1
|
Li Z, Zhu Z, Wang P, Hou C, Ren L, Xu D, Wang X, Guo F, Meng Q, Liang W, Xue J, Zhi X. Diagnostic, prognostic, and immunological roles of FUT8 in lung adenocarcinoma and lung squamous cell carcinoma. PLoS One 2025; 20:e0321756. [PMID: 40373023 PMCID: PMC12080848 DOI: 10.1371/journal.pone.0321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 05/17/2025] Open
Abstract
Lung cancer remains the leading cause of malignant tumors worldwide in terms of the incidence and mortality, posing a significant threat to human health. Given that distant metastases typically occur at the time of initial diagnosis, leading to a poor 5-year survival rate among patients, it is crucial to identify markers for diagnosis, prognosis, and therapeutic efficacy monitoring. Abnormal glycosylation is a hallmark of cancer cells, characterized by the disruption of core fucosylation, which is predominantly driven by the enzyme fucosyltransferase 8 (FUT8). Evidence indicates that FUT8 is a pivotal enzyme in cancer onset and progression, influencing cellular glycosylation pathways. Utilizing bioinformatics approaches, we have investigated FUT8 in lung cancer, resulting in a more systematic and comprehensive understanding of its role in the disease's pathogenesis. In this study, we employed bioinformatics to analyze the differential expression of FUT8 between LUAD and LUSC. We observed upregulation of FUT8 in both LUAD and LUSC, associated with unfavorable prognosis, and higher diagnostic utility in LUAD. GO/KEGG analysis revealed a primary association between LUAD and the spliceosome. Immunologically, FUT8 expression was significantly associated with immune cell infiltration and immune checkpoint activity, with a notable positive correlation with M2 macrophage infiltration. Our analysis of FUT8 indicates that it may serve as a potential biomarker for lung cancer diagnosis and prognosis, and could represent a therapeutic target for LUAD and LUSC immunotherapy.
Collapse
Affiliation(s)
- Zhijun Li
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhenpeng Zhu
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Peng Wang
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Chenyang Hou
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Lijuan Ren
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Dandan Xu
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xiran Wang
- Department of Bioinformatics, School of Health Care, Changchun Vocational College of Health, Changchun City, Jilin Province, China
| | - Fei Guo
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Weizheng Liang
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Jun Xue
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
2
|
Pfeifer L, Mueller KK, Müller MT, Philipp LM, Sebens S, Classen B. Synthetic and plant-derived multivalent galactans as modulators of cancer-associated galectins-3 and -9. Int J Biol Macromol 2025; 305:141155. [PMID: 39971027 DOI: 10.1016/j.ijbiomac.2025.141155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Galectins are β-galactoside-binding proteins with numerous functions. Some of them are involved in proliferation and metastasis of cancer, making them promising therapeutic targets. As different plant glycans have been shown to bind to galectins, plant saccharides might be potential galectin inhibitors. To produce plant galactans rich in galactose and smaller in size, we degraded arabinogalactan-proteins from Echinacea purpurea and Zostera marina as well as arabinogalactan from larch. As galectin (Gal)-3 and -9 both have been described to be involved in cancer development, we quantified the binding capacities of the different galactans to both galectins by biolayer-interferometry. Our results revealed that all plant-derived galactans and Yariv reagents with terminal galactose and lactose residues bind to Gal-3 in micromolar ranges. Surprisingly, only the higher charged galactans from Zostera marina showed affinity to Gal-9. Investigations of two different pancreatic cancer cell lines (Panc1 and Panc89) and different cell variants thereof revealed that Gal-3 was expressed by both cell lines with a significantly higher Gal-3 level in Panc1 cells compared to Panc89 cells. Conversely, Gal-9 was only detected in Panc89 cells. The findings revealed that galactans are promising sources to develop galectin antagonists and plant galactans from different species express specificities for distinct galectins.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| | - Maximilian Thal Müller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
3
|
Shen L, Lin JM, Lin J, Wu W. Glycosylation in Dermatology: Unveiling the Sugar Coating of Skin Disease. Exp Dermatol 2025; 34:e70098. [PMID: 40207455 DOI: 10.1111/exd.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Glycosylation is a common and complex post-translational modification (PTM) of proteins, involving the attachment of glycans under the regulation of various enzymes such as glycosyltransferases. Glycosylation facilitates the correct folding of peptide chains, modifies protein conformation and activity, enhances protein stability and influences inter-protein interactions. N-glycosylation and O-glycosylation are two prevalent forms, encompassing a wide range of modifications, including sialylation, fucosylation and galactosylation. In skin tumours, abnormal glycosylation promotes tumour cell proliferation, migration, invasion and metastasis, enhances anti-tumour immunity, and potentially affects immune checkpoint therapy. In inflammatory and autoimmune skin diseases, abnormal glycosylation in T and B lymphocyte subpopulations regulates antigen recognition, signal transduction, inflammatory factor secretion and immunoglobulin function, disrupting immune system homeostasis and impacting biologic therapy efficacy. Glycosylation correlates with the severity and activity of skin diseases, serving as a potential biomarker for diagnosis, condition assessment and prognosis determination. This review provides an overview of the role of protein glycosylation in melanoma, basal cell carcinoma, squamous cell carcinoma, psoriasis, systemic lupus erythematosus, dermatomyositis and skin aging. It analyses the biosynthetic process of glycosylation, elucidates functional changes in glycoproteins and their metabolism, and offers a theoretical basis for developing new targeted therapies.
Collapse
Affiliation(s)
- Linxia Shen
- Department of Dermatology, Huashan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jui-Ming Lin
- Department of Dermatology, Huashan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Manabe Y, Takebe T, Kasahara S, Hizume K, Kabayama K, Kamada Y, Asakura A, Shinzaki S, Takamatsu S, Miyoshi E, García-García A, Vakhrushev SY, Hurtado-Guerrero R, Fukase K. Development of a FUT8 Inhibitor with Cellular Inhibitory Properties. Angew Chem Int Ed Engl 2024; 63:e202414682. [PMID: 39340265 DOI: 10.1002/anie.202414682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
Core fucosylation is catalyzed by α-1,6-fucosyltransferase (FUT8), which fucosylates the innermost GlcNAc of N-glycans. Given the association of FUT8 with various diseases, including cancer, selective FUT8 inhibitors applicable to in vivo or cell-based systems are highly sought-after. Herein, we report the discovery of a compound that selectively inhibits FUT8 in cell-based assays. High-throughput screening revealed a FUT8-inhibiting pharmacophore, and further structural optimization yielded an inhibitor with a KD value of 49 nM. Notably, this binding occurs only in the presence of GDP (a product of the enzymatic reaction catalyzed by FUT8). Mechanistic studies suggested that this inhibitor generates a highly reactive naphthoquinone methide derivative at the binding site in FUT8, which subsequently reacts with FUT8. Furthermore, prodrug derivatization of this inhibitor improved its stability, enabling suppression of core fucose expression and subsequent EGFR and T-cell signaling in cell-based assays, paving the way for the development of drugs targeting core fucosylation.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoyuki Takebe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Satomi Kasahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koki Hizume
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akiko Asakura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastroenterology, Faculty of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
6
|
Yao Y, Zhang Y, Shi J, Xu X, Gao Y, Bai S, Hu Q, Wu J, Du J. LncRNA PART1 promotes malignant biological behaviours associated with head and neck cancer cells via synergistic action with FUT6. Cancer Cell Int 2024; 24:185. [PMID: 38807207 PMCID: PMC11134962 DOI: 10.1186/s12935-024-03372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
The aim of this study was to determine the role of lncRNA PART1 and downstream FUT6 in tumorigenesis and progression of head and neck cancer (HNC). Bioinformatics analysis and qRT-PCR revealed that lncRNA PART1 was expressed at low levels in HNC patients. The proliferation, apoptosis, migration and flow cytometry results showed that low expression of lncRNA PART1 inhibited apoptosis and promoted HNC cell migration and proliferation. In addition, animal experiments have also shown that low expression of lncRNA PART1 can promote tumor growth. LncRNA PART1 overexpression promoted apoptosis and inhibited HNC cell migration and proliferation. Through bioinformatics analysis, FUT6 was found to be expressed at low levels in HNC and to be correlated with patient survival. Immunohistochemical and qRT-PCR results revealed that FUT6 was underexpressed in tumour tissues and HNC cells. Cell and animal experiments showed that overexpression of FUT6 could inhibit tumour proliferation and migration. Bioinformatics analysis revealed that lncRNA PART1 was positively correlated with FUT6. By qRT-PCR and western blot, we observed that after knockdown of lncRNA PART1, both the mRNA and protein expression levels of FUT6 were reduced. The above results indicated that lncRNA PART1 and FUT6 play an important role in HNC, and that lncRNA PART1 affected the development of tumor by downstream FUT6.
Collapse
Affiliation(s)
- Yanheng Yao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuxin Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiyuan Shi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiling Xu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunran Gao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Suwen Bai
- The Second Affiliated Hospital, School of Medicine, Shenzhen & Longgang District People's Hospital of Shenzhen Guangdong, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qin Hu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - Jing Wu
- The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Second Affiliated Hospital, School of Medicine, Shenzhen & Longgang District People's Hospital of Shenzhen Guangdong, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
7
|
Li M, Zhang T, Li C, Gao W, Liu Z, Miao M. Semi-rationally designed site-saturation mutation of Helicobacter pylori α-1,2-fucosyltransferase for improved catalytic activity and thermostability. Int J Biol Macromol 2024; 259:129316. [PMID: 38218286 DOI: 10.1016/j.ijbiomac.2024.129316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Helicobacter pylori HpfutC, a glycosyltransferase (GT) 11 family glycoprotein, has great potential for industrial 2'-fucosyllactose (2'-FL) production. However, its limited catalytic activity, low expression, and poor thermostability hinder practical applications. Herein, a semi-rationally designed site-saturation mutation was applied to engineer the catalytic activity and thermostability of HpfutC. The 6 single point mutants (K102T, R105C, D115S, Y251F, A255G and K282E) and 6 combined mutants (V1, V2, V3, V4, V5, and V6) with enhanced enzyme activity were obtained by mutant library screening and ordered recombination mutation. The optimal mutant V6, with an optimum temperature of 40 °C, was not a metal-dependent enzyme, yet the reaction was facilitated by Mn2+. Compared to wild-type HpfutC, mutant V6 exhibited a 2.3-fold increase in specific activity and a 2.18-fold increase in half-life at 40 °C, respectively. Kinetic parameters indicated that the Km values of mutant V6 were 34.5 % (lactose) and 25.0 % (GDP-L-fucose) lower than those of the wild enzyme, whereas the kcat/Km values were 1.20 and 1.25-fold higher than those of the wild enzyme. Further, 3D-structure analysis revealed that the highly rigid structure, formation of new hydrogen bonds, increased hydrophobic residues and redistribution of electrostatic charges on the surface may be responsible for the elevated enzyme activity and thermostability. The strategy adopted in this study is of great significance to the solution of the technical bottleneck of HpfutC and the industrial application of 2'-FL.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Xu X, Fukuda T, Takai J, Morii S, Sun Y, Liu J, Ohno S, Isaji T, Yamaguchi Y, Nakano M, Moriguchi T, Gu J. Exogenous l-fucose attenuates neuroinflammation induced by lipopolysaccharide. J Biol Chem 2024; 300:105513. [PMID: 38042483 PMCID: PMC10772726 DOI: 10.1016/j.jbc.2023.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.
Collapse
Affiliation(s)
- Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
9
|
Manabe Y, Fukase K, Hizume K, Takakura Y, Takamatsu S, Miyoshi E, Kamada Y, Hurtado-Guerrero R. Systematic Strategy for the Development of Glycosyltransferase Inhibitors: Diversity-Oriented Synthesis of FUT8 Inhibitors. Synlett 2023. [DOI: 10.1055/a-2221-9096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
AbstractGlycans control various biological processes, depending on their structures. Particularly, core fucose, formed by α1,6-fucosyltransferase (FUT8), has a substantial influence on multiple biological processes. In this study, we investigated the development of FUT8 inhibitors with structural elements encompassing both the glycosyl donor (GDP-fucose) and acceptor (N-glycan) of FUT8. To efficiently optimize the structure of FUT8 inhibitors, we employed a strategy involving fragmentation of the target structure, followed by a structure optimization using a diversity-oriented synthesis approach. This study proposes an efficient strategy to accelerate the structural optimization of middle molecules.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Forefront Research Center, Osaka University
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
- Forefront Research Center, Osaka University
- Center for Advanced Modalities and DDS, Osaka University
| | - Koki Hizume
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Yohei Takakura
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza
- Fundación ARAID
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen
| |
Collapse
|
10
|
Wang H, Cui X, Wang L, Fan N, Yu M, Qin H, Liu S, Yan Q. α1,3-fucosylation of MEST promotes invasion potential of cytotrophoblast cells by activating translation initiation. Cell Death Dis 2023; 14:651. [PMID: 37798282 PMCID: PMC10556033 DOI: 10.1038/s41419-023-06166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Embryo implantation into the uterus is the gateway for successful pregnancy. Proper migration and invasion of embryonic trophoblast cells are the key for embryo implantation, and dysfunction causes pregnancy failure. Protein glycosylation plays crucial roles in reproduction. However, it remains unclear whether the glycosylation of trophoblasts is involved in trophoblast migration and invasion processes during embryo implantation failure. By Lectin array, we discovered the decreased α1,3-fucosylation, especially difucosylated Lewis Y (LeY) glycan, in the villus tissues of miscarriage patients when compared with normal pregnancy women. Downregulating LeY biosynthesis by silencing the key enzyme fucosyltransferase IV (FUT4) inhibited migration and invasion ability of trophoblast cells. Using proteomics and translatomics, the specific LeY scaffolding glycoprotein of mesoderm-specific transcript (MEST) with glycosylation site at Asn163 was identified, and its expression enhanced migration and invasion ability of trophoblast cells. The results also provided novel evidence showing that decreased LeY modification on MEST hampered the binding of MEST with translation factor eIF4E2, and inhibited implantation-related gene translation initiation, which caused pregnancy failure. The α1,3-fucosylation of MEST by FUT4 may serve as a new biomarker for evaluating the functional state of pregnancy, and a target for infertility treatment.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Xinyuan Cui
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Luyao Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Ningning Fan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Ming Yu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, China.
| |
Collapse
|
11
|
Wei X, Wang P, Liu F, Ye X, Xiong D. Drug Discovery Based on Fluorine-Containing Glycomimetics. Molecules 2023; 28:6641. [PMID: 37764416 PMCID: PMC10536126 DOI: 10.3390/molecules28186641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Glycomimetics, which are synthetic molecules designed to mimic the structures and functions of natural carbohydrates, have been developed to overcome the limitations associated with natural carbohydrates. The fluorination of carbohydrates has emerged as a promising solution to dramatically enhance the metabolic stability, bioavailability, and protein-binding affinity of natural carbohydrates. In this review, the fluorination methods used to prepare the fluorinated carbohydrates, the effects of fluorination on the physical, chemical, and biological characteristics of natural sugars, and the biological activities of fluorinated sugars are presented.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Pharmacy, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi 046012, China
| | - Pengyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Decai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| |
Collapse
|
12
|
Guo J, Cheng Q, Li Y, Tian L, Ma D, Li Z, Gao J, Zhu J. Fucosyltransferase 5 Promotes the Proliferative and Migratory Properties of Intrahepatic Cholangiocarcinoma Cells via Regulating Protein Glycosylation Profiles. Clin Med Insights Oncol 2023; 17:11795549231181189. [PMID: 37435017 PMCID: PMC10331077 DOI: 10.1177/11795549231181189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Background The incidence of intrahepatic cholangiocarcinoma (ICC) is increasing globally, and its prognosis has not improved substantially in recent years. Understanding the pathogenesis of ICC may provide a theoretical basis for its treatment. In this study, we investigated the effects and underlying mechanisms of fucosyltransferase 5 (FUT5) on the malignant progression of ICC. Methods FUT5 expression in ICC samples and adjacent nontumor tissues was compared using quantitative real-time polymerase chain reaction and immunohistochemical assays. We performed cell counting kit-8, colony formation, and migration assays to determine whether FUT5 influenced the proliferation and mobility of ICC cells. Finally, mass spectrometry was performed to identify the glycoproteins regulated by FUT5. Results FUT5 mRNA was significantly upregulated in most ICC samples compared with corresponding adjacent nontumor tissues. The ectopic expression of FUT5 promoted the proliferation and migration of ICC cells, whereas FUT5 knockdown significantly suppressed these cellular properties. Mechanistically, we demonstrated that FUT5 is essential for the synthesis and glycosylation of several proteins, including versican, β3 integrin, and cystatin 7, which may serve key roles in the precancer effects of FUT5. Conclusions FUT5 is upregulated in ICC and promotes ICC development by promoting glycosylation of several proteins. Therefore, FUT5 may serve as a therapeutic target for the treatment of ICC.
Collapse
Affiliation(s)
- Jingheng Guo
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Yongjian Li
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Lingyu Tian
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Delin Ma
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| |
Collapse
|
13
|
Yang L, Zhu Y, Meng J, Zhang W, Mu W. Recent progress in fucosylated derivatives of lacto- N-tetraose and lacto- N-neotetraose. Crit Rev Food Sci Nutr 2023; 64:10384-10396. [PMID: 37341681 DOI: 10.1080/10408398.2023.2224431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention owing to their unique physiological functions. Two important tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), are core structures of HMOs. Their safety has been evaluated and they can be added to infant formula as functional ingredients. The fucosylated derivatives of LNT and LNnT, mainly lacto-N-fucopentaose (LNFP) I, LNFP II, LNFP III, and lacto-N-difucohexaose I, exhibit prominent physiological characteristics, including modificating the intestinal microbiota, immunomodulation, anti-bacterial activities, and antiviral infection. However, they have received lesser attention than 2'-fucosyllactose. As precursors, LNT and LNnT are connected to one or two fucosyl units through α1,2/3/4 glycosidic bonds, forming a series of compounds with complex structures. These complex fucosylated oligosaccharides can be biologically synthesized using enzymatic and cell factory approaches. This review summarizes the occurrence, physiological effects, and biosynthesis of fucosylated LNT and LNnT derivatives and their future development.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
15
|
Díaz-Cornejo S, Otero MC, Banerjee A, Gordillo-Fuenzalida F. Biological properties of exopolysaccharides produced by Bacillus spp. Microbiol Res 2023; 268:127276. [PMID: 36525789 DOI: 10.1016/j.micres.2022.127276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
There is currently a constant search for ecofriendly bioproducts, which could contribute to various biomedical applications. Among bioproducts, exopolysaccharides are prominent contemporary extracellular biopolymers that are produced by a great variety of bacterial species. These homo- or heteropolymers are composed of monomeric sugar units linked by glycosidic bonds, which are secreted to the external medium. Bacillus spp. are reported to be present in different ecosystems and produce exopolysaccharides with different biological properties such as antioxidant, antibacterial, antiviral anti-inflammatory, among others. Since a great diversity of bacterial strains are able to produce exopolysaccharides, a great variation in the molecular composition is observed, which is indeed present in some of the chemical structures predicted until date. These molecular characteristics and their relations with different biological functions are discussed in order to visualize future applications in biomedical section.
Collapse
Affiliation(s)
- Sofía Díaz-Cornejo
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile.
| |
Collapse
|
16
|
Tapak L, Ghasemi MK, Afshar S, Mahjub H, Soltanian A, Khotanlou H. Identification of gene profiles related to the development of oral cancer using a deep learning technique. BMC Med Genomics 2023; 16:35. [PMID: 36849997 PMCID: PMC9972685 DOI: 10.1186/s12920-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Oral cancer (OC) is a debilitating disease that can affect the quality of life of these patients adversely. Oral premalignant lesion patients have a high risk of developing OC. Therefore, identifying robust survival subgroups among them may significantly improve patient therapy and care. This study aimed to identify prognostic biomarkers that predict the time-to-development of OC and survival stratification for patients using state-of-the-art machine learning and deep learning. METHODS Gene expression profiles (29,096 probes) related to 86 patients from the GSE26549 dataset from the GEO repository were used. An autoencoder deep learning neural network model was used to extract features. We also used a univariate Cox regression model to select significant features obtained from the deep learning method (P < 0.05). High-risk and low-risk groups were then identified using a hierarchical clustering technique based on 100 encoded features (the number of units of the encoding layer, i.e., bottleneck of the network) from autoencoder and selected by Cox proportional hazards model and a supervised random forest (RF) classifier was used to identify gene profiles related to subtypes of OC from the original 29,096 probes. RESULTS Among 100 encoded features extracted by autoencoder, seventy features were significantly related to time-to-OC-development, based on the univariate Cox model, which was used as the inputs for the clustering of patients. Two survival risk groups were identified (P value of log-rank test = 0.003) and were used as the labels for supervised classification. The overall accuracy of the RF classifier was 0.916 over the test set, yielded 21 top genes (FUT8-DDR2-ATM-CD247-ETS1-ZEB2-COL5A2-GMAP7-CDH1-COL11A2-COL3A1-AHR-COL2A1-CHORDC1-PTP4A3-COL1A2-CCR2-PDGFRB-COL1A1-FERMT2-PIK3CB) associated with time to developing OC, selected among the original 29,096 probes. CONCLUSIONS Using deep learning, our study identified prominent transcriptional biomarkers in determining high-risk patients for developing oral cancer, which may be prognostic as significant targets for OC therapy. The identified genes may serve as potential targets for oral cancer chemoprevention. Additional validation of these biomarkers in experimental prospective and retrospective studies will launch them in OC clinics.
Collapse
Affiliation(s)
- Leili Tapak
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Kazem Ghasemi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hossein Mahjub
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Soltanian
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Khotanlou
- Department of Computer Engineering, Bu-Ali Sina University, Hamadan, Iran
| |
Collapse
|
17
|
Jaroentomeechai T, Kwon YH, Liu Y, Young O, Bhawal R, Wilson JD, Li M, Chapla DG, Moremen KW, Jewett MC, Mizrachi D, DeLisa MP. A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans. Nat Commun 2022; 13:6325. [PMID: 36280670 PMCID: PMC9592599 DOI: 10.1038/s41467-022-34029-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
The ability to reconstitute natural glycosylation pathways or prototype entirely new ones from scratch is hampered by the limited availability of functional glycoenzymes, many of which are membrane proteins that fail to express in heterologous hosts. Here, we describe a strategy for topologically converting membrane-bound glycosyltransferases (GTs) into water soluble biocatalysts, which are expressed at high levels in the cytoplasm of living cells with retention of biological activity. We demonstrate the universality of the approach through facile production of 98 difficult-to-express GTs, predominantly of human origin, across several commonly used expression platforms. Using a subset of these water-soluble enzymes, we perform structural remodeling of both free and protein-linked glycans including those found on the monoclonal antibody therapeutic trastuzumab. Overall, our strategy for rationally redesigning GTs provides an effective and versatile biosynthetic route to large quantities of diverse, enzymatically active GTs, which should find use in structure-function studies as well as in biochemical and biomedical applications involving complex glycomolecules.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Yong Hyun Kwon
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Yiwen Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Olivia Young
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Ruchika Bhawal
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua D Wilson
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, NY, 14850, USA
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL, 60208-3120, USA
| | - Dario Mizrachi
- Department of Physiology & Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA.
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Proteomic Analysis of Chicken Chorioallantoic Membrane (CAM) during Embryonic Development Provides Functional Insight. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7813921. [PMID: 35774275 PMCID: PMC9237712 DOI: 10.1155/2022/7813921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
In oviparous animals, the egg contains all resources required for embryonic development. The chorioallantoic membrane (CAM) is a placenta-like structure produced by the embryo for acid-base balance, respiration, and calcium solubilization from the eggshell for bone mineralization. The CAM is a valuable in vivo model in cancer research for development of drug delivery systems and has been used to study tissue grafts, tumor metastasis, toxicology, angiogenesis, and assessment of bacterial invasion. However, the protein constituents involved in different CAM functions are poorly understood. Therefore, we have characterized the CAM proteome at two stages of development (ED12 and ED19) and assessed the contribution of the embryonic blood serum (EBS) proteome to identify CAM-unique proteins. LC/MS/MS-based proteomics allowed the identification of 1470, 1445, and 791 proteins in CAM (ED12), CAM (ED19), and EBS, respectively. In total, 1796 unique proteins were identified. Of these, 175 (ED12), 177 (ED19), and 105 (EBS) were specific to these stages/compartments. This study attributed specific CAM protein constituents to functions such as calcium ion transport, gas exchange, vasculature development, and chemical protection against invading pathogens. Defining the complex nature of the CAM proteome provides a crucial basis to expand its biomedical applications for pharmaceutical and cancer research.
Collapse
|
19
|
Xiong Y, Ma Y, Ruan L, Li D, Lu C, Huang L. Comparing different machine learning techniques for predicting COVID-19 severity. Infect Dis Poverty 2022; 11:19. [PMID: 35177120 PMCID: PMC8851750 DOI: 10.1186/s40249-022-00946-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is still ongoing spreading globally, machine learning techniques were used in disease diagnosis and to predict treatment outcomes, which showed favorable performance. The present study aims to predict COVID-19 severity at admission by different machine learning techniques including random forest (RF), support vector machine (SVM), and logistic regression (LR). Feature importance to COVID-19 severity were further identified. Methods A retrospective design was adopted in the JinYinTan Hospital from January 26 to March 28, 2020, eighty-six demographic, clinical, and laboratory features were selected with LassoCV method, Spearman’s rank correlation, experts’ opinions, and literature evaluation. RF, SVM, and LR were performed to predict severe COVID-19, the performance of the models was compared by the area under curve (AUC). Additionally, feature importance to COVID-19 severity were analyzed by the best performance model. Results A total of 287 patients were enrolled with 36.6% severe cases and 63.4% non-severe cases. The median age was 60.0 years (interquartile range: 49.0–68.0 years). Three models were established using 23 features including 1 clinical, 1 chest computed tomography (CT) and 21 laboratory features. Among three models, RF yielded better overall performance with the highest AUC of 0.970 than SVM of 0.948 and LR of 0.928, RF also achieved a favorable sensitivity of 96.7%, specificity of 69.5%, and accuracy of 84.5%. SVM had sensitivity of 93.9%, specificity of 79.0%, and accuracy of 88.5%. LR also achieved a favorable sensitivity of 92.3%, specificity of 72.3%, and accuracy of 85.2%. Additionally, chest-CT had highest importance to illness severity, and the following features were neutrophil to lymphocyte ratio, lactate dehydrogenase, and D-dimer, respectively. Conclusions Our results indicated that RF could be a useful predictive tool to identify patients with severe COVID-19, which may facilitate effective care and further optimize resources. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00946-4.
Collapse
Affiliation(s)
- Yibai Xiong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, Beijing, China
| | - Yan Ma
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, Beijing, China
| | - Lianguo Ruan
- Department of Infectious Diseases, JinYinTan Hospital, Wuhan, 430040, China
| | - Dan Li
- Information Center, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, Beijing, China.
| | | |
Collapse
|
20
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Abstract
The sugar fucose is expressed on mammalian cell membranes as part of glycoconjugates and mediates essential physiological processes. The aberrant expression of fucosylated glycans has been linked to pathologies such as cancer, inflammation, infection, and genetic disorders. Tools to modulate fucose expression on living cells are needed to elucidate the biological role of fucose sugars and the development of potential therapeutics. Herein, we report a class of fucosylation inhibitors directly targeting de novo GDP-fucose biosynthesis via competitive GMDS inhibition. We demonstrate that cell permeable fluorinated rhamnose 1-phosphate derivatives (Fucotrim I & II) are metabolic prodrugs that are metabolized to their respective GDP-mannose derivatives and efficiently inhibit cellular fucosylation.
Collapse
|
22
|
Zafar H, Atif M, Atia-tul-Wahab, Choudhary MI. Fucosyltransferase 2 inhibitors: Identification via docking and STD-NMR studies. PLoS One 2021; 16:e0257623. [PMID: 34648519 PMCID: PMC8516197 DOI: 10.1371/journal.pone.0257623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022] Open
Abstract
Fucosyltransferase 2 (FUT2) catalyzes the biosynthesis of A, B, and H antigens and other important glycans, such as (Sialyl Lewisx) sLex, and (Sialyl Lewisy) sLey. The production of these glycans is increased in various cancers, hence to design and develop specific inhibitors of FUT2 is a therapeutic strategy. The current study was designed to identify the inhibitors for FUT2. In silico screening of 300 synthetic compounds was performed. Molecular docking studies highlighted the interactions of ligands with critical amino acid residues, present in the active site of FUT2. The epitope mapping in ligands was performed using the STD-NMR experiments to identify the interactions between ligands, and receptor protein. Finally, we have identified 5 lead compounds 4, 5, 26, 27, and 28 that can be studied for further development as cancer therapeutic agents.
Collapse
Affiliation(s)
- Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Atif
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Atia-tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Faculty of Science and Technology, Department of Chemistry, Universitas Airlangga, Komplek Campus C, Surabaya, Indonesia
| |
Collapse
|
23
|
Chen HC, Chien TC, Chen TY, Chiang MH, Lai MH, Chang MC. Overexpression of a Novel ERF-X-Type Transcription Factor, OsERF106MZ, Reduces Shoot Growth and Tolerance to Salinity Stress in Rice. RICE (NEW YORK, N.Y.) 2021; 14:82. [PMID: 34542722 PMCID: PMC8452809 DOI: 10.1186/s12284-021-00525-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 09/12/2021] [Indexed: 05/24/2023]
Abstract
Transcription factors (TFs) such as ethylene-responsive factors (ERFs) are important for regulating plant growth, development, and responses to abiotic stress. Notably, more than half of the rice ERF-X group members, including ethylene-responsive factor 106 (OsERF106), are abiotic stress-responsive genes. However, their regulatory roles in abiotic stress responses remain poorly understood. OsERF106, a salinity-induced gene of unknown function, is annotated differently in RAP-DB and MSU RGAP. In this study, we isolated a novel (i.e., previously unannotated) OsERF106 gene, designated OsERF106MZ (GenBank accession No. MZ561461), and investigated its role in regulating growth and the response to salinity stress in rice. OsERF106MZ is expressed in germinating seeds, primary roots, and developing flowers. Overexpression of OsERF106MZ led to retardation of growth, relatively high levels of both malondialdehyde (MDA) and reactive oxygen species (ROS), reduced catalase (CAT) activity, and overaccumulation of both sodium (Na+) and potassium (K+) ions in transgenic rice shoots. Additionally, the expression of OsHKT1.3 was downregulated in the shoots of transgenic seedlings grown under both normal and NaCl-treated conditions, while the expression of OsAKT1 was upregulated in the same tissues grown under NaCl-treated conditions. Further microarray and qPCR analyses indicated that the expression of several abiotic stress-responsive genes such as OsABI5 and OsSRO1c was also altered in the shoots of transgenic rice grown under either normal or NaCl-treated conditions. The novel transcription factor OsERF106MZ negatively regulates shoot growth and salinity tolerance in rice through the disruption of ion homeostasis and modulation of stress-responsive gene expression.
Collapse
Affiliation(s)
- Hung-Chi Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Tzu-Cheng Chien
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Tsung-Yang Chen
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Ming-Hau Chiang
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan, ROC.
| |
Collapse
|
24
|
Zhou Q, Xie Y, Lam M, Lebrilla CB. N-Glycomic Analysis of the Cell Shows Specific Effects of Glycosyl Transferase Inhibitors. Cells 2021; 10:cells10092318. [PMID: 34571967 PMCID: PMC8465854 DOI: 10.3390/cells10092318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glycomic profiling methods were used to determine the effect of metabolic inhibitors on glycan production. These inhibitors are commonly used to alter the cell surface glycosylation. However, structural analysis of the released glycans has been limited. In this research, the cell membranes were enriched and the glycans were released to obtain the N-glycans of the glycocalyx. Glycomic analysis using liquid chromatography–mass spectrometry (LC–MS) with a PGC chip column was used to profile the structures in the cell membrane. Glycans of untreated cells were compared to glycans of cells treated with inhibitors, including kifunensine, which inhibits the formation of complex- and hybrid-type structures, 2,4,7,8,9-Penta-O-acetyl-N-acetyl-3-fluoro-b-d-neuraminic acid methyl ester for sialylated glycans, 2-deoxy-2-fluorofucose, and 6-alkynyl fucose for fucosylated glycans. Kifunensine was the most effective, converting nearly 95% of glycans to high mannose types. The compound 6-alkynyl fucose inhibited some fucosylation but also incorporated into the glycan structure. Proteomic analysis of the enriched membrane for the four inhibitors showed only small changes in the proteome accompanied by large changes in the N-glycome for Caco-2. Future works may use these inhibitors to study the cellular behavior associated with the alteration of glycosylation in various biological systems, e.g., viral and bacterial infection, drug binding, and cell–cell interactions.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Matthew Lam
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
- Department of Biochemistry, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
25
|
Structural Insights in Mammalian Sialyltransferases and Fucosyltransferases: We Have Come a Long Way, but It Is Still a Long Way Down. Molecules 2021; 26:molecules26175203. [PMID: 34500643 PMCID: PMC8433944 DOI: 10.3390/molecules26175203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Mammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances in glycostructural biology have been made with the determination of crystal structures of several important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs occurred with a limited set of global folds and the diverse modular ability of catalytic domains toward substrates has been elucidated. This review highlights advances in the understanding of the structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals. While this general understanding is emerging, use of this information to design inhibitors of STs and FUTs will be helpful in providing further insights into their role in the manifestation of cancer and developing targeted therapeutics in cancer.
Collapse
|
26
|
Liao C, An J, Yi S, Tan Z, Wang H, Li H, Guan X, Liu J, Wang Q. FUT8 and Protein Core Fucosylation in Tumours: From Diagnosis to Treatment. J Cancer 2021; 12:4109-4120. [PMID: 34093814 PMCID: PMC8176256 DOI: 10.7150/jca.58268] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosylation changes are key molecular events in tumorigenesis, progression and glycosyltransferases play a vital role in the this process. FUT8 belongs to the fucosyltransferase family and is the key enzyme involved in N-glycan core fucosylation. FUT8 and/or core fucosylated proteins are frequently upregulated in liver, lung, colorectal, pancreas, prostate,breast, oral cavity, oesophagus, and thyroid tumours, diffuse large B-cell lymphoma, ependymoma, medulloblastoma and glioblastoma multiforme and downregulated in gastric cancer. They can be used as markers of cancer diagnosis, occurrence, progression and prognosis. Core fucosylated EGFR, TGFBR, E-cadherin, PD1/PD-L1 and α3β1 integrin are potential targets for tumour therapy. In addition, IGg1 antibody defucosylation can improve antibody affinity, which is another aspect of FUT8 that could be applied to tumour therapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Suqin Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Li
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Jianguo Liu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
27
|
Identification of co-expressed genes associated with MLL rearrangement in pediatric acute lymphoblastic leukemia. Biosci Rep 2021; 40:222872. [PMID: 32347296 PMCID: PMC7953500 DOI: 10.1042/bsr20200514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
Rearrangements involving the mixed lineage leukemia (MLL) gene are common adverse prognostic factors of pediatric acute lymphoblastic leukemia (ALL). Even allogeneic hematopoietic stem cell transplantation does not improve the outcome of ALL cases with some types of MLL rearrangements. The aim of the present study was to identify the co-expressed genes that related to MLL rearrangement (MLL-r) and elucidate the potential mechanisms of how MLL-r and their partner genes lead to leukemogenesis. Gene co-expression networks were constructed using the gene expression data and sample traits of 204 pretreated pediatric ALL patients, and co-expression modules significantly related to the MLL-r were screened out. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis of the module genes were performed. Hub genes were identified and their expression levels were analyzed in samples with or without MLL-r and the results were validated by an independent investigation. Furthermore, the relationships between the hub genes and sample traits were analyzed. In total, 21 co-expression modules were identified. The green module was positively correlated with MLL-r. PROM1, LGALS1, CD44, FUT4 and HOXA10 were identified as hub genes, which were involved in focal adhesion, calcium-dependent phospholipid binding, connective tissue development and transcriptional misregulation in cancer. The expression levels of the five hub genes were significantly increased in MLL-r samples, and the results were further validated. PROM1, LGALS1, CD44 and HOXA10 were positively related to the leukocyte count. These findings might provide novel insight regarding the mechanisms and potential therapeutic targets for pediatric ALL with MLL-r.
Collapse
|
28
|
Martin KC, Tricomi J, Corzana F, García-García A, Ceballos-Laita L, Hicks T, Monaco S, Angulo J, Hurtado-Guerrero R, Richichi B, Sackstein R. Fucosyltransferase-specific inhibition via next generation of fucose mimetics. Chem Commun (Camb) 2021; 57:1145-1148. [PMID: 33411866 DOI: 10.1039/d0cc04847j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to custom-modify cell surface glycans holds great promise for treatment of a variety of diseases. We propose a glycomimetic of l-fucose that markedly inhibits the creation of sLeX by FTVI and FTVII, but has no effect on creation of LeX by FTIX. Our findings thus indicate that selective suppression of sLex display can be achieved, and STD-NMR studies surprisingly reveal that the mimetic does not compete with GDP-fucose at the enzymatic binding site.
Collapse
Affiliation(s)
- Kyle C Martin
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA. and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and Program of Excellence in Glycoscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
| | - Laura Ceballos-Laita
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK and Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain and Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain and Fundación ARAID, 50018, Zaragoza, Spain and Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA. and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and Program of Excellence in Glycoscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Puet A, Domínguez G, Cañada FJ, Pérez-Castells J. Synthesis and Evaluation of Novel Iminosugars Prepared from Natural Amino Acids. Molecules 2021; 26:molecules26020394. [PMID: 33451060 PMCID: PMC7828477 DOI: 10.3390/molecules26020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclopropanated iminosugars have a locked conformation that may enhance the inhibitory activity and selectivity against different glycosidases. We show the synthesis of new cyclopropane-containing piperidines bearing five stereogenic centers from natural amino acids l-serine and l-alanine. Those prepared from the latter amino acid may mimic l-fucose, a natural-occurring monosaccharide involved in many molecular recognition events. Final compounds prepared from l-serine bear S configurations on the C5 position. The synthesis involved a stereoselective cyclopropanation reaction of an α,β-unsaturated piperidone, which was prepared through a ring-closing metathesis. The final compounds were tested as possible inhibitors of different glycosidases. The results, although, in general, with low inhibition activity, showed selectivity, depending on the compound and enzyme, and in some cases, an unexpected activity enhancement was observed.
Collapse
Affiliation(s)
- Alejandro Puet
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (A.P.); (G.D.)
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (A.P.); (G.D.)
| | - Francisco Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maetzu 9, 28040 Madrid, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (A.P.); (G.D.)
- Correspondence: ; Tel.: +34-913724700
| |
Collapse
|
30
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
31
|
Jeong HK, Hwang H, Kang YM, Lee HK, Park GW, Lee JY, Kim DG, Lee JW, Lee SY, An HJ, Kim JY, Yoo JS. Computational classification of core and outer fucosylation of N-glycoproteins in human plasma using collision-induced dissociation in mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8917. [PMID: 32754952 DOI: 10.1002/rcm.8917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Glycoprotein fucosylation, one of the major posttranslational modifications, is known to be highly involved in proteins related to various cancers. Fucosylation occurs in the core and/or outer sites of N-glycopeptides. Elucidation of the fucosylation type of N-glycoproteins is therefore important. However, it has remained a challenge to classify the fucosylation types of N-glycopeptides using collision-induced dissociation (CID) tandem mass (MS/MS) spectra. METHODS The relative intensities of the Y1 F, Y2 F, Y3 F, and Y4 F product ions in the CID-MS/MS spectra of the IgG N-glycopeptides were measured for core fucosylation. The Core Fucose Index (CFI) was then calculated by multiplication of the relative intensities with a weight factor from logistic regression to differentiate between the core and none fucosylation. From the relative intensities of the B2 F and B3 SF ions of the MS/MS spectra of the AGP N-glycopeptides for outer fucosylation, the Outer Fucose Index (OFI) was calculated to differentiate between the outer and none fucosylation. RESULTS In order to classify core and/or outer fucosylation of N-glycoproteins, we defined the fucosylation score (F-score) by a sigmoidal equation using a combination of the CFI and the OFI. For application, we classified the fucosylation types of N-glycoproteins in human plasma with 99.7% accuracy from the F-score. Human plasma samples showed 54.4%, 33.3%, 10.3%, and 1.6% for none, core, outer, and dual fucosylated N-glycopeptides, respectively. Core fucosylation was abundant at mono- and bi-antennary N-glycopeptides. Outer fucosylation was abundant at tri- and tetra-antennary N-glycopeptides. In total, 113 N-glycopeptides of 29 glycoproteins from 3365 glycopeptide spectral matches (GPSMs) were classified for different types of fucosylation. CONCLUSIONS We established an F-score to classify three different fucosylation types: core, outer, and dual types of N-glycopeptides. The fucosylation types of 20 new N-glycopeptides from 11 glycoproteins in human plasma were classified using the F-score. Therefore, the F-score can be useful for the automatic classification of different types of fucosylation in N-glycoproteins of biological fluids including plasma, serum, and urine.
Collapse
Affiliation(s)
- Hoi Keun Jeong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Young-Mook Kang
- Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyun Kyoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gun Wook Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Ju Yeon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Dong Geun Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji Won Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Yoon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
32
|
Dai Y, Hartke R, Li C, Yang Q, Liu JO, Wang LX. Synthetic Fluorinated l-Fucose Analogs Inhibit Proliferation of Cancer Cells and Primary Endothelial Cells. ACS Chem Biol 2020; 15:2662-2672. [PMID: 32930566 PMCID: PMC10901565 DOI: 10.1021/acschembio.0c00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fucosylation is one of the most prevalent modifications on N- and O-glycans of glycoproteins, and it plays an important role in various cellular processes and diseases. Small molecule inhibitors of fucosylation have shown promise as therapeutic agents for sickle cell disease, arthritis, and cancer. We describe here the design and synthesis of a panel of fluorinated l-fucose analogs bearing fluorine atoms at the C2 and/or C6 positions of l-fucose as metabolic fucosylation inhibitors. Preliminary study of their effects on cell proliferation revealed that the 6,6-difluoro-l-fucose (3) and 6,6,6-trifluoro-l-fucose (6) showed significant inhibitory activity against proliferation of human colon cancer cells and human umbilical vein endothelial cells. In contrast, the previously reported 2-deoxy-2-fluoro-l-fucose (1) had no apparent effects on proliferations of all the cell lines tested. To understand the mechanism of cell proliferation inhibition by the fluorinated l-fucose analogs, we performed chemoenzymatic synthesis of the corresponding GDP-fluorinated l-fucose analogs and tested their inhibitory activities against the mammalian α1,6-fucosyltransferase (FUT8). Interestingly, the corresponding GDP derivatives of 6,6-difluoro-l-fucose (3) and 6,6,6-trifluoro-l-fucose (6), which are the stronger proliferation inhibitors, showed much weaker inhibitory activity against FUT8 than that of the 2-deoxy-2-fluoro-l-fucose (1). These results suggest that FUT8 is not the major target of the 6-fluorinated fucose analogs (3 and 6). Instead, other factors, such as the key enzymes involved in the de novo GDP-fucose biosynthetic pathway and/or other fucosyltransferases involved in the biosynthesis of tumor-associated glyco-epitopes are most likely the targets of the fluorinated l-fucose analogs to achieve cell proliferation inhibition. To our knowledge, this is the first comparative study of various fluorinated l-fucose analogs for suppressing the proliferation of human cancer and primary endothelial cells required for angiogenesis.
Collapse
Affiliation(s)
- Yuanwei Dai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ruth Hartke
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
33
|
Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020; 27:93. [PMID: 32900381 PMCID: PMC7487937 DOI: 10.1186/s12929-020-00684-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The use of in silico strategies to develop the structural basis for a rational optimization of glycan-protein interactions remains a great challenge. This problem derives, in part, from the lack of technologies to quantitatively and qualitatively assess the complex assembling between a glycan and the targeted protein molecule. Since there is an unmet need for developing new sugar-targeted therapeutics, many investigators are searching for technology platforms to elucidate various types of molecular interactions within glycan-protein complexes and aid in the development of glycan-targeted therapies. Here we discuss three important technology platforms commonly used in the assessment of the complex assembly of glycosylated biomolecules, such as glycoproteins or glycosphingolipids: Biacore analysis, molecular docking, and molecular dynamics simulations. We will also discuss the structural investigation of glycosylated biomolecules, including conformational changes of glycans and their impact on molecular interactions within the glycan-protein complex. For glycoproteins, secreted protein acidic and rich in cysteine (SPARC), which is associated with various lung disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, will be taken as an example showing that the core fucosylation of N-glycan in SPARC regulates protein-binding affinity with extracellular matrix collagen. For glycosphingolipids (GSLs), Globo H ceramide, an important tumor-associated GSL which is being actively investigated as a target for new cancer immunotherapies, will be used to demonstrate how glycan structure plays a significant role in enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
34
|
Strecker C, Baerenfaenger M, Miehe M, Spillner E, Meyer B. In Silico Evaluation of the Binding Site of Fucosyltransferase 8 and First Attempts to Synthesize an Inhibitor with Drug-Like Properties. Chembiochem 2020; 21:1923-1931. [PMID: 31194280 DOI: 10.1002/cbic.201900289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Core fucosylation of N-glycans is catalyzed by fucosyltransferase 8 and is associated with various types of cancer. Most reported fucosyltransferase inhibitors contain non-drug-like features, such as charged groups. New starting points for the development of inhibitors of fucosyltransferase 8 using a fragment-based strategy are presented. Firstly, we discuss the potential of a new putative binding site of fucosyltransferase 8 that, according to a molecular dynamics (MD) simulation, is made accessible by a significant motion of the SH3 domain. This might enable the design of completely new inhibitor types for fucosyltransferase 8. Secondly, we have performed a docking study targeting the donor binding site of fucosyltransferase 8, and this yielded two fragments that were linked and trimmed in silico. The resulting ligand was synthesized. Saturation transfer difference (STD) NMR confirmed binding of the ligand featuring a pyrazole core that mimics the guanine moiety. This ligand represents the first low-molecular-weight compound for the development of inhibitors of fucosyltransferase 8 with drug-like properties.
Collapse
Affiliation(s)
- Claas Strecker
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Melissa Baerenfaenger
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.,Present address: Department of Neurology, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525, GA, The Netherlands
| | - Michaela Miehe
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Edzard Spillner
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Bernd Meyer
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| |
Collapse
|
35
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
36
|
Orczyk-Pawiłowicz M, Lis-Kuberka J. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients 2020; 12:nu12041105. [PMID: 32316160 PMCID: PMC7230487 DOI: 10.3390/nu12041105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Apart from optimal nutritional value, human milk is the feeding strategy to support the immature immunological system of developing newborns and infants. The most beneficial dietary carbohydrate components of breast milk are human milk oligosaccharides (HMOs) and glycoproteins (HMGs), involved in both specific and nonspecific immunity. Fucosylated oligosaccharides represent the largest fraction of human milk oligosaccharides, with the simplest and the most abundant being 2'-fucosyllactose (2'FL). Fucosylated oligosaccharides, as well as glycans of glycoproteins, as beneficial dietary sugars, elicit anti-adhesive properties against fucose-dependent pathogens, and on the other hand are crucial for growth and metabolism of beneficial bacteria, and in this aspect participate in shaping a healthy microbiome. Well-documented secretor status related differences in the fucosylation profile of HMOs and HMGs may play a key but underestimated role in assessment of susceptibility to fucose-dependent pathogen infections, with a potential impact on applied clinical procedures. Nevertheless, due to genetic factors, about 20% of mothers do not provide their infants with beneficial dietary carbohydrates such as 2'-FL and other α1,2-fucosylated oligosaccharides and glycans of glycoproteins, despite breastfeeding them. The lack of such structures may have important implications for a wide range of aspects of infant well-being and healthcare. In light of the above, some artificial mixtures used in infant nutrition are supplemented with 2'-FL to more closely approximate the unique composition of maternal milk, including dietary-derived fucosylated oligosaccharides and glycoproteins.
Collapse
Affiliation(s)
| | - Jolanta Lis-Kuberka
- Correspondence: (M.O.-P.); (J.L.-K.); Tel.: +48-71-770-30-64 (M.O.-P.); +48-71-770-32-17 (J.L.-K.)
| |
Collapse
|
37
|
Hwang H, Jeong HK, Lee HK, Park GW, Lee JY, Lee SY, Kang YM, An HJ, Kang JG, Ko JH, Kim JY, Yoo JS. Machine Learning Classifies Core and Outer Fucosylation of N-Glycoproteins Using Mass Spectrometry. Sci Rep 2020; 10:318. [PMID: 31941975 PMCID: PMC6962204 DOI: 10.1038/s41598-019-57274-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Protein glycosylation is known to be involved in biological progresses such as cell recognition, growth, differentiation, and apoptosis. Fucosylation of glycoproteins plays an important role for structural stability and function of N-linked glycoproteins. Although many of biological and clinical studies of protein fucosylation by fucosyltransferases has been reported, structural classification of fucosylated N-glycoproteins such as core or outer isoforms remains a challenge. Here, we report for the first time the classification of N-glycopeptides as core- and outer-fucosylated types using tandem mass spectrometry (MS/MS) and machine learning algorithms such as the deep neural network (DNN) and support vector machine (SVM). Training and test sets of more than 800 MS/MS spectra of N-glycopeptides from the immunoglobulin gamma and alpha 1-acid-glycoprotein standards were selected for classification of the fucosylation types using supervised learning models. The best-performing model had an accuracy of more than 99% against manual characterization and area under the curve values greater than 0.99, which were calculated by probability scores from target and decoy datasets. Finally, this model was applied to classify fucosylated N-glycoproteins from human plasma. A total of 82N-glycopeptides, with 54 core-, 24 outer-, and 4 dual-fucosylation types derived from 54 glycoproteins, were commonly classified as the same type in both the DNN and SVM. Specifically, outer fucosylation was dominant in tri- and tetra-antennary N-glycopeptides, while core fucosylation was dominant in the mono-, bi-antennary and hybrid types of N-glycoproteins in human plasma. Thus, the machine learning methods can be combined with MS/MS to distinguish between different isoforms of fucosylated N-glycopeptides.
Collapse
Affiliation(s)
- Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Hoi Keun Jeong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Kyoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gun Wook Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Ju Yeon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Soo Youn Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Young-Mook Kang
- Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Asia Glycomics Reference Site, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Gu Kang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
38
|
Valverde P, Vendeville JB, Hollingsworth K, Mattey AP, Keenan T, Chidwick H, Ledru H, Huonnic K, Huang K, Light ME, Turner N, Jiménez-Barbero J, Galan MC, Fascione MA, Flitsch S, Turnbull WB, Linclau B. Chemoenzymatic synthesis of 3-deoxy-3-fluoro-l-fucose and its enzymatic incorporation into glycoconjugates. Chem Commun (Camb) 2020; 56:6408-6411. [DOI: 10.1039/d0cc02209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A chemoenzymatic synthesis of 3-deoxy-3-fluoro-l-fucose, using a d- to l-sugar translation strategy, and its enzymatic activation and glycosylation, is reported.
Collapse
|
39
|
Park S, Lim JM, Chun JN, Lee S, Kim TM, Kim DW, Kim SY, Bae DJ, Bae SM, So I, Kim HG, Choi JY, Jeon JH. Altered expression of fucosylation pathway genes is associated with poor prognosis and tumor metastasis in non‑small cell lung cancer. Int J Oncol 2019; 56:559-567. [PMID: 31894325 PMCID: PMC6959459 DOI: 10.3892/ijo.2019.4953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022] Open
Abstract
Fucosylation is a post‑translational modification that attaches fucose residues to protein‑ or lipid‑bound oligosaccharides. Certain fucosylation pathway genes are aberrantly expressed in several types of cancer, including non‑small cell lung cancer (NSCLC), and this aberrant expression is associated with poor prognosis in patients with cancer. However, the molecular mechanism by which these fucosylation pathway genes promote tumor progression has not been well‑characterized. The present study analyzed public microarray data obtained from NSCLC samples. Multivariate analysis revealed that altered expression of fucosylation pathway genes, including fucosyltransferase 1 (FUT1), FUT2, FUT3, FUT6, FUT8 and GDP‑L‑fucose synthase (TSTA3), correlated with poor survival in patients with NSCLC. Inhibition of FUTs by 2F‑peracetyl‑fucose (2F‑PAF) suppressed transforming growth factor β (TGFβ)‑mediated Smad3 phosphorylation and nuclear translocation in NSCLC cells. In addition, wound‑healing and Transwell migration assays demonstrated that 2F‑PAF inhibited TGFβ‑induced NSCLC cell migration and invasion. Furthermore, in vivo bioluminescence imaging analysis revealed that 2F‑PAF attenuated the metastatic capacity of NSCLC cells. These results may help characterize the oncogenic role of fucosylation in NSCLC biology and highlight its potential for developing cancer therapeutics.
Collapse
Affiliation(s)
- Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jin-Muk Lim
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sanghoon Lee
- Department of Biochemistry, University of
Utah School of Medicine, Salt Lake City, UT 84112‑5650, USA
| | - Tae Min Kim
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dong-Wan Kim
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Dong-Jun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Sang-Mun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yeob Choi
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
40
|
Tsai TW, Fang JL, Liang CY, Wang CJ, Huang YT, Wang YJ, Li JY, Yu CC. Exploring the Synthetic Application of Helicobacter pylori α1,3/4-Fucosyltransferase FucTIII toward the Syntheses of Fucosylated Human Milk Glycans and Lewis Antigens. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Miura K, Tsukagoshi T, Hirano T, Nishio T, Hakamata W. Development of Fluorogenic Substrates of α-l-Fucosidase Useful for Inhibitor Screening and Gene-expression Profiling. ACS Med Chem Lett 2019; 10:1309-1313. [PMID: 31531202 DOI: 10.1021/acsmedchemlett.9b00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of human α-l-fucosidases, tissue α-l-fucosidase (tFuc), and plasma α-l-fucosidase reportedly play roles in multiple diseases, suggesting their therapeutic potential for gastric disease associated with Helicobacter pylori and fucosidosis. Terminal fucose linkages on glycoproteins and glycolipids are a natural substrate for both enzymes; however, there are currently no fluorogenic substrates allowing their cellular evaluation. Here, we described the development of novel three-color fluorogenic substrates for lysosome-localized tFuc that exhibited excellent specificity and sensitivity in three human cell lines. Additionally, we developed a cell-based high-throughput inhibitor screening system in a 96-well format and a cell-based inhibitory activity evaluation system in a 6-well format for tFuc inhibitors using this substrate, which allowed accurate quantification of the inhibition rate. Moreover, analysis of significant changes in gene expression resulting from 30% inhibition of tFuc in HeLa cells revealed potential roles in gastric disease.
Collapse
Affiliation(s)
- Kazuki Miura
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Takumi Tsukagoshi
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| |
Collapse
|
42
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|
43
|
Leclerc LMY, Soffer G, Kwan DH, Shih SCC. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. BIOMICROFLUIDICS 2019; 13:034106. [PMID: 31123538 PMCID: PMC6510662 DOI: 10.1063/1.5088517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl β-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.
Collapse
Affiliation(s)
| | | | | | - Steve C. C. Shih
- Author to whom correspondence should be addressed:. Tel.: +1-(514)-848-2424x7579
| |
Collapse
|
44
|
Zimmermann M, Ehret J, Kolmar H, Zimmer A. Impact of Acetylated and Non-Acetylated Fucose Analogues on IgG Glycosylation. Antibodies (Basel) 2019; 8:antib8010009. [PMID: 31544815 PMCID: PMC6640710 DOI: 10.3390/antib8010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022] Open
Abstract
The biological activity of therapeutic antibodies is highly influenced by their glycosylation profile. A valuable method for increasing the cytotoxic efficacy of antibodies, which are used, for example, in cancer treatment, is the reduction of core fucosylation, as this enhances the elimination of target cells through antibody-dependent cell-mediated cytotoxicity. Development of fucose analogues is currently the most promising strategy to reduce core fucosylation without cell line engineering. Since peracetylated sugars display enhanced cell permeability over the highly polar free hydroxy sugars, this work sought to compare the efficacy of peracetylated sugars to their unprotected forms. Two potent fucose analogues, 2-deoxy-2-fluorofucose and 5-alkynylfucose, and their acetylated forms were compared for their effects on fucosylation. 5-alkynylfucose proved to be more potent than 2-deoxy-2-fluorofucose at reducing core fucosylation but was associated with a significant higher incorporation of the alkynylated fucose analogue. Acetylation of the sugar yielded only slightly lower fucosylation levels suggesting that acetylation has a minor impact on cellular entry. Even though the efficacy of all tested components was confirmed, results presented in this study also show a significant incorporation of unnatural fucose analogues into the glycosylation pattern of the produced IgG, with unknown effect on safety and potency of the monoclonal antibody.
Collapse
Affiliation(s)
- Martina Zimmermann
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany.
| | - Janike Ehret
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany.
| | - Aline Zimmer
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| |
Collapse
|
45
|
Doyle LM, Meany FB, Murphy PV. Lewis acid promoted anomerisation of alkyl O- and S-xylo-, arabino- and fucopyranosides. Carbohydr Res 2019; 471:85-94. [PMID: 30508660 DOI: 10.1016/j.carres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Pentopyranoside and 6-deoxyhexopyranosides, such as those from d-xylose, l-arabinose and l-fucose are components of natural products, oligosaccharides or polysaccharides. Lewis acid promoted anomerisation of some of their alkyl O- and S-glycopyranosides is reported here. SnCl4 was more successful than TiCl4, with the latter giving the glycosyl chloride by-product in some cases, and both were superior to BF3OEt2. Kinetics study using 1H NMR spectroscopy showed an order of reactivity: O-xylopyranoside > O-arabinopyranoside > O-fucopyranoside. Benzoylated glycosides were more reactive than acetylated glycosides. The reactivity of S-glycosides was greater than that of O-glycosides for both arabinose and fucose derivatives; the reactivity of O- and S-xylopyranosides was similar. The highest stereoselectivities were observed for fucopyranosides. The β-d-xylopyranoside and α-l-arabinopyranoside reactants are conformationally more flexible than β-l-fucopyranosides.
Collapse
Affiliation(s)
- Lisa M Doyle
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Fiach B Meany
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
46
|
N-Alkyl-1,5-dideoxy-1,5-imino-l-fucitols as fucosidase inhibitors: Synthesis, molecular modelling and activity against cancer cell lines. Bioorg Chem 2018; 84:418-433. [PMID: 30554081 DOI: 10.1016/j.bioorg.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
Abstract
1,5-Dideoxy-1,5-imino-l-fucitol (1-deoxyfuconojirimycin, DFJ) is an iminosugar that inhibits fucosidases. Herein, N-alkyl DFJs have been synthesised and tested against the α-fucosidases of T. maritima (bacterial origin) and B. taurus (bovine origin). The N-alkyl derivatives were inactive against the bacterial fucosidase, while inhibiting the bovine enzyme. Docking of inhibitors to homology models, generated for the bovine and human fucosidases, was carried out. N-Decyl-DFJ was toxic to cancer cell lines and was more potent than the other N-alkyl DFJs studied.
Collapse
|
47
|
Affiliation(s)
- Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University
| |
Collapse
|
48
|
Du Y, Li D, Li N, Su C, Yang C, Lin C, Chen M, Wu R, Li X, Hu G. POFUT1 promotes colorectal cancer development through the activation of Notch1 signaling. Cell Death Dis 2018; 9:995. [PMID: 30250219 PMCID: PMC6155199 DOI: 10.1038/s41419-018-1055-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Copy number variations (CNVs) are key drivers of colorectal cancer (CRC). Our previous studies revealed that protein O-fucosyltransferase 1 (POFUT1) overexpression is driven by CNVs during CRC development. The potential role and underlying mechanisms of POFUT1 in CRC were not investigated. In this study, we analyzed the expression of POFUT1 in CRC from cosmic and TCGA databases and confirmed that POFUT1 is highly expressed in CRC. We used well characterized CRC cell lines, including SW620 and HCT116 to establish a model POFUT1 knockdown cell line. Using these cells, we investigated the role of POFUT1 in CRC. Our data revealed that silencing POFUT1 in CRC cells inhibits cell proliferation, decreases cell invasion and migration, arrests cell cycle progression, and stimulates CRC cell apoptosis in vitro. We further demonstrate that POFUT1 silencing dramatically suppresses CRC tumor growth and transplantation in vivo. We additionally reveal new mechanistic insights into the role of POFUT1 during CRC, through demonstrating that POFUT1 silencing inhibits Notch1 signaling. Taken together, our findings demonstrate that POFUT1 is a tumor activating gene during CRC development, which positively regulates CRC tumor progression through activating Notch1.
Collapse
Affiliation(s)
- Yuheng Du
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Daojiang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Nanpeng Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chen Su
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chunxing Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
49
|
Li S, Liu Y, Liu L, Feng Y, Ding L, Ju H. A Hierarchical Coding Strategy for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yiran Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lu Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
50
|
Li S, Liu Y, Liu L, Feng Y, Ding L, Ju H. A Hierarchical Coding Strategy for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2018; 57:12007-12011. [DOI: 10.1002/anie.201807054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yiran Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lu Liu
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|