1
|
Wang R, Zhao Y, Dang X, Sun Y, Kong D, Wang X, Bai S, Arotiba OA, Ma J. Unveiling the environmental sustainability of Ti 4O 7 electrified membrane for perfluorooctanoic acid removal. WATER RESEARCH 2025; 277:123310. [PMID: 39987582 DOI: 10.1016/j.watres.2025.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Emerging electrified membrane (EM) technology offers an efficient approach for decentralized water purification. However, EM currently faces the challenge of unknown environmental sustainability, which presents a critical knowledge gap impeding its scale-up implementation. In this work, we aim to explore the environmental impacts of EM technology via a "cradle-to-grave" life cycle assessment, benchmarked against sequential ultrafiltration-nanofiltration. Our study found that the current EM technology shows higher greenhouse gas (GHG) emissions (19.70 kgCO2e g-1) than ultrafiltration-nanofiltration (8.60 kgCO2e g-1) for micropollutants removal. Electro-filtration operation dominates the total environmental impacts of EM process, driven primarily by the supporting electrolyte and electricity consumption. Notably, transitioning to greener electrolytes at lower concentrations can reduce GHG emissions by up to 66%, while switching to low-carbon-grid electricity through renewable energy sources will achieve a 33% reduction. Overall, this work enhances understanding of the environmental impacts of EM technology, emphasizing electrolyte optimization and carbon-intensity-reduction of electricity as critical factors for its sustainable development.
Collapse
Affiliation(s)
- Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Xuhui Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ye Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Centre for Nanomaterials and Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
2
|
Older CE, Griffin MJ, Ware C, Ott BD. Development of qPCR assays for bacterial nitrification and denitrification genes in catfish aquaculture ponds. Microbiol Spectr 2025:e0308824. [PMID: 40401931 DOI: 10.1128/spectrum.03088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/13/2025] [Indexed: 05/23/2025] Open
Abstract
Nitrogenous waste products are toxic to fish, and their removal is a critical process in aquaculture production. In earthen pond production systems, such as those used in the catfish industry, phytoplankton act as the dominant sink for ammonia; however, bacteria can also play roles in denitrification and nitrification, particularly when excess ammonia exists. As the US catfish industry continues to intensify, the bacterial communities relevant in the removal of nitrogenous waste will become more integral to efficient production and necessitate further research. Here, quantitative PCR (qPCR) assays targeting four genes covering the denitrification and nitrification pathways present in catfish aquaculture ponds were developed. Twenty-four existing primer sets were used to amplify relevant genes in samples obtained from catfish pond water and sediment and then subjected to high-throughput sequencing to identify the sequence variants present in the environment. Five conventional PCR assays yielded sequencing results conducive to qPCR primer design. Quantitative PCR assays were successfully developed for four targets: amoA, nxrB, napA, and nirK. Application of these assays to sediment and water samples collected from ponds with low or high dissolved oxygen, or no fish (control), demonstrated significant differences in the abundance of amoA, nxrB, and nirK genes. Significantly higher abundances of these genes were found in ponds with low and high dissolved oxygen. In water samples, NO3-N exhibited significant positive correlations with the abundance of three genes (nxrB, napA, and nirK) encoding enzymes that either produce or utilize nitrite.IMPORTANCECatfish aquaculture is the largest aquaculture industry in the United States, by both volume and sales. Production is performed in earthen ponds with no water exchange or filtering systems. Environmental organisms play important roles in maintaining water quality, particularly with respect to nitrogenous waste. Phytoplankton are the dominant sink for nitrogenous waste in earthen pond aquaculture; however, as aquaculture becomes more intensified to meet global population demands, the role of bacteria in nitrogenous waste removal may become more pronounced. To facilitate specific characterization of these important communities in catfish aquaculture ponds, quantitative PCR assays were designed to target genes relevant to bacterial nitrification and denitrification.
Collapse
Affiliation(s)
- Caitlin E Older
- Warmwater Aquaculture Research Unit, United States Department of Agriculture, Agricultural Research Service, Stoneville, Mississippi, USA
| | - Matt J Griffin
- Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Cynthia Ware
- Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Brian D Ott
- Warmwater Aquaculture Research Unit, United States Department of Agriculture, Agricultural Research Service, Stoneville, Mississippi, USA
| |
Collapse
|
3
|
Ghasemi R, Fatemi F, Rastkhah E. Bioremediation Performance of Recombinant Shewanella azerbaijanica; Considering Uranium Removal in the Presence of Nitrate. Curr Microbiol 2025; 82:290. [PMID: 40382480 DOI: 10.1007/s00284-025-04228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/02/2025] [Indexed: 05/20/2025]
Abstract
Genetic engineering in microorganisms has emerged as a promising approach for pollutant removal from industrial wastewater. Shewanella azerbaijanica has the ability to reduce uranium. This study examined the impact of high-nitrate concentrations on uranium bioreduction in both native and recombinant bacterial strains. Bacterial performance was evaluated in terms of uranium bioreduction (measured via ICP-AES method), and survival in anaerobic conditions (measured via Neubauer chamber counting) in the presence of uranium and nitrate over various time intervals (24 h, 1 week, 4 weeks, 4 months, and 9 months). Although the recombinant strain showed a lower cell population than the wild-type strain, it achieved 20% higher uranium reduction after 24 h of incubation in uranium and nitrate-containing conditions. This suggests that the genetic modifications enhanced extracellular electron transfer (EET). The improved bioremediation efficiency may be attributed to the cloned mtrC gene, which promotes more effective electron transfer in Shewanella bacteria. Additionally, uranium removal may have been further enhancedby the inactivation of the napB gene using the SDM method. This high-performance trends was consistent across all time intervals. In wild-type S. azerbaijanica uranium removal rates were74%, 54%, 96 and 99% after 1 week, 4 weeks, 4 months, and 9 months, respectively. Inrecombinant bacteria, these rates increased to 91%, 78%, 96%, and 100% at the same time points. The bioreduction mechanism was further confirmed by X-ray diffraction (XRD) analysis, which verified the ability of S. azerbaijanica to reduce uranium in the presence of nitrate. Overall, this study identifies the recombinant bacterium as promising candidate for future metal bioreduction research.
Collapse
Affiliation(s)
- Razieh Ghasemi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Faezeh Fatemi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
- Department of Natural Sciences, Bowie State University, 14000 Jericho Park Rd., Bowie, MD, 20715, USA
| | - Elham Rastkhah
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Ojha A, Bandyopadhyay TK, Das D, Dey P. Microbial Carbonate Mineralization: A Comprehensive Review of Mechanisms, Applications, and Recent Advancements. Mol Biotechnol 2025:10.1007/s12033-025-01433-5. [PMID: 40338440 DOI: 10.1007/s12033-025-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/11/2025] [Indexed: 05/09/2025]
Abstract
Microbial carbonate mineralization, the process by which microorganisms (Bacillus sp., Sporosarcina sp., Penicillium sp., Cyanobacteria, etc.) directly mediate or indirectly influence mineral formation and deposition, represents the next frontier in technology with vast potential across scientific disciplines, including construction, environmental remediation, and carbon sequestration. This review explores the fundamental aspects of microbial carbonate mineralization, focusing on key mechanisms such as photosynthesis, methane oxidation, sulfate reduction, ureolysis, denitrification, carbonic anhydrase activity, iron reduction, and EPS mediation, all of which influence carbonate saturation and mineral nucleation. Additionally, it highlights critical regulatory factors that enhance biomineralization for bio-inspired material development in heavy metal remediation, wastewater treatment, self-healing concrete, biomedical applications, nanoscale technologies, and 3D printing. A major focus is microbial-induced calcite precipitation (MICP), an emerging and cost-efficient biomineralization technique, with an in-depth analysis of its molecular mechanisms and expanding applications. Furthermore, this review discusses current challenges, including process scalability, long-term stability, and environmental and safety considerations, while identifying future research directions to improve the efficacy and sustainability of microbial carbonate mineralization in advanced technological applications.
Collapse
Affiliation(s)
- Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | | | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| | - Palash Dey
- Department of Civil Engineering, The ICFAI University, Tripura, Kamalghat, Tripura, 799210, India
| |
Collapse
|
5
|
Yan W, Wang N, Wang Z, Shi J, Tang T, Liu L. Nitrogen removal characteristics and mechanism of the aerobic denitrifying bacterium Stutzerimonas stutzeri os3 isolated from shrimp aquaculture sediment. MARINE POLLUTION BULLETIN 2025; 214:117711. [PMID: 39978129 DOI: 10.1016/j.marpolbul.2025.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
To overcome the limitations of denitrification under high dissolved oxygen conditions, an efficient aerobic denitrifier, Stutzerimonas stutzeri os3, was isolated from shrimp aquaculture sediment. The strain os3 achieved complete removal of nitrate without significant nitrite accumulation, when sodium citrate was used as the carbon source, with a C/N ratio of 5, and at a shaking speed of 50 r/min. Moreover, the strain os3 demonstrated a high TIN removal efficiency, reaching 98.29 % - 99.28 % under various nitrogen sources. Whole-genome sequencing revealed the presence of denitrification genes (napAB, nirS, norBC and nosZ) in the strain os3, which combined with nitrogen balance analysis, confirmed that the strain os3 primarily utilized aerobic denitrification for nitrate removal under aerobic conditions, as follows: NO3--N→NapABNO2--N→NirSNO→NorBCN2O→NosZN2. Furthermore, the strain os3 significantly increased the removal efficiencies of TIN and NO3--N in shrimp aquaculture wastewater, reaching 90.20 % and 94.43 %, respectively. Therefore, the strain os3 contributes to enhancing aerobic denitrification, providing a biotechnological solution for improving nitrogen cycling in shrimp aquaculture water.
Collapse
Affiliation(s)
- Weizhi Yan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
| | - Tao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
6
|
Liu J, Zhou Y, Feng J, Cai C, Zhang S. Comparative metagenomic analysis reveals the adaptive evolutionary traits of siboglinid tubeworm symbionts. Front Microbiol 2025; 16:1533506. [PMID: 40313410 PMCID: PMC12045306 DOI: 10.3389/fmicb.2025.1533506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Tubeworms flourish in marine cold seeps and hydrothermal vents through the establishment of symbiotic relationships with chemosynthetic bacteria. However, the environmental adaptations and evolutionary relationships of tubeworm symbionts across diverse habitats and hosts remain largely unknown. In this study, we characterized the genomes of 26 siboglinid tubeworm symbionts collected from deep-sea hydrothermal vents, cold seeps, and deep-sea mud, including two sequenced in this study and 24 previously published. Phylogenetic analysis classified the 26 symbiont genomes into five distinct clusters at the genus level. The findings highlight the remarkable diversity in symbiont classification, influenced by the habitat and species of tubeworm, with the symbiont genome characteristics of various genera revealing unique evolutionary strategies. Siboglinid symbionts exhibit functional metabolic diversity, encompassing chemical autotrophic capabilities for carbon, nitrogen, and sulfur metabolism, hydrogen oxidation, and a chemoorganotrophic ability to utilize various amino acids, cofactors, and vitamins. Furthermore, the symbiont's homeostatic mechanisms and CRISPR-Cas system are vital adaptations for survival. Overall, this study highlights the metabolic traits of siboglinid symbionts across different genera and enhances our understanding of how different habitats and hosts influence symbiont evolution, offering valuable insights into the strategies that symbionts use to adapt and thrive in extreme environments.
Collapse
Affiliation(s)
- Jinyi Liu
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Yingli Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Jingchun Feng
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Chaofeng Cai
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Si Zhang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Das U, Das A, Das AK. Relativistic effect behind the molybdenum vs. tungsten selectivity in enzymes. Dalton Trans 2025. [PMID: 40183367 DOI: 10.1039/d5dt00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Molybdenum and tungsten, being congeners of the 6th group of d-block elements, are similar in many respects in terms of their properties. In fact, both participate in similar types of oxotransferase activity in their enzymes. Molybdenum is regarded as the heaviest essential trace metal in all forms of life; however, its next heavier congener, tungsten, as the heaviest metal, is found only in some prokaryotic organisms. Tungstoenzymes are generally selected by nature for carrying out low-potential redox activities under anaerobic conditions in prokaryotic organisms. This nature's molybdenum vs. tungsten selectivity for their biological functions under different working conditions (surrounding temperature and aerobic/anaerobic environment) is determined mainly by the relativistic effect, which is experienced to different extents by these two congeners. Understanding the mechanistic aspects of the relativistic effect-controlled enzymatic activities of tungstoenzymes is of immense biotechnological interest to develop eco-friendly and cost-effective methods for the commercial synthesis of acetaldehyde through the hydration of acetylene and commercial production of hydrogen (H2, a green fuel) by producing tungsten-incorporated nitrogenase (W-N2-ase) in CA6 (mutant strain) and to develop a biomimetic method to replace the hazardous Birch reduction in organic synthesis.
Collapse
Affiliation(s)
- Udita Das
- Department of Chemistry, Visva Bharati University, Santiniketan 731235, India.
| | - Ankita Das
- School of Chemical Sciences, Indian Association of Cultivation for the Science, Kolkata 700032, India.
| | - Asim K Das
- Department of Chemistry, Visva Bharati University, Santiniketan 731235, India.
| |
Collapse
|
8
|
Ma R, Shi Y, Chen Y. The alleviation of Cr(Ⅵ) stress on simultaneous nitrification and denitrification process of Acinetobacter haemolyticus RH19. WATER RESEARCH 2025; 273:122968. [PMID: 39693716 DOI: 10.1016/j.watres.2024.122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Bioremediation of Cr(Ⅵ) and ammonia is considered as a promising and cost-effective alternative to chemical and physical methods. However, Cr(Ⅵ) could inhibit nitrogen removal by inhibiting intra-/extracellular electron (IET/EET) transfer or nitrifying and denitrifying enzymes activity due to its higher solubility. In this study, we isolated a simultaneous nitrification and denitrification (SND) microorganism Acinetobacter haemolyticus RH19, capable of outcompeting oxygen to take nitrogen oxides/ammonia as electron acceptors, and studied a combined accelerant (cysteine, biotin and cytokinin) to relive the Cr(Ⅵ) stress. Respiratory chain inhibited experiments and intermediates showed that strain RH19 had the intact intracellular respiratory chain. Despite the inhibited complex Ⅳ favoring the electrons transfer to NOx--N, the SND process was still greatly inhibited with Cr(Ⅵ), likely attributed to lower electron flow to the electron acceptors (nitration/nitrition/denitrification enzyme). Instead, the accelerant detoxified Cr(Ⅵ) mainly at CoQ site responsible for electron transfer to AMO and NAP, as well as complex Ⅳ (related with aerobic denitrification), favoring the shortcut SND (SSND, NH4+-N→NH2ON→NO2--N→N2) process by directly converting nitrite to nitrogen gases. Additionally, accelerant could stimulate the secretion of c-Cyts and flavin mononucleotide (FMN) to improve the electron transfer. Overall, this study highlighted the accelerant-alleviated mechanism in the SND process under Cr(Ⅵ) stress, and deepened the theoretical SND basis for the treatment of co-existing pollutants.
Collapse
Affiliation(s)
- Ruhui Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuqi Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Sackett JD, Tonucci GP, Rowe AR. Interfacial extracellular electron uptake is linked to nitrate respiration in the marine heterotroph, Thalassospira xiamenensis SN3. Bioelectrochemistry 2025; 165:108976. [PMID: 40174290 DOI: 10.1016/j.bioelechem.2025.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Thalassospira species are ubiquitous marine bacteria with poorly understood ecology, and some have been implicated in iron corrosion. To better elucidate the mechanisms and ecological implications of extracellular electron transfer (EET) in oxidative processes, we conducted genomic and bioelectrochemical characterization of Thalassospira xiamenensis strain SN3, an obligate heterotroph isolated from coastal marine sediment cathode-oxidizing enrichments. Physiologic and genomic analyses indicate that SN3 lacks the capacity for lithoautotrophic growth and lacks homologs to genes canonically involved in EET. Bioelectrochemical characterization of SN3 cells shows that inward EET requires a terminal electron acceptor (respiration). Deletion of nitrate reductase catalytic subunit napA abolished current consumption and catalytic activity under nitrate-reducing conditions. Media exchange experiments demonstrate that inward EET in SN3 is facilitated by direct contact with the electrode, with a formal midpoint potential of -153 ± 16 mV vs. SHE. Through deletion of the formate dehydrogenase fdhABCD and electrochemical characterization of mutant cells, we show that inward EET is not a function of Fdh enzyme sorption to the electrode, as has been demonstrated for other organisms. This provides further evidence of a cell-mediated and contact-dependent EET mechanism. This work provides a foundation for investigating this metabolically versatile organism's yet uncharacterized mechanism of EET.
Collapse
Affiliation(s)
- Joshua D Sackett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Gabriel P Tonucci
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Annette R Rowe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Moore J, Miller TJ, Mu M, Peñas-Defrutos MN, Gullett KL, Elford LS, Quintero S, García-Melchor M, Fout AR. Selective Stepwise Reduction of Nitrate and Nitrite to Dinitrogen or Ammonia. J Am Chem Soc 2025; 147:8444-8454. [PMID: 40019004 PMCID: PMC11912340 DOI: 10.1021/jacs.4c16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
This study reports a method for the selective reduction of NO3- and NO2- to N2 or NH3, extending prior work in our lab where NO3- was reduced to NO by [N(afaCy)3Fe]OTf2 (N(afaCy)3 = tris(5-cyclohexyl-amineazafulvene-2-methyl)amine, OTf = triflate). The first pathway involves the reduction of NO2- to N2, where the NO generated in the initial step is transformed to N2O by PPh3 and further reduced to N2 by the [N(afaCy)3Fe]OTf2 complex. An alternative pathway showcases the reduction of the bound NO complex, [N(afaCy)3Fe(NO)]2+, to NH3 using chemical reductants, albeit with a modest yield of 29%. Confirmation of the nitrogen source as NO is established through 15N labeling studies. Hydroxylamine (NH2OH) is proposed as a plausible intermediate in the reduction of bound NO, supported by independent NH2OH reduction experiments and computational studies. Nature employs a well-orchestrated, stepwise process involving several enzymes to reduce N-containing oxyanions, and this approach provides valuable insights into the stepwise reduction mechanisms of nitrate and nitrite, yielding NH3 or N2 as the product.
Collapse
Affiliation(s)
- Jewelianna
M. Moore
- Department
of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| | - Tabitha J. Miller
- School
of Chemical Sciences, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Manting Mu
- School
of Chemistry, CRANN and AMBER Research Centres
Trinity College Dublin, College Green, Dublin 2 Dublin 2, Ireland
| | - Marconi N. Peñas-Defrutos
- School
of Chemistry, CRANN and AMBER Research Centres
Trinity College Dublin, College Green, Dublin 2 Dublin 2, Ireland
- IU
CINQUIMA, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Kelly L. Gullett
- School
of Chemical Sciences, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lindsey S. Elford
- Department
of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| | - Sebastian Quintero
- Department
of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| | - Max García-Melchor
- School
of Chemistry, CRANN and AMBER Research Centres
Trinity College Dublin, College Green, Dublin 2 Dublin 2, Ireland
- Center
for Cooperative Research on Alternative Energy (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
| | - Alison R. Fout
- Department
of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| |
Collapse
|
11
|
Dong X, Bae M, Le C, Aguilar Ramos MA, Balskus EP. Enantiocomplementary Gut Bacterial Enzymes Metabolize Dietary Polyphenols. J Am Chem Soc 2025; 147:7231-7244. [PMID: 39993729 PMCID: PMC11887054 DOI: 10.1021/jacs.4c09892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Molybdenum-dependent catechol dehydroxylases in gut Actinobacteria catalyze the removal of para-hydroxyl groups from catechols, a central reaction in the microbial metabolism of polyphenol compounds. However, the substrates of most putative catechol dehydroxylases remain unidentified due to the challenges of obtaining these enzymes from standard heterologous expression systems. In this work, we establish Gordonibacter urolithinfaciens as a versatile bacterial host to express active catechol dehydroxylases. Using this system, we rapidly deorphanize eight previously uncharacterized gut bacterial catechol dehydroxylases that selectively dehydroxylate intermediates in the gut bacterial metabolism of plant-derived catechins and lignans. Unexpectedly, we discover multiple instances of distinct catechol dehydroxylases that have evolved to selectively metabolize individual substrate enantiomers, setting the stage for future efforts to elucidate their mechanisms and evolution. Altogether, these findings greatly increase our knowledge of these metalloenzymes, illustrating the power of bacterial genetics to accelerate enzyme discovery and providing a more complete understanding of transformations relevant to the health benefits of phytochemicals.
Collapse
Affiliation(s)
- Xueyang Dong
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Minwoo Bae
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Chi Le
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Miguel A. Aguilar Ramos
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Das BK, Gadnayak A, Chakraborty HJ, Pradhan SP, Raut SS, Das SK. Exploring microbial players for metagenomic profiling of carbon cycling bacteria in sundarban mangrove soils. Sci Rep 2025; 15:4784. [PMID: 39922935 PMCID: PMC11807184 DOI: 10.1038/s41598-025-89418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025] Open
Abstract
The Sundarbans, the world's largest tidal mangrove forest, acts as a crucial ecosystem for production, conservation, and the cycling of carbon and nitrogen. The study explored the hypothesis that microbial communities in mangrove ecosystems exhibit unique taxonomic and functional traits that play a vital part in carbon cycling and ecosystem resilience. Using metagenomic analysis to evaluate microbial communities in mangrove and non-mangrove environment, evaluating their composition, functional functions, and ecological relevance. The analysis revealed distinct microbial profiles, in mangrove and non-mangrove environments, with bacteria, proteobacteria, and viruses being the most prevalent groups, with varying abundances in each environment. Functional and taxonomical analysis identified genes involved in carbon regulation, including Triacylglycerol lipase, NarG, DsrB, DNA-binding transcriptional dual regulator CRP, Vanillate O-demethylase oxygenase, succinate-CoA ligase, Tetrahydrofolate ligase, Carboxylase, Ribulose-1,5-bisphosphate carboxylase/oxygenase, Glycine hydroxymethyltransferase, MAG: urease, Endosymbiont of Oligobrachia haakonmosbiensis, Ribulose bisphosphate carboxylase, Aconitate hydratase AcnA, and nitrous oxide reductase, suggesting the metabolic versatility of these microbial communities for carbon cycling. The findings emphasize the key role of microbial activity in preserving mangrove ecosystem health and resilience, highlighting the intricate interplay between microbial diversity, functional capabilities, and environmental factors.
Collapse
Affiliation(s)
- Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| | - Ayushman Gadnayak
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | | | | | | | - Sanjoy Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| |
Collapse
|
13
|
Ahn S, Cho M, Sadowsky MJ, Jang J. Dissimilatory nitrate reductions in soil Neobacillus and Bacillus strains under aerobic condition. J Microbiol 2025; 63:e2411019. [PMID: 40044136 DOI: 10.71150/jm.2411019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025]
Abstract
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were thought to be carried-out by anaerobic bacteria constrained to anoxic conditions as they use nitrate (NO3-) as a terminal electron acceptor instead of molecular O2. Three soil bacilli, Neobacillus spp. strains PS2-9 and PS3-12 and Bacillus salipaludis PS3-36, were isolated from rice paddy field soil in Korea. The bacterial strains were selected as possible candidates performing aerobic denitrification and DNRA as they observed to reduce NO3- and produce extracellular NH4+ regardless of oxygen presence at the initial screening. Whole genome sequencing revealed that these strains possessed all the denitrification and DNRA functional genes in their genomes, including the nirK, nosZ, nirB, and nrfA genes, which were simultaneously cotranscribed under aerobic condition. The ratio between the assimilatory and dissimilatory NO3- reduction pathways depended on the availability of a nitrogen source for cell growth, other than NO3-. Based on the phenotypic and transcriptional analyses of the NO3- reductions, all three of the facultative anaerobic strains reduced NO3- likely in both assimilatory and dissimilatory pathways under both aerobic and anoxic conditions. To our knowledge, this is the first report that describes coexistence of NO3- assimilation, denitrification, and DNRA in a Bacillus or Neobacillus strain under aerobic condition. These strains may play a pivotal role in the soil nitrogen cycle.
Collapse
Affiliation(s)
- Seohyun Ahn
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Jeonbuk 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Jeonbuk 54596, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, Department of Soil, Water & Climate, and Department of Microbial and Plant Biology, University of Minnesota, Minnesota 55108, USA
| | - Jeonghwan Jang
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
14
|
Khanal A, Han SR, Lee JH, Oh TJ. Unraveling nitrogen metabolism, cold and stress adaptation in polar Bosea sp. PAMC26642 through comparative genome analysis. Front Microbiol 2025; 15:1505699. [PMID: 39925882 PMCID: PMC11804256 DOI: 10.3389/fmicb.2024.1505699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 02/11/2025] Open
Abstract
Nitrogen metabolism, related genes, and other stress-resistance genes are poorly understood in Bosea strain. To date, most of the research work in Bosea strains has been focused on thiosulfate oxidation and arsenic reduction. This work aimed to better understand and identify genomic features that enable thiosulfate-oxidizing lichen-associated Bosea sp. PAMC26642 from the Arctic region of Svalbard, Norway, to withstand harsh environments. Comparative genomic analysis was performed using various bioinformatics tools to compare Bosea sp. PAMC26642 with other strains of the same genus, emphasizing nitrogen metabolism and stress adaptability. During genomic analysis of Bosea sp. PAMC26642, assimilatory nitrogen metabolic pathway and its associated enzymes such as nitrate reductase, NAD(P)H-nitrite reductase, ferredoxin-nitrite reductase, glutamine synthetase, glutamine synthase, and glutamate dehydrogenase were identified. In addition, carbonic anhydrase, cyanate lyase, and nitronate monooxygenase were also identified. Furthermore, the strain demonstrated nitrate reduction at two different temperatures (15°C and 25°C). Enzymes associated with various stress adaptation pathways, including oxidative stress (superoxide dismutase, catalase, and thiol peroxidase), osmotic stress (OmpR), temperature stress (Csp and Hsp), and heavy metal resistance, were also identified. The average Nucleotide Identity (ANI) value is found to be below the threshold of 94-95%, indicating this bacterium might be a potential new species. This study is very helpful in determining the diversity of thiosulfate-oxidizing nitrate-reducing bacteria, as well as their ability to adapt to extreme environments. These bacteria can be used in the future for environmental, biotechnological, and agricultural purposes, particularly in processes involving sulfur and nitrogen transformation.
Collapse
Affiliation(s)
- Anamika Khanal
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
15
|
Li J, Wang Y, Fang Y, Lyu X, Zhu Z, Wu C, Xu Z, Li W, Liu N, Du C, Wang Y. Phycospheric Bacteria Alleviate the Stress of Erythromycin on Auxenochlorella pyrenoidosa by Regulating Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2025; 14:121. [PMID: 39795382 PMCID: PMC11722778 DOI: 10.3390/plants14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of Auxenochlorella pyrenoidosa; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.1, 1.0, and 10 mg/L ERY inhibited the growth and chlorophyll of microalgae, but the microalgae gradually showed enhanced growth abilities over the course of 21 days. As the exposure time progressed, the nitrate reductase activities of the microalgae gradually increased, but remained significantly lower than that of the control group at 21 d. NO3- concentrations in all treatment groups decreased gradually and were consistent with microalgae growth. NO2- concentrations in the three treatment groups were lower than those in the control group during ERY exposure over 21 d. ERY changed the community composition and diversity of phycospheric bacteria. The relative abundance of bacteria, such as unclassified-f-Rhizobiaceae, Mesorhizobium, Sphingopyxis, Aquimonas, and Blastomonas, varied to different degrees. Metabolic functions, such ABC transporters, the microbial metabolism in diverse environments, and the biosynthesis of amino acids, were significantly upregulated in the treatments of higher concentrations (1.0 and 10 mg/L). Higher concentrations of ERY significantly inhibited nitrate denitrification, nitrous oxide denitrification, nitrite denitrification, and nitrite and nitrate respiration. The findings of this study suggest that phycospheric bacteria alleviate antibiotic stress and restore the growth of microalgae by regulating nitrogen metabolism in the exposure system.
Collapse
Affiliation(s)
- Jiping Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Ying Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Yuan Fang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Xingsheng Lyu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Zixin Zhu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Chenyang Wu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Zijie Xu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Wei Li
- College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Naisen Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Chenggong Du
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Yan Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| |
Collapse
|
16
|
Wang B, Peng H, Liu W. The Nitrogen Removal Characteristics of a Novel Salt-Tolerant Bacterium, Enterobacter quasihormaechei DGFC5, Isolated from Municipal Sludge. Microorganisms 2024; 12:2652. [PMID: 39770854 PMCID: PMC11728697 DOI: 10.3390/microorganisms12122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
A novel bacterial strain, Enterobacter quasihormaechei DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH4+-N. Whole-genome sequencing and nitrogen balance experiments revealed that DGFC5 can simultaneously consume NH4+-N in the liquid phase through assimilation and heterotrophic nitrification, and effectively remove nitrate via aerobic denitrification and dissimilatory reduction reactions. Single-factor experiments were conducted to determine the optimal nitrogen removal conditions, which were as follows: a carbon-to-nitrogen ratio of 15, a shaking speed of 200 rpm, a pH of 7, C4H4Na2O4 as the carbon source, and a temperature of 30 °C. DGFC5 showed efficient nitrogen purification capabilities under a wide range of environmental conditions, indicating its potential for disposing of nitrogenous wastewater with high salinity.
Collapse
Affiliation(s)
- Bingguo Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Huanlong Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
McGarry J, Mintmier B, Metzger MC, Giri NC, Britt N, Basu P, Wilcoxen J. Insights into periplasmic nitrate reductase function under single turnover. J Biol Inorg Chem 2024; 29:811-819. [PMID: 39633165 PMCID: PMC12120805 DOI: 10.1007/s00775-024-02087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level. More broadly, little is understood of how the molybdopterin cofactor is tuned for catalysis in these enzymes enabling broad substrate scope and reactivity observed in molybdenum-containing enzymes. Here, we have prepared NapA from Campylobacter jejuni under single turnover conditions to generate a singly reduced enzyme that can be further examined by electron paramagnetic resonance (EPR) spectroscopy. Our results provide new context into the known spectra and related structures of NapA and related enzymes. These insights open new avenues for understanding nitrate reductase mechanisms, molybdenum coordination dynamics, and the role of pyranopterin ligands in catalysis.
Collapse
Affiliation(s)
- Jennifer McGarry
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicholas Britt
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
18
|
Asamoto CK, Ryu Y, Eckartt KN, Kelley-Kern J, Dietrich LE, Sigman DM, Kopf SH. Stable isotopic signature of dissimilatory nitrate reduction is robust against enzyme mutation. Proc Natl Acad Sci U S A 2024; 121:e2416002121. [PMID: 39576351 PMCID: PMC11621745 DOI: 10.1073/pnas.2416002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
The proportionality of oxygen-to-nitrogen isotope effects (18ε/15ε) is used as a key isotopic signature of nitrogen cycling processes in the environment. Dissimilatory nitrate reduction is observed to have an 18ε/15ε proportionality of ~0.9 in marine and ~0.6 in freshwater/terrestrial ecosystems. The origins of this difference are uncertain, with both geochemical and biological factors conceivably at play. One potential factor is variation in the isotope effect of nitrate reduction among different forms of the nitrate reductase enzyme. NarG nitrate reductases are observed to typically have an 18ε/15ε of ~0.9. However, a recent study uncovered an exception, with Bacillus NarG enzymes having an 18ε/15ε proportionality of ~0.6. This provides an opportunity to investigate genetic controls on 18ε/15ε. Furthermore, this atypical NarG signature also raises the question of whether intrinsic isotope signatures can evolve as the enzymes that produce them accumulate mutations through time. Here, we present data from site-directed mutagenesis experiments of key NarG residues, which suggest that the distinct Bacillus 18ε/15ε cannot be caused by single mutations alone and is potentially uncommon in nature. Variation in the intrinsic isotope effects of an enzyme through time may thus require more extensive evolutionary changes.
Collapse
Affiliation(s)
- Ciara K. Asamoto
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Yeongjun Ryu
- Department of Geosciences, Princeton University, Princeton, NJ08544
| | - Kelly N. Eckartt
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Julia Kelley-Kern
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Daniel M. Sigman
- Department of Geosciences, Princeton University, Princeton, NJ08544
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
19
|
Rajeev M, Jung I, Kang I, Cho JC. Genome-centric metagenomics provides insights into the core microbial community and functional profiles of biofloc aquaculture. mSystems 2024; 9:e0078224. [PMID: 39315779 PMCID: PMC11494986 DOI: 10.1128/msystems.00782-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bioflocs are microbial aggregates that play a pivotal role in shaping animal health, gut microbiota, and water quality in biofloc technology (BFT)-based aquaculture systems. Despite the worldwide application of BFT in aquaculture industries, our comprehension of the community composition and functional potential of the floc-associated microbiota (FAB community; ≥3 µm size fractions) remains rudimentary. Here, we utilized genome-centric metagenomic approach to investigate the FAB community in shrimp aquaculture systems, resulting in the reconstruction of 520 metagenome-assembled genomes (MAGs) spanning both bacterial and archaeal domains. Taxonomic analysis identified Pseudomonadota and Bacteroidota as core community members, with approximately 93% of recovered MAGs unclassified at the species level, indicating a large uncharacterized phylogenetic diversity hidden in the FAB community. Functional annotation of these MAGs unveiled their complex carbohydrate-degrading potential and involvement in carbon, nitrogen, and sulfur metabolisms. Specifically, genomic evidence supported ammonium assimilation, autotrophic nitrification, denitrification, dissimilatory nitrate reduction to ammonia, thiosulfate oxidation, and sulfide oxidation pathways, suggesting the FAB community's versatility for both aerobic and anaerobic metabolisms. Conversely, genes associated with heterotrophic nitrification, anaerobic ammonium oxidation, assimilatory nitrate reduction, and sulfate reduction were undetected. Members of Rhodobacteraceae emerged as the most abundant and metabolically versatile taxa in this intriguing community. Our MAGs compendium is expected to expand the available genome collection from such underexplored aquaculture environments. By elucidating the microbial community structure and metabolic capabilities, this study provides valuable insights into the key biogeochemical processes occurring in biofloc aquacultures and the major microbial contributors driving these processes. IMPORTANCE Biofloc technology has emerged as a sustainable aquaculture approach, utilizing microbial aggregates (bioflocs) to improve water quality and animal health. However, the specific microbial taxa within this intriguing community responsible for these benefits are largely unknown. Compounding this challenge, many bacterial taxa resist laboratory cultivation, hindering taxonomic and genomic analyses. To address these gaps, we employed metagenomic binning approach to recover over 500 microbial genomes from floc-associated microbiota of biofloc aquaculture systems operating in South Korea and China. Through taxonomic and genomic analyses, we deciphered the functional gene content of diverse microbial taxa, shedding light on their potential roles in key biogeochemical processes like nitrogen and sulfur metabolisms. Notably, our findings underscore the taxa-specific contributions of microbes in aquaculture environments, particularly in complex carbon degradation and the removal of toxic substances like ammonia, nitrate, and sulfide.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Institute for Specialized Teaching and Research, Inha University, Incheon, South Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Ilnam Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| |
Collapse
|
20
|
Liu Y, Zhuang Z, Liu Y, Liu N, Li Y, Cheng Y, Yu J, Yu R, Wang D, Li H. Shear-Strained Pd Single-Atom Electrocatalysts for Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202411396. [PMID: 39010646 DOI: 10.1002/anie.202411396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Electrochemical nitrate reduction method (NitRR) is a low-carbon, environmentally friendly, and efficient method for synthesizing ammonia, which has received widespread attention in recent years. Copper-based catalysts have a leading edge in nitrate reduction due to their good adsorption of *NO3. However, the formation of active hydrogen (*H) on Cu surfaces is difficult and insufficient, resulting in a large amount of the by-product NO2 -. In this work, Pd single atoms suspended on the interlayer unsaturated bonds of CuO atoms formed due to dislocations (Pd-CuO) were prepared by low temperature treatment, and the Pd single atoms located on the dislocations were subjected to shear stress and the dynamic effect of support formation to promote the conversion of nitrate into ammonia. The catalysis had an ammonia yield of 4.2 mol. gcat -1. h-1, and a Faraday efficiency of 90 % for ammonia production at -0.5 V vs. RHE. Electrochemical in situ characterization and theoretical calculations indicate that the dynamic effects of Pd single atoms and carriers under shear stress obviously promote the production of active hydrogen, reduce the reaction energy barrier of the decision-making step for nitrate conversion to ammonia, further promote ammonia generation.
Collapse
Affiliation(s)
- Yunliang Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Department of Chemical Engineering, Columbia University, 10027, New York, USA
| | - Yixian Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Naiyun Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Yaxi Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Yuanyuan Cheng
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Jingwen Yu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Ruohan Yu
- The Sanya Science and Education Innovation Park, Wuhan University of Technology, 572000, Sanya, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Haitao Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| |
Collapse
|
21
|
Li F, Scheller S, Lienemann M. A growth-based screening strategy for engineering the catalytic activity of an oxygen-sensitive formate dehydrogenase. Appl Environ Microbiol 2024; 90:e0147224. [PMID: 39194220 PMCID: PMC11409667 DOI: 10.1128/aem.01472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Enzyme engineering is a powerful tool for improving or altering the properties of biocatalysts for industrial, research, and therapeutic applications. Fast and accurate screening of variant libraries is often the bottleneck of enzyme engineering and may be overcome by growth-based screening strategies with simple processes to enable high throughput. The currently available growth-based screening strategies have been widely employed for enzymes but not yet for catalytically potent and oxygen-sensitive metalloenzymes. Here, we present a screening system that couples the activity of an oxygen-sensitive formate dehydrogenase to the growth of Escherichia coli. This system relies on the complementation of the E. coli formate hydrogenlyase (FHL) complex by Mo-dependent formate dehydrogenase H (EcFDH-H). Using an EcFDH-H-deficient strain, we demonstrate that growth inhibition by acidic glucose fermentation products can be alleviated by FHL complementation. This allows the identification of catalytically active EcFDH-H variants at a readily measurable cell density readout, reduced handling efforts, and a low risk of oxygen contamination. Furthermore, a good correlation between cell density and formate oxidation activity was established using EcFDH-H variants with variable catalytic activities. As proof of concept, the growth assay was employed to screen a library of 1,032 EcFDH-H variants and reduced the library size to 96 clones. During the subsequent colorimetric screening of these clones, the variant A12G exhibiting an 82.4% enhanced formate oxidation rate was identified. Since many metal-dependent formate dehydrogenases and hydrogenases form functional complexes resembling E. coli FHL, the demonstrated growth-based screening strategy may be adapted to components of such electron-transferring complexes.IMPORTANCEOxygen-sensitive metalloenzymes are highly potent catalysts that allow the reduction of chemically inert substrates such as CO2 and N2 at ambient pressure and temperature and have, therefore, been considered for the sustainable production of biofuels and commodity chemicals such as ammonia, formic acid, and glycine. A proven method to optimize natural enzymes for such applications is enzyme engineering using high-throughput variant library screening. However, most screening methods are incompatible with the oxygen sensitivity of these metalloenzymes and thereby limit their relevance for the development of biosynthetic production processes. A microtiter plate-based assay was developed for the screening of metal-dependent formate dehydrogenase that links the activity of the tested enzyme variant to the growth of the anaerobically grown host cell. The presented work extends the application range of growth-based screening to metalloenzymes and is thereby expected to advance their adoption to biosynthesis applications.
Collapse
Affiliation(s)
- Feilong Li
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | |
Collapse
|
22
|
Dong Y, Tang H, Dai H, Zhao H, Wang J. The application of nanodiscs in membrane protein drug discovery & development and drug delivery. Front Chem 2024; 12:1444801. [PMID: 39359422 PMCID: PMC11445163 DOI: 10.3389/fchem.2024.1444801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The phospholipid bilayer nanodiscs (LNDs), as a rapidly-developing tool in recent years, provide a natural bio-memebrane environment to maintain the native conformation and functions of membrane proteins as well as a versatile delivery vehicle for a variety of hydrophobic and hydrophilic drugs. We have seen unprecedented advantages of phospholipid bilayer nanodiscs in membrane protein structure characterization, biochemical and physiological studies of membrane proteins, membrane environment studies, drug discovery & development, and drug delivery. Many previous reviews have been mainly focused on the advantages of nanodiscs in membrane protein researches, but few have touched upon the importance and potential application of nanodiscs in pharmaceutical industries. This review will provide general description of the structural characteristics, advantages, classification, and applications of phospholipid nanodiscs, with particular focus on nanodisc-enabled membrane protein drug discovery & development as well as drug delivery.
Collapse
Affiliation(s)
- Yingkui Dong
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huan Tang
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
23
|
Guo Y, Gao J, Cui Y, Zhao Y, Ma B, Zeng L, Chen H. Hormesis and synergistic effects of disinfectants chloroxylenol and benzethonium chloride on highly efficient heterotrophic nitrification-aerobic denitrification functional strain: From performance to mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135160. [PMID: 38991646 DOI: 10.1016/j.jhazmat.2024.135160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.
Collapse
Affiliation(s)
- Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Biao Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liqin Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
24
|
Zhang R, He J, Wang M, Duan S, Zhang J. Nitrate and nitrite utilization during denitrifying phosphorus removal: Electron acceptor preference and feasible process combinations. BIORESOURCE TECHNOLOGY 2024; 406:131081. [PMID: 38977037 DOI: 10.1016/j.biortech.2024.131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Denitrifying phosphorus removal (DPR), which is dominated by denitrifying polyphosphate-accumulating organisms (DPAOs), is a promising process for nitrogen and phosphorus removal. Denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs typically coexist in the DPR sludge, complicating the study of DPAOs' denitrification capacity. In this study, two reactors were fed with nitrate and nitrite during the anoxic phase to cultivate nitrate-DPR and nitrite-DPR sludge. Both reactors yielded high and low DGAO abundance sludges, enabling the evaluation of the denitrification capacity of DPAOs. For the nitrate-DPR sludge, the nitrite reduction rate was 1.63 times higher than the nitrate reduction rate when DPAOs were the primary denitrifiers. For the nitrite-DPR sludge, the reduction rate of nitrite was more than three times that of nitrate, irrespective of DGAO abundance. These findings indicated that DPAOs preferred nitrite to nitrate and were well suited to reduce nitrite rather than reduce nitrate to supply nitrite.
Collapse
Affiliation(s)
- Ruimiao Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Mengfei Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Shengye Duan
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| |
Collapse
|
25
|
Yang J, Mintmier B, Kc K, Metzger MC, Radhakrishnan M, McGarry J, Wilcoxen J, Basu P, Kirk ML. Active Site Characterization of a Campylobacter jejuni Nitrate Reductase Variant Provides Insight into the Enzyme Mechanism. Inorg Chem 2024; 63:13191-13196. [PMID: 38984973 DOI: 10.1021/acs.inorgchem.4c01991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Khadanand Kc
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Manohar Radhakrishnan
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Jennifer McGarry
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
- Department of Chemistry and Biochemistry, University of Wisconsin, 3210 N. Cramer St., Milwaukee, Wisconsin 53211, United States
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin, 3210 N. Cramer St., Milwaukee, Wisconsin 53211, United States
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
26
|
Zhang X, Huang C, Sui W, Wu X, Zhang X. Irons differently modulate bacterial guilds for leading to varied efficiencies in simultaneous nitrification and denitrification (SND) within four aerobic bioreactors. CHEMOSPHERE 2024; 358:142216. [PMID: 38705403 DOI: 10.1016/j.chemosphere.2024.142216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus, along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengli Huang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weikang Sui
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaogang Wu
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Giri NC, Mintmier B, Radhakrishnan M, Mielke JW, Wilcoxen J, Basu P. The critical role of a conserved lysine residue in periplasmic nitrate reductase catalyzed reactions. J Biol Inorg Chem 2024; 29:395-405. [PMID: 38782786 PMCID: PMC12121628 DOI: 10.1007/s00775-024-02057-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Periplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe-4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA. The electron transfer from NapB to NapA occurs through the 4Fe-4S cluster in NapA. C. jejuni NapA has a conserved lysine (K79) between the Mo-cofactor and the 4Fe-4S cluster. K79 forms H-bonding interactions with the 4Fe-4S cluster and connects the latter with the Moco via an H-bonding network. Thus, it is conceivable that K79 could play an important role in the intramolecular electron transfer and the catalytic activity of NapA. In the present study, we show that the mutation of K79 to Ala leads to an almost complete loss of activity, suggesting its role in catalytic activity. The inhibition of C. jejuni NapA by cyanide, thiocyanate, and azide has also been investigated. The inhibition studies indicate that cyanide inhibits NapA in a non-competitive manner, while thiocyanate and azide inhibit NapA in an uncompetitive manner. Neither inhibition mechanism involves direct binding of the inhibitor to the Mo-center. These results have been discussed in the context of the loss of catalytic activity of NapA K79A variant and a possible anion binding site in NapA has been proposed.
Collapse
Affiliation(s)
- Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Manohar Radhakrishnan
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Jonathan W Mielke
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Mitchell JH, Freedman AH, Delaney JA, Girguis PR. Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts. Nat Microbiol 2024; 9:1526-1539. [PMID: 38839975 PMCID: PMC11636981 DOI: 10.1038/s41564-024-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/19/2024] [Indexed: 06/07/2024]
Abstract
Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.
Collapse
|
29
|
Dong X, Yu J, Ye C, Liu D, Zou D, Han Z, Yu Q, Huang K, Li H, Wei X. Control of tobacco-specific nitrosamines by the Bacillus siamensis: Strain isolation, genome sequencing, mechanism analysis and genetic engineering. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133877. [PMID: 38452666 DOI: 10.1016/j.jhazmat.2024.133877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Nitrosamines are considered carcinogens that threaten human health and environment. Especially, high contents of Tobacco-specific nitrosamines (TSNAs) are generated during the fermentation process of cigar tobacco. To control the accumulation of TSNAs, one novel strain WD-32 was isolated by comprehensively evaluating the reduction characteristics of nitrate, nitrite, and TSNAs, and this strain was identified as Bacillus siamensis by 16 S rRNA gene analysis and MALDI-TOF MS evaluation. Subsequently, whole genome sequencing of B. siamensis WD-32 was carried out to excavate important genes and enzymes involved, and the possible reduction mechanism of TSNAs was explored. More importantly, the reduction of TSNAs by B. siamensis was significantly promoted by knockout of narG gene. During the practical agricultural fermentation process of the cigar tobacco leaves, the treatment by the WD-32∆narG cells resulted in a 60% reduction of the total TSNAs content compared with the control, and the concentrations of the NNN and NNK were decreased by 69% and 59%, respectively. In summary, this study offers efficient strains for reduction of the TSNAs in cigar tobacco, and provides new insights into the reduction mechanism of TSNAs, which will promote the application of microbial methods in control of TSNAs and nitrite.
Collapse
Affiliation(s)
- Xinyu Dong
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China; State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China.
| | - Dandan Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingru Yu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kuo Huang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Tsypin LMZ, Saunders SH, Chen AW, Newman DK. Genetically dissecting the electron transport chain of a soil bacterium reveals a generalizable mechanism for biological phenazine-1-carboxylic acid oxidation. PLoS Genet 2024; 20:e1011064. [PMID: 38709821 PMCID: PMC11108179 DOI: 10.1371/journal.pgen.1011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/21/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The capacity for bacterial extracellular electron transfer via secreted metabolites is widespread in natural, clinical, and industrial environments. Recently, we discovered the biological oxidation of phenazine-1-carboxylic acid (PCA), the first example of biological regeneration of a naturally produced extracellular electron shuttle. However, it remained unclear how PCA oxidation was catalyzed. Here, we report the mechanism, which we uncovered by genetically perturbing the branched electron transport chain (ETC) of the soil isolate Citrobacter portucalensis MBL. Biological PCA oxidation is coupled to anaerobic respiration with nitrate, fumarate, dimethyl sulfoxide, or trimethylamine-N-oxide as terminal electron acceptors. Genetically inactivating the catalytic subunits for all redundant complexes for a given terminal electron acceptor abolishes PCA oxidation. In the absence of quinones, PCA can still donate electrons to certain terminal reductases, albeit much less efficiently. In C. portucalensis MBL, PCA oxidation is largely driven by flux through the ETC, which suggests a generalizable mechanism that may be employed by any anaerobically respiring bacterium with an accessible cytoplasmic membrane. This model is supported by analogous genetic experiments during nitrate respiration by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Lev M. Z. Tsypin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Scott H. Saunders
- Green Center for Systems Biology—Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Allen W. Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
31
|
Xie J, Ma R, Li M, Li B, Xiong L. [Effect of intestinal nitrate on growth of Klebsiella pneumoniae and its regulatory mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:757-764. [PMID: 38708510 DOI: 10.12122/j.issn.1673-4254.2024.04.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To explore the effect of intestinal nitrates on the growth of Klebsiella pneumoniae and its regulatory mechanisms. METHODS K. pneumoniae strains with nitrate reductase narG and narZ single or double gene knockout or with NarXL gene knockout were constructed and observed for both aerobic and anaerobic growth in the presence of KNO3 using an automated bacterial growth analyzer and a spectrophotometer, respectively. The mRNA expressions of narG and narZ in K. pneumoniae in anaerobic cultures in the presence of KNO3 and the effect of the binary regulatory system NarXL on their expresisons were detected using qRT-PCR. Electrophoretic mobility shift assays (EMSA) and MST analysis were performed to explore the specific regulatory mechanisms of NarXL in sensing and utilizing nitrates. Competitive experiments were conducted to examine anaerobic growth advantages of narG and narZ gene knockout strains of K. pneumoniae in the presence of KNO3. RESULTS The presence of KNO3 in anaerobic conditions, but not in aerobic conditions, promoted bacterial growth more effectively in the wild-type K. pneumoniae strain than in the narXL gene knockout strain. In anaerobic conditions, the narXL gene knockout strain showed significantly lowered mRNA expressions of narG and narZ (P < 0.0001). EMSA and MST experiments demonstrated that the NarXL regulator could directly bind to narG and narZ promoter regions. The wild-type K. pneumoniae strain in anaerobic cultures showed significantly increased expressions of narG and narZ mRNAs in the presence of KNO3 (P < 0.01), and narG gene knockout resulted in significantly attenuated anaerobic growth and competitive growth abilities of K. pneumoniae in the presence of KNO3 (P < 0.01). CONCLUSION The binary regulatory system NarXL of K. pneumoniae can sense changes in intestinal nitrate concentration and directly regulate the expression of nitrate reductase genes narG and narZ to promote bacterial growth.
Collapse
Affiliation(s)
- J Xie
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - R Ma
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - M Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - B Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - L Xiong
- Department of Gastroenterology, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
32
|
Thøgersen MS, Zervas A, Stougaard P, Ellegaard-Jensen L. Investigating eukaryotic and prokaryotic diversity and functional potential in the cold and alkaline ikaite columns in Greenland. Front Microbiol 2024; 15:1358787. [PMID: 38655082 PMCID: PMC11035741 DOI: 10.3389/fmicb.2024.1358787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
The ikaite columns in the Ikka Fjord, SW Greenland, represent a permanently cold and alkaline environment known to contain a rich bacterial diversity. 16S and 18S rRNA gene amplicon and metagenomic sequencing was used to investigate the microbial diversity in the columns and for the first time, the eukaryotic and archaeal diversity in ikaite columns were analyzed. The results showed a rich prokaryotic diversity that varied across columns as well as within each column. Seven different archaeal phyla were documented in multiple locations inside the columns. The columns also contained a rich eukaryotic diversity with 27 phyla representing microalgae, protists, fungi, and small animals. Based on metagenomic sequencing, 25 high-quality MAGs were assembled and analyzed for the presence of genes involved in cycling of nitrogen, sulfur, and phosphorous as well as genes encoding carbohydrate-active enzymes (CAZymes), showing a potentially very bioactive microbial community.
Collapse
|
33
|
Carlson AL, Daigger GT. Strict anoxic conditions significantly impact the metabolism of particulate and colloidal organic matter and bio-P compared to aerobic conditions. WATER RESEARCH 2024; 253:121261. [PMID: 38367373 DOI: 10.1016/j.watres.2024.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Fully anoxic suspended growth treatment of domestic wastewater is rarely performed in practice at large scale. However, recent advances in membrane aerated biofilm reactor (MABR) technology can enable the "hybrid" concept that couples nitrification in the MABR with anoxic suspended growth for biological nitrogen removal. Small scale sequencing batch reactors were constructed to compare high-rate anoxic metabolization of influent carbon and biological phosphorus removal side-by-side with a conventional aerated system in a low-strength domestic wastewater (COD/TN ratio of approximately 6). Little differences existed in the oxidation of soluble readily biodegradable organic material between the two systems, but hydrolysis of particulate and colloidal organic matter in the anoxic reactor over a range of solid retention times was 60 % of the aerobic reactor. Reduced hydrolysis limited the amount of carbon available to ferment to volatile fatty acid (VFA), adversely impacting anoxic biological phosphorus removal (bio-P) process rates, and ortho-P removal performance was diminished by more than half at equivalent SRTs. At optimal growth conditions, i.e., an SRT of approximately 8 days and with supplementary VFA, ortho-P removal from the influent averaged roughly 75 %. Experimentation with supplemented acetic acid showed reduced anoxic metabolic efficiency, quantified via a P/O ratio of 0.90 versus 1.7 for the aerobic system, although overall anoxic bio-P removal demonstrably increased with external carbon.
Collapse
Affiliation(s)
- A L Carlson
- University of Michigan, Department of Environmental Engineering, 1351 Beal Avenue, Ann Arbor, MI, United States
| | - G T Daigger
- University of Michigan, Department of Environmental Engineering, 1351 Beal Avenue, Ann Arbor, MI, United States.
| |
Collapse
|
34
|
Chen X, Yu T, Zeng XC. Functional features of a novel Sb(III)- and As(III)-oxidizing bacterium: Implications for the interactions between bacterial Sb(III) and As(III) oxidation pathways. CHEMOSPHERE 2024; 352:141385. [PMID: 38316280 DOI: 10.1016/j.chemosphere.2024.141385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Antimony (Sb) and arsenic (As) share similar chemical characteristics and commonly coexist in contaminated environments. It has been reported that the biogeochemical cycles of antimony and arsenic affect each other. However, there is limited understanding regarding microbial coupling between the biogeochemical processes of antimony and arsenic. Here, we aimed to solve this issue. We successfully isolated a novel bacterium, Shinella sp. SbAsOP1, which possesses both Sb(III) and As(III) oxidase, and can effectively oxidize both Sb(III) and As(III) under aerobic and anaerobic conditions. SbAsOP1 exhibits greater aerobic oxidation activity for the oxidation of As(III) or Sb(III) compared to its anaerobic activity. SbAsOP1 also significantly catalyzes the oxidative mobilization of solid-phase Sb(III) under aerobic conditions. The activity of SbAsOP1 in oxidizing solid Sb(III) is 3 times lower than its activity in oxidizing soluble form. It is noteworthy that, in the presence of both Sb(III) and As(III) under aerobic conditions, either As(III) or Sb(III) significantly inhibits the oxidation of Sb(III) or As(III), respectively. In comparison, under anaerobic conditions and in the coexistence of Sb(III) and As(III), As(III) significantly inhibits Sb(III) oxidation, whereas Sb(III) almost completely inhibits As(III) oxidation. These findings suggest that under both aerobic and anaerobic conditions, SbAsOP1 demonstrates a partial preference for Sb(III) oxidation. Additionally, bacterial oxidations of Sb(III) and As(III) mutually inhibit each other to varying degrees. These observations gain a novel understanding of the interplay between the biogeochemical processes of antimony and arsenic.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China.
| |
Collapse
|
35
|
Ren Y, You S, Wang Y, Yang J, Liu Y. Bioinspired Tandem Electrode for Selective Electrocatalytic Synthesis of Ammonia from Aqueous Nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2144-2152. [PMID: 38234209 DOI: 10.1021/acs.est.3c09759] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The electrocatalytic nitrate reduction reaction (NO3RR) has recently emerged as a promising technique for readily converting aqueous nitrate (NO3-) pollutants into valuable ammonia (NH3). It is vital to thoroughly understand the mechanism of the reaction to rationally design and construct advanced electrocatalytic systems that can effectively and selectively drive the NO3RR. There are several natural enzymes that incorporate molybdenum (Mo) and that can activate NO3-. Based on this, a cadmium (Cd) single-atom anchored Mo2TiC2Tx electrocatalyst (referred to as CdSA-Mo2TiC2Tx) through the NO3RR to generate NH3 was rationally designed and demonstrated. In an H-type electrolysis cell and at a current density of 42.5 mA cm-2, the electrocatalyst had a Faradaic efficiency of >95% and an impressive NH3 yield rate of 48.5 mg h-1 cm-2. Moreover, the conversion of NO3- to NH3 on the CdSA-Mo2TiC2Tx surface was further revealed by operando attenuated total reflection Fourier-transform infrared spectroscopy and an electrochemical differential mass spectrometer. The electrocatalyst significantly outperformed Mo2TiC2Tx as well as reported state-of-the-art catalysts. Density functional theory calculations revealed that CdSA-Mo2TiC2Tx decreased the ability of the d-p orbital to hybridize with NH3* intermediates, thereby decreasing the activation energy of the potential-determining step. This work not only highlights the application prospects of heavy metal single-atom catalysts in the NO3RR but also provides examples of bio-inspired electrocatalysts for the synthesis of NH3.
Collapse
Affiliation(s)
- Yifan Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
36
|
Li M, Zhang P, Guo Z, Zhao W, Li Y, Yi T, Cao W, Gao L, Tian CF, Chen Q, Ren F, Rui Y, White JC, Lynch I. Dynamic Transformation of Nano-MoS 2 in a Soil-Plant System Empowers Its Multifunctionality on Soybean Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1211-1222. [PMID: 38173352 PMCID: PMC10795185 DOI: 10.1021/acs.est.3c09004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Molybdenum disulfide (nano-MoS2) nanomaterials have shown great potential for biomedical and catalytic applications due to their unique enzyme-mimicking properties. However, their potential agricultural applications have been largely unexplored. A key factor prior to the application of nano-MoS2 in agriculture is understanding its behavior in a complex soil-plant system, particularly in terms of its transformation. Here, we investigate the distribution and transformation of two types of nano-MoS2 (MoS2 nanoparticles and MoS2 nanosheets) in a soil-soybean system through a combination of synchrotron radiation-based X-ray absorption near-edge spectroscopy (XANES) and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). We found that MoS2 nanoparticles (NPs) transform dynamically in soil and plant tissues, releasing molybdenum (Mo) and sulfur (S) that can be incorporated gradually into the key enzymes involved in nitrogen metabolism and the antioxidant system, while the rest remain intact and act as nanozymes. Notably, there is 247.9 mg/kg of organic Mo in the nodule, while there is only 49.9 mg/kg of MoS2 NPs. This study demonstrates that it is the transformation that leads to the multifunctionality of MoS2, which can improve the biological nitrogen fixation (BNF) and growth. Therefore, MoS2 NPs enable a 30% increase in yield compared to the traditional molybdenum fertilizer (Na2MoO4). Excessive transformation of MoS2 nanosheets (NS) leads to the overaccumulation of Mo and sulfate in the plant, which damages the nodule function and yield. The study highlights the importance of understanding the transformation of nanomaterials for agricultural applications in future studies.
Collapse
Affiliation(s)
- Mingshu Li
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China
CDC Key Laboratory of Environment and Population Health, National
Institute of Environmental Health, Chinese
Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Zhang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Zhiling Guo
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Weichen Zhao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yuanbo Li
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tianjing Yi
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weidong Cao
- Institute
of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Gao
- State
Key Laboratory for Biology of Plant Disease and Insect Pests, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100193, China
| | - Chang Fu Tian
- State
Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Key
Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100083, China
| | - Yukui Rui
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jason C. White
- The
Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
37
|
Wang S, Lyu T, Li S, Jiang Z, Dang Z, Zhu X, Hu W, Yue FJ, Ji G. Unignorable enzyme-specific isotope fractionation for nitrate source identification in aquatic ecosystem. CHEMOSPHERE 2024; 348:140771. [PMID: 38000558 DOI: 10.1016/j.chemosphere.2023.140771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Nitrate contamination in aquatic systems is a widespread problem across the world. The isotopic composition (δ15N, δ18O) of nitrate and their isotope effect (15ε, 18ε) can facilitate the identification of the source and transformation of nitrate. Although previous researches claimed the isotope fractionations may change the original δ15N/δ18O values and further bias identification of nitrate sources, isotope effect was often ignored due to its complexity. To fill the gap between the understanding and application, it is crucial to develop a deep understanding of isotopic fractionation based on available evidence. In this regard, this study summarized the available methods to determine isotope effects, thereby systematically comparing the magnitude of isotope effects (15ε and 18ε) in nitrification, denitrification and anammox. We found that the enzymatic reaction plays the key role in isotope fractionations, which is significantly affected by the difference in the affinity, substrate channel properties and redox potential of active site. Due to the overlapping of microbial processes and accumulation of uncertainties, the significant isotope effects at small scales inevitably decrease in large-scale ecosystems. However, the proportionality of N and O isotope fractionation (δ18O/δ15N; 18ε/15ε) associated with nitrate reduction generally follows enzyme-specific proportionalities (i.e., Nar, 0.95; Nap, 0.57; eukNR, 0.98) in aquatic ecosystems, providing enzyme-specific constant factors for the identification of nitrate transformation. With these results, this study finally discussed feasible source portioning methods when considering the isotope effect and aimed to improve the accuracy in nitrate source identification.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
38
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
39
|
Tejedor-Sanz S, Li S, Kundu BB, Ajo-Franklin CM. Extracellular electron uptake from a cathode by the lactic acid bacterium Lactiplantibacillus plantarum. Front Microbiol 2023; 14:1298023. [PMID: 38075918 PMCID: PMC10701730 DOI: 10.3389/fmicb.2023.1298023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 01/28/2024] Open
Abstract
A subset of microorganisms that perform respiration can endogenously utilize insoluble electron donors, such as Fe(II) or a cathode, in a process called extracellular electron transfer (EET). However, it is unknown whether similar endogenous EET can be performed by primarily fermentative species like lactic acid bacteria. We report for the first time electron uptake from a cathode by Lactiplantibacillus plantarum, a primarily fermentative bacteria found in the gut of mammals and in fermented foods. L. plantarum consumed electrons from a cathode and coupled this oxidation to the reduction of both an endogenous organic (pyruvate) and an exogenous inorganic electron acceptor (nitrate). This electron uptake from a cathode reroutes glucose fermentation toward lactate degradation and provides cells with a higher viability upon sugar exhaustion. Moreover, the associated genes and cofactors indicate that this activity is mechanistically different from that one employed by lactic acid bacteria to reduce an anode and to perform respiration. Our results expand our knowledge of the diversity of electroactive species and of the metabolic and bioenergetic strategies used by lactic acid bacteria.
Collapse
Affiliation(s)
- Sara Tejedor-Sanz
- Department of BioSciences, Rice University, Houston, TX, United States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Siliang Li
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Biki Bapi Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
| | - Caroline M. Ajo-Franklin
- Department of BioSciences, Rice University, Houston, TX, United States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
40
|
Tsypin LM, Saunders SH, Chen AW, Newman DK. Genetically dissecting the electron transport chain of a soil bacterium reveals a generalizable mechanism for biological phenazine-1-carboxylic acid oxidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567096. [PMID: 38014283 PMCID: PMC10680695 DOI: 10.1101/2023.11.14.567096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The capacity for bacterial extracellular electron transfer via secreted metabolites is widespread in natural, clinical, and industrial environments. Recently, we discovered biological oxidation of phenazine-1-carboxylic acid (PCA), the first example of biological regeneration of a naturally produced extracellular electron shuttle. However, it remained unclear how PCA oxidation was catalyzed. Here, we report the mechanism, which we uncovered by genetically perturbing the branched electron transport chain (ETC) of the soil isolate Citrobacter portucalensis MBL. Biological PCA oxidation is coupled to anaerobic respiration with nitrate, fumarate, dimethyl sulfoxide, or trimethylamine-N-oxide as terminal electron acceptors. Genetically inactivating the catalytic subunits for all redundant complexes for a given terminal electron acceptor abolishes PCA oxidation. In the absence of quinones, PCA can still donate electrons to certain terminal reductases, albeit much less efficiently. In C. portucalensis MBL, PCA oxidation is largely driven by flux through the ETC, which suggests a generalizable mechanism that may be employed by any anaerobically respiring bacterium with an accessible cytoplasmic membrane. This model is supported by analogous genetic experiments during nitrate respiration by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Lev M.Z. Tsypin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Scott H. Saunders
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Allen W. Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
41
|
Zheng X, Yan Z, Zhao C, He L, Lin Z, Liu M. Homogeneous environmental selection mainly determines the denitrifying bacterial community in intensive aquaculture water. Front Microbiol 2023; 14:1280450. [PMID: 38029183 PMCID: PMC10653326 DOI: 10.3389/fmicb.2023.1280450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrate reduction by napA (encodes periplasmic nitrate reductase) bacteria and nitrous oxide reduction by nosZ (encodes nitrous oxide reductase) bacteria play important roles in nitrogen cycling and removal in intensive aquaculture systems. This study investigated the diversity, dynamics, drivers, and assembly mechanisms of total bacteria as well as napA and nosZ denitrifiers in intensive shrimp aquaculture ponds over a 100-day period. Alpha diversity of the total bacterial community increased significantly over time. In contrast, the alpha diversity of napA and nosZ bacteria remained relatively stable throughout the aquaculture process. The community structure changed markedly across all groups over the culture period. Total nitrogen, phosphate, total phosphorus, and silicate were identified as significant drivers of the denitrifying bacterial communities. Network analysis revealed complex co-occurrence patterns between total, napA, and nosZ bacteria which fluctuated over time. A null model approach showed that, unlike the total community dominated by stochastic factors, napA and nosZ bacteria were primarily governed by deterministic processes. The level of determinism increased with nutrient loading, suggesting the denitrifying community can be manipulated by bioaugmentation. The dominant genus Ruegeria may be a promising candidate for introducing targeted denitrifiers into aquaculture systems to improve nitrogen removal. Overall, this study provides important ecological insights into aerobic and nitrous oxide-reducing denitrifiers in intensive aquaculture, supporting strategies to optimize microbial community structure and function.
Collapse
Affiliation(s)
- Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhongneng Yan
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chenxi Zhao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
42
|
Li S, Luo Z, Wang S, Nan Q, Ji G. Denitrification fractionates N and O isotopes of nitrate following a ratio independent of carbon sources in freshwaters. Environ Microbiol 2023; 25:2404-2415. [PMID: 37503781 DOI: 10.1111/1462-2920.16468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The stable isotope technique has been used in tracking nitrogen cycling processes, but the isotopic characteristics are influenced by environmental conditions. To better understand the variability of nitrate isotopes in nature, we investigated the influence of organic carbon sources on isotope fractionation characteristics during microbial denitrification. Denitrifying cultures were inoculated with freshwater samples and enriched with five forms of organic compounds, that is, acetate, citrate, glucose, cellobiose, and leucine. Though the isotope enrichment factors of nitrogen and oxygen (15 ε and 18 ε) changed with carbon sources, 18 ε/15 ε always followed a proportionality near 1. Genome-centred metagenomics revealed the enrichment of a few populations, such as Pseudomonas, Enterobacter, and Atlantibacter, most of which contained both NapA- and NarG-type nitrate reductases. Metatranscriptome showed that both NapA and NarG were expressed but to different extents in the enrichments. Furthermore, isotopic data collected from a deep reservoir was analysed. The results showed δ18 O- and δ15 N-nitrate did not correlate in the surface water where nitrification was active, but 18 ε/15 ε followed a proportionality of 1.05 ± 011 in deeper waters (≥ 12 m) where denitrification controlled the nitrate isotope. The independence of 18 ε/15 ε from carbon sources provides an opportunity to determine heterotrophic denitrification and helps the interpretation of nitrate isotopes in freshwaters.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Zhongxin Luo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- China Institute of Water Resources and Hydropower Research, Beijing, China
- National Research Center for Sustainable Hydropower Development, Beijing, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Qiong Nan
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
43
|
Jiang Z, Liu S, Zhang D, Sha Z. The Diversity and Metabolism of Culturable Nitrate-Reducing Bacteria from the Photic Zone of the Western North Pacific Ocean. MICROBIAL ECOLOGY 2023; 86:2781-2789. [PMID: 37552473 PMCID: PMC10640468 DOI: 10.1007/s00248-023-02284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of the photic zone and at almost all stations. Twenty-nine nitrate-reducing strains representing different species were selected for further the study of nitrogen, sulfur, and carbon metabolism. All 29 nitrate-reducing isolates contained genes encoding dissimilatory nitrate reduction or assimilatory nitrate reduction. Six nitrate-reducing isolates can oxidize thiosulfate based on genomic analysis and activity testing, indicating that nitrate-reducing thiosulfate-oxidizing bacteria exist in the photic zone. Five nitrate-reducing isolates obtained near the chlorophyll a-maximum layer contained a dimethylsulfoniopropionate synthesis gene and three of them contained both dimethylsulfoniopropionate synthesis and cleavage genes. This suggests that nitrate-reducing isolates may participate in dimethylsulfoniopropionate synthesis and catabolism in photic seawater. The presence of multiple genes for chitin degradation and extracellular peptidases may indicate that almost all nitrate-reducing isolates (28/29) can use chitin and proteinaceous compounds as important sources of carbon and nitrogen. Collectively, these results reveal culturable nitrate-reducing bacterial diversity and have implications for understanding the role of such strains in the ecology and biogeochemical cycles of nitrogen, sulfur, and carbon in the oligotrophic marine photic zone.
Collapse
Affiliation(s)
- Zhichen Jiang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sizhen Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dechao Zhang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
45
|
Xu Z, Wang W, Liu Y, Zhao Y, Zhang X, Ban Y. Performances and mechanisms of simultaneous removal of nitrate and phosphate by biofilter assembled with sponge iron/copper and corn cobs. BIORESOURCE TECHNOLOGY 2023; 386:129516. [PMID: 37468007 DOI: 10.1016/j.biortech.2023.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Sponge iron (SI) is a potential material for removing nitrate and phosphate from water. We decorated the SI with copper (Cu) to enhance its removal performance. To gain insight into the nitrate and phosphate removal utilizing SI/Cu and microbial coupling systems, three biofilters filled with corn cob (CC), corn cob + sponge iron (CS) and corn cob + sponge iron/copper (CSCu) were constructed. The results showed that the effluent NO3--N and PO43--P concentrations of CSCu remained consistently below 1 and 0.1 mg/L. The introduction of SI/Cu led to the enrichment of the Dechloromonas genus, making it the dominant microbial group, occupying 42.65% of the effective sequences. Modification of SI with Cu increased nitrogen cycle-related functional genes abundance in CSCu, with a 634% increase in nirS compared to CS. These findings proved that SI/Cu was a promising material, providing an approach to concomitantly removing nitrate and phosphate.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Wuyi Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yubo Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yinqi Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| |
Collapse
|
46
|
Wang Y, Wang X, Niu J. Implemented impediment of extracellular electron transfer-dependent anammox process :Unstable nitrogen removal efficiency and decreased abundance of anammox bacteria. CHEMOSPHERE 2023; 337:139415. [PMID: 37414301 DOI: 10.1016/j.chemosphere.2023.139415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
The present study investigates the extracellular electron transfer (EET)-dependent anammox process as a promising approach for sustainable wastewater treatment. The study examines the performance and metabolic pathway of the EET-dependent anammox process in comparison to the nitrite-dependent anammox process. The EET-dependent reactor successfully achieved nitrogen removal with a maximum removal efficiency of 93.2%, although it exhibited a lower ability to sustain high nitrogen removal load when compared to the nitrite-dependent anammox process, which poses opportunity and challenge for ammonia-wastewater treatment under applied voltage conditions. Nitrite was identified as a critical factor responsible for the changes in microbial community structure, resulting in a significant reduction in nitrogen removal load in the absence of nitrite. The study further suggests that the Candidatus Kuenenia species could dominate the EET-dependent anammox process, while nitrifying and denitrifying bacteria also contribute to the nitrogen removal in this system.
Collapse
Affiliation(s)
- Yameng Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Xiaojing Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
47
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
48
|
Lee S, Park CY. Nitric oxide: an old drug but with new horizons in ophthalmology-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:352. [PMID: 37675299 PMCID: PMC10477639 DOI: 10.21037/atm-22-5634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/21/2023] [Indexed: 09/08/2023]
Abstract
Background and Objective Based on basic knowledge and prior research on nitric oxide (NO), the potential of NO for treating eye diseases is reviewed, and the possibility of NO-based eye drops in clinical practice and the future potential of NO in ophthalmology are discussed. Methods A PubMed search was performed for English-language original reports and reviews using the following key words: nitric oxide, eye, ocular, and drug. Key Content and Findings NO is synthesized in the human body by NO synthase (NOS) from L-arginine or through enzyme-dependent reduction of dietary nitrate. Three types of NOS (eNOS, nNOS, and iNOS) are abundantly expressed in the eye under normal physiologic or pathologic conditions. The biological effect of NO in the eye is dose dependent. Low intraocular NO concentrations, produced by eNOS or nNOS, have various cellular effects, including vasodilation, intraocular pressure (IOP) regulation, and neuroprotection. iNOS induced under pathologic ocular conditions produces high NO concentrations in the local environment and mediates tissue inflammation, ocular cell apoptosis, and neurodegeneration. In particular, increased iNOS has been reported in glaucoma and retinal ischemic or degenerative diseases. NO plays a vital role in ocular injury. NO can facilitate ocular surface wound healing while eradicating pathogens such as bacteria and Acanthamoeba in chemical burns or infectious keratitis. Furthermore, NO has antifibrotic activity via the cyclic guanosine monophosphate (cGMP) signaling pathway. NO causes smooth muscle relaxation, which can be used to inhibit myopia progression in children. NO can be a stem cell modulator and may help in treating ocular stem cell disorders. Conclusions Because of its diverse biologic effects, NO can be a key player in regulating ocular inflammation in various ocular diseases, aiding ocular surface wound healing, controlling IOP in glaucoma, alleviating retinal disease, and suppressing myopia progression. Although there remain limitations to the effective use of highly unstable state, gaseous NO, the role of NO in the field of ophthalmology can be greatly expanded through the development of novel NO donors and effective delivery platforms.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
49
|
Nakatsuka Y, Matsumoto M, Inohara N, Núñez G. Pseudomonas aeruginosa hijacks the murine nitric oxide metabolic pathway to evade killing by neutrophils in the lung. Cell Rep 2023; 42:112973. [PMID: 37561628 DOI: 10.1016/j.celrep.2023.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils play a critical role in the eradication of Pseudomonas aeruginosa, a major pathogen causing lung infection. However, the mechanisms used by the pathogen to evade neutrophil-mediated killing remain poorly understood. Using a high-density transposon screen, we find that P. aeruginosa colonization in the lung is promoted by pathogen nitrite reductase nirD. nirD is required for ammonia production from nitrite, a metabolite derived from nitrogen oxide (NO) generated by inducible NO synthetase (iNOS) in phagocytes. P. aeruginosa deficient in nirD exhibit reduced survival in wild-type neutrophils but not in iNOS-deficient neutrophils. Mechanistically, nirD enhances P. aeruginosa survival in neutrophils by inhibiting the localization of the pathogen in late phagosomes. P. aeruginosa deficient in nirD show impaired lung colonization after infection in wild-type mice but not in mice with selective iNos deficiency in neutrophils. Thus, P. aeruginosa uses neutrophil iNOS-mediated NO production to limit neutrophil pathogen killing and to promote its colonization in the lung.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| | - Masanori Matsumoto
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| |
Collapse
|
50
|
Sriaporn C, Campbell KA, Van Kranendonk MJ, Handley KM. Bacterial and archaeal community distributions and cosmopolitanism across physicochemically diverse hot springs. ISME COMMUNICATIONS 2023; 3:80. [PMID: 37596308 PMCID: PMC10439147 DOI: 10.1038/s43705-023-00291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and population structures is little understood. We therefore analysed the prevalence and relative abundance of bacteria and archaea in the sediments (n = 76) of hot spring features, in the Taupō Volcanic Zone (New Zealand), spanning large differences in major anion water chemistry, pH (2.0-7.5), and temperature (17.5-92.9 °C). Community composition, based on 16S rRNA amplicon sequence variants (ASVs) was strongly influenced by both temperature and pH. However, certain lineages characterized diverse hot springs. At the domain level, bacteria and archaea shared broadly equivalent community abundances across physico-chemically diverse springs, despite slightly lower bacteria-to-archaea ratios and microbial 16S rRNA gene concentrations at higher temperatures. Communities were almost exclusively dominated by Proteobacteria, Euryarchaeota or Crenarchaeota. Eight archaeal and bacterial ASVs from Thermoplasmatales, Desulfurellaceae, Mesoaciditogaceae and Acidithiobacillaceae were unusually prevalent (present in 57.9-84.2% of samples) and abundant (1.7-12.0% sample relative abundance), and together comprised 44% of overall community abundance. Metagenomic analyses generated multiple populations associated with dominant ASVs, and showed characteristic traits of each lineage for sulfur, nitrogen and hydrogen metabolism. Differences in metabolic gene composition and genome-specific metabolism delineated populations from relatives. Genome coverage calculations showed that populations associated with each lineage were distributed across a physicochemically broad range of hot springs. Results imply that certain bacterial and archaeal lineages harbor different population structures and metabolic potentials for colonizing diverse hot spring environments.
Collapse
Affiliation(s)
- Chanenath Sriaporn
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathleen A Campbell
- School of Environment & Te Ao Mārama - Centre for Fundamental Inquiry, The University of Auckland, Auckland, New Zealand
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|