1
|
Carney CP, Kapur A, Anastasiadis P, Ritzel RM, Chen C, Woodworth GF, Winkles JA, Kim AJ. Fn14-Directed DART Nanoparticles Selectively Target Neoplastic Cells in Preclinical Models of Triple-Negative Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:314-330. [PMID: 36374573 PMCID: PMC11056964 DOI: 10.1021/acs.molpharmaceut.2c00663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) patients with brain metastasis (BM) face dismal prognosis due to the limited therapeutic efficacy of the currently available treatment options. We previously demonstrated that paclitaxel-loaded PLGA-PEG nanoparticles (NPs) directed to the Fn14 receptor, termed "DARTs", are more efficacious than Abraxane─an FDA-approved paclitaxel nanoformulation─following intravenous delivery in a mouse model of TNBC BM. However, the precise basis for this difference was not investigated. Here, we further examine the utility of the DART drug delivery platform in complementary xenograft and syngeneic TNBC BM models. First, we demonstrated that, in comparison to nontargeted NPs, DART NPs exhibit preferential association with Fn14-positive human and murine TNBC cell lines cultured in vitro. We next identified tumor cells as the predominant source of Fn14 expression in the TNBC BM-immune microenvironment with minimal expression by microglia, infiltrating macrophages, monocytes, or lymphocytes. We then show that despite similar accumulation in brains harboring TNBC tumors, Fn14-targeted DARTs exhibit significant and specific association with Fn14-positive TNBC cells compared to nontargeted NPs or Abraxane. Together, these results indicate that Fn14 expression primarily by tumor cells in TNBC BMs enables selective DART NP delivery to these cells, likely driving the significantly improved therapeutic efficacy observed in our prior work.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Poulsen KM, Payne CK. Concentration and composition of the protein corona as a function of incubation time and serum concentration: an automated approach to the protein corona. Anal Bioanal Chem 2022; 414:7265-7275. [PMID: 36018335 DOI: 10.1007/s00216-022-04278-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Nanoparticles in contact with proteins form a "corona" of proteins adsorbed on the nanoparticle surface. Subsequent biological responses are then mediated by the adsorbed proteins rather than the bare nanoparticles. The use of nanoparticles as nanomedicines and biosensors would be greatly improved if researchers were able to predict which specific proteins will adsorb on a nanoparticle surface. We use a recently developed automated workflow with a liquid handling robot and low-cost proteomics to determine the concentration and composition of the protein corona formed on carboxylate-modified iron oxide nanoparticles (200 nm) as a function of incubation time and serum concentration. We measure the concentration of the resulting protein corona with a colorimetric assay and the composition of the corona with proteomics, reporting both abundance and enrichment relative to the fetal bovine serum (FBS) proteins used to form the corona. Incubation time was found to be an important parameter for corona concentration and composition at high (100% FBS) incubation concentrations, with only a slight effect at low (10%) FBS concentrations. In addition to these findings, we describe two methodological advances to help reduce the cost associated with protein corona experiments. We have automated the digest step necessary for proteomics and measured the variability between triplicate samples at each stage of the proteomics experiments. Overall, these results demonstrate the importance of understanding the multiple parameters that influence corona formation, provide new tools for corona characterization, and advance bioanalytical research in nanomaterials.
Collapse
Affiliation(s)
- Karsten M Poulsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
Nienhaus K, Xue Y, Shang L, Nienhaus GU. Protein adsorption onto nanomaterials engineered for theranostic applications. NANOTECHNOLOGY 2022; 33:262001. [PMID: 35294940 DOI: 10.1088/1361-6528/ac5e6c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The key role of biomolecule adsorption onto engineered nanomaterials for therapeutic and diagnostic purposes has been well recognized by the nanobiotechnology community, and our mechanistic understanding of nano-bio interactions has greatly advanced over the past decades. Attention has recently shifted to gaining active control of nano-bio interactions, so as to enhance the efficacy of nanomaterials in biomedical applications. In this review, we summarize progress in this field and outline directions for future development. First, we briefly review fundamental knowledge about the intricate interactions between proteins and nanomaterials, as unraveled by a large number of mechanistic studies. Then, we give a systematic overview of the ways that protein-nanomaterial interactions have been exploited in biomedical applications, including the control of protein adsorption for enhancing the targeting efficiency of nanomedicines, the design of specific protein adsorption layers on the surfaces of nanomaterials for use as drug carriers, and the development of novel nanoparticle array-based sensors based on nano-bio interactions. We will focus on particularly relevant and recent examples within these areas. Finally, we conclude this topical review with an outlook on future developments in this fascinating research field.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| |
Collapse
|
4
|
Hetényi A, Szabó E, Imre N, Bhaumik KN, Tököli A, Füzesi T, Hollandi R, Horvath P, Czibula Á, Monostori É, Deli MA, Martinek TA. α/β-Peptides as Nanomolar Triggers of Lipid Raft-Mediated Endocytosis through GM1 Ganglioside Recognition. Pharmaceutics 2022; 14:pharmaceutics14030580. [PMID: 35335956 PMCID: PMC8953856 DOI: 10.3390/pharmaceutics14030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cell delivery of therapeutic macromolecules and nanoparticles is a critical drug development challenge. Translocation through lipid raft-mediated endocytic mechanisms is being sought, as it can avoid rapid lysosomal degradation. Here, we present a set of short α/β-peptide tags with high affinity to the lipid raft-associated ganglioside GM1. These sequences induce effective internalization of the attached immunoglobulin cargo. The structural requirements of the GM1-peptide interaction are presented, and the importance of the membrane components are shown. The results contribute to the development of a receptor-based cell delivery platform.
Collapse
Affiliation(s)
- Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Enikő Szabó
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (E.S.); (É.M.)
| | - Norbert Imre
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Kaushik Nath Bhaumik
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Attila Tököli
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Tamás Füzesi
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
| | - Réka Hollandi
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (R.H.); (P.H.)
| | - Peter Horvath
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (R.H.); (P.H.)
| | - Ágnes Czibula
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (E.S.); (É.M.)
- Correspondence: (Á.C.); (T.A.M.)
| | - Éva Monostori
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (E.S.); (É.M.)
| | - Mária A. Deli
- Synthetic and Systems Biology Unit, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary;
| | - Tamás A. Martinek
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, 6720 Szeged, Hungary; (A.H.); (N.I.); (K.N.B.); (A.T.); (T.F.)
- Correspondence: (Á.C.); (T.A.M.)
| |
Collapse
|
5
|
Chugh G, Singh BR, Adholeya A, Barrow CJ. Role of proteins in the biosynthesis and functioning of metallic nanoparticles. Crit Rev Biotechnol 2021; 42:1045-1060. [PMID: 34719294 DOI: 10.1080/07388551.2021.1985957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Proteins are known to play important roles in the biosynthesis of metallic nanoparticles (NPs), which are biological substitutes for conventionally used chemical capping and stabilizing agents. When a pristine nanoparticle comes in contact with a biological media or system, a bimolecular layer is formed on the surface of the nanoparticle and is primarily composed of proteins. The role of proteins in the biosynthesis and further uptake, translocation, and bio-recognition of nanoparticles is documented in the literature. But, a complete understanding has not been achieved concerning the mechanism for protein-mediated nanoparticle biosynthesis and the role proteins play in the interaction and recognition of nanoparticles, aiding its uptake and assimilation into the biological system. This review critically evaluates the knowledge and gaps in the protein-mediated biosynthesis of nanoparticles. In particular, we review the role of proteins in multiple facets of metallic nanoparticle biosynthesis, the interaction of proteins with metallic nanoparticles for recognition and interaction with cells, and the toxic potential of protein-nanoparticle complexes when presented to the cell.
Collapse
Affiliation(s)
- Gaurav Chugh
- Discipline of Microbiology, School of Natural Sciences, and The Ryan Institute, National University of Ireland Galway, Galway, Ireland.,TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Braj Raj Singh
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
6
|
Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells. NANOSCALE ADVANCES 2021; 3:2196-2212. [PMID: 36133761 PMCID: PMC9416924 DOI: 10.1039/d0na00716a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/12/2021] [Indexed: 05/17/2023]
Abstract
Whether one wishes to optimise drug delivery using nano-sized carriers or avoid hazard posed by engineered nanomaterials, the kinetics of nanoparticle uptake into human cells and their subsequent intracellular distribution is key. Unique properties of the nanoscale implies that such nanoparticles are taken up and trafficked in a different fashion compared to molecular species. In this review, we discuss in detail how to describe the kinetics of nanoparticle uptake and intracellular distribution, using previous studies for illustration. We also cover the extracellular kinetics, particle degradation, endosomal escape and cell division, ending with an outlook on the future of kinetic studies.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen Antonius Deusinglaan 1 9713AV Groningen The Netherlands
| |
Collapse
|
7
|
Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges. SUSTAINABILITY 2021. [DOI: 10.3390/su13041781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanobiotechnology in agriculture is a driver for modern-day smart, efficient agricultural practices. Nanoparticles have been shown to stimulate plant growth and disease resistance. The goal of sustainable farming can be accomplished by developing and sustainably exploiting the fruits of nanobiotechnology to balance the advantages nanotechnology provides in tackling environmental challenges. This review aims to advance our understanding of nanobiotechnology in relevant areas, encourage interactions within the research community for broader application, and benefit society through innovation to realize sustainable agricultural practices. This review critically evaluates what is and is not known in the domain of nano-enabled agriculture. It provides a holistic view of the role of nanobiotechnology in multiple facets of agriculture, from the synthesis of nanoparticles to controlled and targeted delivery, uptake, translocation, recognition, interaction with plant cells, and the toxicity potential of nanoparticle complexes when presented to plant cells.
Collapse
|
8
|
Breznica P, Koliqi R, Daka A. A review of the current understanding of nanoparticles protein corona composition. Med Pharm Rep 2020; 93:342-350. [PMID: 33225259 PMCID: PMC7664725 DOI: 10.15386/mpr-1756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Upon entering into the biological environments, the surface of the nanoparticles is immediately coated with proteins and form the so-called a protein corona due to which a nanoparticle changes its “synthetic” identity to a new “biological” identity. Different types of nanoparticles have different protein binding profiles, which is why they have different protein corona composition and therefore it cannot be said that there is a universal protein corona. The composition and amount of protein in the corona depends on the physical and chemical characteristics of the nanoparticles, the type of biological medium and the exposure time. Protein corona increases the diameter but also changes the composition of the surface of the nanoparticles and these changes affect biodistribution, efficacy, and toxicity of the nanoparticles.
Collapse
Affiliation(s)
- Pranvera Breznica
- Department of Pharmaceutical Chemistry, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Rozafa Koliqi
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Arlinda Daka
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| |
Collapse
|
9
|
Valente KP, Suleman A, Brolo AG. Exploring Diffusion and Cellular Uptake: Charged Gold Nanoparticles in an in Vitro Breast Cancer Model. ACS APPLIED BIO MATERIALS 2020; 3:6992-7002. [PMID: 35019358 DOI: 10.1021/acsabm.0c00872] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles have emerged as a prominent tool in nanomedicine, particularly for applications in cancer diagnostic and treatment. One of the challenges for the successful implementation of gold nanoparticles in cancer therapy is their delivery to the specific cancer area within the tumor microenvironment. The presence of cancer enables a poorly organized vascularization system, increasing the pressure with the microenvironment, limiting the uptake of particles. The physicochemical properties of the gold nanoparticles (size, shape, and surface charge) also have a significant effect on diffusion to the tumor site and cellular uptake. In this work, we analyzed the transport of 10 nm gold nanoparticles with different surface charges (neutral, negative, and positive) through a hydrogel composite. Three-dimensional in vitro models composed of breast cancer cells loaded in the hydrogel composite were used for the qualitative and quantitative evaluation of cellular uptake of the gold nanoparticles. Surprisingly, an inverse correlation between the diffusion coefficients of the nanoparticles and cellular uptake was demonstrated. Positively charged gold nanoparticles displayed high cellular uptake, although their diffusion coefficient indicated slow transport through the hydrogel matrix. Neutral particles, on the other hand, displayed fast diffusion but the lowest cellular uptake. The results obtained indicate that nanoparticle diffusion and cellular uptake should be studied together in realistic in vitro models for a true evaluation of transport in tumor microenvironments.
Collapse
Affiliation(s)
- Karolina P Valente
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
10
|
Jayaram DT, Payne CK. Food-Grade TiO 2 Particles Generate Intracellular Superoxide and Alter Epigenetic Modifiers in Human Lung Cells. Chem Res Toxicol 2020; 33:2872-2879. [PMID: 33064449 DOI: 10.1021/acs.chemrestox.0c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Titanium dioxide (TiO2) particles are a common ingredient in food, providing the bright white color for many candies, gums, and frostings. While ingestion of these materials has been examined previously, few studies have examined the effect of these particles on lung cells. Inhalation is an important exposure pathway for workers processing these foods and, more recently, home users who purchase these particles directly. We examine the response of lung cells to food-grade TiO2 particles using a combination of fluorescence microscopy and RT-PCR. These experiments show that TiO2 particles generate intracellular reactive oxygen species, specifically superoxide, and alter expression of two epigenetic modifiers, histone deacetylase 9 (HDAC9) and HDAC10. We use a protein corona formed from superoxide dismutase (SOD), an enzyme that scavenges superoxide, to probe the relationship between TiO2 particles and superoxide generation. These experiments show that low, non-cytotoxic, concentrations of food-grade TiO2 particles lead to cellular responses, including altering two enzymes responsible for epigenetic modifications. This production of superoxide and change in epigenetic modifiers could affect human health following inhalation. We expect this research will motivate future in vivo experiments examining the pulmonary response to food-grade TiO2 particles.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Arciniegas-Grijalba P, Patiño-Portela M, Mosquera-Sánchez L, Guerra Sierra B, Muñoz-Florez J, Erazo-Castillo L, Rodríguez-Páez J. ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:808-825. [DOI: 10.1016/j.msec.2019.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023]
|
12
|
Tian Y, Huang Y, Gao P, Chen T. Nucleus-targeted DNA tetrahedron as a nanocarrier of metal complexes for enhanced glioma therapy. Chem Commun (Camb) 2018; 54:9394-9397. [PMID: 29998263 DOI: 10.1039/c8cc04021d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A negatively-charged and nucleus-targeted DNA tetrahedron is rationally designed and used as a nanocarrier of positively-charged metal complexes. This tetrahedron speeds up the translocation of metal complexes into the cell nucleus, and inhibits the growth and invasion of glioma cells by triggering vascular mimicry-associated signaling pathways, thus achieving precise glioma treatment.
Collapse
Affiliation(s)
- Yiqiao Tian
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
13
|
Li Z, Li D, Zhang W, Zhang P, Kan Q, Sun J. Insight into the preformed albumin corona on in vitro and in vivo performances of albumin-selective nanoparticles. Asian J Pharm Sci 2018; 14:52-62. [PMID: 32104438 PMCID: PMC7032257 DOI: 10.1016/j.ajps.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Preformed albumin corona of albumin-nonselective nanoparticles (NPs) is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration. However, very few studies have concerned the preformed albumin corona of albumin-selective NPs. Herein, we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate (SA) onto PLGA NPs (SP NPs) surface, taking albumin-nonselective PLGA NPs as control. PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm. The corresponding albumin-coating PLGA NPs (PLGA@BSA NPs) and albumin-coating SP NPs (SP@BSA NPs) were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution, respectively. The impact of albumin corona on particle characteristics, stability, photothermal effect, cytotoxicity, cell uptake, spheroid penetration and pharmacokinetics was investigated. In line with previous findings of preformed albumin coating, PLGA@BSA NPs exhibited higher stability, cytotoxicity, cell internalization and spheroid penetration performances in vitro, and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs, but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs. Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.
Collapse
Affiliation(s)
- Zhenbao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China.,The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Wenjuan Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- Department of Pharmacy, Shenyang Pharmaceutical University, China
| | - Qiming Kan
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
14
|
Jayaram DT, Pustulka SM, Mannino RG, Lam WA, Payne CK. Protein Corona in Response to Flow: Effect on Protein Concentration and Structure. Biophys J 2018; 115:209-216. [PMID: 29650368 DOI: 10.1016/j.bpj.2018.02.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Samantha M Pustulka
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Robert G Mannino
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; Children's Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; Children's Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Christine K Payne
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
15
|
Malcolm DW, Varghese JJ, Sorrells JE, Ovitt CE, Benoit DSW. The Effects of Biological Fluids on Colloidal Stability and siRNA Delivery of a pH-Responsive Micellar Nanoparticle Delivery System. ACS NANO 2018; 12:187-197. [PMID: 29232104 PMCID: PMC5987762 DOI: 10.1021/acsnano.7b05528] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoparticles (NPs) interact with complex protein milieus in biological fluids, and these interactions have profound effects on NP physicochemical properties and function. Surprisingly, most studies neglect the impact of these interactions, especially with respect to NP-mediated siRNA delivery. Here, the effects of serum on colloidal stability and siRNA delivery of a pH-responsive micellar NP delivery system were characterized. Results show cationic NP-siRNA complexes aggregate in ≥2% serum in buffer, but are stable in serum-free media. Furthermore, nonaggregated NP-siRNA delivered in serum-free media result in 4-fold greater siRNA uptake in vitro, compared to aggregated NP-siRNA. Interestingly, pH-responsive membrane lysis behavior, which is required for endosomal escape, and NP-siRNA dissociation, necessary for gene knockdown, are significantly reduced in serum. Consistent with these data, nonaggregated NP-siRNA in serum-free conditions result in highly efficient gene silencing, even at doses as low as 5 nM siRNA. NP-siRNA diameter was measured at albumin and IgG levels mimicking biological fluids. Neither albumin nor IgG alone induces NP-siRNA aggregation, implicating other serum proteins in NP colloidal instability. Finally, as a proof-of-principle that stability is maintained in established in vivo models, transmission electron microscopy reveals NP-siRNA are taken up by ductal epithelial cells in a nonaggregated state when injected retroductally into mouse salivary glands in vivo. Overall, this study shows serum-induced NP-siRNA aggregation significantly diminishes efficiency of siRNA delivery by reducing uptake, pH-responsive membrane lysis activity, and NP-siRNA dissociation. Moreover, these results highlight the importance of local NP-mediated drug delivery and are broadly applicable to other drug delivery systems.
Collapse
Affiliation(s)
- Dominic W. Malcolm
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jomy J. Varghese
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Janet E. Sorrells
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Corresponding Author Contact Information: Danielle S. W. Benoit, Ph.D., 308 Robert B. Goergen Hall,, Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.,
| |
Collapse
|
16
|
Li Y, Xu Y, Fleischer CC, Huang J, Lin R, Yang L, Mao H. Impact of Anti-Biofouling Surface Coatings on the Properties of Nanomaterials and Their Biomedical Applications. J Mater Chem B 2018; 6:9-24. [PMID: 29479429 PMCID: PMC5821433 DOI: 10.1039/c7tb01695f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding and subsequently controlling non-specific interactions between engineered nanomaterials and biological environment have become increasingly important for further developing and advancing nanotechnology for biomedical applications. Such non-specific interactions, also known as the biofouling effect, mainly associate with the adsorption of biomolecules (such as proteins, DNAs, RNAs, and peptides) onto the surface of nanomaterials and the adhesion or uptake of nanomaterials by various cells. By altering the surface properties of nanomaterials the biofouling effect can lead to in situ changes of physicochemical properties, pharmacokinetics, functions, and toxicity of nanomaterials. This review provides discussions on the current understanding of the biofouling effect, the factors that affect the non-specific interactions associated with biofouling, and the impact of the biofouling effect on the performances and functions of nanomaterials. An overview of the development and applications of various anti-biofouling coating materials to preserve and improve the properties and functions of engineered nanomaterials for intended biomedical applications is also provided.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Run Lin
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Zhu D, Yan H, Zhou Z, Tang J, Liu X, Hartmann R, Parak WJ, Feliu N, Shen Y. Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater Sci 2018; 6:1800-1817. [DOI: 10.1039/c8bm00128f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the various cationic polymers developed as non-viral gene delivery vectors, polyethylenimine (PEI) has been/is frequently used in in vitro transfection.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Huijie Yan
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | | | - Wolfgang J. Parak
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Neus Feliu
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| |
Collapse
|
18
|
Feiner-Gracia N, Beck M, Pujals S, Tosi S, Mandal T, Buske C, Linden M, Albertazzi L. Super-Resolution Microscopy Unveils Dynamic Heterogeneities in Nanoparticle Protein Corona. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701631. [PMID: 28922574 DOI: 10.1002/smll.201701631] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Indexed: 05/18/2023]
Abstract
The adsorption of serum proteins, leading to the formation of a biomolecular corona, is a key determinant of the biological identity of nanoparticles in vivo. Therefore, gaining knowledge on the formation, composition, and temporal evolution of the corona is of utmost importance for the development of nanoparticle-based therapies. Here, it is shown that the use of super-resolution optical microscopy enables the imaging of the protein corona on mesoporous silica nanoparticles with single protein sensitivity. Particle-by-particle quantification reveals a significant heterogeneity in protein absorption under native conditions. Moreover, the diversity of the corona evolves over time depending on the surface chemistry and degradability of the particles. This paper investigates the consequences of protein adsorption for specific cell targeting by antibody-functionalized nanoparticles providing a detailed understanding of corona-activity relations. The methodology is widely applicable to a variety of nanostructures and complements the existing ensemble approaches for protein corona study.
Collapse
Affiliation(s)
- Natalia Feiner-Gracia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Michaela Beck
- Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Sílvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Sébastien Tosi
- Advanced Digital Microscopy Core Facility (ADMCF), Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tamoghna Mandal
- Institute of Experimental Cancer Research, University Hospital Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, University Hospital Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Mika Linden
- Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Jayaram DT, Runa S, Kemp ML, Payne CK. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. NANOSCALE 2017; 9:7595-7601. [PMID: 28537609 PMCID: PMC5703216 DOI: 10.1039/c6nr09500c] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
20
|
Bertoli F, Garry D, Monopoli MP, Salvati A, Dawson KA. The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution. ACS NANO 2016; 10:10471-10479. [PMID: 27797479 DOI: 10.1021/acsnano.6b06411] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It has been well established that the early stages of nanoparticle-cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanoparticles are typically internalized into the cell and trafficked along defined pathways such as, in many cases, the endolysosomal pathway. Indeed, if the original corona is partially retained on the nanoparticle surface, the biomolecules in this layer may play an important role in determining subsequent cellular processing. In this work, using a combination of organelle separation and fluorescence labeling of the initial extracellular corona, we clarify its intracellular evolution as nanoparticles travel within the cell. We show that specific proteins present in the original protein corona are retained on the nanoparticles until they accumulate in lysosomes, and, once there, they are degraded. We also report on how different bare surfaces (amino and carboxyl modified) affect the details of this evolution. One overarching discovery is that the same serum proteins can exhibit different intracellular processing when carried inside cells by nanoparticles, as components of their corona, compared to what is observed when they are transported freely from the extracellular medium.
Collapse
Affiliation(s)
- Filippo Bertoli
- Center for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - David Garry
- Center for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Marco P Monopoli
- Center for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
- Department of Pharmaceutical and Medical Chemistry, Royal College of Surgeons in Ireland , 123 St. Stephen Green, Dublin 2, Ireland
| | - Anna Salvati
- Center for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
- Groningen Research Institute of Pharmacy, Groningen University , Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Kenneth A Dawson
- Center for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
Dominguez-Medina S, Kisley L, Tauzin LJ, Hoggard A, Shuang B, D. S. Indrasekara AS, Chen S, Wang LY, Derry PJ, Liopo A, Zubarev ER, Landes CF, Link S. Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation. ACS NANO 2016; 10:2103-12. [PMID: 26751094 PMCID: PMC4768289 DOI: 10.1021/acsnano.5b06439] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.
Collapse
Affiliation(s)
| | - Lydia Kisley
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lawrence J. Tauzin
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anneli Hoggard
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Bo Shuang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | | | - Sishan Chen
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lin-Yung Wang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Paul J. Derry
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anton Liopo
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Eugene R. Zubarev
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Materials Science and NanoEngineering, Rice University, Houston, Texas 77251, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| |
Collapse
|
22
|
Berg C. Quantitative analysis of nanoparticle transport through in vitro blood-brain barrier models. Tissue Barriers 2016; 4:e1143545. [PMID: 27141425 PMCID: PMC4836482 DOI: 10.1080/21688370.2016.1143545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/11/2023] Open
Abstract
Nanoparticle transport through the blood-brain barrier has received much attention of late, both from the point of view of nano-enabled drug delivery, as well as due to concerns about unintended exposure of nanomaterials to humans and other organisms. In vitro models play a lead role in efforts to understand the extent of transport through the blood-brain barrier, but unique features of the nanoscale challenge their direct adaptation. Here we highlight some of the differences compared to molecular species when utilizing in vitro blood-brain barrier models for nanoparticle studies. Issues that may arise with transwell systems are discussed, together with some potential alternative methodologies. We also briefly review the biomolecular corona concept and its importance for how nanoparticles interact with the blood-brain barrier. We end with considering future directions, including indirect effects and application of shear and fluidics-technologies.
Collapse
Affiliation(s)
- Christoffer Berg
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen ; Groningen, The Netherlands
| |
Collapse
|
23
|
Landes CF. Single-molecule tracking and super-resolution imaging shed light on cholera toxin transcription activation. Mol Microbiol 2015; 96:1-3. [DOI: 10.1111/mmi.12942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Christy F. Landes
- Department of Chemistry; Rice University; MS-60 Houston TX 77005 USA
| |
Collapse
|
24
|
Vaitkuviene A, Ratautaite V, Ramanaviciene A, Sanen K, Paesen R, Ameloot M, Petrakova V, McDonald M, Vahidpour F, Kaseta V, Ramanauskaite G, Biziuleviciene G, Nesladek M, Ramanavicius A. Impact of diamond nanoparticles on neural cells. Mol Cell Probes 2015; 29:25-30. [DOI: 10.1016/j.mcp.2014.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 11/25/2022]
|
25
|
Fleischer C, Payne CK. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem B 2014; 118:14017-26. [PMID: 24779411 PMCID: PMC4266332 DOI: 10.1021/jp502624n] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/27/2014] [Indexed: 01/04/2023]
Abstract
Nanoparticles used for biological and biomedical applications encounter a host of extracellular proteins. These proteins rapidly adsorb onto the nanoparticle surface, creating a protein corona. Poly(ethylene glycol) can reduce, but not eliminate, the nonspecific adsorption of proteins. As a result, the adsorbed proteins, rather than the nanoparticle itself, determine the cellular receptors used for binding, the internalization mechanism, the intracellular transport pathway, and the subsequent immune response. Using fluorescence microscopy and flow cytometry, we first characterize a set of polystyrene nanoparticles in which the same adsorbed protein, bovine serum albumin, leads to binding to two different cell surface receptors: native albumin receptors and scavenger receptors. Using a combination of circular dichroism spectroscopy, isothermal titration calorimetry, and fluorescence spectroscopy, we demonstrate that the secondary structure of the adsorbed bovine serum albumin protein controls the cellular receptors used by the protein-nanoparticle complexes. These results show that protein secondary structure is a key parameter in determining the cell surface receptor used by a protein-nanoparticle complex. We expect this link between protein structure and cellular outcomes will provide a molecular basis for the design of nanoparticles for use in biological and biomedical applications.
Collapse
Affiliation(s)
- Candace
C. Fleischer
- School of Chemistry and Biochemistry and Petit Institute
for Bioengineering
and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Christine K. Payne
- School of Chemistry and Biochemistry and Petit Institute
for Bioengineering
and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Brun E, Sicard-Roselli C. Could nanoparticle corona characterization help for biological consequence prediction? Cancer Nanotechnol 2014; 5:7. [PMID: 25309635 PMCID: PMC4181791 DOI: 10.1186/s12645-014-0007-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022] Open
Abstract
As soon as they enter a biological medium (cell culture medium for in vitro, blood or plasma for in vivo studies), nanoparticles, in most cases, see their surface covered by biomolecules, especially proteins. What the cells see is thus not the ideal nanoparticle concocted by chemists, meaning the biomolecular corona could have great biological and physiological repercussions, sometimes masking the expected effects of purposely grafted molecules. In this review, we will mainly focus on gold nanoparticles. In the first part, we will discuss the fate of these particles once in a biological medium, especially in terms of size, and the protein composition of the corona. We will highlight the parameters influencing the quantity and the identity of the adsorbed proteins. In a second part, we will resume the main findings about the influence of a biomolecular corona on cellular uptake, toxicity, biodistribution and targeting ability. To be noticed is the need for standardized experiments and very precise reports of the protocols and methods used in the experimental sections to extract informative data. Given the biological consequences of this corona, we suggest that it should be taken into account in theoretical studies dealing with nanomaterials to better represent the biological environment.
Collapse
Affiliation(s)
- Emilie Brun
- Laboratoire de Chimie Physique, CNRS UMR8000, Université Paris-Sud, 91405 Orsay, Cedex France
| | - Cécile Sicard-Roselli
- Laboratoire de Chimie Physique, CNRS UMR8000, Université Paris-Sud, 91405 Orsay, Cedex France
| |
Collapse
|
27
|
Bertoli F, Davies GL, Monopoli MP, Moloney M, Gun'ko YK, Salvati A, Dawson KA. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3307-15. [PMID: 24737750 DOI: 10.1002/smll.201303841] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 05/23/2023]
Abstract
Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.
Collapse
Affiliation(s)
- Filippo Bertoli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
28
|
Fleischer C, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res 2014; 47:2651-9. [PMID: 25014679 PMCID: PMC4139184 DOI: 10.1021/ar500190q] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/14/2022]
Abstract
The use of nanoparticles (NPs) in biology and medicine requires a molecular-level understanding of how NPs interact with cells in a physiological environment. A critical difference between well-controlled in vitro experiments and in vivo applications is the presence of a complex mixture of extracellular proteins. It has been established that extracellular serum proteins present in blood will adsorb onto the surface of NPs, forming a "protein corona". Our goal was to understand how this protein layer affected cellular-level events, including NP binding, internalization, and transport. A combination of microscopy, which provides spatial resolution, and spectroscopy, which provides molecular information, is necessary to probe protein-NP-cell interactions. Initial experiments used a model system composed of polystyrene NPs functionalized with either amine or carboxylate groups to provide a cationic or anionic surface, respectively. Serum proteins adsorb onto the surface of both cationic and anionic NPs, forming a net anionic protein-NP complex. Although these protein-NP complexes have similar diameters and effective surface charges, they show the exact opposite behavior in terms of cellular binding. In the presence of bovine serum albumin (BSA), the cellular binding of BSA-NP complexes formed from cationic NPs is enhanced, whereas the cellular binding of BSA-NP complexes formed from anionic NPs is inhibited. These trends are independent of NP diameter or cell type. Similar results were obtained for anionic quantum dots and colloidal gold nanospheres. Using competition assays, we determined that BSA-NP complexes formed from anionic NPs bind to albumin receptors on the cell surface. BSA-NP complexes formed from cationic NPs are redirected to scavenger receptors. The observation that similar NPs with identical protein corona compositions bind to different cellular receptors suggested that a difference in the structure of the adsorbed protein may be responsible for the differences in cellular binding of the protein-NP complexes. Circular dichroism spectroscopy, isothermal titration calorimetry, and fluorescence spectroscopy show that the structure of BSA is altered following incubation with cationic NPs, but not anionic NPs. Single-particle-tracking fluorescence microscopy was used to follow the cellular internalization and transport of protein-NP complexes. The single particle-tracking experiments show that the protein corona remains bound to the NP throughout endocytic uptake and transport. The interaction of protein-NP complexes with cells is a challenging question, as the adsorbed protein corona controls the interaction of the NP with the cell; however, the NP itself alters the structure of the adsorbed protein. A combination of microscopy and spectroscopy is necessary to understand this complex interaction, enabling the rational design of NPs for biological and medical applications.
Collapse
Affiliation(s)
- Candace
C. Fleischer
- School of Chemistry and Biochemistry and Petit Institute
for Bioengineering
and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Christine K. Payne
- School of Chemistry and Biochemistry and Petit Institute
for Bioengineering
and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
29
|
Sampedro A, Villalonga-Planells R, Vega M, Ramis G, Fernández de Mattos S, Villalonga P, Costa A, Rotger C. Cell uptake and localization studies of squaramide based fluorescent probes. Bioconjug Chem 2014; 25:1537-46. [PMID: 25036647 DOI: 10.1021/bc500258b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell internalization is a major issue in drug design. Although squaramide-based compounds are receiving much attention because of their interesting bioactivity, cell uptake and trafficking within cells of this type of compounds are still unknown. In order to monitor the cell internalization process of cyclosquaramide compounds we have prepared two fluorescent probes by covalently linking a fluorescent dye (BODIPY derivative or fluorescein) to a noncytotoxic cyclosquaramide framework. These two probes (C2-BDP and C2-FITC) rapidly internalize across live cell membranes through endocytic receptor-mediated mechanisms. Due to its higher fluorescence and photochemical stability, C2-BDP is a superior dye than C2-FITC. C2-BDP remains sequestered in late endosomes allowing their fast and selective imaging in various live cell types. Cyclosquaramide-cell membrane interactions facilitate cell uptake and have been investigated by binding studies in solution as well as in live cells. Cyclosquaramide 1 (C2-BDP) can be used as a highly fluorescent probe for the rapid and selective imaging of late endosomes in live cells.
Collapse
Affiliation(s)
- Angel Sampedro
- Departament de Química, ‡Departament de Biologia Fonamental, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) and Instituto de Investigación Sanitaria de Palma (IdISPa), Illes Balears, Spain, Universitat de les Illes Balears , Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hill A, Payne CK. Impact of Serum Proteins on MRI Contrast Agents: Cellular Binding and T 2 relaxation. RSC Adv 2014; 4:31735-31744. [PMID: 25485101 DOI: 10.1039/c4ra04246h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) used as MRI contrast agents or for theranostic applications encounter a complex mixture of extracellular proteins that adsorb on the SPION surface forming a protein corona. Our goal was to understand how cellular binding and T2 relaxation times are affected by this protein corona. Our studies focused on carboxymethyl dextran-modified SPIONs, chosen for their similarity to Resovist SPIONs used to detect liver lesions. Using a combination of fluorescence microscopy and flow cytometry, we find that the cellular binding of SPIONs to both macrophages and epithelial cells is significantly inhibited by serum proteins. To determine if this decreased binding is due to the iron oxide core or the carboxymethyl dextran surface coating, we functionalized polystyrene nanoparticles with a similar carboxymethyl dextran coating. We find a comparable decrease in cellular binding for the carboxymethyl dextran-polystyrene nanoparticles indicating that the carbohydrate surface modification is the key factor in SPION-cell interactions. NMR measurements showed that T2 relaxation times are not affected by corona formation. These results indicate that SPIONs have a decreased binding to cells under physiological conditions, possibly limiting their use in theranostic applications. We expect these results will be useful in the design of SPIONs for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alexandra Hill
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia, 30332, United States
| | - Christine K Payne
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia, 30332, United States
| |
Collapse
|
31
|
Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1159-68. [DOI: 10.1016/j.nano.2013.04.010] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/17/2013] [Accepted: 04/25/2013] [Indexed: 12/19/2022]
|
32
|
Gao J, Lai Y, Wu C, Zhao Y. Exploring and exploiting the synergy of non-covalent interactions on the surface of gold nanoparticles for fluorescent turn-on sensing of bacterial lipopolysaccharide. NANOSCALE 2013; 5:8242-8248. [PMID: 23884109 DOI: 10.1039/c3nr02490c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The sensing of lipopolysaccharide (LPS) relies on the synergy of multiple electrostatic and hydrophobic interactions between LPS and the sensor. However, how non-covalent interactions are coordinated to impel the recognition process still remains elusive, and the exploration of which would promote the development of LPS sensors with higher specificity and sensitivity. In this work, we hypothesize that Au NPs would provide a straightforward and flexible platform for studying the synergy of non-covalent interactions. The detailed mechanism of interactions between the designed fluorescent probes and Au NPs with two distinct surface properties was systematically explored. We demonstrated that only when the electrostatic attraction and hydrophobic stacking are both present, the binding of fluorescent probes onto Au NPs can be not only highly efficient, but also positively cooperative. After that, hybrid systems that consist of Au NPs and surface-assembled fluorescent probes were exploited for fluorescent turn-on sensing of LPS. The results show that the sensitivity and selectivity to LPS relies strongly on the binding affinity between fluorescent probes and Au NPs. Fluorescent probes assembled Au NPs thus provide an attractive platform for further optimization of the sensitivity/selectivity of LPS sensing.
Collapse
Affiliation(s)
- Jinhong Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen, 361005, PR China
| | | | | | | |
Collapse
|
33
|
Pearson RT, Avila-Olias M, Joseph AS, Nyberg S, Battaglia G. Smart Polymersomes: Formation, Characterisation and Applications. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The term polymersome, which refers to a fully synthetic polymeric vesicle, became commonplace around the turn of the millennium. Since then these highly intriguing structures have been at the center of multi-disciplinary research, bridging the fields of nanotechnology, chemistry, physics, biology, medicine and imaging and, more recently, pioneering the field of synthetic biology. As structures they offer greater control into understanding the relationship between amphiphile properties and membrane curvature. Moreover, as delivery vectors for therapeutic and diagnostic compounds they enable greater efficiency of current therapies and targeted delivery. With the rising costs of both healthcare and drug development, polymersomes and nanomedicine are well placed to combat these modern-day problems. This chapter provides an overview of the approaches to prepare and to characterize polymersomes as well as their applications in biomedicine, highlighting recent achievements in the stimuli-responsive drug delivery field.
Collapse
Affiliation(s)
- R. T. Pearson
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - M. Avila-Olias
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - A. S. Joseph
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - S. Nyberg
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| | - G. Battaglia
- The Krebs Institute The Department of Biomedical Science, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, S10 2TN UK
| |
Collapse
|
34
|
Fleischer CC, Kumar U, Payne CK. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition. Biomater Sci 2013; 1:975-982. [PMID: 23956836 DOI: 10.1039/c3bm60121h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.
Collapse
Affiliation(s)
- Candace C Fleischer
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | | | | |
Collapse
|
35
|
Fleischer CC, Payne CK. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B 2012; 116:8901-7. [PMID: 22774860 DOI: 10.1021/jp304630q] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticles are increasingly important for biological applications ranging from drug delivery to cellular imaging. In the course of these applications, nanoparticles are exposed to a complex environment of extracellular proteins that can be adsorbed onto the surface of the nanoparticle, altering nanoparticle-cell interactions. We have investigated how proteins found in blood serum affect the binding of nanoparticles to the surface of cells. Using fluorescence microscopy, we find that the cellular binding of cationic nanoparticles is enhanced by the presence of serum proteins, while the binding of anionic nanoparticles is inhibited. We have determined that this difference in cellular binding is due to the use of distinct cellular receptors. Competition assays, quantified with flow cytometry, show that the protein-nanoparticle complex formed from the cationic nanoparticles binds to scavenger receptors on the cell surface. Interestingly, the protein-nanoparticle complex formed from anionic nanoparticles binds to native protein receptors. As nanoparticles become increasingly important for in vivo applications, we expect these results will inform the design of nanoparticles with improved cellular binding.
Collapse
Affiliation(s)
- Candace C Fleischer
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
| | | |
Collapse
|