacological activities of Caesalpinia crista against aluminium-induced neurodegeneration in rats: Relevance for Alzheimer's disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:202-211. [PMID: 29408763 DOI: 10.1016/j.etap.2018.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 06/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and mainly affects cognitive function of the aged populations. Aluminium, a neurotoxic metal, has been suggested as a contributing factor of AD. Caesalpinia crista is a medicinal plant known for its anti-microbial, anti-inflammatory and anti-oxidant properties. The present study was conducted in order to evaluate the neuroprotective effects of methanolic extracts of C. crista (MECC) on aluminium-induced neurodegeneration in rats. Co-administration with MECC significantly and dose dependently ameliorated the aluminium-dependent cognitive impairment, AChE hyperactivity and oxidative stress in the hippocampus and in the frontal cortex of rat brain. Moreover, MECC reduced the neuronal injury induced by aluminium as shown by the diminution of neuron loss and pyknosis in the CA1 and CA3 regions of the hippocampus. From this study, it is inferred that MECC protect against aluminium-induced behavioral alterations, cognitive function, oxidative stress and neuroinflammation in vivo. Therefore, this plant may serve as a source of natural products having multiple functions and could be utilized as an anti-AD preparation.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, College of Agriculture, A Constituent College of University of Agriculture Sciences, Bangalore, India
| | - Balenahalli Narasingappa Ramesh
- Department of Biotechnology, College of Agriculture, A Constituent College of University of Agriculture Sciences, Bangalore, India.
| | - Ravi Mundugaru
- Pharmacology Laboratory, SDM Centre for Research in Ayurveda and Allied Sciences, Kuthpady, Udupi, Karnataka, India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
33
|
Yang Z, Zhang Y, Chen X, Li W, Li GB, Wu Y. Total Synthesis and Evaluation of B-Homo Palmatine and Berberine Derivatives as p300 Histone Acetyltransferase Inhibitors. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhongzhen Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Yong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Xin Chen
- Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; 610041 West China Medical School China
| | - Weijian Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| |
Collapse
|
34
|
Jian B, Zhang H, Han C, Liu J. Anti-Cancer Activities of Diterpenoids Derived from Euphorbia fischeriana Steud. Molecules 2018; 23:molecules23020387. [PMID: 29439483 PMCID: PMC6017748 DOI: 10.3390/molecules23020387] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/26/2022] Open
Abstract
Euphorbia fischeriana Steud is an essential oriental folk medicine used for healing cancer, edema and tuberculosis. Recently, its anticancer activitity has attracted more attention. A volume of research has indicated that diterpenoids are the major anticancer active constituents from this medicinal herb. In this review, we aimed to provide a summary of the promising anticancer diterpenoids from this plant; many diterpenoids mentioned in this article are newly discovered diterpenoids. According to the carbon skeleton and substituents, they can be classified into eight subtypes: ent-abietane, daphnane, tigliane, ingenane, ent-atisane, ent-rosane, ent-kaurane, and lathyrane. Futhermore, their key anticancer mechanisms and protein targets of these compounds will be discussed. These natural diterpenoids could provide a reservoir for drug discovery.
Collapse
Affiliation(s)
- Baiyu Jian
- Graduate School of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hao Zhang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Jicheng Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
35
|
How to Succeed in Marketing Marine Natural Products for Nutraceutical, Pharmaceutical and Cosmeceutical Markets. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Herrmann J, Rybniker J, Müller R. Novel and revisited approaches in antituberculosis drug discovery. Curr Opin Biotechnol 2017; 48:94-101. [DOI: 10.1016/j.copbio.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
|
37
|
Choudhary A, Naughton LM, Montánchez I, Dobson ADW, Rai DK. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar Drugs 2017; 15:md15090272. [PMID: 28846659 PMCID: PMC5618411 DOI: 10.3390/md15090272] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Alka Choudhary
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Lynn M Naughton
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, Faculty of Science, University of the Basque Country, (UPV/EHU), 48940 Leioa, Spain.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Dilip K Rai
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
38
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
39
|
Engineering fatty acid synthases for directed polyketide production. Nat Chem Biol 2017; 13:363-365. [PMID: 28218912 DOI: 10.1038/nchembio.2314] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
Abstract
In this study, we engineered fatty acid synthases (FAS) for the biosynthesis of short-chain fatty acids and polyketides, guided by a combined in vitro and in silico approach. Along with exploring the synthetic capability of FAS, we aim to build a foundation for efficient protein engineering, with the specific goal of harnessing evolutionarily related megadalton-scale polyketide synthases (PKS) for the tailored production of bioactive natural compounds.
Collapse
|
40
|
Malhadas C, Malheiro R, Pereira JA, de Pinho PG, Baptista P. Antimicrobial activity of endophytic fungi from olive tree leaves. World J Microbiol Biotechnol 2017; 33:46. [PMID: 28168624 DOI: 10.1007/s11274-017-2216-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
In this study, the antimicrobial potential of three fungal endophytes from leaves of Olea europaea L. was evaluated and the host plant extract effect in the antimicrobial activity was examined. The volatile compounds produced by endophytes were identified by GC/MS and further correlated with the antimicrobial activity. In potato dextrose agar, both Penicillium commune and Penicillium canescens were the most effective inhibiting Gram-positive and -negative bacteria (up to 2.7-fold compared to 30 µg/mL chloramphenicol), whereas Alternaria alternata was most effective inhibiting yeasts (up to 8.0-fold compared to 25 μg/mL fluconazole). The presence of aqueous leaf extract in culture medium showed to induce or repress the antimicrobial activity, depending on the endophytic species. In the next step, various organic extracts from both A. alternata mycelium and cultured broth were prepared; being ethyl acetate extracts displayed the widest spectrum of anti-microorganisms at a minimum inhibitory concentration ≤0.095 mg/mL. The volatile composition of the fungi that displayed the highest (A. alternata) and the lowest (P. canescens) antimicrobial activity against yeasts revealed the presence of six volatiles, being the most abundant components (3-methyl-1-butanol and phenylethyl alcohol) ascribed with antimicrobial potentialities. Overall the results highlighted for the first time the antimicrobial potential of endophytic fungi from O. europaea and the possibility to be exploited for their antimicrobial agents.
Collapse
Affiliation(s)
- Cynthia Malhadas
- REQUIMTE-LAQV, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Ricardo Malheiro
- REQUIMTE-LAQV, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - José Alberto Pereira
- REQUIMTE-LAQV, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Paula Guedes de Pinho
- REQUIMTE/Laboratory of Toxicology, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Paula Baptista
- REQUIMTE-LAQV, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
41
|
Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, Petras D, Gregor R, Dorrestein PC, Phelan VV. Natural products as mediators of disease. Nat Prod Rep 2017; 34:194-219. [PMID: 27874907 PMCID: PMC5299058 DOI: 10.1039/c6np00063k] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2016Humans are walking microbial ecosystems, each harboring a complex microbiome with the genetic potential to produce a vast array of natural products. Recent sequencing data suggest that our microbial inhabitants are critical for maintaining overall health. Shifts in microbial communities have been correlated to a number of diseases including infections, inflammation, cancer, and neurological disorders. Some of these clinically and diagnostically relevant phenotypes are a result of the presence of small molecules, yet we know remarkably little about their contributions to the health of individuals. Here, we review microbe-derived natural products as mediators of human disease.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Dimitrios J. Floros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rachel Gregor
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Vanessa V. Phelan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
42
|
Li Y, Lin W, Huang J, Xie Y, Ma W. Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino ( Jiaogulan). Chin Med 2016; 11:43. [PMID: 27708693 PMCID: PMC5037898 DOI: 10.1186/s13020-016-0114-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (GpM) (Jiaogulan) has been widely used in Chinese medicine for the treatment of several diseases, including hepatitis, diabetes and cardiovascular disease. Furthermore, GpM has recently been shown to exhibit potent anti-cancer activities. In this review, we have summarized recent research progress on the anti-cancer activities and mechanisms of action of GpM, as well as determining the material basis for the anti-cancer effects of GpM by searching the PubMed, Web of Science and China National Knowledge Infrastructure databases. The content of this review is based on studies reported in the literature pertaining to the chemical components or anti-cancer effects of GpM up until the beginning of August, 2016. This search of the literature revealed that more than 230 compounds have been isolated from GpM, and that most of these compounds (189) were saponins, which are also known as gypenosides. All of the remaining compounds were classified as sterols, flavonoids or polysaccharides. Various extracts and fractions of GpM, as well as numerous pure compounds isolated from this herb exhibited inhibitory activity towards the proliferation of cancer cells in vitro and in vivo. Furthermore, the results of several clinical studies have shown that GpM formula could have potential curative effects on cancer. Multiple mechanisms of action have been proposed regarding the anti-cancer activities of GpM, including cell cycle arrest, apoptosis, inhibition of invasion and metastasis, inhibition of glycolysis and immunomodulating activities.
Collapse
Affiliation(s)
- Yantao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jiajun Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
43
|
Tang LW, Zhao BJ, Dai L, Zhang M, Zhou ZM. Asymmetric Construction of Pyrrolidines Bearing a Trifluoromethylated Quaternary Stereogenic Center via CuI
-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides with β-CF3
-β,β-Disubstituted Nitroalkenes. Chem Asian J 2016; 11:2470-7. [DOI: 10.1002/asia.201600941] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Li-Wei Tang
- R&D Centre of Pharmaceuticals school of Chemical Engineering and the Environment; Beijing Institute of Technology; 5th Zhongguancun South Street, Haidian District Beijing China
| | - Bao-Jing Zhao
- R&D Centre of Pharmaceuticals school of Chemical Engineering and the Environment; Beijing Institute of Technology; 5th Zhongguancun South Street, Haidian District Beijing China
| | - Li Dai
- R&D Centre of Pharmaceuticals school of Chemical Engineering and the Environment; Beijing Institute of Technology; 5th Zhongguancun South Street, Haidian District Beijing China
| | - Man Zhang
- R&D Centre of Pharmaceuticals school of Chemical Engineering and the Environment; Beijing Institute of Technology; 5th Zhongguancun South Street, Haidian District Beijing China
| | - Zhi-Ming Zhou
- R&D Centre of Pharmaceuticals school of Chemical Engineering and the Environment; Beijing Institute of Technology; 5th Zhongguancun South Street, Haidian District Beijing China
- State Key Laboratory of Explosion Science and Technology; Beijing Institute of Technology; 5th Zhongguancun South Street, Haidian District Beijing China
| |
Collapse
|
44
|
Han LC, Stanley PA, Wood PJ, Sharma P, Kuruppu AI, Bradshaw TD, Moses JE. Horner-Wadsworth-Emmons approach to piperlongumine analogues with potent anti-cancer activity. Org Biomol Chem 2016; 14:7585-93. [PMID: 27443386 DOI: 10.1039/c6ob01160h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Natural products with anti-cancer activity play a vital role in lead and target discovery. We report here the synthesis and biological evaluation of the plant-derived alkaloid, piperlongumine and analogues. Using a Horner-Wadsworth-Emmons coupling approach, a selection of piperlongumine-like compounds were prepared in good overall yield from a novel phosphonoacetamide reagent. A number of the compounds displayed potent anti-cancer activity against colorectal (HCT 116) and ovarian (IGROV-1) carcinoma cell lines, via a mechanism of action which may involve ROS generation. Contrary to previous reports, no selective action in cancer cell (MRC-5) was observed for piperlongumine analogues.
Collapse
Affiliation(s)
- Li-Chen Han
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Dragan A, Jones DH, Kennedy AR, Tomkinson NCO. Stereoselective Synthesis of Alkylidene Phthalides. Org Lett 2016; 18:3086-9. [PMID: 27311815 DOI: 10.1021/acs.orglett.6b01203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N,O-diacylhydroxylamine derivative 4 has been prepared and its reactivity with nucleophiles investigated. On reaction with lithium enolates of cyclic or acyclic ketones, 4 is converted stereoselectively to the corresponding alkylidene phthalide. The stereochemical outcome of the transformation can be modified by changing the polarity of the reaction medium and the products isomerized under acidic conditions.
Collapse
Affiliation(s)
- Andrei Dragan
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - D Heulyn Jones
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Alan R Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
46
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden- und Wirkstoffsuche. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Stefan Zimmermann
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Muthukumar G. Sankar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Kamal Kumar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| |
Collapse
|
47
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angew Chem Int Ed Engl 2016; 55:7586-605. [DOI: 10.1002/anie.201508818] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/19/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Stefan Zimmermann
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Muthukumar G. Sankar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Kamal Kumar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
48
|
Bai G, Hou YY, Jiang M, Gao J. Integrated Systems Biology and Chemical Biology Approach to Exploring Mechanisms of Traditional Chinese Medicines. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60017-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
49
|
Abe F, Marceau F, Talmadge JE. Introduction: Natural product-based drug discovery in Immunopharmacology. Int Immunopharmacol 2016; 37:1-2. [PMID: 26987504 DOI: 10.1016/j.intimp.2016.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/14/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Fuminori Abe
- SBI Pharmaceuticals Co., Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - François Marceau
- Department of Microbiology, Infectious Disease and Immunology, T1-49, CHU de Québec, Université Laval, 2705 Laurier Blvd., Quebec City, QC G1V 4G2, Canada
| | - James E Talmadge
- Department of Pathology and Microbiology, Laboratory of Transplantation Immunology, University of Nebraska Medical Center, 987660 Nebraska Medical Center, Omaha, NE 68198-7660, USA
| |
Collapse
|
50
|
Liu X. Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns. Synth Syst Biotechnol 2016; 1:95-108. [PMID: 29062932 PMCID: PMC5640691 DOI: 10.1016/j.synbio.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
The increased number of annotated bacterial genomes provides a vast resource for genome mining. Several bacterial natural products with epoxide groups have been identified as pre-mRNA spliceosome inhibitors and antitumor compounds through genome mining. These epoxide-containing natural products feature a common biosynthetic characteristic that cytochrome P450s (CYPs) and its patterns such as epoxidases are employed in the tailoring reactions. The tailoring enzyme patterns are essential to both biological activities and structural diversity of natural products, and can be used for enzyme pattern-based genome mining. Recent development of direct cloning, heterologous expression, manipulation of the biosynthetic pathways and the CRISPR-CAS9 system have provided molecular biology tools to turn on or pull out nascent biosynthetic gene clusters to generate a microbial natural product library. This review focuses on a library of epoxide-containing natural products and their associated CYPs, with the intention to provide strategies on diversifying the structures of CYP-catalyzed bioactive natural products. It is conceivable that a library of diversified bioactive natural products will be created by pattern-based genome mining, direct cloning and heterologous expression as well as the genomic manipulation.
Collapse
Affiliation(s)
- Xiangyang Liu
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|