1
|
Yan K, Chen D, Guo X, Wan Y, Yang C, Wang W, Li X, Lu Z, Wang D. Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties. Carbohydr Polym 2024; 346:122609. [PMID: 39245522 DOI: 10.1016/j.carbpol.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Ding Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoming Guo
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Yekai Wan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| |
Collapse
|
2
|
Enbergs S, Shopperly LK, Engels A, Laue D, Ertel W, Sittinger M, Rendenbach C, Dehne T, Jagielski M, Spinnen J. Additively Manufactured 3D Clamp-Culture System for the Investigation of Material-Cell Interactions in Multi-Material Hybrid Scaffolds for Musculoskeletal Tissue Defects. J Biomed Mater Res B Appl Biomater 2024; 112:e35494. [PMID: 39508626 DOI: 10.1002/jbm.b.35494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
The emergence of hybrid scaffolds, blending biomaterials with diverse properties, offers promise in musculoskeletal tissue engineering. However, a need for in vitro platforms investigating biological behavior and the interplay of different load-bearing and colonizable synthetic bone substitute materials remains. Herein, we present a novel, in-house producible, and scalable clamp culture system designed for facile in vitro analysis of interactions between biomaterials, hydrogels, and cells. The system, constructed here from an exemplary 3D-printable polymer and photopolymerizable hydrogel using a widely available benchtop 3D printer, ensures mechanical stability and protection for the embedded hydrogel via its double-clamp structure, facilitating various analytical methods while preserving culture integrity. Hybrid clamp cultures were additively manufactured from polylactic acid, filled with a bone precursor cell-laden methacrylate gelatin hydrogel, cultured for 14 days, and analyzed for cell viability, mineralization, and osseous differentiation. Results indicate no adverse effects on osteogenic differentiation or mineralization compared to conventional droplet cultures, with enhanced cell viability and simplified handling and downstream analysis. This system demonstrates the potential for robust experimentation in tissue engineering and is adaptable to various plate formats, and thus highly suitable for the investigation of biomaterial-cell interactions and the development of implants for musculoskeletal tissue defects.
Collapse
Affiliation(s)
- Simon Enbergs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Tissue Engineering Laboratory, BIH Center of Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | | | - Andreas Engels
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Tissue Engineering Laboratory, BIH Center of Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Dominik Laue
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Sittinger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Tissue Engineering Laboratory, BIH Center of Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Carsten Rendenbach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Tilo Dehne
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Tissue Engineering Laboratory, BIH Center of Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | | | - Jacob Spinnen
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Junior Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
3
|
McDuffie D, Alver CG, Suthar B, Helm M, Oliver D, Burgess RA, Barr D, Thomas E, Agarwal A. Acrylic-based culture plate format perfusion device to establish liver endothelial-epithelial interface. LAB ON A CHIP 2023; 23:3106-3119. [PMID: 37313651 PMCID: PMC10351567 DOI: 10.1039/d3lc00382e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microphysiological Systems (MPSs) or organs-on-chips, are microfluidic devices used to model human physiology in vitro. Polydimethylsiloxane (PDMS) is the most widely used material for organs-on-chips due to its established fabrication methods and biocompatibility properties. However, non-specific binding of small molecules limits PDMS for drug screening applications. Here, we designed a novel acrylic-based MPS to capture the physiological architecture that is observed universally in tissues across the body: the endothelial-epithelial interface (EEI). To reconstruct the EEI biology, we designed a membrane-based chip that features endothelial cells on the underside of the membrane exposed to mechanical shear from the path of media flow, and epithelial cells on the opposite side of the membrane protected from flow, as they are in vivo. We used a liver model with a hepatic progenitor cell line and human umbilical vein endothelial cells to assess the biological efficacy of the MPS. We computationally modeled the physics that govern the function of perfusion through the MPS. Empirically, efficacy was measured by comparing differentiation of the hepatic progenitor cells between the MPS and 2D culture conditions. We demonstrated that the MPS significantly improved hepatocyte differentiation, increased extracellular protein transport, and raised hepatocyte sensitivity to drug treatment. Our results strongly suggest that physiological perfusion has a profound effect on proper hepatocyte function, and the modular chip design motivates opportunities for future study of multi-organ interactions.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Charles G Alver
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Bhumi Suthar
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Madeline Helm
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - David Oliver
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - R Alan Burgess
- Department of Pathology & Laboratory Medicine, Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - David Barr
- Department of Pathology & Laboratory Medicine, Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Emmanuel Thomas
- Department of Pathology & Laboratory Medicine, Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, USA
| |
Collapse
|
4
|
Zare M, Mirhoseini SZ, Ghovvati S, Yakhkeshi S, Hesaraki M, Barati M, Sayyahpour FA, Baharvand H, Hassani SN. The constitutively active pSMAD2/3 relatively improves the proliferation of chicken primordial germ cells. Mol Reprod Dev 2023. [PMID: 37379342 DOI: 10.1002/mrd.23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-β signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-β signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-β, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.
Collapse
Affiliation(s)
- Masumeh Zare
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojgan Barati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayyahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Kim YT, Ahmadianyazdi A, Folch A. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography. Nat Protoc 2023; 18:1243-1259. [PMID: 36609643 PMCID: PMC10101882 DOI: 10.1038/s41596-022-00792-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/03/2022] [Indexed: 01/07/2023]
Abstract
Methods to make microfluidic chips using 3D printers have attracted much attention because these simple procedures allow rapid fabrication of ready-to-use products from digital 3D designs with minimal human intervention. Printing high-resolution chips that are simultaneously transparent, biocompatible and contain regions of dissimilar materials is an ongoing challenge. Transparency allows for the optical inspection of specimens containing cells and labeled biomolecules inside the chip. Being able to use different materials for different layers in the product increases the number of potential applications. In this 'print-pause-print' protocol, we describe detailed strategies for fabricating transparent biomicrofluidic devices and multimaterial chips using stereolithographic 3D printing. To print transparent biomicrofluidic chips, we developed a transparent resin based on poly(ethylene glycol) diacrylate (PEG-DA) (average molecular weight: 250 g/mol, PEG-DA-250) and a smooth chip surface technique achieved using glass. Cells can be successfully cultured and visualized on PEG-DA-250 prints and inside PEG-DA-250 microchannels. The multimaterial potential of the technique is exemplified using a molecular diffusion device that comprises parts made of two different materials: the channel walls, which are water impermeable, and a porous barrier structure, which is permeable to small molecules that diffuse through it. The two materials were prepared from two different molecular-weight PEG-DA-based printing resins. Alignment of the two dissimilar material structures is performed automatically by the printer during the printing process, which only requires a simple pause step to exchange the resins. The procedure takes less than 1 h and can facilitate chip-based applications including biomolecule analysis, cell biology, organ-on-a-chip and tissue engineering.
Collapse
Affiliation(s)
- Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Tech University of Korea, Siheung-si, Republic of Korea.
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Singh AV, Chandrasekar V, Laux P, Luch A, Dakua SP, Zamboni P, Shelar A, Yang Y, Pandit V, Tisato V, Gemmati D. Micropatterned Neurovascular Interface to Mimic the Blood–Brain Barrier’s Neurophysiology and Micromechanical Function: A BBB-on-CHIP Model. Cells 2022; 11:cells11182801. [PMID: 36139383 PMCID: PMC9497163 DOI: 10.3390/cells11182801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/25/2022] Open
Abstract
A hybrid blood–brain barrier (BBB)-on-chip cell culture device is proposed in this study by integrating microcontact printing and perfusion co-culture to facilitate the study of BBB function under high biological fidelity. This is achieved by crosslinking brain extracellular matrix (ECM) proteins to the transwell membrane at the luminal surface and adapting inlet–outlet perfusion on the porous transwell wall. While investigating the anatomical hallmarks of the BBB, tight junction proteins revealed tortuous zonula occludens (ZO-1), and claudin expressions with increased interdigitation in the presence of astrocytes were recorded. Enhanced adherent junctions were also observed. This junctional phenotype reflects in-vivo-like features related to the jamming of cell borders to prevent paracellular transport. Biochemical regulation of BBB function by astrocytes was noted by the transient intracellular calcium effluxes induced into endothelial cells. Geometry-force control of astrocyte–endothelial cell interactions was studied utilizing traction force microscopy (TFM) with fluorescent beads incorporated into a micropatterned polyacrylamide gel (PAG). We observed the directionality and enhanced magnitude in the traction forces in the presence of astrocytes. In the future, we envisage studying transendothelial electrical resistance (TEER) and the effect of chemomechanical stimulations on drug/ligand permeability and transport. The BBB-on-chip model presented in this proposal should serve as an in vitro surrogate to recapitulate the complexities of the native BBB cellular milieus.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
- Correspondence: (A.V.S.); (S.P.D.)
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- Correspondence: (A.V.S.); (S.P.D.)
| | - Paolo Zamboni
- Department of Vascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Doha 24404, Qatar
| | - Vaibhav Pandit
- Dynex Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151, USA
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Engineered human blood-brain barrier microfluidic model for vascular permeability analyses. Nat Protoc 2022; 17:95-128. [PMID: 34997242 DOI: 10.1038/s41596-021-00635-w] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/15/2021] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) greatly restricts the entry of biological and engineered therapeutic molecules into the brain. Due to challenges in translating results from animal models to the clinic, relevant in vitro human BBB models are needed to assess pathophysiological molecular transport mechanisms and enable the design of targeted therapies for neurological disorders. This protocol describes an in vitro model of the human BBB self-assembled within microfluidic devices from stem-cell-derived or primary brain endothelial cells, and primary brain pericytes and astrocytes. This protocol requires 1.5 d for device fabrication, 7 d for device culture and up to 5 d for downstream imaging, protein and gene expression analyses. Methodologies to measure the permeability of any molecule in the BBB model, which take 30 min per device, are also included. Compared with standard 2D assays, the BBB model features relevant cellular organization and morphological characteristics, as well as values of molecular permeability within the range expected in vivo. These properties, coupled with a functional brain endothelial expression profile and the capability to easily test several repeats with low reagent consumption, make this BBB model highly suitable for widespread use in academic and industrial laboratories.
Collapse
|
8
|
Dudman J, Ferreira AM, Gentile P, Wang X, Dalgarno K. Microvalve Bioprinting of MSC-Chondrocyte Co-Cultures. Cells 2021; 10:cells10123329. [PMID: 34943837 PMCID: PMC8699323 DOI: 10.3390/cells10123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 12/05/2022] Open
Abstract
Recent improvements within the fields of high-throughput screening and 3D tissue culture have provided the possibility of developing in vitro micro-tissue models that can be used to study diseases and screen potential new therapies. This paper reports a proof-of-concept study on the use of microvalve-based bioprinting to create laminar MSC-chondrocyte co-cultures to investigate whether the use of MSCs in ACI procedures would stimulate enhanced ECM production by chondrocytes. Microvalve-based bioprinting uses small-scale solenoid valves (microvalves) to deposit cells suspended in media in a consistent and repeatable manner. In this case, MSCs and chondrocytes have been sequentially printed into an insert-based transwell system in order to create a laminar co-culture, with variations in the ratios of the cell types used to investigate the potential for MSCs to stimulate ECM production. Histological and indirect immunofluorescence staining revealed the formation of dense tissue structures within the chondrocyte and MSC-chondrocyte cell co-cultures, alongside the establishment of a proliferative region at the base of the tissue. No stimulatory or inhibitory effect in terms of ECM production was observed through the introduction of MSCs, although the potential for an immunomodulatory benefit remains. This study, therefore, provides a novel method to enable the scalable production of therapeutically relevant micro-tissue models that can be used for in vitro research to optimise ACI procedures.
Collapse
Affiliation(s)
- Joseph Dudman
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
| | - Xiao Wang
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
- Correspondence:
| |
Collapse
|
9
|
Chong HB, Youn J, Shin W, Kim HJ, Kim DS. Multiplex recreation of human intestinal morphogenesis on a multi-well insert platform by basolateral convective flow. LAB ON A CHIP 2021; 21:3316-3327. [PMID: 34323906 DOI: 10.1039/d1lc00404b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report a multiplex culture system that enables simultaneous recreation of multiple replications of the three-dimensional (3D) microarchitecture of the human intestinal epithelium in vitro. The "basolateral convective flow-generating multi-well insert platform (BASIN)" contains 24 nano-porous inserts and an open basolateral chamber applying controllable convective flow in the basolateral compartment that recreates a biomimetic morphogen gradient using a conventional orbital shaker. The mechanistic approach by which the removal of morphogen inhibitors in the basolateral medium can induce intestinal morphogenesis was applied to manipulate the basolateral convective flow in space and time. In a multiplex BASIN, we successfully regenerated a 3D villi-like intestinal microstructure using the Caco-2 human intestinal epithelium that presents high barrier function with minimal insert-to-insert variations. The enhanced cytodifferentiation and proliferation of the 3D epithelial layers formed in the BASIN were visualized with markers of absorptive (villin) and proliferative cells (Ki67). The paracellular transport and efflux profiles of the microengineered 3D epithelial layers in the BASIN confirmed its reproducibility, robustness, and scalability for multiplex biochemical or pharmaceutical studies. Finally, the BASIN was used to investigate the effects of dextran sodium sulfate on the intestinal epithelial barrier and morphology to validate its practical applicability for investigating the effects of external chemicals on the intestinal epithelium and constructing a leaky-gut model. We envision that the BASIN may provide an improved multiplex, scalable, and physiological intestinal epithelial model that is readily accessible to researchers in both basic and applied sciences.
Collapse
Affiliation(s)
- Hyeon Beom Chong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | | | | | | | | |
Collapse
|
10
|
de Haan L, Suijker J, van Roey R, Berges N, Petrova E, Queiroz K, Strijker W, Olivier T, Poeschke O, Garg S, van den Broek LJ. A Microfluidic 3D Endothelium-on-a-Chip Model to Study Transendothelial Migration of T Cells in Health and Disease. Int J Mol Sci 2021; 22:8234. [PMID: 34361000 PMCID: PMC8347346 DOI: 10.3390/ijms22158234] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luuk de Haan
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Johnny Suijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Ruthger van Roey
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Nina Berges
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Elissaveta Petrova
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Karla Queiroz
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Wouter Strijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Thomas Olivier
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Oliver Poeschke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Sakshi Garg
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Lenie J. van den Broek
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| |
Collapse
|
11
|
Abstract
The blood-brain barrier (BBB) is one of the most selective endothelial barriers. An understanding of its cellular, morphological, and biological properties in health and disease is necessary to develop therapeutics that can be transported from blood to brain. In vivo models have provided some insight into these features and transport mechanisms adopted at the brain, yet they have failed as a robust platform for the translation of results into clinical outcomes. In this article, we provide a general overview of major BBB features and describe various models that have been designed to replicate this barrier and neurological pathologies linked with the BBB. We propose several key parameters and design characteristics that can be employed to engineer physiologically relevant models of the blood-brain interface and highlight the need for a consensus in the measurement of fundamental properties of this barrier.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Baptiste Le Roi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ben M Maoz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Rauti R, Ess A, Le Roi B, Kreinin Y, Epshtein M, Korin N, Maoz BM. Transforming a well into a chip: A modular 3D-printed microfluidic chip. APL Bioeng 2021; 5:026103. [PMID: 33948527 PMCID: PMC8084581 DOI: 10.1063/5.0039366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Organ-on-a-Chip platforms provide rich opportunities to observe interactions between different cell types under in vivo-like conditions, i.e., in the presence of flow. Yet, the costs and know-how required for the fabrication and implementation of these platforms restrict their accessibility. This study introduces and demonstrates a novel Insert-Chip: a microfluidic device that provides the functionality of an Organ-on-a-Chip platform, namely, the capacity to co-culture cells, expose them to flow, and observe their interactions-yet can easily be integrated into standard culture systems (e.g., well plates or multi-electrode arrays). The device is produced using stereolithograpy 3D printing and is user-friendly and reusable. Moreover, its design features overcome some of the measurement and imaging challenges characterizing standard Organ-on-a-Chip platforms. We have co-cultured endothelial and epithelial cells under flow conditions to demonstrate the functionality of the device. Overall, this novel microfluidic device is a promising platform for the investigation of biological functions, cell-cell interactions, and response to therapeutics.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Adi Ess
- Sagol School of Neuroscience, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Baptiste Le Roi
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Yevgeniy Kreinin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Ben M. Maoz
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. MICROMACHINES 2020; 11:mi11121089. [PMID: 33316971 PMCID: PMC7763644 DOI: 10.3390/mi11121089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.
Collapse
|
14
|
Ishahak M, Hill J, Amin Q, Wubker L, Hernandez A, Mitrofanova A, Sloan A, Fornoni A, Agarwal A. Modular Microphysiological System for Modeling of Biologic Barrier Function. Front Bioeng Biotechnol 2020; 8:581163. [PMID: 33304889 PMCID: PMC7693638 DOI: 10.3389/fbioe.2020.581163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Microphysiological systems, also known as organs-on-chips, are microfluidic devices designed to model human physiology in vitro. Polydimethylsiloxane (PDMS) is the most widely used material for organs-on-chips due to established microfabrication methods, and properties that make it suitable for biological applications such as low cytotoxicity, optical transparency, gas permeability. However, absorption of small molecules and leaching of uncrosslinked oligomers might hinder the adoption of PDMS-based organs-on-chips for drug discovery assays. Here, we have engineered a modular, PDMS-free microphysiological system that is capable of recapitulating biologic barrier functions commonly demonstrated in PDMS-based devices. Our microphysiological system is comprised of a microfluidic chip to house cell cultures and pneumatic microfluidic pumps to drive flow with programmable pressure and shear stress. The modular architecture and programmable pumps enabled us to model multiple in vivo microenvironments. First, we demonstrate the ability to generate cyclic strain on the culture membrane and establish a model of the alveolar air-liquid interface. Next, we utilized three-dimensional finite element analysis modeling to characterize the fluid dynamics within the device and develop a model of the pressure-driven filtration that occurs at the glomerular filtration barrier. Finally, we demonstrate that our model can be used to recapitulate sphingolipid induced kidney injury. Together, our results demonstrate that a multifunctional and modular microphysiological system can be deployed without the use of PDMS. Further, the bio-inert plastic used in our microfluidic device is amenable to various established, high-throughput manufacturing techniques, such as injection molding. As a result, the development plastic organs-on-chips provides an avenue to meet the increasing demand for organ-on-chip technology.
Collapse
Affiliation(s)
- Matthew Ishahak
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Jordan Hill
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Quratulain Amin
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Laura Wubker
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Adiel Hernandez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Department of Biochemistry & Molecular Biology, DJTMF Biomedical Nanotechnology Institute, University of Miami Miller School of Medicine, Miami, FL, United States.,Katz Family Division of Nephrology and Hypertension, Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States.,Department of Biochemistry & Molecular Biology, DJTMF Biomedical Nanotechnology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
15
|
Ramiah Rajasekaran P, Chapin AA, Quan DN, Herberholz J, Bentley WE, Ghodssi R. 3D-Printed electrochemical sensor-integrated transwell systems. MICROSYSTEMS & NANOENGINEERING 2020; 6:100. [PMID: 34567709 PMCID: PMC8433167 DOI: 10.1038/s41378-020-00208-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/03/2020] [Accepted: 08/16/2020] [Indexed: 05/05/2023]
Abstract
This work presents a 3D-printed, modular, electrochemical sensor-integrated transwell system for monitoring cellular and molecular events in situ without sample extraction or microfluidics-assisted downstream omics. Simple additive manufacturing techniques such as 3D printing, shadow masking, and molding are used to fabricate this modular system, which is autoclavable, biocompatible, and designed to operate following standard operating protocols (SOPs) of cellular biology. Integral to the platform is a flexible porous membrane, which is used as a cell culture substrate similarly to a commercial transwell insert. Multimodal electrochemical sensors fabricated on the membrane allow direct access to cells and their products. A pair of gold electrodes on the top side of the membrane measures impedance over the course of cell attachment and growth, characterized by an exponential decrease (~160% at 10 Hz) due to an increase in the double layer capacitance from secreted extracellular matrix (ECM) proteins. Cyclic voltammetry (CV) sensor electrodes, fabricated on the bottom side of the membrane, enable sensing of molecular release at the site of cell culture without the need for downstream fluidics. Real-time detection of ferrocene dimethanol injection across the membrane showed a three order-of-magnitude higher signal at the membrane than in the bulk media after reaching equilibrium. This modular sensor-integrated transwell system allows unprecedented direct, real-time, and noninvasive access to physical and biochemical information, which cannot be obtained in a conventional transwell system.
Collapse
Affiliation(s)
| | - Ashley Augustiny Chapin
- Institute for Systems Research, University of Maryland, College Park, MD USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - David N. Quan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - Jens Herberholz
- Department of Psychology and Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| |
Collapse
|
16
|
Rodriguez A, Horowitz L, Castro K, Kenerson H, Bhattacharjee N, Gandhe G, Raman A, Monnat RJ, Yeung R, Rostomily R, Folch A. A microfluidic platform for functional testing of cancer drugs on intact tumor slices. LAB ON A CHIP 2020; 20:1658-1675. [PMID: 32270149 PMCID: PMC7679198 DOI: 10.1039/c9lc00811j] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Present approaches to assess cancer treatments are often inaccurate, costly, and/or cumbersome. Functional testing platforms that use live tumor cells are a promising tool both for drug development and for identifying the optimal therapy for a given patient, i.e. precision oncology. However, current methods that utilize patient-derived cells from dissociated tissue typically lack the microenvironment of the tumor tissue and/or cannot inform on a timescale rapid enough to guide decisions for patient-specific therapy. We have developed a microfluidic platform that allows for multiplexed drug testing of intact tumor slices cultured on a porous membrane. The device is digitally-manufactured in a biocompatible thermoplastic by laser-cutting and solvent bonding. Here we describe the fabrication process in detail, we characterize the fluidic performance of the device, and demonstrate on-device drug-response testing with tumor slices from xenografts and from a patient colorectal tumor.
Collapse
Affiliation(s)
- A.D Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - L.F Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - K. Castro
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - H. Kenerson
- Department of Surgery, University of Washington Seattle, WA 98105, USA
| | - N. Bhattacharjee
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - G. Gandhe
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - A. Raman
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - R. J. Monnat
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - R. Yeung
- Department of Surgery, University of Washington Seattle, WA 98105, USA
| | - R.C. Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA
- Weill Cornell School of Medicine, Department of Neurosurgery
| | - A. Folch
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
17
|
Abstract
Neutrophil chemotaxis plays a vital role in human immune system. Compared with traditional cell migration assays, the emergence of microfluidics provides a new research platform of cell chemotaxis study due to the advantages of visualization, precise control of chemical gradient, and small consumption of reagents. A series of microfluidic devices have been fabricated to study the behavior of neutrophils exposed on controlled, stable, and complex profiles of chemical concentration gradients. In addition, microfluidic technology offers a promising way to integrate the other functions, such as cell culture, separation and analysis into a single chip. Therefore, an overview of recent developments in microfluidic-based neutrophil chemotaxis studies is presented. Meanwhile, the strength and drawbacks of these devices are compared.
Collapse
|
18
|
Horowitz LF, Rodriguez AD, Ray T, Folch A. Microfluidics for interrogating live intact tissues. MICROSYSTEMS & NANOENGINEERING 2020; 6:69. [PMID: 32879734 PMCID: PMC7443437 DOI: 10.1038/s41378-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
The intricate microarchitecture of tissues - the "tissue microenvironment" - is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce, in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed. Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. Here, we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales. We categorize uses as either in vitro studies - where a piece of an organism must be excised and introduced into the microfluidic device - or in vivo studies - where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface (e.g. the skin or inside an internal organ or tumor) that forms part of an animal larger than the device. These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue - such as the response of tissue to drugs or the analysis of tissue secretions - that cannot be obtained otherwise.
Collapse
Affiliation(s)
- Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Adán D. Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Tyler Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822 USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
19
|
Cheng JW, Sip CG, Lindstedt PR, Boitano R, Bluestein BM, Gamble LJ, Folch A. “Chip-on-a-Transwell” Devices for User-Friendly Control of the Microenvironment of Cultured Cells. ACS APPLIED BIO MATERIALS 2019; 2:4998-5011. [DOI: 10.1021/acsabm.9b00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan W. Cheng
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Christopher G. Sip
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Philip R. Lindstedt
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Ross Boitano
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Blake M. Bluestein
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Lara J. Gamble
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| |
Collapse
|
20
|
Regier MC, Olszewski E, Carter CC, Aitchison JD, Kaushansky A, Davis J, Berthier E, Beebe DJ, Stevens KR. Spatial presentation of biological molecules to cells by localized diffusive transfer. LAB ON A CHIP 2019; 19:2114-2126. [PMID: 31111131 PMCID: PMC6755031 DOI: 10.1039/c9lc00122k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellular decisions in human development, homeostasis, regeneration, and disease are coordinated in large part by signals that are spatially localized in tissues. These signals are often soluble, such that biomolecules produced by one cell diffuse to receiving cells. To recapitulate soluble factor patterning in vitro, several microscale strategies have been developed. However, these techniques often introduce new variables into cell culture experiments (e.g., fluid flow) or are limited in their ability to pattern diverse solutes in a user-defined manner. To address these challenges, we developed an adaptable method that facilitates spatial presentation of biomolecules across cells in traditional open cultures in vitro. This technique employs device inserts that are placed in standard culture wells, which support localized diffusive pattern transmission through microscale spaces between device features and adherent cells. Devices can be removed and cultures can be returned to standard media following patterning. We use this method to spatially control cell labeling with pattern features ranging in scale from several hundred microns to millimeters and with sequential application of multiple patterns. To better understand the method we investigate relationships between pattern fidelity, device geometry, and consumption and diffusion kinetics using finite element modeling. We then apply the method to spatially defining reporter cell heterogeneity by patterning a small molecule modulator of genetic recombination with the requisite sustained exposure. Finally, we demonstrate use of this method for patterning larger and more slowly diffusing particles by creating focal sites of gene delivery and infection with adenoviral, lentiviral, and Zika virus particles. Thus, our method leverages devices that interface with standard culture vessels to pattern diverse diffusible factors, geometries, exposure dynamics, and recipient cell types, making it well poised for adoption by researchers across various fields of biological research.
Collapse
Affiliation(s)
- Mary C Regier
- Department of Bioengineering, University of Washington, 98195 Seattle, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sedláková V, Kloučková M, Garlíková Z, Vašíčková K, Jaroš J, Kandra M, Kotasová H, Hampl A. Options for modeling the respiratory system: inserts, scaffolds and microfluidic chips. Drug Discov Today 2019; 24:971-982. [PMID: 30877077 DOI: 10.1016/j.drudis.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/08/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022]
Abstract
The human respiratory system is continuously exposed to varying levels of hazardous substances ranging from environmental toxins to purposely administered drugs. If the noxious effects exceed the inherent regenerative capacity of the respiratory system, injured tissue undergoes complex remodeling that can significantly affect lung function and lead to various diseases. Advanced near-to-native in vitro lung models are required to understand the mechanisms involved in pulmonary damage and repair and to reliably test the toxicity of compounds to lung tissue. This review is an overview of the development of in vitro respiratory system models used for study of lung diseases. It includes discussion of using these models for environmental toxin assessment and pulmonary toxicity screening.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Division of Cardiac Surgery, Cardiovascular Tissue Engineering Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa K1Y 4W7, Canada.
| | - Michaela Kloučková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zuzana Garlíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Kateřina Vašíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Mário Kandra
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| |
Collapse
|
22
|
Derivation of chicken primordial germ cells using an indirect Co-culture system. Theriogenology 2018; 123:83-89. [PMID: 30292859 DOI: 10.1016/j.theriogenology.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/23/2022]
Abstract
Primordial germ cells (PGCs) are promising genetic resources for avian studies including modified animals. However, chicken PGCs are slow to proliferate and gradually lose germline competency after long-term culture, which hinders their application in avian biotechnology. Thus, we developed a robust method for the isolation and rapid propagation of PGCs using an indirect co-culture system. PGCs derived from a pair of embryonic chicken gonads were expanded to 1 × 106 within 2 weeks, and no sex bias was observed in. These PGCs presented high capacity of germline transmission and produced donor-derived offspring after injection into the chicken embryos. This system allows the efficient gene-banking of chicken species and can facilitate the production of chickens bearing a desired phenotype via genomic editing.
Collapse
|
23
|
Watson DE, Hunziker R, Wikswo JP. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood) 2017; 242:1559-1572. [PMID: 29065799 DOI: 10.1177/1535370217732765] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.
Collapse
Affiliation(s)
| | - Rosemarie Hunziker
- 2 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Wikswo
- 3 Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1807, USA
| |
Collapse
|
24
|
Shang W, Tsao CY, Luo X, Teodoro M, McKay R, Quan DN, Wu HC, Payne GF, Bentley WE. A simple and reusable bilayer membrane-based microfluidic device for the study of gradient-mediated bacterial behaviors. BIOMICROFLUIDICS 2017; 11:044114. [PMID: 28868107 PMCID: PMC5566557 DOI: 10.1063/1.4993438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 05/11/2023]
Abstract
We have developed a user-friendly microfluidic device for the study of gradient-mediated bacterial behaviors, including chemotaxis. This device rapidly establishes linear concentration gradients by exploiting solute diffusion through porous membranes in the absence of convective flows. As such, the gradients are created rapidly and can be sustained for long time periods (e.g., hours), sufficient to evaluate cell phenotype. The device exploits a unique simple bilayer configuration that enables rapid setup and quick reproducible introduction of cells. Its reusability represents an additional advantage in that it need not be limited to settings with microfluidics expertise. We have successfully demonstrated the applicability of this tool in studying the chemotactic response of Escherichia coli to glucose. When coupled with our recent Python program, quantified metrics such as speed, ratio of tumble to run, and effective diffusivity can be obtained from slow frame rate videos. Moreover, we introduce a chemotaxis partition coefficient that conveniently scores swimming behavior on the single-cell level.
Collapse
Affiliation(s)
| | | | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, 20064, USA
| | | | | | | | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | | |
Collapse
|
25
|
Ma Y, Pan JZ, Zhao SP, Lou Q, Zhu Y, Fang Q. Microdroplet chain array for cell migration assays. LAB ON A CHIP 2016; 16:4658-4665. [PMID: 27833945 DOI: 10.1039/c6lc00823b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Establishing cell migration assays in multiple different microenvironments is important in the study of tissue repair and regeneration, cancer progression, atherosclerosis, and arthritis. In this work, we developed a miniaturized and massive parallel microfluidic platform for multiple cell migration assays combining the traditional membrane-based cell migration technique and the droplet-based microfluidic technique. Nanoliter-scale droplets are flexibly assembled as building blocks based on a porous membrane to form microdroplet chains with diverse configurations for different assay modes. Multiple operations including in-droplet 2D/3D cell culture, cell co-culture and cell migration induced by a chemoattractant concentration gradient in droplet chains could be flexibly performed with reagent consumption in the nanoliter range for each assay and an assay scale-up to 81 assays in parallel in one microchip. We have applied the present platform to multiple modes of cell migration assays including the accurate cell migration assay, competitive cell migration assay, biomimetic chemotaxis assay, and multifactor cell migration assay based on the organ-on-a-chip concept, for demonstrating its versatility, applicability, and potential in cell migration-related research.
Collapse
Affiliation(s)
- Yan Ma
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Shi-Ping Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Cheng JW, Chang TC, Bhattacharjee N, Folch A. An open-chamber flow-focusing device for focal stimulation of micropatterned cells. BIOMICROFLUIDICS 2016; 10:024122. [PMID: 27158290 PMCID: PMC4833748 DOI: 10.1063/1.4946801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/03/2016] [Indexed: 05/14/2023]
Abstract
Microfluidic devices can deliver soluble factors to cell and tissue culture microenvironments with precise spatiotemporal control. However, enclosed microfluidic environments often have drawbacks such as the need for continuous culture medium perfusion which limits the duration of experiments, incongruity between microculture and macroculture, difficulty in introducing cells and tissues, and high shear stress on cells. Here, we present an open-chamber microfluidic device that delivers hydrodynamically focused streams of soluble reagents to cells over long time periods (i.e., several hours). We demonstrate the advantage of the open chamber by using conventional cell culture techniques to induce the differentiation of myoblasts into myotubes, a process that occurs in 7-10 days and is difficult to achieve in closed chamber microfluidic devices. By controlling the flow rates and altering the device geometry, we produced sharp focal streams with widths ranging from 36 μm to 187 μm. The focal streams were reproducible (∼12% variation between units) and stable (∼20% increase in stream width over 10 h of operation). Furthermore, we integrated trenches for micropatterning myoblasts and microtraps for confining single primary myofibers into the device. We demonstrate with finite element method (FEM) simulations that shear stresses within the cell trench are well below values known to be deleterious to cells, while local concentrations are maintained at ∼22% of the input concentration. Finally, we demonstrated focused delivery of cytoplasmic and nuclear dyes to micropatterned myoblasts and myofibers. The open-chamber microfluidic flow-focusing concept combined with micropatterning may be generalized to other microfluidic applications that require stringent long-term cell culture conditions.
Collapse
Affiliation(s)
- Jonathan W Cheng
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| | - Tim C Chang
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| | - Nirveek Bhattacharjee
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| | - Albert Folch
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| |
Collapse
|
27
|
Popov C, Kohler J, Docheva D. Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. Front Aging Neurosci 2016; 7:246. [PMID: 26779014 PMCID: PMC4701947 DOI: 10.3389/fnagi.2015.00246] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
Abstract
Tendon tissues, due to their composition and function, are prone to suffer age-related degeneration and diseases as well as to respond poorly to current repair strategies. It has been suggested that local stem cells, named tendon stem/progenitor cells (TSPCs), play essential roles in tendon maintenance and healing. Recently, we have shown that TSPC exhibit a distinct age-related phenotype involving transcriptomal shift, poor self-renewal, and elevated senescence coupled with reduced cell migration and actin dynamics. Here, we report for the first time the significant downregulation of the ephrin receptors EphA4, EphB2 and B4 and ligands EFNB1 in aged-TSPC (A-TSPC). Rescue experiments, by delivery of target-specific clustered proteins, revealed that activation of EphA4- or EphB2-dependent reverse signaling could restore the migratory ability and normalize the actin turnover of A-TSPC. However, only EphA4-Fc stimulation improved A-TSPC cell proliferation to levels comparable to young-TSPC (Y-TSPC). Hence, our novel data suggests that decreased expression of ephrin receptors during tendon aging and degeneration limits the establishment of appropriate cell-cell interactions between TSPC and significantly diminished their proliferation, motility, and actin turnover. Taken together, we could propose that this mechanism might be contributing to the inferior and delayed tendon healing common for aged individuals.
Collapse
Affiliation(s)
- Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Julia Kohler
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
28
|
Li R, Lv X, Zhang X, Saeed O, Deng Y. Microfluidics for cell-cell interactions: A review. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1550-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Lee SH, Oh EH, Park TH. Cell-based microfluidic platform for mimicking human olfactory system. Biosens Bioelectron 2015; 74:554-61. [DOI: 10.1016/j.bios.2015.06.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/14/2015] [Accepted: 06/27/2015] [Indexed: 12/24/2022]
|
30
|
Lee DH, Bae CY, Kwon S, Park JK. User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users' needs. LAB ON A CHIP 2015; 15:2379-2387. [PMID: 25857752 DOI: 10.1039/c5lc00239g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell-containing hydrogel modules as cell-hydrogel microunits for creating a physiologically relevant 3D in vivo-like microenvironment with multiple cell types and unique extracellular matrix (ECM) compositions facilitate long-term cell maintenance and bioassays. To date, there have been many important advances in microfluidic bioassays, which incorporate hydrogel scaffolds into surface-accessible microchambers, driven by the strong demand for the application of spatiotemporally defined biochemical stimuli to construct in vivo-like conditions and perform real-time imaging of cell-matrix interactions. In keeping with the trend of fostering collaborations among biologists, clinicians, and microfluidic engineers, it is essential to create a simpler approach for coupling cell-containing hydrogel modules and an automated bioassay platform in a user-friendly format. In this article, we review recent progress in hydrogel-incorporated microfluidics for long-term cell maintenance and discuss some of the simpler and user-friendly 3D bioassay techniques combined with cell-containing hydrogel modules that can be applied to mutually beneficial collaborations with non-engineers. We anticipate that this modular and user-friendly format interfaced with existing laboratory infrastructure will help address several clinical questions in ways that extend well beyond the current 2D cell-culture systems.
Collapse
Affiliation(s)
- Do-Hyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | |
Collapse
|
31
|
Romano NH, Lampe KJ, Xu H, Ferreira MM, Heilshorn SC. Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:722-30. [PMID: 25315156 PMCID: PMC4528974 DOI: 10.1002/smll.201401574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/11/2014] [Indexed: 05/08/2023]
Abstract
The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient-generating microfluidic devices with 3D protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known trade-off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix-mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels.
Collapse
Affiliation(s)
| | | | - Hui Xu
- 476 Lomita Mall, McCullough 246, Stanford, CA 94305
| | | | | |
Collapse
|
32
|
Sip CG, Folch A. Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture. BIOMICROFLUIDICS 2014; 8:036504. [PMID: 25379080 PMCID: PMC4162454 DOI: 10.1063/1.4883075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/02/2014] [Indexed: 05/04/2023]
Abstract
We have investigated the bonding stability of various silane treatments for the integration of track-etched membranes with poly(dimethylsiloxane) (PDMS) microfluidic devices. We compare various treatments using trialkoxysilanes or dipodal silanes to determine the effect of the organofunctional group, cross-link density, reaction solvent, and catalyst on the bond stability. We find that devices made using existing silane methods delaminated after one day when immersed in cell culture medium at 37 °C. In contrast, the dipodal silane, bis[3-(trimethoxysilyl)propyl]amine, is shown to yield stable and functional integration of membranes with PDMS that is suitable for long-term cell culture. To demonstrate application of the technique, we fabricated an open-surface device in which cells cultured on a track-etched membrane can be stimulated at their basal side via embedded microfluidic channels. C2C12 mouse myoblasts were differentiated into myotubes over the course of two weeks on these devices to demonstrate biocompatibility. Finally, devices were imaged during the basal-side delivery of a fluorescent stain to validate the membrane operation and long-term stability of the bonding technique.
Collapse
Affiliation(s)
- Christopher G Sip
- Department of Bioengineering, University of Washington , Seattle, Washington 98185, USA
| | - A Folch
- Department of Bioengineering, University of Washington , Seattle, Washington 98185, USA
| |
Collapse
|
33
|
Kuo CT, Liu HK, Huang GS, Chang CH, Chen CL, Chen KC, Yun-Ju Huang R, Lin CH, Lee H, Huang CS, Wo AM. A spatiotemporally defined in vitro microenvironment for controllable signal delivery and drug screening. Analyst 2014; 139:4846-54. [PMID: 25089836 DOI: 10.1039/c4an00936c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An in vitro model of mimicking tumor microenvironments to study in vivo-like cancer migration and screening of inhibitors is demonstrated.
Collapse
Affiliation(s)
- Ching-Te Kuo
- Institute of Applied Mechanics
- National Taiwan University
- Taipei, Republic of China
- Institute of Atomic and Molecular Sciences
- Academia Sinica
| | - Hao-Kai Liu
- Institute of Applied Mechanics
- National Taiwan University
- Taipei, Republic of China
| | - Guan-Syuan Huang
- Institute of Applied Mechanics
- National Taiwan University
- Taipei, Republic of China
| | - Chi-Hao Chang
- Department of Life Science
- National Taiwan University
- Taipei, Republic of China
| | - Chen-Lin Chen
- Institute of Applied Mechanics
- National Taiwan University
- Taipei, Republic of China
| | - Ken-Chao Chen
- Institute of Applied Mechanics
- National Taiwan University
- Taipei, Republic of China
| | - Ruby Yun-Ju Huang
- Department of Obstetrics & Gynaecology
- National University Hospital
- Singapore
- Cancer Science Institute of Singapore
- National University of Singapore
| | - Ching-Hung Lin
- Department of Oncology
- National Taiwan University Hospital
- Taipei, Republic of China
| | - Hsinyu Lee
- Department of Life Science
- National Taiwan University
- Taipei, Republic of China
| | - Chiun-Sheng Huang
- Department of Surgery
- National Taiwan University Hospital
- Taipei, Republic of China
| | - Andrew M. Wo
- Institute of Applied Mechanics
- National Taiwan University
- Taipei, Republic of China
| |
Collapse
|