1
|
Mayes ZG, Eriyagama YAM, Chi L, Schuman TP, Woelk K. Single and double-selective split-inversion pulse and recovery (SIP-R) sequences for targeted T 1 relaxation measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 375:107884. [PMID: 40253980 DOI: 10.1016/j.jmr.2025.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Split-Inversion-Pulse and Recovery (SIP-R) is a recently introduced NMR methodology for acquiring spin-lattice relaxation data with a robust decay-to-zero intensity profile as a function of recovery time. This decay-to-zero behavior is particularly advantageous for extracting multiple relaxation times and coefficients using inverse Laplace transformation (ILT) algorithms. In this study, two frequency-selective adaptations of SIP-R are introduced, incorporating either one or two frequency-selective pulses in the SIP-R dual-scan experiment to excite only specific spectral regions. In a test using a non-viscous, small-molecule solution of ethanol in D₂O, both single- and double-selective SIP-R sequences reproduced reasonably well the relaxation times obtained with the non-selective SIP-R method. However, the double-selective SIP-R experiment introduced additional, shorter relaxation times, which were interpreted as artifacts due to the extended duration of the second frequency-selective pulse. Applying the non-selective SIP-R method to a polymer hydrogel enabled the quantitative differentiation of freely moving water molecules (95 %) and water tightly bound to the polymer chains (5 %). The frequency-selective SIP-R variants revealed strong NOE effects between water and polymeric amide resonances, similar to previous findings that suggest strong interactions between water molecules and amine groups in a different type of polymer hydrogel.
Collapse
Affiliation(s)
- Zachary G Mayes
- Department of Chemistry, Missouri University of Science and Technology, United States
| | | | - Lingyu Chi
- Department of Chemistry, Missouri University of Science and Technology, United States
| | - Thomas P Schuman
- Department of Chemistry, Missouri University of Science and Technology, United States
| | - Klaus Woelk
- Department of Chemistry, Missouri University of Science and Technology, United States.
| |
Collapse
|
2
|
Almeida ZL, Cruz PF, Costa T, Netto-Ferreira JC, de Lima MEF, da Silva MB, Serpa C, Chaves OA. Lapachol, a natural food component, interacts with human serum albumin: Insights of its impact on the pharmacokinetics of clinically used drugs. Int J Biol Macromol 2024; 282:137520. [PMID: 39532172 DOI: 10.1016/j.ijbiomac.2024.137520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Lapachol (LAP), a natural 1,4-naphthoquinone used in popular medicine in South America, is an antioxidant and antimicrobial compound in teas and infusions and used as a food additive; however, its interactive profile with the main protein carrier of compounds in the human bloodstream (human serum albumin, HSA) was not still characterized. Additionally, the impact of LAP in binding clinically drugs to albumin is still unknown. Thus, the present work describes the interaction HSA:LAP using different biophysical techniques, i.e., 1H saturation-transfer difference nuclear magnetic resonance (1H STD-NMR), isothermal titration calorimetry (ITC), steady-state and time-resolved fluorescence measurements combined with molecular docking calculations. LAP interacts with subdomain region IIA (site I), mainly driven by enthalpy effects, while subdomain region IB (site III) was identified as the second binding site, mainly driven by entropy effects. The binding is spontaneous, strong (binding constant average, Kaverage ≈ 4.45 × 105 M-1), and there is a positive cooperativity in the presence of ibuprofen, with the LAP structure fully buried into the protein cavities. Overall, LAP might impact the residence time (pharmacokinetic profile) of drugs that bind to subdomains regions IIA and IB of albumin, e.g., warfarin, phenylbutazone, diflunisal, naproxen, camptothecin, doxorubicin, daunorubicin, suramin, and tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Zaida L Almeida
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro F Cruz
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Telma Costa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - José Carlos Netto-Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, 23890-000 Seropédica, Brazil
| | - Marco Edilson Freire de Lima
- Department of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, 23890-000 Seropédica, Brazil
| | - Márcia Barbosa da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Brazil
| | - Carlos Serpa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Otávio A Chaves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Cunha RS, Cruz PF, Costa T, Almeida ZL, de Lima MEF, Serpa C, Chaves OA. Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac. Molecules 2024; 29:3001. [PMID: 38998953 PMCID: PMC11243439 DOI: 10.3390/molecules29133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Ketoprofen (KTF) and ketorolac (KTL) are among the most primarily used non-steroidal anti-inflammatory drugs (NSAIDs) in humans to alleviate moderate pain and to treat inflammation. Their binding affinity with albumin (the main globular protein responsible for the biodistribution of drugs in the bloodstream) was previously determined by spectroscopy without considering some conventional pitfalls. Thus, the present work updates the biophysical characterization of the interactions of HSA:KTF and HSA:KTL by 1H saturation-transfer difference nuclear magnetic resonance (1H STD-NMR), ultraviolet (UV) absorption, circular dichroism (CD), steady-state, and time-resolved fluorescence spectroscopies combined with in silico calculations. The binding of HSA:NSAIDs is spontaneous, endothermic, and entropically driven, leading to a conformational rearrangement of HSA with a slight decrease in the α-helix content (7.1% to 7.6%). The predominance of the static quenching mechanism (ground-state association) was identified. Thus, both Stern-Volmer quenching constant (KSV) and binding constant (Kb) values enabled the determination of the binding affinity. In this sense, the KSV and Kb values were found in the order of 104 M-1 at human body temperature, indicating moderate binding affinity with differences in the range of 0.7- and 3.4-fold between KTF and KTL, which agree with the previously reported experimental pharmacokinetic profile. According to 1H STD-NMR data combined with in silico calculations, the aromatic groups in relation to the aliphatic moiety of the drugs interact preferentially with HSA into subdomain IIIA (site II) and are stabilized by interactions via hydrogen bonding and hydrophobic forces. In general, the data obtained in this study have been revised and updated in comparison to those previously reported by other authors who did not account for inner filter corrections, spectral backgrounds, or the identification of the primary mathematical approach for determining the binding affinity of HSA:KTF and HSA:KTL.
Collapse
Affiliation(s)
- Rita S. Cunha
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro F. Cruz
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Telma Costa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Zaida L. Almeida
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Marco Edilson Freire de Lima
- Departament of Organic Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Carlos Serpa
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Otávio A. Chaves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
Li H, Wang M, Qu K, Xu R, Zhu H. MP Allosterically Activates AMPK to Enhance ABCA1 Stability by Retarding the Calpain-Mediated Degradation Pathway. Int J Mol Sci 2023; 24:17280. [PMID: 38139111 PMCID: PMC10743971 DOI: 10.3390/ijms242417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT.
Collapse
Affiliation(s)
| | | | | | | | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China; (H.L.); (M.W.); (K.Q.); (R.X.)
| |
Collapse
|
5
|
Gouilleux B, Moussallieh FM, Lesot P. Anisotropic 1 H STD-NMR Spectroscopy: Exploration of Enantiomer-Polypeptide Interactions in Chiral Oriented Environments. Chemphyschem 2023; 24:e202200508. [PMID: 36196851 DOI: 10.1002/cphc.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Indexed: 11/07/2022]
Abstract
We explore and report for the first time the use of 1 H saturation transfer difference NMR experiments (STD-NMR) in weakly aligning chiral anisotropic media to identify the hydrogen sites of enantiomers of small chiral molecules interacting with the side-chain of poly-γ-benzyl-l-glutamate (PBLG), a helically chiral polypeptide polymer. The first experimental results obtained on three model mono-stereogenic compounds outcomes are highly promising and demonstrate the possibility to track down possible differences of spatial position of enantiomers at the vicinity of the polymer side-chain. Anisotropic STD experiments appear to be well suited for rapid screening of chiral analytes that bind favorably to orienting polymeric systems, while providing new insights into the mechanism of enantio-discrimination without resorting to the time-consuming determination of molecular order parameters.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Francois-Marie Moussallieh
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Philippe Lesot
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France.,Centre National de la Recherche Scientifique (CNRS), 3, rue Michel Ange, 75016, Paris, France
| |
Collapse
|
6
|
NMR Analysis of the Interactions and Conformational Plasticity of Dynein Intermediate Chain. Methods Mol Biol 2023; 2623:241-256. [PMID: 36602690 DOI: 10.1007/978-1-0716-2958-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytoplasmic dynein complexes play crucial roles in intracellular transport of cellular organelles. While the motor domain of dynein is well characterized by techniques such as X-ray crystallography and cryo-electron microscopy (Cryo-EM), structural representations of dynein usually include only the more packed and easily resolved regions and omit the long flexible and poorly structured regions. One such flexible region is the N-terminal half of the intermediate chain (IC), which contains almost 300 amino acids that are predicted to be disordered. This level of disorder makes IC impossible to study by X-ray crystallography and Cryo-EM, but amenable to study by solution nuclear magnetic resonance (NMR), a powerful technique that can elucidate residue-specific information in a dynamic ensemble of structures, and transient binding interactions of associated proteins. Here, we describe the methods we use to characterize flexible and disordered proteins including protein expression, purification, sample preparation, and NMR data acquisition and analysis.
Collapse
|
7
|
Gerothanassis IP. Ligand-observed in-tube NMR in natural products research: A review on enzymatic biotransformations, protein-ligand interactions, and in-cell NMR spectroscopy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
8
|
Mollica L, Cupaioli FA, Rossetti G, Chiappori F. An overview of structural approaches to study therapeutic RNAs. Front Mol Biosci 2022; 9:1044126. [PMID: 36387283 PMCID: PMC9649582 DOI: 10.3389/fmolb.2022.1044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
RNAs provide considerable opportunities as therapeutic agent to expand the plethora of classical therapeutic targets, from extracellular and surface proteins to intracellular nucleic acids and its regulators, in a wide range of diseases. RNA versatility can be exploited to recognize cell types, perform cell therapy, and develop new vaccine classes. Therapeutic RNAs (aptamers, antisense nucleotides, siRNA, miRNA, mRNA and CRISPR-Cas9) can modulate or induce protein expression, inhibit molecular interactions, achieve genome editing as well as exon-skipping. A common RNA thread, which makes it very promising for therapeutic applications, is its structure, flexibility, and binding specificity. Moreover, RNA displays peculiar structural plasticity compared to proteins as well as to DNA. Here we summarize the recent advances and applications of therapeutic RNAs, and the experimental and computational methods to analyze their structure, by biophysical techniques (liquid-state NMR, scattering, reactivity, and computational simulations), with a focus on dynamic and flexibility aspects and to binding analysis. This will provide insights on the currently available RNA therapeutic applications and on the best techniques to evaluate its dynamics and reactivity.
Collapse
Affiliation(s)
- Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, L.I.T.A/University of Milan, Milan, Italy
| | | | | | - Federica Chiappori
- National Research Council—Institute for Biomedical Technologies, Milan, Italy
| |
Collapse
|
9
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Shinya S, Katahira R, Furuita K, Sugiki T, Lee YH, Hattori Y, Takeshita K, Nakagawa A, Kokago A, Akagi KI, Oouchi M, Hayashi F, Kigawa T, Takimoto-Kamimura M, Fujiwara T, Kojima C. 19F chemical library and 19F-NMR for a weakly bound complex structure. RSC Med Chem 2022; 13:1100-1111. [PMID: 36324497 PMCID: PMC9491350 DOI: 10.1039/d2md00170e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 07/24/2023] Open
Abstract
Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a 19F-NMR screening method optimizing a 19F chemical library focusing on highly soluble monomeric molecules. Our method was successfully applied to four proteins, including protein kinases and a membrane protein. For FKBP12, hit compounds were carefully validated by protein thermal shift analysis, 1H-15N HSQC NMR spectroscopy, and isothermal titration calorimetry to determine dissociation constants and model complex structures. It should be noted that the 1H and 19F saturation transfer difference experiments were crucial to obtaining highly precise model structures. The combination of 19F-NMR analysis and the optimized 19F chemical library enables the modeling of the complex structure made up of a weak binder and its target protein.
Collapse
Affiliation(s)
- Shoko Shinya
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Ritsuko Katahira
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Toshihiko Sugiki
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Chungbuk 28119 South Korea
- Bio-Analytical Science, University of Science and Technology Daejeon 34113 South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 South Korea
| | - Yoshikazu Hattori
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Kohei Takeshita
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Aoi Kokago
- Graduate School of Engineering Science, Yokohama National University Tokiwadai 79-5, Hodogaya-ku Yokohama 2408501 Japan
| | - Ken-Ichi Akagi
- National Institute of Biomedical Innovation, Health and Nutrition 7-6-8 Saito Asagi Ibaraki-city Osaka 567-0085 Japan
| | - Muneki Oouchi
- RIKEN Spring-8 Center 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Fumiaki Hayashi
- RIKEN Spring-8 Center 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Takanori Kigawa
- RIKEN Center for Biosystems Dynamics Research 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Midori Takimoto-Kamimura
- Quantum-Structural Life Science Laboratories, CBI Research Institute 3-11-1 Shibaura, Minato-ku Tokyo 108-0023 Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
- Graduate School of Engineering Science, Yokohama National University Tokiwadai 79-5, Hodogaya-ku Yokohama 2408501 Japan
| |
Collapse
|
11
|
Buchanan CJ, Gaunt B, Harrison PJ, Yang Y, Liu J, Khan A, Giltrap AM, Le Bas A, Ward PN, Gupta K, Dumoux M, Tan TK, Schimaski L, Daga S, Picchiotti N, Baldassarri M, Benetti E, Fallerini C, Fava F, Giliberti A, Koukos PI, Davy MJ, Lakshminarayanan A, Xue X, Papadakis G, Deimel LP, Casablancas-Antràs V, Claridge TDW, Bonvin AMJJ, Sattentau QJ, Furini S, Gori M, Huo J, Owens RJ, Schaffitzel C, Berger I, Renieri A, Naismith JH, Baldwin AJ, Davis BG. Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science 2022; 377:eabm3125. [PMID: 35737812 DOI: 10.1126/science.abm3125] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis.
Collapse
Affiliation(s)
- Charles J Buchanan
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Ben Gaunt
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Peter J Harrison
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Yun Yang
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Jiwei Liu
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Aziz Khan
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Andrew M Giltrap
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Audrey Le Bas
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Philip N Ward
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Kapil Gupta
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | - Maud Dumoux
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lisa Schimaski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy.,Department of Mathematics, University of Pavia, Pavia, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Annarita Giliberti
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Panagiotis I Koukos
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Matthew J Davy
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Abirami Lakshminarayanan
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Xiaochao Xue
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Sir William Dunn School of Pathology, Oxford, UK
| | | | | | - Virgínia Casablancas-Antràs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | | | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Gori
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy.,Maasai, I3S CNRS, Université Côte d'Azur, Nice, France
| | - Jiandong Huo
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Raymond J Owens
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Christiane Schaffitzel
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Imre Berger
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - James H Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Andrew J Baldwin
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Benjamin G Davis
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
12
|
An Y, Sedinkin SL, Venditti V. Solution NMR methods for structural and thermodynamic investigation of nanoparticle adsorption equilibria. NANOSCALE ADVANCES 2022; 4:2583-2607. [PMID: 35769933 PMCID: PMC9195484 DOI: 10.1039/d2na00099g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/07/2022] [Indexed: 05/09/2023]
Abstract
Characterization of dynamic processes occurring at the nanoparticle (NP) surface is crucial for developing new and more efficient NP catalysts and materials. Thus, a vast amount of research has been dedicated to developing techniques to characterize sorption equilibria. Over recent years, solution NMR spectroscopy has emerged as a preferred tool for investigating ligand-NP interactions. Indeed, due to its ability to probe exchange dynamics over a wide range of timescales with atomic resolution, solution NMR can provide structural, kinetic, and thermodynamic information on sorption equilibria involving multiple adsorbed species and intermediate states. In this contribution, we review solution NMR methods for characterizing ligand-NP interactions, and provide examples of practical applications using these methods as standalone techniques. In addition, we illustrate how the integrated analysis of several NMR datasets was employed to elucidate the role played by support-substrate interactions in mediating the phenol hydrogenation reaction catalyzed by ceria-supported Pd nanoparticles.
Collapse
Affiliation(s)
- Yeongseo An
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
| | - Sergey L Sedinkin
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University Ames Iowa 50011 USA
| |
Collapse
|
13
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Riu F, Ruda A, Engström O, Muheim C, Mobarak H, Ståhle J, Kosma P, Carta A, Daley DO, Widmalm G. A Lead-Based Fragment Library Screening of the Glycosyltransferase WaaG from Escherichia coli. Pharmaceuticals (Basel) 2022; 15:ph15020209. [PMID: 35215321 PMCID: PMC8877264 DOI: 10.3390/ph15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Glucosyl transferase I (WaaG) in E. coli catalyzes the transfer of an α-d-glucosyl group to the inner core of the lipopolysaccharide (LPS) and plays an important role in the biogenesis of the outer membrane. If its activity could be inhibited, the integrity of the outer membrane would be compromised and the bacterium would be susceptible to antibiotics that are normally prevented from entering the cell. Herein, three libraries of molecules (A, B and C) were docked in the binding pocket of WaaG, utilizing the docking binding affinity as a filter to select fragment-based compounds for further investigations. From the results of the docking procedure, a selection of compounds was investigated by molecular dynamics (MD) simulations to obtain binding free energy (BFE) and KD values for ligands as an evaluation for the binding to WaaG. Derivatives of 1,3-thiazoles (A7 and A4) from library A and 1,3,4-thiadiazole (B33) from library B displayed a promising profile of BFE, with KD < mM, viz., 0.11, 0.62 and 0.04 mM, respectively. Further root-mean-square-deviation (RMSD), electrostatic/van der Waals contribution to the binding and H-bond interactions displayed a favorable profile for ligands A4 and B33. Mannose and/or heptose-containing disaccharides C1–C4, representing sub-structures of the inner core of the LPS, were also investigated by MD simulations, and compound C42− showed a calculated KD = 0.4 µM. In the presence of UDP-Glc2−, the best-docked pose of disaccharide C42− is proximate to the glucose-binding site of WaaG. A study of the variation in angle and distance was performed on the different portions of WaaG (N-, the C- domains and the hinge region). The Spearman correlation coefficient between the two variables was close to unity, where both variables increase in the same way, suggesting a conformational rearrangement of the protein during the MD simulation, revealing molecular motions of the enzyme that may be part of the catalytic cycle. Selected compounds were also analyzed by Saturation Transfer Difference (STD) NMR experiments. STD effects were notable for the 1,3-thiazole derivatives A4, A8 and A15 with the apo form of the protein as well as in the presence of UDP for A4.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (F.R.); (A.C.)
| | - Alessandro Ruda
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Olof Engström
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Claudio Muheim
- Arrhenius Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden; (C.M.); (D.O.D.)
| | - Hani Mobarak
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Jonas Ståhle
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences—Vienna, 1190 Vienna, Austria;
| | - Antonio Carta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (F.R.); (A.C.)
| | - Daniel O. Daley
- Arrhenius Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden; (C.M.); (D.O.D.)
| | - Göran Widmalm
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
- Correspondence:
| |
Collapse
|
15
|
Timári I, Balla S, Fehér K, Kövér KE, Szilágyi L. 77Se-Enriched Selenoglycoside Enables Significant Enhancement in NMR Spectroscopic Monitoring of Glycan-Protein Interactions. Pharmaceutics 2022; 14:201. [PMID: 35057096 PMCID: PMC8779653 DOI: 10.3390/pharmaceutics14010201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Detailed investigation of ligand-protein interactions is essential for better understanding of biological processes at the molecular level. Among these binding interactions, the recognition of glycans by lectins is of particular importance in several diseases, such as cancer; therefore, inhibition of glycan-lectin/galectin interactions represents a promising perspective towards developing therapeutics controlling cancer development. The recent introduction of 77Se NMR spectroscopy for monitoring the binding of a selenoglycoside to galectins prompted interest to optimize the sensitivity by increasing the 77Se content from the natural 7.63% abundance to 99%. Here, we report a convenient synthesis of 77Se-enriched selenodigalactoside (SeDG), which is a potent ligand of the medically relevant human galectin-3 protein, and proof of the expected sensitivity gain in 2D 1H, 77Se correlation NMR experiments. Our work opens perspectives for adding isotopically enriched selenoglycans for rapid monitoring of lectin-binding of selenated as well as non-selenated ligands and for ligand screening in competition experiments.
Collapse
Affiliation(s)
- István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (S.B.)
| | - Sára Balla
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (S.B.)
| | - Krisztina Fehér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Katalin E. Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (S.B.)
| |
Collapse
|
16
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
17
|
Peptide Affinity Chromatography Applied to Therapeutic Antibodies Purification. Int J Pept Res Ther 2021; 27:2905-2921. [PMID: 34690622 PMCID: PMC8525457 DOI: 10.1007/s10989-021-10299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
The interest in therapeutic monoclonal antibodies (mAbs) has significantly grown in the pharmaceutical industry, exceeding 100 FDA mAbs approved. Although the upstream processing of their industrial production has been significantly improved in the last years, the downstream processing still depends on immobilized protein A affinity chromatography. The high cost, low capacity and short half-life of immobilized protein A chromatography matrices, encouraged the design of alternative short-peptide ligands for mAb purification. Most of these peptides have been obtained by screening combinatorial peptide libraries. These low-cost ligands can be easily produced by solid-phase peptide synthesis and can be immobilized on chromatographic supports, thus obtaining matrices with high capacity and selectivity. Furthermore, matrices with immobilized peptide ligands have longer half-life than those with protein A due to the higher stability of the peptides. In this review the design and synthesis of peptide ligands, their immobilization on chromatographic supports and the evaluation of the affinity supports for their application in mAb purification is described.
Collapse
|
18
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
19
|
Almeida MP, Kock FVC, de Jesus HCR, Carlos RM, Venâncio T. Probing the acetylcholinesterase inhibitory activity of a novel Ru(II) polypyridyl complex and the supramolecular interaction by (STD)-NMR. J Inorg Biochem 2021; 224:111560. [PMID: 34399231 DOI: 10.1016/j.jinorgbio.2021.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Currently, acetylcholinesterase (AChE) inhibitors are the only anti-Alzheimer drugs commercially available. Despite their wide use those drugs are all dose dependent and their effect last for no longer than two years, with several side effects. The search of novel acetylcholinesterase (AChE) inhibitors remains as the main scientific route. Here we describe the synthesis, characterization, biological activity and an NMR binding-target study of a novel cis-[Ru(Bpy)2(EtPy)2]2+, (RuEtPy), Bpy = 2,2'-bipyridine and EtPy = 4,2-Ethylamino-pyridine) as a potential AChE inhibitor. The classic Ellman's colorimetric assay suggests that the RuEtPy exhibits a high inhibitory activity, following a competitive mechanism, with a remarkable low inhibition constant (Ki ≈ 16.8 μM), together with a IC50 = 39 μM. Hence, we have studied the spatial interactions for this novel candidate towards the human acetylcholinesterase (hAChE) using saturation transfer difference (STD)-NMR, in order to describe the mechanism of the interaction. NMR binding-target results shows that the 4,2-Ethylamino-Pyridine group is spatially closer to hAChE surface chemical arrangement than 2,2' bipyridine counterpart, exerting an efficient intermolecular interaction, with a low dissociation constant (KD ≈ 55 μM), probing that 4,2-Ethylamino-pyridine motif plays a key role in the inhibitory action.
Collapse
Affiliation(s)
- Marlon P Almeida
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Flávio V C Kock
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Hugo C R de Jesus
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil; Centre for Blood Research, Life Sciences Centre, 4.420 Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia (UBC), Vancouver, Canada
| | - Rose M Carlos
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Tiago Venâncio
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
20
|
Wang X, Gorfe AA, Putkey JA. Antipsychotic phenothiazine drugs bind to KRAS in vitro. JOURNAL OF BIOMOLECULAR NMR 2021; 75:233-244. [PMID: 34176062 DOI: 10.1007/s10858-021-00371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
We used NMR to show that the antipsychotic phenothiazine drugs promazine and promethazine bind to GDP-KRAS. Promazine also binds to oncogenic GDP-KRAS(G12D), and to wild type GppNHp-KRAS. A panel of additional phenothiazines bind to GDP-KRAS but with lower affinity than promazine or promethazine. Binding is most dependent on substitutions at C-2 of the tricyclic phenothiazine ring. Promazine was used to generate an NMR-driven HADDOCK model of the drug/GDP-KRAS complex. The structural model shows the tricyclic phenothiazine ring of promazine associates with the hydrophobic pocket p1 that is bordered by the central β sheet and Switch II in KRAS. Binding appears to stabilize helix 2 in a conformation that is similar to that seen in KRAS bound to other small molecules. Association of phenothiazines with KRAS may affect normal KRAS signaling that could contribute to multiple biological activities of these antipsychotic drugs. Moreover, the phenothiazine ring represents a new core scaffold on which to design modulators of KRAS activity.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - John A Putkey
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Quintana JI, Delgado S, Núñez-Franco R, Cañada FJ, Jiménez-Osés G, Jiménez-Barbero J, Ardá A. Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Front Chem 2021; 9:664097. [PMID: 33968903 PMCID: PMC8097242 DOI: 10.3389/fchem.2021.664097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
The tandem-repeat Galectin-4 (Gal-4) contains two different domains covalently linked through a short flexible peptide. Both domains have been shown to bind preferentially to A and B histo blood group antigens with different affinities, although the binding details are not yet available. The biological relevance of these associations is unknown, although it could be related to its attributed role in pathogen recognition. The presentation of A and B histo blood group antigens in terms of peripheral core structures differs among tissues and from that of the antigen-mimicking structures produced by pathogens. Herein, the binding of the N-terminal domain of Gal-4 toward a group of differently presented A and B oligosaccharide antigens in solution has been studied through a combination of NMR, isothermal titration calorimetry (ITC), and molecular modeling. The data presented in this paper allow the identification of the specific effects that subtle chemical modifications within this antigenic family have in the binding to the N-terminal domain of Gal-4 in terms of affinity and intermolecular interactions, providing a structural-based rationale for the observed trend in the binding preferences.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - F Javier Cañada
- Margarita Salas Center for Biological Research, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry ll, Faculty of Science & Technology, University of the Basque Country, Leioa, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Wang Z, Fang L, Zhao J, Gou S. Insight into the antitumor actions of sterically hindered platinum(ii) complexes by a combination of STD NMR and LCMS techniques. Metallomics 2021; 12:427-434. [PMID: 32022072 DOI: 10.1039/c9mt00258h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sterically hindered platinum(ii) complexes have shown great advantages in overcoming platinum drug resistance. In this study, the antitumor actions of sterically hindered platinum(ii) complex 1 (cis-dichloro[(1R,2R)-N1-(2-fluorobenzyl)-1,2-diaminocyclohexane-N,N']platinum(ii), C13H19FPtCl2) were investigated by using saturation transfer difference nuclear magnetic resonance (STD NMR) and liquid chromatography-mass spectrometry (LCMS) techniques. STD NMR was applied to study the HSA (human serum albumin) binding properties, while the interactions between guanosine 5'-monophosphate (5'-GMP) and complex 1 were studied by LCMS. For HSA binding experiments, strong STD signals were observed for protons of sterically hindered parts of carrier ligands, indicating that the sterically hindered moieties of the carrier ligand could be situated inside the binding pocket of HSA. A 19F NMR experiment indicated that complex 1 could interact with HSA. Furthermore, the binding modes of complex 1 with guanosine 5'-monophosphate (5'-GMP) were studied in the absence and presence of glutathione by LCMS. According to the HPLC profiles, a mono-functional binding mode was observed for complex 1 both in the presence and in the absence of glutathione, while a bi-adduct was observed for Pt(DACH)Cl2, which may be one of the reasons for their different biological activities. Hence, this study demonstrated that the NMR method combined with the LCMS technique could provide valuable information to understand the transport and the underlying anticancer mechanisms of the platinum(ii) complex at the molecular level. Moreover, the results reported here can help to reveal the binding mechanisms of the sterically hindered platinum(ii) compounds with biomolecules, which may shed light on the design of novel platinum(ii) anticancer agents with suitable sterically hindered groups.
Collapse
Affiliation(s)
- Zhimei Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Lei Fang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Jian Zhao
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
23
|
Applications of Solution NMR in Drug Discovery. Molecules 2021; 26:molecules26030576. [PMID: 33499337 PMCID: PMC7865596 DOI: 10.3390/molecules26030576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.
Collapse
|
24
|
Bristol AN, Saha J, George HE, Das PK, Kemp LK, Jarrett WL, Rangachari V, Morgan SE. Effects of Stereochemistry and Hydrogen Bonding on Glycopolymer-Amyloid-β Interactions. Biomacromolecules 2020; 21:4280-4293. [PMID: 32786526 PMCID: PMC7847044 DOI: 10.1021/acs.biomac.0c01077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saccharide stereochemistry plays an important role in carbohydrate functions such as biological recognition processes and protein binding. Synthetic glycopolymers with pendant saccharides of controlled stereochemistry provide an attractive approach for the design of polysaccharide-inspired biomaterials. Acrylamide-based polymers containing either β,d-glucose or β,d-galactose pendant groups, designed to mimic GM1 ganglioside saccharides, and their small-molecule analogues were used to evaluate the effect of stereochemistry on glycopolymer solution aggregation processes alone and in the presence of Aβ42 peptide using dynamic light scattering, gel permeation chromatography-multiangle laser light scattering, and fluorescence assays. Fourier transform infrared and nuclear magnetic resonance (NMR) were employed to determine hydrogen bonding patterns of the systems. The galactose-containing polymer displayed significant intramolecular hydrogen bonding and self-aggregation and minimal association with Aβ42, while the glucose-containing glycopolymers showed intermolecular interactions with the surrounding environment and association with Aβ42. Saturation transfer difference NMR spectroscopy demonstrated different binding affinities for the two glycopolymers to Aβ42 peptide.
Collapse
Affiliation(s)
- Ashleigh N Bristol
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Jhinuk Saha
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Hannah E George
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Pradipta K Das
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Lisa K Kemp
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - William L Jarrett
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| |
Collapse
|
25
|
Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Dahiya V, Anand BG, Kar K, Pal S. Analyzing organophosphate pesticide-serum albumin binding interaction: a combined STD NMR and molecular docking study. J Biomol Struct Dyn 2020; 39:1865-1878. [PMID: 32189579 DOI: 10.1080/07391102.2020.1745280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Vitro analysis of the interaction of organophosphate pesticides (OP) with bovine serum albumin (BSA) is crucial to understand their potential effects at the molecular level. In this context, we have employed Saturation Transfer Difference (STD) NMR experiments in conjunction with molecular docking studies to unravel the binding interaction of the OP chlorpyrifos (CPF), diazinon (DZN) and parathion (PA) in solution. The relative STD (%) suggested the detailed epitope mapping of these OP with BSA while the concentration-dependent STD NMR studies were performed to obtain the complex dissociation constant (KD) of the OP-BSA complexes; KD=1.81 × 10-4 M, 1.30 × 10-3 M and 1.11 × 10-3 M for CPF, DZN and PA were extracted respectively. Similar binding modes were identified for all the three OP using STD site-marker experiment. ITC experiments were performed as a complementary method that revealed a high binding affinity of OP-BSA complexes through non-covalent interaction. Molecular docking confirmed the possible interacting chemical groups of OP-BSA complexes. These significant results furnish valuable information about the toxicity risk of OP to proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vandana Dahiya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jheepasani, India
| | - Bibin G Anand
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, India
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jheepasani, India
| |
Collapse
|
27
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
28
|
Singh V, Patel KA, Sharma RK, Patil PR, Joshi AS, Parihar R, Athilingam T, Sinha N, Ganesh S, Sinha P, Roy I, Thakur AK. Discovery of Arginine Ethyl Ester as Polyglutamine Aggregation Inhibitor: Conformational Transitioning of Huntingtin N-Terminus Augments Aggregation Suppression. ACS Chem Neurosci 2019; 10:3969-3985. [PMID: 31460743 DOI: 10.1021/acschemneuro.9b00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntington's disease (HD) is a genetic disorder caused by a CAG expansion mutation in the huntingtin gene leading to polyglutamine (polyQ) expansion in the N-terminal part of huntingtin (Httex1). Expanded polyQ, through a complex aggregation pathway, forms aggregates in neurons and presents a potential therapeutic target. Here we show Httex1 aggregation suppression by arginine and arginine ethyl ester (AEE) in vitro, as well as in yeast and mammalian cell models of HD, bearing expanded polyQ. These molecules also rescue locomotion dysfunction in HD Drosophila model. Both molecules alter the hydrogen bonding network of polyQ to enhance its aqueous solubility and delay aggregation. AEE shows direct binding with the NT17 part of Httex1 to induce structural changes to impart an enhanced inhibitory effect. This study provides a platform for the development of better arginine based therapeutic molecules against polyQ-rich Httex1 aggregation.
Collapse
Affiliation(s)
- Virender Singh
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kinjal A. Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab 160062, India
| | - Raj Kumar Sharma
- Centre of Biomedical Research, SGPGIMS Campus, Raibarelly Road, Lucknow, Uttar Pradesh 226014, India
| | - Pratik R. Patil
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Abhayraj S. Joshi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Rashmi Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Thamarailingam Athilingam
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raibarelly Road, Lucknow, Uttar Pradesh 226014, India
| | - Subramaniam Ganesh
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab 160062, India
| | - Ashwani Kumar Thakur
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
29
|
Marolt M, Lüdeke S. Studying NAD(P)H cofactor-binding to alcohol dehydrogenases through global analysis of circular dichroism spectra. Phys Chem Chem Phys 2019; 21:1671-1681. [PMID: 30328850 DOI: 10.1039/c8cp04869j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The initial step in reactions catalyzed by NAD(P)H-dependent alcohol dehydrogenases (ADHs) is the binding of the cofactor to the active site. To study this process, we measured NAD(P)H concentration-dependent circular dichroism (CD) in the presence of purified enzymes (ADH from horse liver, HLADH; ADH-A from Rhodococcus ruber; YGL157w from Saccharomyces cerevisiae) or enzyme-containing whole cell extract (ADH from Lactobacillus brevis, LbADH). We determined the proportions of binding and non-binding NAD(P)H and the associated dissociation constants (Kd) from matrix least-squares global fitting of law of mass action-derived model. Furthermore, the fitting allowed the back calculation of CD spectra corresponding to the cofactor in its bound conformation. With increasing pH and/or increasing ionic strength, we detected an increase in Kd for the NADH·HLADH complex with the shape of the bound cofactor conformation spectrum remaining unaffected. While the bound cofactor spectrum for the ADH-A·NADH complex was similar to that for HLADH, the corresponding spectra obtained for the NADPH-dependent enzymes YGL157w and LbADH exhibited opposite signs of the most prominent band. In comparison to CD spectra calculated on cofactor geometries from the crystal structures at the sTD-DFT level, we found that the sign of the bound cofactor spectrum correlates with the orientation of the nicotinamide ring of the cofactor in the active site. These results demonstrate the usefulness of the global analysis of cofactor titration CD spectra to study the role of cofactor binding and its geometry in ADH catalysis.
Collapse
Affiliation(s)
- Marija Marolt
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
30
|
Raingeval C, Cala O, Brion B, Le Borgne M, Hubbard RE, Krimm I. 1D NMR WaterLOGSY as an efficient method for fragment-based lead discovery. J Enzyme Inhib Med Chem 2019; 34:1218-1225. [PMID: 31286785 PMCID: PMC6691826 DOI: 10.1080/14756366.2019.1636235] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
WaterLOGSY is a sensitive ligand-observed NMR experiment for detection of interaction between a ligand and a protein and is now well-established as a screening technique for fragment-based lead discovery. Here we develop and assess a protocol to derive ligand epitope mapping from WaterLOGSY data and demonstrate its general applicability in studies of fragment-sized ligands binding to six different proteins (glycogen phosphorylase, protein peroxiredoxin 5, Bcl-xL, Mcl-1, HSP90, and human serum albumin). We compare the WaterLOGSY results to those obtained from the more widely used saturation transfer difference experiments and to the 3D structures of the complexes when available. In addition, we evaluate the impact of ligand labile protons on the WaterLOGSY data. Our results demonstrate that the WaterLOGSY experiment can be used as an additional confirmation of the binding mode of a ligand to a protein.
Collapse
Affiliation(s)
- Claire Raingeval
- a Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS Lyon, CRMN FRE 2034 , Villeurbanne , France
| | - Olivier Cala
- a Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS Lyon, CRMN FRE 2034 , Villeurbanne , France
| | - Béatrice Brion
- a Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS Lyon, CRMN FRE 2034 , Villeurbanne , France
| | - Marc Le Borgne
- b Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7 , Lyon , France
| | - Roderick Eliot Hubbard
- c YSBL, University of York , Heslington , York , UK.,d Vernalis (R&D) Ltd, Granta Park, Abington , Cambridge , UK
| | - Isabelle Krimm
- a Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS Lyon, CRMN FRE 2034 , Villeurbanne , France
| |
Collapse
|
31
|
Calabrese DR, Connelly CM, Schneekloth JS. Ligand-observed NMR techniques to probe RNA-small molecule interactions. Methods Enzymol 2019; 623:131-149. [PMID: 31239044 DOI: 10.1016/bs.mie.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A growing understanding of the structure and function of RNA has revealed it as a key regulator of gene expression and disease. A multitude of noncoding functions apart from the central roles of RNA in coding for and facilitating protein biogenesis has stimulated research into RNA as a pharmacological target. Despite many exciting advances, RNA remains an understudied target for small molecules, and techniques to investigate RNA-binding molecules are still emerging. A key stumbling block in this area has been validation of RNA-small molecule interactions. Our laboratory has recently used multiple ligand-observed NMR techniques in this regard, including CPMG and WaterLOGSY. This work describes methods to use these techniques in the context of studying RNA-ligand interactions.
Collapse
Affiliation(s)
- David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Colleen M Connelly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, United States.
| |
Collapse
|
32
|
Polshakov VI, Batuev EA, Mantsyzov AB. NMR screening and studies of target–ligand interactions. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Zhang Y, Xu H, Casabianca LB. Interaction between cyanine dye IR-783 and polystyrene nanoparticles in solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1054-1060. [PMID: 29771468 DOI: 10.1002/mrc.4751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In this work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference NMR was also used to show that protons near the positively charged nitrogen in the dye are more strongly associated with the negatively charged nanoparticle surface than protons near the negatively charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles.
Collapse
Affiliation(s)
- Yunzhi Zhang
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | - Hui Xu
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
34
|
Chen PC, Hennig J. The role of small-angle scattering in structure-based screening applications. Biophys Rev 2018; 10:1295-1310. [PMID: 30306530 PMCID: PMC6233350 DOI: 10.1007/s12551-018-0464-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In many biomolecular interactions, changes in the assembly states and structural conformations of participants can act as a complementary reporter of binding to functional and thermodynamic assays. This structural information is captured by a number of structural biology and biophysical techniques that are viable either as primary screens in small-scale applications or as secondary screens to complement higher throughput methods. In particular, small-angle X-ray scattering (SAXS) reports the average distance distribution between all atoms after orientational averaging. Such information is important when for example investigating conformational changes involved in inhibitory and regulatory mechanisms where binding events do not necessarily cause functional changes. Thus, we summarise here the current and prospective capabilities of SAXS-based screening in the context of other methods that yield structural information. Broad guidelines are also provided to assist readers in preparing screening protocols that are tailored to available X-ray sources.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| |
Collapse
|
35
|
An Evaluation of the Potential of NMR Spectroscopy and Computational Modelling Methods to Inform Biopharmaceutical Formulations. Pharmaceutics 2018; 10:pharmaceutics10040165. [PMID: 30248922 PMCID: PMC6320905 DOI: 10.3390/pharmaceutics10040165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Protein-based therapeutics are considered to be one of the most important classes of pharmaceuticals on the market. The growing need to prolong stability of high protein concentrations in liquid form has proven to be challenging. Therefore, significant effort is being made to design formulations which can enable the storage of these highly concentrated protein therapies for up to 2 years. Currently, the excipient selection approach involves empirical high-throughput screening, but does not reveal details on aggregation mechanisms or the molecular-level effects of the formulations under storage conditions. Computational modelling approaches have the potential to elucidate such mechanisms, and rapidly screen in silico prior to experimental testing. Nuclear Magnetic Resonance (NMR) spectroscopy can also provide complementary insights into excipient–protein interactions. This review will highlight the underpinning principles of molecular modelling and NMR spectroscopy. It will also discuss the advancements in the applications of computational and NMR approaches in investigating excipient–protein interactions.
Collapse
|
36
|
Wang Y, Yang E, Wells MM, Bondarenko V, Woll K, Carnevale V, Granata D, Klein ML, Eckenhoff RG, Dailey WP, Covarrubias M, Tang P, Xu Y. Propofol inhibits the voltage-gated sodium channel NaChBac at multiple sites. J Gen Physiol 2018; 150:1317-1331. [PMID: 30018039 PMCID: PMC6122922 DOI: 10.1085/jgp.201811993] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/02/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are important targets of general anesthetics, including the intravenous anesthetic propofol. Electrophysiology studies on the prokaryotic NaV channel NaChBac have demonstrated that propofol promotes channel activation and accelerates activation-coupled inactivation, but the molecular mechanisms of these effects are unclear. Here, guided by computational docking and molecular dynamics simulations, we predict several propofol-binding sites in NaChBac. We then strategically place small fluorinated probes at these putative binding sites and experimentally quantify the interaction strengths with a fluorinated propofol analogue, 4-fluoropropofol. In vitro and in vivo measurements show that 4-fluoropropofol and propofol have similar effects on NaChBac function and nearly identical anesthetizing effects on tadpole mobility. Using quantitative analysis by 19F-NMR saturation transfer difference spectroscopy, we reveal strong intermolecular cross-relaxation rate constants between 4-fluoropropofol and four different regions of NaChBac, including the activation gate and selectivity filter in the pore, the voltage sensing domain, and the S4-S5 linker. Unlike volatile anesthetics, 4-fluoropropofol does not bind to the extracellular interface of the pore domain. Collectively, our results show that propofol inhibits NaChBac at multiple sites, likely with distinct modes of action. This study provides a molecular basis for understanding the net inhibitory action of propofol on NaV channels.
Collapse
Affiliation(s)
- Yali Wang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Elaine Yang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Marta M Wells
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Vasyl Bondarenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kellie Woll
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Daniele Granata
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Michael L Klein
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
37
|
Byun JA, Melacini G. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes. Methods 2018; 148:19-27. [DOI: 10.1016/j.ymeth.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
|
38
|
Jeyaharan D, Brackstone C, Schouten J, Davis P, Dixon AM. Characterisation of the Carboxypeptidase G2 Catalytic Site and Design of New Inhibitors for Cancer Therapy. Chembiochem 2018; 19:1959-1968. [PMID: 29968955 DOI: 10.1002/cbic.201800186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 11/08/2022]
Abstract
The enzyme carboxypeptidase G2 (CPG2) is used in antibody-directed enzyme prodrug therapy (ADEPT) to catalyse the formation of an active drug from an inert prodrug. Free CPG2 in the bloodstream must be inhibited before administration of the prodrug in order to avoid a systemic reaction in the patient. Although a few small-molecule CPG2 inhibitors have been reported, none has been taken forward thus far. This lack of progress is due in part to a lack of structural understanding of the CPG2 active site as well as the absence of small molecules that can block the active site whilst targeting the complex for clearance. The work described here aimed to address both areas. We report the structural/functional impact of extensive point mutation across the putative CPG2 catalytic site and adjacent regions for the first time, revealing that residues outside the catalytic region (K208A, S210A and T357A) are crucial to enzyme activity. We also describe novel molecules that inhibit CPG2 whilst maintaining the accessibility of galactosylated moieties aimed at targeting the enzyme for clearance. This work acts as a platform for the future development of high-affinity CPG2 inhibitors that occupy new chemical space and will advance the safe application of ADEPT in cancer treatment.
Collapse
Affiliation(s)
| | - Carla Brackstone
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - James Schouten
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, UK
| | - Paul Davis
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedford, MK44 2YP, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
39
|
Sugiki T, Furuita K, Fujiwara T, Kojima C. Current NMR Techniques for Structure-Based Drug Discovery. Molecules 2018; 23:molecules23010148. [PMID: 29329228 PMCID: PMC6017608 DOI: 10.3390/molecules23010148] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
A variety of nuclear magnetic resonance (NMR) applications have been developed for structure-based drug discovery (SBDD). NMR provides many advantages over other methods, such as the ability to directly observe chemical compounds and target biomolecules, and to be used for ligand-based and protein-based approaches. NMR can also provide important information about the interactions in a protein-ligand complex, such as structure, dynamics, and affinity, even when the interaction is too weak to be detected by ELISA or fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) or to be crystalized. In this study, we reviewed current NMR techniques. We focused on recent progress in NMR measurement and sample preparation techniques that have expanded the potential of NMR-based SBDD, such as fluorine NMR (19F-NMR) screening, structure modeling of weak complexes, and site-specific isotope labeling of challenging targets.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
40
|
Brender JR, Krishnamoorthy J, Ghosh A, Bhunia A. Binding Moiety Mapping by Saturation Transfer Difference NMR. Methods Mol Biol 2018; 1824:49-65. [PMID: 30039401 DOI: 10.1007/978-1-4939-8630-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Saturation transfer difference (STD) NMR has emerged as one of the key technologies in lead optimization during drug design. Unlike most biophysical assays which report only on the binding affinity, STD NMR reports simultaneously on both the binding affinity and the structure of the binding ligand/protein complex. The STD experiment drives magnetization from a protein to a bound small molecule ligand which carries away the memory of the saturation signal when it dissociates. Since the transfer of saturation is distance dependent, STD NMR can be used to map the specific atoms on the ligand in contact with a protein receptor allowing the impact of any structural change in the binding site to be mapped directly on to the individual functional groups responsible when a suitable compound library is screened. Because the signal is detected from the free ligand and not the bound complex, it can be used on a much wider range of systems than protein-detected NMR and has the advantage of more directly reporting on distances than changes in chemical shifts alone. The STD experiment, while deceptively simple, is very sensitive to both sample conditions and acquisition parameters. We present a general protocol for setting up and STD NMR experiment with a particular focus on how choices in sample conditions and acquisition parameters affect the outcome of the experiment.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | - Anirban Ghosh
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
41
|
Zanzoni S, Pagano K, D'Onofrio M, Assfalg M, Ciambellotti S, Bernacchioni C, Turano P, Aime S, Ragona L, Molinari H. Unsaturated Long-Chain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization. Chemistry 2017; 23:9879-9887. [PMID: 28489257 DOI: 10.1002/chem.201701164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Indexed: 12/20/2022]
Abstract
Ferritin is a ubiquitous nanocage protein, which can accommodate up to thousands of iron atoms inside its cavity. Aside from its iron storage function, a new role as a fatty acid binder has been proposed for this protein. The interaction of apo horse spleen ferritin (HoSF) with a variety of lipids has been here investigated through NMR spectroscopic ligand-based experiments, to provide new insights into the mechanism of ferritin-lipid interactions, and the link with iron mineralization. 1D 1 H, diffusion (DOSY) and saturation-transfer difference (STD) NMR experiments provided evidence for a stronger interaction of ferritin with unsaturated fatty acids compared to saturated fatty acids, detergents, and bile acids. Mineralization assays showed that oleate c aused the most efficient increase in the initial rate of iron oxidation, and the highest formation of ferric species in HoSF. The comprehension of the factors inducing a faster biomineralization is an issue of the utmost importance, given the association of ferritin levels with metabolic syndromes, such as insulin resistance and diabetes, characterized by fatty acid concentration dysregulation. The human ferritin H-chain homopolymer (HuHF), featuring ferroxidase activity, was also tested for its fatty acid binding capabilities. Assays show that oleate can bind with high affinity to HuHF, without altering the reaction rates at the ferroxidase site.
Collapse
Affiliation(s)
- Serena Zanzoni
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Mariapina D'Onofrio
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Caterina Bernacchioni
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Paola Turano
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Silvio Aime
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy.,IBB-CNR-UOS, Università di Torino, Torino, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| |
Collapse
|
42
|
Octyl gallate: An antioxidant demonstrating selective and sensitive fluorescent property. Food Chem 2017; 219:268-273. [DOI: 10.1016/j.foodchem.2016.09.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/16/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
43
|
Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides. Carbohydr Res 2017; 437:50-58. [DOI: 10.1016/j.carres.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022]
|
44
|
Potocnakova L, Bhide M, Pulzova LB. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction. J Immunol Res 2016; 2016:6760830. [PMID: 28127568 PMCID: PMC5227168 DOI: 10.1155/2016/6760830] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023] Open
Abstract
Identification of B-cell epitopes is a fundamental step for development of epitope-based vaccines, therapeutic antibodies, and diagnostic tools. Epitope-based antibodies are currently the most promising class of biopharmaceuticals. In the last decade, in-depth in silico analysis and categorization of the experimentally identified epitopes stimulated development of algorithms for epitope prediction. Recently, various in silico tools are employed in attempts to predict B-cell epitopes based on sequence and/or structural data. The main objective of epitope identification is to replace an antigen in the immunization, antibody production, and serodiagnosis. The accurate identification of B-cell epitopes still presents major challenges for immunologists. Advances in B-cell epitope mapping and computational prediction have yielded molecular insights into the process of biorecognition and formation of antigen-antibody complex, which may help to localize B-cell epitopes more precisely. In this paper, we have comprehensively reviewed state-of-the-art experimental methods for B-cell epitope identification, existing databases for epitopes, and novel in silico resources and prediction tools available online. We have also elaborated new trends in the antibody-based epitope prediction. The aim of this review is to assist researchers in identification of B-cell epitopes.
Collapse
Affiliation(s)
- Lenka Potocnakova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Lucia Borszekova Pulzova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| |
Collapse
|
45
|
Hamark C, Berntsson RPA, Masuyer G, Henriksson LM, Gustafsson R, Stenmark P, Widmalm G. Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. J Am Chem Soc 2016; 139:218-230. [PMID: 27958736 DOI: 10.1021/jacs.6b09534] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly poisonous botulinum neurotoxins, produced by the bacterium Clostridium botulinum, act on their hosts by a high-affinity association to two receptors on neuronal cell surfaces as the first step of invasion. The glycan motifs of gangliosides serve as initial coreceptors for these protein complexes, whereby a membrane protein receptor is bound. Herein we set out to characterize the carbohydrate minimal binding epitope of the botulinum neurotoxin serotype A. By means of ligand-based NMR spectroscopy, X-ray crystallography, computer simulations, and isothermal titration calorimetry, a screening of ganglioside analogues together with a detailed characterization of various carbohydrate ligand complexes with the toxin were accomplished. We show that the representation of the glycan epitope to the protein affects the details of binding. Notably, both branches of the oligosaccharide GD1a can associate to botulinum neurotoxin serotype A when expressed as individual trisaccharides. It is, however, the terminal branch of GD1a as well as this trisaccharide motif alone, corresponding to the sialyl-Thomsen-Friedenreich antigen, that represents the active ligand epitope, and these compounds bind to the neurotoxin with a high degree of predisposition but with low affinities. This finding does not correlate with the oligosaccharide moieties having a strong contribution to the total affinity, which was expected to be the case. We here propose that the glycan part of the ganglioside receptors mainly provides abundance and specificity, whereas the interaction with the membrane itself and protein receptor brings about the strong total binding of the toxin to the neuronal membrane.
Collapse
Affiliation(s)
- Christoffer Hamark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Linda M Henriksson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
46
|
Tang B, Huang Y, Yang H, Tang P, Li H. Molecular mechanism of the binding of 3,4,5-tri-O-caffeoylquinic acid to human serum albumin: Saturation transfer difference NMR, multi-spectroscopy, and docking studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:24-33. [DOI: 10.1016/j.jphotobiol.2016.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022]
|
47
|
Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac. Proc Natl Acad Sci U S A 2016; 113:13762-13767. [PMID: 27856739 DOI: 10.1073/pnas.1609939113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Voltage-gated sodium channels (NaV) play an important role in general anesthesia. Electrophysiology measurements suggest that volatile anesthetics such as isoflurane inhibit NaV by stabilizing the inactivated state or altering the inactivation kinetics. Recent computational studies suggested the existence of multiple isoflurane binding sites in NaV, but experimental binding data are lacking. Here we use site-directed placement of 19F probes in NMR experiments to quantify isoflurane binding to the bacterial voltage-gated sodium channel NaChBac. 19F probes were introduced individually to S129 and L150 near the S4-S5 linker, L179 and S208 at the extracellular surface, T189 in the ion selectivity filter, and all phenylalanine residues. Quantitative analyses of 19F NMR saturation transfer difference (STD) spectroscopy showed a strong interaction of isoflurane with S129, T189, and S208; relatively weakly with L150; and almost undetectable with L179 and phenylalanine residues. An orientation preference was observed for isoflurane bound to T189 and S208, but not to S129 and L150. We conclude that isoflurane inhibits NaChBac by two distinct mechanisms: (i) as a channel blocker at the base of the selectivity filter, and (ii) as a modulator to restrict the pivot motion at the S4-S5 linker and at a critical hinge that controls the gating and inactivation motion of S6.
Collapse
|
48
|
Identification of DNA primase inhibitors via a combined fragment-based and virtual screening. Sci Rep 2016; 6:36322. [PMID: 27805033 PMCID: PMC5090872 DOI: 10.1038/srep36322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/14/2016] [Indexed: 11/12/2022] Open
Abstract
The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.
Collapse
|
49
|
The Intersection of Structural and Chemical Biology - An Essential Synergy. Cell Chem Biol 2016; 23:173-182. [PMID: 26933743 DOI: 10.1016/j.chembiol.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
The continual improvement in our ability to generate high resolution structural models of biological molecules has stimulated and supported innovative chemical biology projects that target increasingly challenging ligand interaction sites. In this review we outline some of the recent developments in chemical biology and rational ligand design and show selected examples that illustrate the synergy between these research areas.
Collapse
|
50
|
Li S, Ahmed L, Zhang R, Pan Y, Matsunami H, Burger JL, Block E, Batista VS, Zhuang H. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols. J Am Chem Soc 2016; 138:13281-13288. [PMID: 27659093 DOI: 10.1021/jacs.6b06983] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O2 depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings. The 100-million-fold difference in olfactory perception between structurally similar EtSH and EtOH has long puzzled those studying olfaction. Mammals detect thiols and other odorants using odorant receptors (ORs), members of the family of seven transmembrane G-protein-coupled receptors (GPCRs). Understanding the regulator cofactors and response of ORs is particularly challenging due to the lack of X-ray structural models. Here, we combine computational modeling and site-directed mutagenesis with saturation transfer difference (STD) NMR spectroscopy and measurements of the receptor response profiles. We find that human thiol receptor OR2T11 responds specifically to gas odorants t-BuSH and EtSH requiring ionic copper for its robust activation and that this role of copper is mimicked by ionic and nanoparticulate silver. While copper is both an essential nutrient for life and, in excess, a hallmark of various pathologies and neurodegenerative diseases, its involvement in human olfaction has not been previously demonstrated. When screened against a series of alcohols, thiols, sulfides, and metal-coordinating ligands, OR2T11 responds with enhancement by copper to the mouse semiochemical CH3SCH2SH and derivatives, to four-membered cyclic sulfide thietane and to one- to four-carbon straight- and branched-chain and five-carbon branched-chain thiols but not to longer chain thiols, suggesting compact receptor dimensions. Alcohols are unreactive.
Collapse
Affiliation(s)
- Shengju Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Lucky Ahmed
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Ruina Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology and Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Jessica L Burger
- Applied Chemicals and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China.,Institute of Health Sciences, Shanghai Jiaotong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences , Shanghai 200031, China
| |
Collapse
|