1
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Mattera M, Sorrenti A, De Gregorio Perpiñá L, Oestreicher V, Sevim S, Arteaga O, Chen XZ, Pané S, Abellán G, Puigmartí-Luis J. "On-The-Fly" Synthesis of Self-Supported LDH Hollow Structures Through Controlled Microfluidic Reaction-Diffusion Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307621. [PMID: 38111987 DOI: 10.1002/smll.202307621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Layered double hydroxides (LDHs) are a class of functional materials that exhibit exceptional properties for diverse applications in areas such as heterogeneous catalysis, energy storage and conversion, and bio-medical applications, among others. Efforts have been devoted to produce millimeter-scale LDH structures for direct integration into functional devices. However, the controlled synthesis of self-supported continuous LDH materials with hierarchical structuring up to the millimeter scale through a straightforward one-pot reaction method remains unaddressed. Herein, it is shown that millimeter-scale self-supported LDH structures can be produced by means of a continuous flow microfluidic device in a rapid and reproducible one-pot process. Additionally, the microfluidic approach not only allows for an "on-the-fly" formation of unprecedented LDH composite structures, but also for the seamless integration of millimeter-scale LDH structures into functional devices. This method holds the potential to unlock the integrability of these materials, maintaining their performance and functionality, while diverging from conventional techniques like pelletization and densification that often compromise these aspects. This strategy will enable exciting advancements in LDH performance and functionality.
Collapse
Affiliation(s)
- Michele Mattera
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
| | - Alessandro Sorrenti
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), University of Barcelona (UB), Barcelona, 08028, Spain
| | - Lidia De Gregorio Perpiñá
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
| | - Víctor Oestreicher
- Institute of Molecular Science, University of Valencia (UVEG), c/Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Semih Sevim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Oriol Arteaga
- Departament de Fisica Aplicada, PLAT group, Universitat de Barcelona, IN2UB, Barcelona, 08028, Spain
| | - Xiang-Zhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, P. R. China
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Gonzalo Abellán
- Institute of Molecular Science, University of Valencia (UVEG), c/Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
3
|
Stubbs J, Hornsey T, Hanrahan N, Esteban LB, Bolton R, Malý M, Basu S, Orlans J, de Sanctis D, Shim JU, Shaw Stewart PD, Orville AM, Tews I, West J. Droplet microfluidics for time-resolved serial crystallography. IUCRJ 2024; 11:237-248. [PMID: 38446456 PMCID: PMC10916287 DOI: 10.1107/s2052252524001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.
Collapse
Affiliation(s)
- Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Theo Hornsey
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Niall Hanrahan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Luis Blay Esteban
- Universitat Carlemany, Avenida Verge de Canolich, 47, Sant Julia de Loria, Principat d’Andorra AD600, Spain
| | - Rachel Bolton
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Martin Malý
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Shibom Basu
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, Cedex 9, France
| | - Julien Orlans
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Daniele de Sanctis
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Jung-uk Shim
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jonathan West
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Yang C, Gan X, Zeng Y, Xu Z, Xu L, Hu C, Ma H, Chai B, Hu S, Chai Y. Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress. Biosens Bioelectron 2023; 242:115723. [PMID: 37832347 DOI: 10.1016/j.bios.2023.115723] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Significant breakthroughs have been made in digital microfluidic (DMF)-based technologies over the past decades. DMF technology has attracted great interest in bioassays depending on automatic microscale liquid manipulations and complicated multi-step processing. In this review, the recent advances of DMF platforms in the biomedical field were summarized, focusing on the integrated design and applications of the DMF system. Firstly, the electrowetting-on-dielectric principle, fabrication of DMF chips, and commercialization of the DMF system were elaborated. Then, the updated droplets and magnetic beads manipulation strategies with DMF were explored. DMF-based biomedical applications were comprehensively discussed, including automated sample preparation strategies, immunoassays, molecular diagnosis, blood processing/testing, and microbe analysis. Emerging applications such as enzyme activity assessment and DNA storage were also explored. The performance of each bioassay was compared and discussed, providing insight into the novel design and applications of the DMF technology. Finally, the advantages, challenges, and future trends of DMF systems were systematically summarized, demonstrating new perspectives on the extensive applications of DMF in basic research and commercialization.
Collapse
Affiliation(s)
- Chengbin Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Xiangyu Gan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Yuping Zeng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhourui Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Longqian Xu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, China.
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Yujuan Chai
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
5
|
Trinh KTL. Microfluidic Formulation for Biomedical Applications. Pharmaceuticals (Basel) 2023; 16:1587. [PMID: 38004452 PMCID: PMC10675076 DOI: 10.3390/ph16111587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Microfluidic technology was recognized in the 1980s when the first micropumps and micro-valves were developed to manipulate fluids for biological applications [...].
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Advances in unusual interfacial polymerization techniques. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
7
|
Xia Y, Sevim S, Vale JP, Seibel J, Rodríguez-San-Miguel D, Kim D, Pané S, Mayor TS, De Feyter S, Puigmartí-Luis J. Covalent transfer of chemical gradients onto a graphenic surface with 2D and 3D control. Nat Commun 2022; 13:7006. [PMID: 36384990 PMCID: PMC9668971 DOI: 10.1038/s41467-022-34684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Control over the functionalization of graphenic materials is key to enable their full application in electronic and optical technologies. Covalent functionalization strategies have been proposed as an approach to tailor the interfaces' structure and properties. However, to date, none of the proposed methods allow for a covalent functionalization with control over the grafting density, layer thickness and/or morphology, which are key aspects for fine-tuning the processability and performance of graphenic materials. Here, we show that the no-slip boundary condition at the walls of a continuous flow microfluidic device offers a way to generate controlled chemical gradients onto a graphenic material with 2D and 3D control, a possibility that will allow the sophisticated functionalization of these technologically-relevant materials.
Collapse
Affiliation(s)
- Yuanzhi Xia
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Semih Sevim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - João Pedro Vale
- Transport Phenomena Research Centre (CEFT), Engineering Faculty of Porto University, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Engineering Faculty of Porto University, Porto, Portugal
| | - Johannes Seibel
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - David Rodríguez-San-Miguel
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, Spain
| | - Donghoon Kim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Tiago Sotto Mayor
- Transport Phenomena Research Centre (CEFT), Engineering Faculty of Porto University, Porto, Portugal.
- Associate Laboratory in Chemical Engineering (ALiCE), Engineering Faculty of Porto University, Porto, Portugal.
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium.
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
8
|
Moradi S, Kundu S, Saidaminov MI. High-Throughput Synthesis of Thin Films for the Discovery of Energy Materials: A Perspective. ACS MATERIALS AU 2022; 2:516-524. [PMID: 36124002 PMCID: PMC9479136 DOI: 10.1021/acsmaterialsau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Thin films are an
integral part of many electronic and optoelectronic
devices. They also provide an excellent platform for material characterization.
Therefore, strategies for the fabrication of thin films are constantly
developed and have significantly benefited from the advent of high-throughput
synthesis (HTS) platforms. This perspective summarizes recent advances
in HTS of thin films from experimentalists’ point of view.
The work analyzes general strategies of HTS and then discusses their
use in developing new energy materials for applications that rely
on thin films, such as solar cells, light-emitting diodes, batteries,
superconductors, and thermoelectrics. The perspective also summarizes
some key challenges and opportunities in the HTS of thin films.
Collapse
Affiliation(s)
- Shahram Moradi
- Department of Electrical & Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Soumya Kundu
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Makhsud I. Saidaminov
- Department of Electrical & Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
9
|
Liang X, Li M, Wang K, Luo G. Determination of Time-Evolving interfacial tension and ionic surfactant adsorption kinetics in microfluidic droplet formation process. J Colloid Interface Sci 2022; 617:106-117. [DOI: 10.1016/j.jcis.2022.02.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
|
10
|
El-Sherif DM, Abouzid M, Gaballah MS, Ahmed AA, Adeel M, Sheta SM. New approach in SARS-CoV-2 surveillance using biosensor technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1677-1695. [PMID: 34689274 PMCID: PMC8541810 DOI: 10.1007/s11356-021-17096-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 05/14/2023]
Abstract
Biosensors are analytical tools that transform the bio-signal into an observable response. Biosensors are effective for early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection because they target viral antigens to assess clinical development and provide information on the severity and critical trends of infection. The biosensors are capable of being on-site, fast, and extremely sensitive to the target viral antigen, opening the door for early detection of SARS-CoV-2. They can screen individuals in hospitals, airports, and other crowded locations. Microfluidics and nanotechnology are promising cornerstones for the development of biosensor-based techniques. Recently, due to high selectivity, simplicity, low cost, and reliability, the production of biosensor instruments have attracted considerable interest. This review article precisely provides the extensive scientific advancement and intensive look of basic principles and implementation of biosensors in SARS-CoV-2 surveillance, especially for human health. In this review, the importance of biosensors including Optical, Electrochemical, Piezoelectric, Microfluidic, Paper-based biosensors, Immunosensors, and Nano-Biosensors in the detection of SARS-CoV-2 has been underscored. Smartphone biosensors and calorimetric strips that target antibodies or antigens should be developed immediately to combat the rapidly spreading SARS-CoV-2. Wearable biosensors can constantly monitor patients, which is a highly desired feature of biosensors. Finally, we summarized the literature, outlined new approaches and future directions in diagnosing SARS-CoV-2 by biosensor-based techniques.
Collapse
Affiliation(s)
- Dina M El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, 60-781, Poznan, Poland.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, People's Republic of China
| | - Alhassan Ali Ahmed
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
11
|
Li L, Ling H, Tao J, Pei C, Duan X. Microchannel-confined crystallization: shape-controlled continuous preparation of a high-quality CL-20/HMX cocrystal. CrystEngComm 2022. [DOI: 10.1039/d1ce01524a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shape-controlled continuous preparation of a high-quality CL-20/HMX cocrystal has been realized through a microchannel-confined crystallization strategy.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huijun Ling
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jun Tao
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P. R. China
| | - Chonghua Pei
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xiaohui Duan
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
12
|
Xu Y, Rather AM, Yao Y, Fang JC, Mamtani RS, Bennett RKA, Atta RG, Adera S, Tkalec U, Wang X. Liquid crystal-based open surface microfluidics manipulate liquid mobility and chemical composition on demand. SCIENCE ADVANCES 2021; 7:eabi7607. [PMID: 34597134 PMCID: PMC10938512 DOI: 10.1126/sciadv.abi7607] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/10/2021] [Indexed: 05/22/2023]
Abstract
The ability to control both the mobility and chemical compositions of microliter-scale aqueous droplets is an essential prerequisite for next-generation open surface microfluidics. Independently manipulating the chemical compositions of aqueous droplets without altering their mobility, however, remains challenging. In this work, we address this challenge by designing a class of open surface microfluidic platforms based on thermotropic liquid crystals (LCs). We demonstrate, both experimentally and theoretically, that the unique positional and orientational order of LC molecules intrinsically decouple cargo release functionality from droplet mobility via selective phase transitions. Furthermore, we build sodium sulfide–loaded LC surfaces that can efficiently precipitate heavy metal ions in sliding water droplets to final concentration less than 1 part per million for more than 500 cycles without causing droplets to become pinned. Overall, our results reveal that LC surfaces offer unique possibilities for the design of novel open surface fluidic systems with orthogonal functionalities.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Adil M. Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yuxing Yao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Rajdeep S. Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Robert K. A. Bennett
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Richard G. Atta
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Uroš Tkalec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Suárez-García S, Solórzano R, Alibés R, Busqué F, Novio F, Ruiz-Molina D. Antitumour activity of coordination polymer nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Coliaie P, Kelkar MS, Langston M, Liu C, Nazemifard N, Patience D, Skliar D, Nere NK, Singh MR. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation. LAB ON A CHIP 2021; 21:2333-2342. [PMID: 34096561 DOI: 10.1039/d1lc00218j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A flow-controlled microfluidic device for parallel and combinatorial screening of crystalline materials can profoundly impact the discovery and development of active pharmaceutical ingredients and other crystalline materials. While the existing continuous-flow microfluidic devices allow crystals to nucleate under controlled conditions in the channels, their growth consumes solute from the solution leading to variation in the downstream composition. The materials screened under such varying conditions are less reproducible in large-scale synthesis. There exists no continuous-flow microfluidic device that traps and grows crystals under controlled conditions for parallel screening. Here we show a blueprint of such a microfluidic device that has parallel-connected micromixers to trap and grow crystals under multiple conditions simultaneously. The efficacy of a multi-well microfluidic device is demonstrated to screen polymorphs, morphology, and growth rates of l-histidine via antisolvent crystallization at eight different solution conditions, including variation in molar concentration, vol% of ethanol, and supersaturation. The overall screening time for l-histidine using the multi-well microfluidic device is ∼30 min, which is at least eight times shorter than the sequential screening process. The screening results are also compared with the conventional 96-well microtiter device, which significantly overestimates the fraction of stable form as compared to metastable form and shows high uncertainty in measuring growth rates. The multi-well microfluidic device paves the way for next-generation microfluidic devices that are amenable to automation for high-throughput screening of crystalline materials.
Collapse
Affiliation(s)
- Paria Coliaie
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Manish S Kelkar
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Marianne Langston
- Pharmaceutics Research - Analytical Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Chengxiang Liu
- Pharmaceutical Development, Biogen, Cambridge, MA 02142, USA
| | - Neda Nazemifard
- Chemical Process Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Daniel Patience
- Pharmaceutical Development, Biogen, Cambridge, MA 02142, USA
| | - Dimitri Skliar
- Chemical Process Development, Product Development, Bristol Myers Squibb Co., New Brunswick, NJ 08901, USA
| | - Nandkishor K Nere
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA. and Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
16
|
Tanaka Y, Yamada S, Tanaka D. Continuous Fluidic Techniques for the Precise Synthesis of Metal-Organic Frameworks. Chempluschem 2021; 86:650-661. [PMID: 33864353 DOI: 10.1002/cplu.202000798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/31/2021] [Indexed: 12/18/2022]
Abstract
The continuous fluidics-based synthesis of metal-organic frameworks (MOFs) has attracted considerable attention, resulting in advancements in the reaction efficiency, a continuous production of complex structures, and access to products that are difficult or impossible to attain by bulk synthetic routes. This Minireview discusses the continuous fluidics-based synthesis of MOFs in terms of reaction process control, and is divided into three chapters dealing with the efficient synthesis of high-quality MOFs, the confined-space synthesis of MOF composites with diverse morphologies, and the selective synthesis of metastable products. The products of continuous fluidic synthetic process are introduced (e. g., uniform products, composites, fibers, membranes, and metastable products with advantageous properties that cannot be obtained by bulk synthesis), and their usefulness is demonstrated by referencing representative examples.
Collapse
Affiliation(s)
- Yoko Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Saki Yamada
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
17
|
Suárez-García S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Liu H, Singh RP, Zhang Z, Han X, Liu Y, Hu L. Microfluidic Assembly: An Innovative Tool for the Encapsulation, Protection, and Controlled Release of Nutraceuticals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2936-2949. [PMID: 33683870 DOI: 10.1021/acs.jafc.0c05395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nutraceuticals have been gradually accepted as food ingredients that can offer health benefits and provide protection against several diseases. It is widely accepted due to potential nutritional benefits, safety, and therapeutic effects. Most nutraceuticals are vulnerable to the changes in the external environment, which leads to poor physical and chemical stability and absorption. Several researchers have designed various encapsulation technologies to promote the use of nutraceuticals. Microfluidic technology is an emerging approach which can be used for nutraceutical delivery with precise control. The delivery systems using microfluidic technology have obtained much interest in recent years. In this review article, we have summarized the recently introduced nutraceutical delivery platforms including emulsions, liposomes, microspheres, microgels, and polymer nanoparticles based on microfluidic techniques. Emphasis has been made to discuss the advantages, preparations, characterizations, and applications of nutraceutical delivery systems. Finally, the challenges, several up-scaling methods, and future expectations are discussed.
Collapse
Affiliation(s)
- Haofan Liu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical & Allied Sciences, G.D. Goenka University, Sohna, Gurgaon, India, 122103
| | - Zhengyu Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xiao Han
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou 450001, China
| | - Liandong Hu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
19
|
Crivello C, Sevim S, Graniel O, Franco C, Pané S, Puigmartí-Luis J, Muñoz-Rojas D. Advanced technologies for the fabrication of MOF thin films. MATERIALS HORIZONS 2021; 8:168-178. [PMID: 34821295 DOI: 10.1039/d0mh00898b] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic framework (MOF) thin films represent a milestone in the development of future technological breakthroughs. The processability of MOFs as films on surfaces together with their major features (i.e. tunable porosity, large internal surface area, and high crystallinity) is broadening their range of applications to areas such as gas sensing, microelectronics, photovoltaics, and membrane-based separation technologies. Despite the recent attention that MOF thin films have received, many challenges still need to be addressed for their manufacturing and integrability, especially when an industrial scale-up perspective is envisioned. In this brief review, we introduce several appealing approaches that have been developed in the last few years. First, a summary of liquid phase strategies that comprise microfluidic methods and supersaturation-driven crystallization processes is described. Then, gas phase approaches based on atomic layer deposition (ALD) are also presented.
Collapse
Affiliation(s)
- Chiara Crivello
- Laboratoire des Matérieaux et do Génie Physique (LMGP), Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wu S, Wang X, Li Z, Zhang S, Xing F. Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors. MICROMACHINES 2020; 11:E1059. [PMID: 33265955 PMCID: PMC7760752 DOI: 10.3390/mi11121059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
This review reports the progress of the recent development of graphene-based microfluidic sensors. The introduction of microfluidics technology provides an important possibility for the advance of graphene biosensor devices for a broad series of applications including clinical diagnosis, biological detection, health, and environment monitoring. Compared with traditional (optical, electrochemical, and biological) sensing systems, the combination of graphene and microfluidics produces many advantages, such as achieving miniaturization, decreasing the response time and consumption of chemicals, improving the reproducibility and sensitivity of devices. This article reviews the latest research progress of graphene microfluidic sensors in the fields of electrochemistry, optics, and biology. Here, the latest development trends of graphene-based microfluidic sensors as a new generation of detection tools in material preparation, device assembly, and chip materials are summarized. Special emphasis is placed on the working principles and applications of graphene-based microfluidic biosensors, especially in the detection of nucleic acid molecules, protein molecules, and bacterial cells. This article also discusses the challenges and prospects of graphene microfluidic biosensors.
Collapse
Affiliation(s)
- Shigang Wu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China;
| | - Xin Wang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| | - Shijie Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; (X.W.); (S.Z.)
| |
Collapse
|
21
|
Ruiz-Zambrana CL, Malankowska M, Coronas J. Metal organic framework top-down and bottom-up patterning techniques. Dalton Trans 2020; 49:15139-15148. [PMID: 33094303 DOI: 10.1039/d0dt02207a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal organic frameworks (MOFs) have recently attracted considerable research interest in several fields from coordination chemistry and materials science to engineering and medicine not only due to energy and environmental issues but also due to the need for new paradigms of efficiency and sustainability according to the requirements of the 21st century global society. Because of their crystalline and organic-inorganic nature, they are able to crystallize constituting intergrown architectures ductile enough to be patterned, with the use of appropriate techniques, as nano- and micro-devices with multiple applications. This perspective comprehensively summarizes the recent state of the art in the use of top-down and bottom-up methodologies to create MOF structures with a defined pattern at the nano- and micro-scale.
Collapse
Affiliation(s)
- César L Ruiz-Zambrana
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. and Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Magdalena Malankowska
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. and Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. and Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
22
|
Göbel C, Hörner G, Greiner A, Schmalz H, Weber B. Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymer micelles. NANOSCALE ADVANCES 2020; 2:4557-4565. [PMID: 36132912 PMCID: PMC9418959 DOI: 10.1039/d0na00334d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/05/2020] [Indexed: 06/14/2023]
Abstract
Nanoparticles of the 1D and 2D coordination polymers [Zn(OAc)2(bipy)] n and [Zn(TFA)2(bppa)2] n were prepared, employing polystyrene-block-poly(4-vinylpyridine) diblock copolymers with different weight fractions of the 4-vinylpyridine (4VP) block and comparable overall molecular weights of M n ≈ 155 kg mol-1 as template (SV-15 and SV-42 with 15 and 42 wt% 4VP, respectively). [Zn(OAc)2(bipy)] n nanoparticles were successfully synthesised within the 4VP core of SV-42 micelles, showing a core size of D core = 47 ± 5 nm and a hydrodynamic diameter of D h = 157 ± 46 nm, determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The crystallinity of the composite is quite low, showing only low intensity reflexes in the powder X-ray diffraction (PXRD) pattern with the highest particle load. No indications for larger microcrystals were detected by scanning electron microscopy (SEM), proving the successful integration of the coordination polymer nanoparticles within the micellar cores. Nanocomposites of the 2D coordination network [Zn(TFA)2(bppa)2] n were synthesised using both diblock copolymers. The particle core sizes (from TEM) and hydrodynamic diameters (from DLS) correlate with the 4VP fraction of the micelles, resulting in D core = 46 ± 6 nm for SV-42 and 15 ± 2 nm for SV-15 and D h = 340 ± 153 nm and 177 ± 57 nm, respectively. The successful synthesis was proven by PXRD and SEM images, confirming the absence of larger crystallites. Hence, it is possible to synthesise nanocomposites of Zn-based 1D and 2D coordination polymers by a direct approach utilizing diblock copolymer micelles as template.
Collapse
Affiliation(s)
- Christoph Göbel
- Department of Chemistry, Inorganic Chemistry IV, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Gerald Hörner
- Department of Chemistry, Inorganic Chemistry IV, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Andreas Greiner
- Department of Chemistry, Macromolecular Chemistry II, Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Holger Schmalz
- Department of Chemistry, Macromolecular Chemistry II, Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Birgit Weber
- Department of Chemistry, Inorganic Chemistry IV, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
23
|
Wang Y, Zhao H, Liu X, Lin W, Jiang Y, Li J, Zhang Q, Zheng G. An integrated digital microfluidic bioreactor for fully automatic screening of microalgal growth and stress-induced lipid accumulation. Biotechnol Bioeng 2020; 118:294-304. [PMID: 32946108 DOI: 10.1002/bit.27570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023]
Abstract
Algae are the promising feedstock of biofuel. The screening of competent species and proper fertilizer supply is of the most important tasks. To accelerate this rather slow and laborious step, we developed an integrated high-throughput digital microfluidic (DMF) system that uses a discrete droplet to serve as a microbioreactor, encapsulating microalgal cells. On the basis of fundamental understanding of various droplet hydrodynamics induced by the existence of different sorts of ions and biological species, incorporation of capacitance-based position estimator, electrode-saving-based compensation, and deterministic splitting approach, was performed to optimize the DMF bioreactor. Thus, it enables all processes (e.g., nutrient gradient generation, algae culturing, and analyzing of growth and lipid accumulation) occurring automatically on-chip especially in a high-fidelity way. The ability of the system to compare different microalgal strains on-chip was investigated. Also, the Chlorella sp. were stressed by various conditions and then growth and oil accumulation were analyzed and compared, which demonstrated its potential as a powerful tool to investigate microalgal lipid accumulation at significantly lower laborites and reduced time.
Collapse
Affiliation(s)
- Yunhua Wang
- Institute of Environmental and Chemical Engineering, Dalian University, Dalian, China
| | - Hongyu Zhao
- Institute of Environmental and Chemical Engineering, Dalian University, Dalian, China
| | - Xianming Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wang Lin
- Institute of Environmental and Chemical Engineering, Dalian University, Dalian, China
| | - Youwei Jiang
- Department of Materials Science and Engineering, South University of Science and Technology, Shenzhen, China
| | - Jianfeng Li
- Department of R&D, Jiangsu Celyee Cell Technology Research Institute, Nanjing, China
| | - Qian Zhang
- Institute of Environmental and Chemical Engineering, Dalian University, Dalian, China
| | - Guoxia Zheng
- Institute of Environmental and Chemical Engineering, Dalian University, Dalian, China
| |
Collapse
|
24
|
Novio F. Design of Targeted Nanostructured Coordination Polymers (NCPs) for Cancer Therapy. Molecules 2020; 25:E3449. [PMID: 32751178 PMCID: PMC7436016 DOI: 10.3390/molecules25153449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Conventional cancer chemotherapy presents notable drug side effects due to non-selective action of the chemotherapeutics to normal cells. Nanoparticles decorated with receptor-specific ligands on the surface have shown an important role in improving site-selective binding, retention, and drug delivery to the cancer cells. This review summarizes the recent reported achievements using nanostructured coordination polymers (NCPs) with active targeting properties for cancer treatment in vitro and in vivo. Despite the controversy surrounding the effectivity of active targeting nanoparticles, several studies suggest that active targeting nanoparticles notably increase the selectivity and the cytotoxic effect in tumoral cells over the conventional anticancer drugs and non-targeted nanoparticle platform, which enhances drug efficacy and safety. In most cases, the nanocarriers have been endowed with remarkable capabilities such as stimuli-responsive properties, targeting abilities, or the possibility to be monitored by imaging techniques. Unfortunately, the lack of preclinical studies impedes the evaluation of these unique and promising findings for the translation of NCPs into clinical trials.
Collapse
Affiliation(s)
- Fernando Novio
- Departament de Química, Universitat Autónoma de Barcelona, Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
25
|
Tanaka Y, Kitamura Y, Kawano R, Shoji K, Hiratani M, Honma T, Takaya H, Yoshikawa H, Tsuruoka T, Tanaka D. Competing Roles of Two Kinds of Ligand during Nonclassical Crystallization of Pillared-Layer Metal-Organic Frameworks Elucidated Using Microfluidic Systems. Chemistry 2020; 26:8889-8896. [PMID: 32643834 DOI: 10.1002/chem.202001438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 11/08/2022]
Abstract
To diversify metal-organic frameworks (MOFs), multi-component MOFs constructed from more than two kinds of bridging ligand have been actively investigated due to the high degree of design freedom afforded by the combination of multiple ligands. Predicting the synthesis conditions for such MOFs requires an understanding of the crystallization mechanism, which has so far remained elusive. In this context, microflow systems are efficient tools for capturing non-equilibrium states as they facilitate precise and efficient mixing with reaction times that correspond to the distance from the mixing point, thus enabling reliable control of non-equilibrium crystallization processes. Herein, we prepared coordination polymers with pillared-layer structures and observed the intermediates in the syntheses with an in-situ measurement system that combines microflow reaction with UV/Vis and X-ray absorption fine-structure spectroscopies, thereby enabling their rapid nucleation to be monitored. Based on the results, a three-step nonclassical nucleation mechanism involving two kinds of intermediate is proposed.
Collapse
Affiliation(s)
- Yoko Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| | - Yu Kitamura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Kan Shoji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Moe Hiratani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, 1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hikaru Takaya
- Institute of Chemical Research, Kyoto University, Gokasyo, Uji-shi, Kyoto, 611-0011, Japan
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| | - Takaaki Tsuruoka
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20, Minatojimaminami-cho, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan.,JST, PRESTO, 2-1, Gakuen, Sanda-shi, Hyogo, 669-1337, Japan
| |
Collapse
|
26
|
Zhou Y, Wang D, Kang X, Zhang D, Dou X, Wang X, Guo G. A scalable synthesis of ternary nanocatalysts for a high-efficiency electrooxidation catalysis by microfluidics. NANOSCALE 2020; 12:12647-12654. [PMID: 32515460 DOI: 10.1039/d0nr03466e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic synthesis has attracted extensive attention due to the ability for the multistep precise control of the synthesis parameters, continuous and reproducible preparation, and its ease of integration. However, its commercial application is still affected by its low production efficiency. In this case, we report a high-throughput continuous flow synthesis of highly dispersed PtFeCu/C nanocatalysts using a metal microchip setup with four parallel channels. The high flow rate and integrated channels enabled improving the throughput, whereby 1.33 g h-1 of catalysts could be achieved with the flow rate of 1200 mL h-1 under the experimental conditions. The as-prepared PtFeCu/C exhibited excellent performance, 1.94 times higher than Pt/C for methanol oxidation. More importantly, the yield of the PtFeCu/C nanocatalysts could be further increased through designing numerous parallel channels, which might provide a promising approach for large-scale commercialization of the catalysts. Such a high-throughput fabrication pathway is significant for the large-scale industrial production of nanomaterials.
Collapse
Affiliation(s)
- Yingyan Zhou
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Chen Z, Bian F, Shang L, Zhu K, Zhao Y. Advances of droplet-based microfluidics in drug discovery. Expert Opin Drug Discov 2020; 15:969-979. [DOI: 10.1080/17460441.2020.1758663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kaixuan Zhu
- School of Electrical and Information Engineering, Suzhou Institute of Technology, Jiangsu University of Science and Technology, Zhangjiagang, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
28
|
Kanzaki C, Nakadozono T, Numata M. Creation of Discrete 1D Microstructures: Directional Dissociation from the Ends of a Metastable Supramolecular Polymer. Chempluschem 2019. [DOI: 10.1002/cplu.201900463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry Graduate School of Life and Environmental Sciences Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan
| | - Takuya Nakadozono
- Department of Biomolecular Chemistry Graduate School of Life and Environmental Sciences Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry Graduate School of Life and Environmental Sciences Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan
| |
Collapse
|
29
|
Kang SM, Lee GW, Huh YS. Centrifugal Force-Driven Modular Micronozzle System: Generation of Engineered Alginate Microspheres. Sci Rep 2019; 9:12776. [PMID: 31484984 PMCID: PMC6726759 DOI: 10.1038/s41598-019-49244-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/22/2019] [Indexed: 01/19/2023] Open
Abstract
In this study, we developed a modular micronozzle system that can control the flow of fluid based on centrifugal force and synthesize functional alginate microspheres with various structures and sizes. Our method is to fabricate a programmable microreactor that can be easily manufactured without the conventional soft-lithography process using various sequences of the micronozzles with various inner diameters. To overcome the obstacles of pump-based microfluidic devices that need to be precisely controlled, we designed the programmable microreactor to be driven under centrifugal force with a combination of micronozzles, thus enabling the mass production of various functional alginate microspheres within a few minutes. The programmable microreactor designed through the arrangement of the modular micronozzles enables the formation of various types of alginate microspheres such as core-shell, Janus, and particle mixture. These materials are controlled to a size from 400 µm to 900 µm. In addition, our platform is used to generate pH-responsive smart materials, and to easily control various sizes, shapes, and compositions simultaneously. By evaluating the release process of model drugs according to the pH change, the possibility of drug delivery application is confirmed. We believe that our method can contribute to development of biomaterials engineering that has been limited by the requirement of sophisticated devices, and special skills and/or labor.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia, 30332, United States
| | - Go-Woon Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
- Platform Technology Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Daejeon, 34129, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
- WCSL of Integrated Human Airway-on-a-Chip, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
30
|
Zhao S, Chen C, Zhu P, Xia H, Shi J, Yan F, Shen R. Passive Micromixer Platform for Size- and Shape-Controllable Preparation of Ultrafine HNS. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02396] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Li Y, Xuan J, Hu R, Zhang P, Lou X, Yang Y. Microfluidic triple-gradient generator for efficient screening of chemical space. Talanta 2019; 204:569-575. [PMID: 31357335 DOI: 10.1016/j.talanta.2019.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Generation of a combinatorial gradient for multiple chemicals is essential for studies of biochemical stimuli, chemoattraction, protein crystallization and others. While currently available platforms require complex design/settings to obtain a double-gradient chemical matrix, we herein report for the first time a simple triple-gradient matrix (TGM) device for efficient screening of chemical space. The TGM device is composed of two glass slides and works following the concept of SlipChip. The device utilizes XYZ space to distribute three chemicals and establishes a chemical gradient matrix within 5 min. The established matrix contains 24 or 104 screening conditions depending on the device used, which covers a concentration range of [0.117-1, 0.117-1 and 0.686-1] and [0.0830-1, 0.0830-1, 0.686-1] respectively for the three chemicals. With the triple gradients built simultaneously, this TGM device provides order-of-magnitude improvement in screening efficiency over existing single- or double-gradient generators. As a proof of concept, we applied the device to screen the crystallization conditions for two model proteins of lysozyme and trypsin and confirmed the crystal structures using X-ray diffraction. Furthermore, we successfully obtained the crystallization condition of adhesin competence repressor, a protein that senses the alterations in intracellular zinc concentrations. We expect the TGM system to be widely used as an analytical platform for material synthesis and chemical screening beyond for protein crystallization.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Jie Xuan
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT 84602, USA
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Pengchao Zhang
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xiaohua Lou
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
32
|
Dynamic characterization of nanoparticles production in a droplet-based continuous flow microreactor. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Nunna BB, Mandal D, Lee JU, Zhuang S, Lee ES. Sensitivity Study of Cancer Antigens (CA-125) Detection Using Interdigitated Electrodes Under Microfluidic Flow Condition. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-018-0589-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Abstract
Materials science is a fast-evolving area that aims to uncover functional materials with ever more sophisticated properties and functions. For this to happen, new methodologies for materials synthesis, optimization, and preparation are desired. In this context, microfluidic technologies have emerged as a key enabling tool for a low-cost and fast prototyping of materials. Their ability to screen multiple reaction conditions rapidly with a small amount of reagent, together with their unique physico-chemical characteristics, have made microfluidic devices a cornerstone technology in this research field. Among the different microfluidic approaches to materials synthesis, the main contenders can be classified in two categories: continuous-flow and segmented-flow microfluidic devices. These two families of devices present very distinct characteristics, but they are often pooled together in general discussions about the field with seemingly little awareness of the major divide between them. In this perspective, we outline the parallel evolution of those two sub-fields by highlighting the key differences between both approaches, via a discussion of their main achievements. We show how continuous-flow microfluidic approaches, mimicking nature, provide very finely-tuned chemical gradients that yield highly-controlled reaction–diffusion (RD) areas, while segmented-flow microfluidic systems provide, on the contrary, very fast homogenization methods, and therefore well-defined super-saturation regimes inside arrays of micro-droplets that can be manipulated and controlled at the milliseconds scale. Those two classes of microfluidic reactors thus provide unique and complementary advantages over classical batch synthesis, with a drive towards the rational synthesis of out-of-equilibrium states for the former, and the preparation of high-quality and complex nanoparticles with narrow size distributions for the latter.
Collapse
|
35
|
Huang H, du Toit H, Panariello L, Mazzei L, Gavriilidis A. Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Gold nanomaterials have diverse applications ranging from healthcare and nanomedicine to analytical sciences and catalysis. Microfluidic and millifluidic reactors offer multiple advantages for their synthesis and manufacturing, including controlled or fast mixing, accurate reaction time control and excellent heat transfer. These advantages are demonstrated by reviewing gold nanoparticle synthesis strategies in flow devices. However, there are still challenges to be resolved, such as reactor fouling, particularly if robust manufacturing processes are to be developed to achieve the desired targets in terms of nanoparticle size, size distribution, surface properties, process throughput and robustness. Solutions to these challenges are more effective through a coordinated approach from chemists, engineers and physicists, which has at its core a qualitative and quantitative understanding of the synthesis processes and reactor operation. This is important as nanoparticle synthesis is complex, encompassing multiple phenomena interacting with each other, often taking place at short timescales. The proposed methodology for the development of reactors and processes is generic and contains various interconnected considerations. It aims to be a starting point towards rigorous design procedures for the robust and reproducible continuous flow synthesis of gold nanoparticles.
Graphical Abstract:
Collapse
Affiliation(s)
- He Huang
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Hendrik du Toit
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Panariello
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Mazzei
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| |
Collapse
|
36
|
Molecular Synchronization Enhances Molecular Interactions: An Explanatory Note of Pressure Effects. CRYSTALS 2018. [DOI: 10.3390/cryst8070300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we investigated a unique aspect of the supramolecular polymerization of tetrakis (4-sulfonatophenyl) porphyrin (TPPS), a self-assembling porphyrin, under non-equilibrium conditions by subtracting the effects of back-pressure on its polymerization. We focused on the enhanced self-assembly abilities of TPPS under a process of rapid proton diffusion in a microflow channel. Rapid protonation caused synchronization of many sets of protonation/deprotonation equilibria on the molecular scale, leading to the production of many sets of growing suparmolecular spices. Pressure effects in the microflow channel, which could potentially promote self-assembly of TPPS, were negligible, becoming predominant only when the system was in the synchronized state.
Collapse
|
37
|
Damiati S, Kompella UB, Damiati SA, Kodzius R. Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes (Basel) 2018; 9:E103. [PMID: 29462948 PMCID: PMC5852599 DOI: 10.3390/genes9020103] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, Ophthalmology, and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Safa A Damiati
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, The American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Materials Genome Institute, Shanghai University, Shanghai 200444, China.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
38
|
González-Estefan JH, Gonidec M, Daro N, Marchivie M, Chastanet G. Extreme downsizing in the surfactant-free synthesis of spin-crossover nanoparticles in a microfluidic flow-focusing junction. Chem Commun (Camb) 2018; 54:8040-8043. [DOI: 10.1039/c8cc02232a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new surfactant-free, flow-focusing droplet microfluidic approach was developed as an important alternative to existing synthesis techniques for the preparation of spin crossover nanoparticles.
Collapse
|
39
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
40
|
Li S, Zeng M, Gaule T, McPherson MJ, Meldrum FC. Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702154. [PMID: 28873281 DOI: 10.1002/smll.201702154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Segmented flow microfluidic devices offer an attractive means of studying crystallization processes. However, while they are widely employed for protein crystallization, there are few examples of their use for sparingly soluble compounds due to problems with rapid device fouling and irreproducibility over longer run-times. This article presents a microfluidic device which overcomes these issues, as this is constructed around a novel design of "picoinjector" that facilitates direct injection into flowing droplets. Exploiting a Venturi junction to reduce the pressure within the droplet, it is shown that passive injection of solution from a side-capillary can be achieved in the absence of an applied electric field. The operation of this device is demonstrated for calcium carbonate, where highly reproducible results are obtained over long run-times at high supersaturations. This compares with conventional devices that use a Y-junction to achieve solution loading, where in-channel precipitation of calcium carbonate occurs even at low supersaturations. This work not only opens the door to the use of microfluidics to study the crystallization of low solubility compounds, but the simple design of a passive picoinjector will find wide utility in areas including multistep reactions and investigation of reaction dynamics.
Collapse
Affiliation(s)
- Shunbo Li
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Muling Zeng
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Thembaninkosi Gaule
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael J McPherson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
41
|
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX. Progress of crystallization in microfluidic devices. LAB ON A CHIP 2017; 17:2167-2185. [PMID: 28585942 DOI: 10.1039/c6lc01225f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic technology provides a unique environment for the investigation of crystallization processes at the nano or meso scale. The convenient operation and precise control of process parameters, at these scales of operation enabled by microfluidic devices, are attracting significant and increasing attention in the field of crystallization. In this paper, developments and applications of microfluidics in crystallization research including: crystal nucleation and growth, polymorph and cocrystal screening, preparation of nanocrystals, solubility and metastable zone determination, are summarized and discussed. The materials used in the construction and the structure of these microfluidic devices are also summarized and methods for measuring and modelling crystal nucleation and growth process as well as the enabling analytical methods are also briefly introduced. The low material consumption, high efficiency and precision of microfluidic crystallizations are of particular significance for active pharmaceutical ingredients, proteins, fine chemicals, and nanocrystals. Therefore, it is increasingly adopted as a mainstream technology in crystallization research and development.
Collapse
Affiliation(s)
- Huan-Huan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
43
|
Liang YR, Zhu LN, Gao J, Zhao HX, Zhu Y, Ye S, Fang Q. 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11837-11845. [PMID: 28306245 DOI: 10.1021/acsami.6b15933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.
Collapse
Affiliation(s)
- Yi-Ran Liang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Li-Na Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Hong-Xia Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Sheng Ye
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
44
|
Cheng L, Cai B, Zuo Y, Xiao L, Rao L, He Z, Yang Y, Liu W, Guo S, Zhao XZ. Janus droplet parallel arrangements using a simple Y-channel flow-focusing microfluidic device. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Čadková M, Kovářová A, Dvořáková V, Bílková Z, Korecká L. Optimization of anodic stripping voltammetry conditions for efficient detection of quantum dots at micro flow-cell electrodes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1922-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Brimmo AT, Qasaimeh MA. Microfluidic Probes and Quadrupoles: A new era of open microfluidics. IEEE NANOTECHNOLOGY MAGAZINE 2017. [DOI: 10.1109/mnano.2016.2633678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Cazorla C, Billamboz M, Bricout H, Monflier E, Len C. Green and Scalable Palladium-on-Carbon-Catalyzed Tsuji-Trost Coupling Reaction Using an Efficient and Continuous Flow System. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Clément Cazorla
- Sorbonne Universités; Université de Technologie de Compiègne, Centre de Recherche Royallieu; CS 60 319 60203 Compiègne Cedex France
| | - Muriel Billamboz
- Ecole Supérieure de Chimie Organique et Minérale; 1 allée du Réseau Jean-Marie Buckmaster 60200 Compiègne France
| | - Hervé Bricout
- Unité de Catalyse et de Chimie du Solide (UCCS); UMR 8181; Centre national de la recherche scientifique, Centrale Lille; École nationale supérieure de chimie de Lille, Université Lille; Université d′Artois; 62300 Lens France
| | - Eric Monflier
- Unité de Catalyse et de Chimie du Solide (UCCS); UMR 8181; Centre national de la recherche scientifique, Centrale Lille; École nationale supérieure de chimie de Lille, Université Lille; Université d′Artois; 62300 Lens France
| | - Christophe Len
- Sorbonne Universités; Université de Technologie de Compiègne, Centre de Recherche Royallieu; CS 60 319 60203 Compiègne Cedex France
| |
Collapse
|
48
|
|
49
|
Ma Y, Pan JZ, Zhao SP, Lou Q, Zhu Y, Fang Q. Microdroplet chain array for cell migration assays. LAB ON A CHIP 2016; 16:4658-4665. [PMID: 27833945 DOI: 10.1039/c6lc00823b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Establishing cell migration assays in multiple different microenvironments is important in the study of tissue repair and regeneration, cancer progression, atherosclerosis, and arthritis. In this work, we developed a miniaturized and massive parallel microfluidic platform for multiple cell migration assays combining the traditional membrane-based cell migration technique and the droplet-based microfluidic technique. Nanoliter-scale droplets are flexibly assembled as building blocks based on a porous membrane to form microdroplet chains with diverse configurations for different assay modes. Multiple operations including in-droplet 2D/3D cell culture, cell co-culture and cell migration induced by a chemoattractant concentration gradient in droplet chains could be flexibly performed with reagent consumption in the nanoliter range for each assay and an assay scale-up to 81 assays in parallel in one microchip. We have applied the present platform to multiple modes of cell migration assays including the accurate cell migration assay, competitive cell migration assay, biomimetic chemotaxis assay, and multifactor cell migration assay based on the organ-on-a-chip concept, for demonstrating its versatility, applicability, and potential in cell migration-related research.
Collapse
Affiliation(s)
- Yan Ma
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Shi-Ping Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
50
|
Varma VB, Ray A, Wang ZM, Wang ZP, Ramanujan RV. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields. Sci Rep 2016; 6:37671. [PMID: 27892475 PMCID: PMC5124862 DOI: 10.1038/srep37671] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
Droplet microfluidics offers a range of Lab-on-a-chip (LoC) applications. However, wireless and programmable manipulation of such droplets is a challenge. We address this challenge by experimental and modelling studies of uniform magnetic field induced merging of ferrofluid based droplets. Control of droplet velocity and merging was achieved through uniform magnetic field and flow rate ratio. Conditions for droplet merging with respect to droplet velocity were studied. Merging and mixing of colour dye + magnetite composite droplets was demonstrated. Our experimental and numerical results are in good agreement. These studies are useful for wireless and programmable droplet merging as well as mixing relevant to biosensing, bioassay, microfluidic-based synthesis, reaction kinetics, and magnetochemistry.
Collapse
Affiliation(s)
- V B Varma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - A Ray
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Z M Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Z P Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Dr, 638075, Singapore
| | - R V Ramanujan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|