1
|
Deng H, Eichmann A, Schwartz MA. Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future. Arterioscler Thromb Vasc Biol 2025; 45:882-900. [PMID: 40207366 DOI: 10.1161/atvbaha.125.322557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to changes in flow through the arteries that feed these small vessels. The resultant decreases or increases in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Martin A Schwartz
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale School of Medicine, New Haven, CT (M.A.S.)
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT (M.A.S.)
| |
Collapse
|
2
|
Sidsworth D, Tregobov N, Jamieson C, Reutens-Hernandez J, Yoon J, Payne GW, Sellers SL. Microvascular dysfunction in a murine model of Alzheimer's disease using intravital microscopy. Front Aging Neurosci 2025; 17:1482250. [PMID: 39995945 PMCID: PMC11848520 DOI: 10.3389/fnagi.2025.1482250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurocognitive disorder. Early theories of AD sought to identify a single unifying explanation underlying AD pathogenesis; however, evolving evidence suggests it is a multifactorial, systemic disease, involving multiple systems. Of note, vascular dysfunction, encompassing both cerebral and peripheral circulation, has been implicated in AD pathogenesis. This pilot study used intravital microscopy to assess differences in responsiveness of gluteal muscle arterioles between a transgenic AD mouse model (APP/PS1; Tg) and wild-type (C57BL/6; WT) mice to further elucidate the role of vascular dysfunction in AD. Arteriole diameters were measured in response to acetylcholine (10-9 to 10-5 M), phenylephrine (10-9 to 10-5 M), histamine (10-9 to 10-4 M) and compound 48/80 (10-9 to 10-3 M). Tg mice demonstrated a trend toward reduced vasodilatory response to acetylcholine with a significant difference at 10-5 M (36.91 vs. 69.55%: p = 0.0107) when compared to WT. No significant differences were observed with histamine, compound 48/80 or phenylephrine; however, a trend toward reduced vasoconstriction to phenylephrine was observed in Tg mice at higher concentrations. Mean net diameter change (resting to maximum) also differed significantly (p = 0.0365) between WT (19.11 μm) and Tg mice (11.13 μm). These findings suggest reduced vascular responsiveness may contribute to the systemic vascular deficits previously observed in AD models. Future research using diverse models and broader variables could further elucidate peripheral vascular dysfunction's role in AD pathogenesis, including its impact on motor symptoms and disease progression. Such insights may inform the development of vascular-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Danielle Sidsworth
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada
| | - Noah Tregobov
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Cardiovascular Translational Laboratory, Providence Research and Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | - Colin Jamieson
- Cardiovascular Translational Laboratory, Providence Research and Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | - Jennifer Reutens-Hernandez
- Biochemistry and Molecular Biology Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Joshua Yoon
- Cardiovascular Translational Laboratory, Providence Research and Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | - Geoffrey W. Payne
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada
- University of Northern British Columbia, Prince George, BC, Canada
| | - Stephanie L. Sellers
- Cardiovascular Translational Laboratory, Providence Research and Centre for Heart Lung Innovation, Vancouver, BC, Canada
- Centre for Cardiovascular Innovation, St. Paul’s and Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Heart Valve Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Dilawri Cardiovascular Institute, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
3
|
Waithe OY, Shaji CA, Childs EW, Tharakan B. Determination of Blood-Brain Barrier Hyperpermeability Using Intravital Microscopy. Methods Mol Biol 2024; 2711:117-127. [PMID: 37776453 PMCID: PMC12045329 DOI: 10.1007/978-1-0716-3429-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The blood vessels that vascularize the central nervous system (CNS) exhibit unique properties, termed the blood-brain barrier (BBB). The BBB allows these blood vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. The BBB is held together by tight junctions of the neighboring endothelial cells of the barrier, more specifically by tight junction proteins (TJPs) which can take the form of either integral transmembrane proteins or accessory cytoplasmic membrane proteins. BBB permeability can furthermore be affected by various factors, including but not limited to TJP expression, size, shape, charge, and type of extravascular molecules, as well as the nature of the vascular beds. The BBB is essential for the proper maintenance of CNS function, and its structural integrity has been implicated in several disorders and conditions. For instance, it has been shown that in the cases of traumatic brain injury (TBI), TBI-associated edema, and increased intracranial pressure are primarily caused by cases of hyperpermeability seen because of BBB dysfunction. Intravital microscopy is one of the most reliable methods for measuring BBB hyperpermeability in rodent models of BBB dysfunction in vivo. Here, we describe the surgical and imaging methods to determine the changes in BBB permeability at the level of the pial microvasculature in a mouse model of TBI using intravital microscopy.
Collapse
Affiliation(s)
- O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Francis SJ, Torelli MD, Nunn NA, Arepally GM, Shenderova OA. Clot Imaging Using Photostable Nanodiamond. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:961. [PMID: 36985855 PMCID: PMC10055895 DOI: 10.3390/nano13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color contrast. However, photodegradation of fluorophores limits the application in longitudinal studies (e.g., clot progression and/or dissolution). Fluorescent nanodiamond (FND) is a fluorophore which utilizes intrinsic fluorescence of chromogenic centers within and protected by the diamond crystalline lattice. Recent developments in diamond processing have allowed for the controlled production of nanodiamonds emitting in green or red. Here, the use of FND to label blood clots and/or clot lysis is demonstrated and compared to commonly used organic fluorophores. Model ex vivo clots were formed with incorporated labeled fibrinogen to allow imaging. FND was shown to match the morphology of organic fluorophore labels absent of photobleaching over time. The addition of tissue plasminogen activator (tPa) allowed visualization of the clot lysis stage, which is vital to studies of both DVT and pulmonary embolism resolution.
Collapse
Affiliation(s)
- Samuel J. Francis
- Division of Hematology, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | | | | | - Gowthami M. Arepally
- Division of Hematology, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
5
|
Abstract
Atherosclerosis is a lipid-driven inflammatory disorder that narrows the arterial lumen and can induce life-threatening complications from coronary artery disease, cerebrovascular disease, and peripheral artery disease. On a mechanistic level, the development of novel cellular-resolution intravital microscopy imaging approaches has recently enabled in vivo studies of underlying biological processes governing disease onset and progress. In particular, multiphoton microscopy has emerged as a promising intravital imaging tool utilizing two-photon-excited fluorescence and second-harmonic generation that provides subcellular resolution and increased imaging depths beyond confocal and epifluorescence microscopy. In this chapter, we describe the state-of-the-art multiphoton microscopy applied to the study of murine atherosclerosis.
Collapse
|
6
|
Targeted theranostic photoactivation on atherosclerosis. J Nanobiotechnology 2021; 19:338. [PMID: 34689768 PMCID: PMC8543964 DOI: 10.1186/s12951-021-01084-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background Photoactivation targeting macrophages has emerged as a therapeutic strategy for atherosclerosis, but limited targetable ability of photosensitizers to the lesions hinders its applications. Moreover, the molecular mechanistic insight to its phototherapeutic effects on atheroma is still lacking. Herein, we developed a macrophage targetable near-infrared fluorescence (NIRF) emitting phototheranostic agent by conjugating dextran sulfate (DS) to chlorin e6 (Ce6) and estimated its phototherapeutic feasibility in murine atheroma. Also, the phototherapeutic mechanisms of DS-Ce6 on atherosclerosis were investigated. Results The phototheranostic agent DS-Ce6 efficiently internalized into the activated macrophages and foam cells via scavenger receptor-A (SR-A) mediated endocytosis. Customized serial optical imaging-guided photoactivation of DS-Ce6 by light illumination reduced both atheroma burden and inflammation in murine models. Immuno-fluorescence and -histochemical analyses revealed that the photoactivation of DS-Ce6 produced a prominent increase in macrophage-associated apoptotic bodies 1 week after laser irradiation and induced autophagy with Mer tyrosine-protein kinase expression as early as day 1, indicative of an enhanced efferocytosis in atheroma. Conclusion Imaging-guided DS-Ce6 photoactivation was able to in vivo detect inflammatory activity in atheroma as well as to simultaneously reduce both plaque burden and inflammation by harmonic contribution of apoptosis, autophagy, and lesional efferocytosis. These results suggest that macrophage targetable phototheranostic nanoagents will be a promising theranostic strategy for high-risk atheroma. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01084-z.
Collapse
|
7
|
Vaghela R, Arkudas A, Horch RE, Hessenauer M. Actually Seeing What Is Going on - Intravital Microscopy in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:627462. [PMID: 33681162 PMCID: PMC7925911 DOI: 10.3389/fbioe.2021.627462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Intravital microscopy (IVM) study approach offers several advantages over in vitro, ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
8
|
Assessment of Microvessel Permeability in Murine Atherosclerotic Vein Grafts Using Two-Photon Intravital Microscopy. Int J Mol Sci 2020; 21:ijms21239244. [PMID: 33287463 PMCID: PMC7730593 DOI: 10.3390/ijms21239244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 01/25/2023] Open
Abstract
Plaque angiogenesis and plaque hemorrhage are major players in the destabilization and rupture of atherosclerotic lesions. As these are dynamic processes, imaging of plaque angiogenesis, especially the integrity or leakiness of angiogenic vessels, can be an extremely useful tool in the studies on atherosclerosis pathophysiology. Visualizing plaque microvessels in 3D would enable us to study the architecture and permeability of adventitial and intimal plaque microvessels in advanced atherosclerotic lesions. We hypothesized that a comparison of the vascular permeability between healthy continuous and fenestrated as well as diseased leaky microvessels, would allow us to evaluate plaque microvessel leakiness. We developed and validated a two photon intravital microscopy (2P-IVM) method to assess the leakiness of plaque microvessels in murine atherosclerosis-prone ApoE3*Leiden vein grafts based on the quantification of fluorescent-dextrans extravasation in real-time. We describe a novel 2P-IVM set up to study vessels in the neck region of living mice. We show that microvessels in vein graft lesions are in their pathological state more permeable in comparison with healthy continuous and fenestrated microvessels. This 2P-IVM method is a promising approach to assess plaque angiogenesis and leakiness. Moreover, this method is an important advancement to validate therapeutic angiogenic interventions in preclinical atherosclerosis models.
Collapse
|
9
|
De Filippo K, Rankin SM. The Secretive Life of Neutrophils Revealed by Intravital Microscopy. Front Cell Dev Biol 2020; 8:603230. [PMID: 33240898 PMCID: PMC7683517 DOI: 10.3389/fcell.2020.603230] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most abundant circulating leukocyte within the blood stream and for many years the dogma has been that these cells migrate rapidly into tissues in response to injury or infection, forming the first line of host defense. While it has previously been documented that neutrophils marginate within the vascular beds of the lung and liver and are present in large numbers within the parenchyma of tissues, such as spleen, lymph nodes, and bone marrow (BM), the function of these tissue resident neutrophils under homeostasis, in response to pathogen invasion or injury has only recently been explored, revealing the unexpected role of these cells as immunoregulators or immune helpers and also unraveling their heterogeneity and plasticity. Neutrophils are highly motile cells and the use of intravital microscopy (IVM) to image cells within their environment with little manipulation has dramatically increased our understanding of the function, migratory behavior, and interaction of these short-lived cells with other innate and adaptive immune cells. Contrary to previous dogma, these studies have shown that marginated and tissue resident neutrophils are the first responders to pathogens and injury, critical in limiting the spread of infection and contributing to the orchestration of the subsequent immune response. The interplay of neutrophils, with other neutrophils, leukocytes, and stroma cells can also modulate and tune their early and late response in order to eradicate pathogens, minimize tissue damage, and, in certain circumstances, contribute to tissue repair. In this review, we will follow the extraordinary journey of neutrophils from their origin in the BM to their death, exploring their role as tissue resident cells in the lung, spleen, lymph nodes, and skin and outlining the importance of neutrophil subsets, their functions under homeostasis, and in response to infection. Finally, we will comment on how understanding these processes in greater detail at a molecular level can lead to development of new therapeutics.
Collapse
Affiliation(s)
- Katia De Filippo
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara M Rankin
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Wang P, Kim T, Harada M, Contag C, Huang X, Smith BR. Nano-immunoimaging. NANOSCALE HORIZONS 2020; 5:628-653. [PMID: 32226975 DOI: 10.1039/c9nh00514e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunoimaging is a rapidly growing field stoked in large part by the intriguing triumphs of immunotherapy. On the heels of immunotherapy's successes, there exists a growing need to evaluate tumor response to therapy particularly immunotherapy, stratify patients into responders vs. non-responders, identify inflammation, and better understand the fundamental roles of immune system components to improve both immunoimaging and immunotherapy. Innovative nanomaterials have begun to provide novel opportunities for immunoimaging, in part due to their sensitivity, modularity, capacity for many potentially varied ligands (high avidity), and potential for multifunctionality/multimodality imaging. This review strives to comprehensively summarize the integration of nanotechnology and immunoimaging, and the field's potential for clinical applications.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA
| | - Taeho Kim
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 488824, USA
| | - Xuefei Huang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Chemistry, Michigan State University, East Lansing, MI 488824, USA
| | - Bryan Ronain Smith
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Radiology, Stanford University, Stanford, CA 94306, USA
| |
Collapse
|
11
|
Thackeray JT, Taqueti VR. Imaging inflammation in cardiovascular disease: translational perspective and overview. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:1-3. [PMID: 32043341 DOI: 10.23736/s1824-4785.20.03247-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James T Thackeray
- Unit of Translational Cardiovascular Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Viviany R Taqueti
- Cardiovascular Imaging Program, Division of Nuclear Medicine, Department of Radiology and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -
| |
Collapse
|
12
|
Lee SH, Choe YH, Kang RH, Kim YR, Kim NH, Kang S, Kim Y, Park S, Hyun YM, Kim D. A bright blue fluorescent dextran for two-photon in vivo imaging of blood vessels. Bioorg Chem 2019; 89:103019. [DOI: 10.1016/j.bioorg.2019.103019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
|
13
|
Hierro-Bujalance C, Bacskai BJ, Garcia-Alloza M. In Vivo Imaging of Microglia With Multiphoton Microscopy. Front Aging Neurosci 2018; 10:218. [PMID: 30072888 PMCID: PMC6060250 DOI: 10.3389/fnagi.2018.00218] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 01/04/2023] Open
Abstract
Neuroimaging has become an unparalleled tool to understand the central nervous system (CNS) anatomy, physiology and neurological diseases. While an altered immune function and microglia hyperactivation are common neuropathological features for many CNS disorders and neurodegenerative diseases, direct assessment of the role of microglial cells remains a challenging task. Non-invasive neuroimaging techniques, including magnetic resonance imaging (MRI), positron emission tomography (PET) and single positron emission computed tomography (SPECT) are widely used for human clinical applications, and a variety of ligands are available to detect neuroinflammation. In animal models, intravital imaging has been largely used, and minimally invasive multiphoton microcopy (MPM) provides high resolution detection of single microglia cells, longitudinally, in living brain. In this study, we review in vivo real-time MPM approaches to assess microglia in preclinical studies, including individual cell responses in surveillance, support, protection and restoration of brain tissue integrity, synapse formation, homeostasis, as well as in different pathological situations. We focus on in vivo studies that assess the role of microglia in mouse models of Alzheimer’s disease (AD), analyzing microglial motility and recruitment, as well as the role of microglia in anti-amyloid-β treatment, as a key therapeutic approach to treat AD. Altogether, MPM provides a high contrast and high spatial resolution approach to follow microglia chronically in vivo in complex models, supporting MPM as a powerful tool for deep intravital tissue imaging.
Collapse
Affiliation(s)
- Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Instituto de Investigación e Innovación en Ciencias Biomedicas de la Provincia de Cadiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigación e Innovación en Ciencias Biomedicas de la Provincia de Cadiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
14
|
Alluri H, Shaji CA, Davis ML, Tharakan B. A Mouse Controlled Cortical Impact Model of Traumatic Brain Injury for Studying Blood-Brain Barrier Dysfunctions. Methods Mol Biol 2018; 1717:37-52. [PMID: 29468582 DOI: 10.1007/978-1-4939-7526-6_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. It is a silently growing epidemic with multifaceted pathogenesis, and current standards of treatments aim to target only the symptoms of the primary injury, while there is a tremendous need to explore interventions that can halt the progression of the secondary injuries. The use of a reliable animal model to study and understand the various aspects the pathobiology of TBI is extremely important in therapeutic drug development against TBI-associated complications. The controlled cortical impact (CCI) model of TBI described here, uses a mechanical impactor to inflict a mechanical injury into the mouse brain. This method is a reliable and reproducible approach to inflict mild, moderate or severe injuries to the animal for studying TBI-associated blood-brain barrier (BBB) dysfunctions, neuronal injuries, brain edema, neurobehavioral changes, etc. The present method describes how the CCI model could be utilized for determining the BBB dysfunction and hyperpermeability associated with TBI. Blood-brain barrier disruption is a hallmark feature of the secondary injury that occur following TBI, frequently associated with leakage of fluid and proteins into the extravascular space leading to vasogenic edema and elevation of intracranial pressure. The method described here focuses on the development of a CCI-based mouse model of TBI followed by the evaluation of BBB integrity and permeability by intravital microscopy as well as Evans Blue extravasation assay.
Collapse
Affiliation(s)
- Himakarnika Alluri
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Chinchusha Anasooya Shaji
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Matthew L Davis
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA.
| |
Collapse
|
15
|
Abstract
The development of new methods to image the onset and progression of thrombosis is an unmet need. Non-invasive molecular imaging techniques targeting specific key structures involved in the formation of thrombosis have demonstrated the ability to detect thrombus in different disease state models and in patients. Due to its high concentration in the thrombus and its essential role in thrombus formation, the detection of fibrin is an attractive strategy for identification of thrombosis. Herein we provide an overview of recent and selected fibrin-targeted probes for molecular imaging of thrombosis by magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical techniques. Emphasis is placed on work that our lab has explored over the last 15 years that has resulted in the progression of the fibrin-binding PET probe [64Cu]FBP8 from preclinical studies into human trials.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | |
Collapse
|
16
|
Wang J, Xu P, Xie X, Li J, Zhang J, Wang J, Hong F, Li J, Zhang Y, Song Y, Zheng X, Zhai Y. DBZ (Danshensu Bingpian Zhi), a Novel Natural Compound Derivative, Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc 2017; 6:e006297. [PMID: 28971954 PMCID: PMC5721843 DOI: 10.1161/jaha.117.006297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/07/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND DBZ (Danshensu Bingpian Zhi), a synthetic derivative of a natural compound found in traditional Chinese medicine, has been reported to suppress lipopolysaccharide-induced macrophage activation and lipid accumulation in vitro. The aim of this study was to assess whether DBZ could attenuate atherosclerosis at early and advanced stages. METHODS AND RESULTS The effects of DBZ on the development of atherosclerosis were studied using apolipoprotein E-deficient (apoE-/-) mice. For early treatment, 5-week-old apoE-/- mice were fed a Western diet and treated daily by oral gavage with or without DBZ or atorvastatin for 10 weeks. For advanced treatment, 5-week-old apoE-/- mice were fed a Western diet for 10 weeks to induce atherosclerosis, and then they were randomly divided into 4 groups and subjected to the treatment of vehicle, 20 mg/kg per day DBZ, 40 mg/kg per day DBZ, or 10 mg/kg per day atorvastatin for the subsequent 10 weeks. We showed that early treatment of apoE-/- mice with DBZ markedly reduced atherosclerotic lesion formation by inhibiting inflammation and decreasing macrophage infiltration into the vessel wall. Treatment with DBZ also attenuated the progression of preestablished diet-induced atherosclerotic plaques in apoE-/- mice. In addition, we showed that DBZ may affect LXR (liver X receptor) function and that treatment of macrophages with DBZ suppressed lipopolysaccharide-stimulated cell migration and oxidized low-density lipoprotein-induced foam cell formation. CONCLUSIONS DBZ potentially has antiatherosclerotic effects that involve the inhibition of inflammation, macrophage migration, leukocyte adhesion, and foam cell formation. These results suggest that DBZ may be used as a therapeutic agent for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Pengfei Xu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xinni Xie
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- State key laboratory of environmental chemistry and ecotoxicology Research Center for Eco-Environmental Science Chinese Academy of Science, Beijing, China
| | - Jiao Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jun Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jialin Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, China
- State key laboratory of environmental chemistry and ecotoxicology Research Center for Eco-Environmental Science Chinese Academy of Science, Beijing, China
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jian Li
- Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Youyi Zhang
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry and College of Life Sciences, Beijing Normal University, Beijing, China
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China and College of Life Sciences Northwest University, Xi'an, China
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Kirui DK, Ferrari M. Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems. Curr Drug Targets 2016; 16:528-41. [PMID: 25901526 DOI: 10.2174/1389450116666150330114030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications.
Collapse
Affiliation(s)
| | - Mauro Ferrari
- Houston Methodist Research Institute, Department of NanoMedicine, 6670 Bertner Avenue, MS R8-460, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Chávez MN, Aedo G, Fierro FA, Allende ML, Egaña JT. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 2016; 7:56. [PMID: 27014075 PMCID: PMC4781882 DOI: 10.3389/fphys.2016.00056] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.
Collapse
Affiliation(s)
- Myra N Chávez
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de ChileSantiago, Chile; Department of Biochemistry and Molecular Biology, FONDAP Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Geraldine Aedo
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA, USA
| | - Miguel L Allende
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - José T Egaña
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontifícia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
19
|
Rua R, McGavern DB. Elucidation of monocyte/macrophage dynamics and function by intravital imaging. J Leukoc Biol 2015; 98:319-32. [PMID: 26162402 PMCID: PMC4763596 DOI: 10.1189/jlb.4ri0115-006rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Monocytes and macrophages are a diverse population of innate immune cells that play a critical role in homeostasis and inflammation. These cells are surveillant by nature and closely monitor the vasculature and surrounding tissue during states of health and disease. Given their abundance and strategic positioning throughout the body, myeloid cells are among the first responders to any inflammatory challenge and are active participants in most immune-mediated diseases. Recent studies have shed new light on myeloid cell dynamics and function by use of an imaging technique referred to as intravital microscopy (IVM). This powerful approach allows researchers to gain real-time insights into monocytes and macrophages performing homeostatic and inflammatory tasks in living tissues. In this review, we will present a contemporary synopsis of how intravital microscopy has revolutionized our understanding of myeloid cell contributions to vascular maintenance, microbial defense, autoimmunity, tumorigenesis, and acute/chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Kessinger CW, Kim JW, Henke PK, Thompson B, McCarthy JR, Hara T, Sillesen M, Margey RJP, Libby P, Weissleder R, Lin CP, Jaffer FA. Statins improve the resolution of established murine venous thrombosis: reductions in thrombus burden and vein wall scarring. PLoS One 2015; 10:e0116621. [PMID: 25680183 PMCID: PMC4334538 DOI: 10.1371/journal.pone.0116621] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022] Open
Abstract
Despite anticoagulation therapy, up to one-half of patients with deep vein thrombosis (DVT) will develop the post-thrombotic syndrome (PTS). Improving the long-term outcome of DVT patients at risk for PTS will therefore require new approaches. Here we investigate the effects of statins—lipid-lowering agents with anti-thrombotic and anti-inflammatory properties—in decreasing thrombus burden and decreasing vein wall injury, mediators of PTS, in established murine stasis and non-stasis chemical-induced venous thrombosis (N = 282 mice). Treatment of mice with daily atorvastatin or rosuvastatin significantly reduced stasis venous thrombus burden by 25% without affecting lipid levels, blood coagulation parameters, or blood cell counts. Statin-driven reductions in VT burden (thrombus mass for stasis thrombi, intravital microscopy thrombus area for non-stasis thrombi) compared similarly to the therapeutic anticoagulant effects of low molecular weight heparin. Blood from statin-treated mice showed significant reductions in platelet aggregation and clot stability. Statins additionally reduced thrombus plasminogen activator inhibitor-1 (PAI-1), tissue factor, neutrophils, myeloperoxidase, neutrophil extracellular traps (NETs), and macrophages, and these effects were most notable in the earlier timepoints after DVT formation. In addition, statins reduced DVT-induced vein wall scarring by 50% durably up to day 21 in stasis VT, as shown by polarized light microscopy of picrosirius red-stained vein wall collagen. The overall results demonstrate that statins improve VT resolution via profibrinolytic, anticoagulant, antiplatelet, and anti-vein wall scarring effects. Statins may therefore offer a new pharmacotherapeutic approach to improve DVT resolution and to reduce the post-thrombotic syndrome, particularly in subjects who are ineligible for anticoagulation therapy.
Collapse
Affiliation(s)
- Chase W. Kessinger
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jin Won Kim
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Peter K. Henke
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian Thompson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason R. McCarthy
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tetsuya Hara
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin Sillesen
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ronan J. P. Margey
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ralph Weissleder
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Charles P. Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Farouc A. Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cui J, Kessinger CW, McCarthy JR, Sosnovik DE, Libby P, Thadhani RI, Jaffer FA. In vivo nanoparticle assessment of pathological endothelium predicts the development of inflow stenosis in murine arteriovenous fistula. Arterioscler Thromb Vasc Biol 2014; 35:189-96. [PMID: 25395614 DOI: 10.1161/atvbaha.114.304483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In vivo assessment of pathological endothelium within arteriovenous fistula (AVF) could provide new insights into inflow stenosis, a common cause of AVF primary failure in end-stage renal disease patients. Here we developed nanoparticle-based imaging strategies to assess pathological endothelium in vivo and elucidate its relationship to neointimal hyperplasia formation in AVF. APPROACH AND RESULTS Jugular-carotid AVFs were created in C57BL/6 mice (n=38). Pathological endothelium in the AVF was visualized and quantified in vivo using dextranated magnetofluorescent nanoparticles (CLIO-VT680 [cross-linked iron oxide-VivoTag680]). At day 14, CLIO-VT680 was deposited in AVF, but only minimally in sham-operated arteries. Transmission electron microscopy revealed that CLIO-VT680 resided within endothelial cells and in the intimal extracellular space. Endothelial cells of AVF, but not control arteries, expressed vascular cell adhesion molecule-1 and showed augmented endothelial permeability near the anastomosis. Intravital microscopy demonstrated that CLIO-VT680 deposited most intensely near the AVF anastomosis (P<0.0001). The day 14 intravital microscopy CLIO-VT680 signal predicted the subsequent site and magnitude of AVF neointimal hyperplasia at day 42 (r=0.58, P<0.05). CLIO-VT680 deposition in AVF was further visualized by ex vivo MRI. CONCLUSIONS AVF develop a pathological endothelial response that can be assessed in vivo via nanoparticle-enhanced imaging. AVF endothelium is activated and exhibits augmented permeability, offering a targeting mechanism for nanoparticle deposition and retention in pathological endothelium. The in vivo AVF nanoparticle signal identified and predicted subsequent inflow neointimal hyperplasia. This approach could be used to test therapeutic interventions aiming to restore endothelial health and to decrease early AVF failure caused by inflow stenosis.
Collapse
MESH Headings
- Animals
- Arteriovenous Fistula/metabolism
- Arteriovenous Fistula/pathology
- Arteriovenous Fistula/physiopathology
- Blood Flow Velocity
- Capillary Permeability
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Arteries/physiopathology
- Carotid Arteries/surgery
- Carotid Arteries/ultrastructure
- Cell Proliferation
- Constriction, Pathologic
- Dextrans
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/surgery
- Endothelium, Vascular/ultrastructure
- Fluorescent Dyes
- Hyperplasia
- Jugular Veins/metabolism
- Jugular Veins/pathology
- Jugular Veins/physiopathology
- Jugular Veins/surgery
- Jugular Veins/ultrastructure
- Magnetic Resonance Imaging
- Magnetite Nanoparticles
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Neointima
- Predictive Value of Tests
- Regional Blood Flow
- Time Factors
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Jie Cui
- From the Cardiovascular Research Center (J.C., C.W.K., D.E.S., F.A.J.), Division of Cardiology (P.L.), Division of Nephrology (J.C., R.I.T.), Center for System Biology (J.R.M.), Martinos Center for Biomedical Imaging (D.E.S.), and Wellman Center for Photomedicine (F.A.J.), Massachusetts General Hospital, Boston
| | - Chase W Kessinger
- From the Cardiovascular Research Center (J.C., C.W.K., D.E.S., F.A.J.), Division of Cardiology (P.L.), Division of Nephrology (J.C., R.I.T.), Center for System Biology (J.R.M.), Martinos Center for Biomedical Imaging (D.E.S.), and Wellman Center for Photomedicine (F.A.J.), Massachusetts General Hospital, Boston
| | - Jason R McCarthy
- From the Cardiovascular Research Center (J.C., C.W.K., D.E.S., F.A.J.), Division of Cardiology (P.L.), Division of Nephrology (J.C., R.I.T.), Center for System Biology (J.R.M.), Martinos Center for Biomedical Imaging (D.E.S.), and Wellman Center for Photomedicine (F.A.J.), Massachusetts General Hospital, Boston
| | - David E Sosnovik
- From the Cardiovascular Research Center (J.C., C.W.K., D.E.S., F.A.J.), Division of Cardiology (P.L.), Division of Nephrology (J.C., R.I.T.), Center for System Biology (J.R.M.), Martinos Center for Biomedical Imaging (D.E.S.), and Wellman Center for Photomedicine (F.A.J.), Massachusetts General Hospital, Boston
| | - Peter Libby
- From the Cardiovascular Research Center (J.C., C.W.K., D.E.S., F.A.J.), Division of Cardiology (P.L.), Division of Nephrology (J.C., R.I.T.), Center for System Biology (J.R.M.), Martinos Center for Biomedical Imaging (D.E.S.), and Wellman Center for Photomedicine (F.A.J.), Massachusetts General Hospital, Boston
| | - Ravi I Thadhani
- From the Cardiovascular Research Center (J.C., C.W.K., D.E.S., F.A.J.), Division of Cardiology (P.L.), Division of Nephrology (J.C., R.I.T.), Center for System Biology (J.R.M.), Martinos Center for Biomedical Imaging (D.E.S.), and Wellman Center for Photomedicine (F.A.J.), Massachusetts General Hospital, Boston
| | - Farouc A Jaffer
- From the Cardiovascular Research Center (J.C., C.W.K., D.E.S., F.A.J.), Division of Cardiology (P.L.), Division of Nephrology (J.C., R.I.T.), Center for System Biology (J.R.M.), Martinos Center for Biomedical Imaging (D.E.S.), and Wellman Center for Photomedicine (F.A.J.), Massachusetts General Hospital, Boston.
| |
Collapse
|
23
|
Forestier CL, Späth GF, Prina E, Dasari S. Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: A high content imaging-based method enabling sound drug discovery process. Microb Pathog 2014; 88:103-8. [PMID: 25448129 DOI: 10.1016/j.micpath.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/18/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
Leishmaniasis is a vector-borne disease for which only limited therapeutic options are available. The disease is ranked among the six most important tropical infectious diseases and represents the second-largest parasitic killer in the world. The development of new therapies has been hampered by the lack of technologies and methodologies that can be integrated into the complex physiological environment of a cell or organism and adapted to suitable in vitro and in vivo Leishmania models. Recent advances in microscopy imaging offer the possibility to assess the efficacy of potential drug candidates against Leishmania within host cells. This technology allows the simultaneous visualization of relevant phenotypes in parasite and host cells and the quantification of a variety of cellular events. In this review, we present the powerful cellular imaging methodologies that have been developed for drug screening in a biologically relevant context, addressing both high-content and high-throughput needs. Furthermore, we discuss the potential of intra-vital microscopy imaging in the context of the anti-leishmanial drug discovery process.
Collapse
Affiliation(s)
- Claire-Lise Forestier
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France.
| | - Gerald Frank Späth
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Sreekanth Dasari
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France
| |
Collapse
|