1
|
Yari-Ilkhchi A, Hamidi N, Mahkam M, Ebrahimi-Kalan A. Graphene-based materials: an innovative approach for neural regeneration and spinal cord injury repair. RSC Adv 2025; 15:9829-9853. [PMID: 40165920 PMCID: PMC11956154 DOI: 10.1039/d4ra07976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Spinal cord injury (SCI), the most serious disease affecting the central nervous system (CNS), is one of contemporary medicine's most difficult challenges, causing patients to suffer physically, emotionally, and socially. However, due to recent advances in medical science and biomaterials, graphene-based materials (GBMs) have tremendous potential in SCI therapy due to their wonderful and valuable properties, such as physicochemical properties, extraordinary electrical conductivity, distinct morphology, and high mechanical strength. This review discusses SCI pathology and GBM characteristics, as well as recent in vitro and in vivo findings on graphenic scaffolds, electrodes, and injectable achievements for SCI improvement using neuroprotective and neuroregenerative techniques to improve neural structural and functional repair. Additionally, it suggests possible ideas and desirable products for graphene-based technological advances, intending to reach therapeutic importance for SCI.
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
- Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Istanbul Technical University Maslak 34469 Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University 34956 Istanbul Turkey
| | - Nazila Hamidi
- Department of Chemistry and Biochemistry, The University of Tulsa Tulsa OK 74104 USA
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
| | - Abbas Ebrahimi-Kalan
- Faculty of Advanced Medical Science, Tabriz University of Medical Sciences 5166614733 Tabriz Iran
| |
Collapse
|
2
|
Singh D, Kurmi BD, Singh A. Graphene Oxide, a Prominent Nanocarrier to Reduce the Toxicity of Alzheimer's Proteins: A Revolution in Treatment. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:572-580. [PMID: 38757165 DOI: 10.2174/0118722105292940240502114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Graphene oxide, a derivative of graphene, has recently emerged as a promising nanomaterial in the biomedical field due to its unique properties. Its potential as a nanocarrier in the treatment of Alzheimer's disease represents a significant advancement. This abstract outlines a study focused on utilizing graphene oxide to reduce the toxicity of Alzheimer's proteins, marking a revolutionary approach in treatment strategies. The pathological features of Alzheimer's disease, primarily focusing on the accumulation and toxicity of amyloid-beta proteins, have been described in this review. These proteins are known to form plaques in the brain, leading to neuronal damage and the progression of Alzheimer's disease. The current therapeutic strategies and their limitations are briefly reviewed, highlighting the need for innovative approaches. Graphene oxide, with its high surface area, biocompatibility, and ability to cross the blood-brain barrier, is introduced as a novel nanocarrier. The methodology involves functionalizing graphene oxide sheets with specific ligands that target amyloid-beta proteins. This functionalization facilitates the binding and removal of these toxic proteins from the brain, potentially alleviating the symptoms of Alzheimer's disease. Preliminary findings indicate a significant reduction in amyloid-beta toxicity in neuronal cell cultures treated with graphene oxide nanocarriers. The study also explores the biocompatibility and safety profile of graphene oxide in biological systems, ensuring its suitability for clinical applications. It calls for further research and filing patents for its translational potential and benefits of this nanotechnology paying the way for a new era in neurodegenerative therapy.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
3
|
Lan W, Xiao X, Nian J, Wang Z, Zhang X, Wu Y, Zhang D, Chen J, Bao W, Li C, Zhang Y, Zhu A, Zhang F. Senolytics Enhance the Longevity of Caenorhabditis elegans by Altering Betaine Metabolism. J Gerontol A Biol Sci Med Sci 2024; 79:glae221. [PMID: 39434620 DOI: 10.1093/gerona/glae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 10/23/2024] Open
Abstract
Aging triggers physiological changes in organisms that are tightly linked to metabolic changes. Senolytics targeting many fundamental aging processes are currently being developed. However, the host metabolic response to natural senescence and the molecular mechanism underlying the antiaging benefits of senolytics remain poorly understood. In this study, we investigated metabolic changes during natural senescence based on the Caenorhabditis elegans model and pinpointed potential biomarkers linked to the benefits of senolytics. These results suggest that age-dependent metabolic changes during natural aging occur in C elegans. Betaine was identified as a crucial metabolite in the natural aging process. We explored the metabolic effects of aging interventions by administering 3 antiaging drugs-metformin, quercetin, and minocycline-to nematodes. Notably, betaine expression significantly increased under the 3 antiaging drug treatments. Our findings demonstrated that betaine supplementation extends lifespan, primarily through pathways associated with the forkhead box transcription factor (FoxO) signaling pathway, the p38-mitogen-activated protein kinase (MAPK) signaling pathway, autophagy, the longevity regulating pathway, and the target of rapamycin (mTOR) signaling pathway. In addition, autophagy and free radicals are altered in betaine-treated nematodes. Overall, we found that betaine is a critical metabolite during natural aging and that senolytics extend the lifespan of nematodes by increasing betaine levels and promoting autophagy and antioxidant activity. This finding suggests that betaine could be a novel therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Xiaolian Xiao
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - Jingjing Nian
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ziran Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojing Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yajiao Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongcheng Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junkun Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenqiang Bao
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chutao Li
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - An Zhu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Petry R, de Almeida JM, Côa F, Crasto de Lima F, Martinez DST, Fazzio A. Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1297-1311. [PMID: 39498295 PMCID: PMC11533115 DOI: 10.3762/bjnano.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.
Collapse
Affiliation(s)
- Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| | - James M de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Felipe Crasto de Lima
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adalberto Fazzio
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| |
Collapse
|
5
|
Wu Z, Zhang J, Wu Y, Chen M, Hu H, Gao X, Li C, Li M, Zhang Y, Lin X, Yang Q, Chen L, Chen K, Zheng L, Zhu A. Gelsenicine disrupted the intestinal barrier of Caenorhabditis elegans. Chem Biol Interact 2024; 395:111036. [PMID: 38705443 DOI: 10.1016/j.cbi.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.
Collapse
Affiliation(s)
- Zekai Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350108, China
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Hong Hu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350108, China
| | - Xinyue Gao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Maodong Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Youbo Zhang
- State key laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Qiaomei Yang
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, China
| | - Li Chen
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Lifeng Zheng
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Hua X, Wang D. Polyethylene nanoparticles at environmentally relevant concentrations enhances neurotoxicity and accumulation of 6-PPD quinone in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170760. [PMID: 38331287 DOI: 10.1016/j.scitotenv.2024.170760] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
The exposure risk of 6-PPD quinone (6-PPDQ) has aroused increasing concern. In the natural environment, 6-PPDQ could interact with other pollutants, posing more severe environmental problems and toxicity to organisms. We here examined the effect of polyethylene nanoplastic (PE-NP) on 6-PPDQ neurotoxicity and the underling mechanisms in Caenorhabditis elegans. In nematodes, PE-NP (1 and 10 μg/L) decreased locomotion behavior, but did not affect development of D-type neurons. Exposure to PE-NP (1 and 10 μg/L) strengthened neurotoxicity of 6-PPDQ (10 μg/L) on the aspect of locomotion and neurodegeneration induction of D-type motor neurons. Exposure to PE-NPs (10 μg/L) caused increase in expressions of mec-4, asp-3, and asp-4 governing neurodegeneration in 10 μg/L 6-PPDQ exposed nematodes. Moreover, exposure to PE-NP (10 μg/L) increased expression of some neuronal genes (daf-7, dbl-1, jnk-1, and mpk-1) in 6-PPDQ exposed nematodes, and RNAi of these genes resulted in susceptibility to neurotoxicity of PE-NP and 6-PPDQ. 6-PPDQ could be adsorbed by PE-NPs, and resuspension of PE-NP and 6-PPDQ after adsorption equilibrium exhibited similar neurotoxicity to co-exposure of PE-NP and 6-PPDQ. In addition, exposure to PE-NP (1 and 10 μg/L) increased 6-PPDQ accumulation in body of nematodes and increased defecation cycle length in 6-PPDQ exposed nematodes. Therefore, 6-PPDQ could be adsorbed on nanoplastics (such as PE-NPs) and enhance both neurotoxicity and accumulation of 6-PPDQ in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
7
|
Chen H, Chen X, Ding P, Gu Y, Jiang Y, Li X, Hu G, Li L, Wang C, Yu J, Li H. Photoaging enhances combined toxicity of microplastics and tetrabromobisphenol A by inducing intestinal damage and oxidative stress in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169259. [PMID: 38128659 DOI: 10.1016/j.scitotenv.2023.169259] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Microplastics (MPs) are emerging environmental contaminants that often co-exist with tetrabromobisphenol A (TBBPA) in the environment. However, the joint effect of TBBPA and photoaged MPs at ambient concentrations remains unknown largely. In this study, the combined toxicity of ultraviolet-aged polystyrene (UV-PS) and TBBPA was investigated in Caenorhabditis elegans. UV irradiation could change the physical and chemical characteristics of polystyrene (PS), and UV-PS (90.218 μg/g) showed a stronger adsorption capacity than PS of 79.424 μg/g. Toxicity testing showed that 1 μg/L UV-PS enhanced the toxic effect of 1 μg/L TBBPA by reducing body length, locomotion behavior, and brood size in nematodes. Using ROS production, lipofuscin accumulation, and expression of gst-4::GFP as endpoints, the combined exposure of UV-PS and TBBPA induced stronger oxidative stress than TBBPA alone. Joint exposure to UV-PS and TBBPA significantly increased of Nile red and blue food dye in its intestinal tract compared to that in the TBBPA exposure group, indicating that co-exposure enhanced intestinal permeability. After co-exposure to UV-PS and TBBPA, the expression of the associated genes detected increased significantly. Therefore, UV-PS enhances the adverse effects of TBBPA through intestinal damage and oxidative stress in nematodes. These findings suggest that the co-presence of photoaged PS and TBBPA results in high environmental risks.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Ahmad M, Khan MKA, Ahmad N, Parveen M, Shahzad K, Hasan A. Histotoxicity induced by copper oxide nanoparticles (CuO-NPs) on developing mice (Mus musculus). Food Chem Toxicol 2024; 184:114369. [PMID: 38110052 DOI: 10.1016/j.fct.2023.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
The wide range of applications of nanoparticles (NPs) in various industries have led to serious consequences in terms of teratogenic toxicity. The aim of current work was to evaluate the teratogenic effects of copper oxide (CuO) nanoparticles in albino mice.In this experimental study, after mating, inseminated 40 female mice were divided randomly into 4 pools (1 control and 3 experimental), ten each. Doses were administered intravenously (We followed the protocol by Yaqub et al. (2018), intravenous application is faster route as compared to oral dosage)to all the experimental groups on the 6th day of gestation (GD), dose concentrations were 200, 133.3 and 100 mg/kg body weights respectively.The doses were prepared in sequence (1/2, 1/3, 1/4 0f LD50) according to already published work. The effects of CuO-NPs show linear relationship with the above sequence. The control group was administered only with distilled water.The gravid females were sacrificed through cervical disruption at the 18th day of gestation, fetuses were removed and divided into four sets (pools) for morphometric, morphological and histological studies. Data were subjected to statistical analysis by using Tukey's test in light of ANOVA at p < 0.05 level of significance. Findings of the present study showed that CuO-NPs various concentrations affect developmental abnormalities i.e.runt embryos, resorbed uteri, exencephaly, hygroma, macroglossia, micromelia, open eye, omphalocoel, scoliosis, kyphosis and kinked tail. It is concluded that exposure to CuO-NPs may potentially lead to the developmental deformities in mice.
Collapse
Affiliation(s)
- Munir Ahmad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | | | - Naveed Ahmad
- Department of Zoology, University of Education, Vehari campus, Vehari, 56130, Pakistan
| | - Munazza Parveen
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Ali Hasan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Chen H, Gu Y, Jiang Y, Yu J, Chen C, Shi C, Li H. Photoaged Polystyrene Nanoplastics Result in Transgenerational Reproductive Toxicity Associated with the Methylation of Histone H3K4 and H3K9 in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19341-19351. [PMID: 37934861 DOI: 10.1021/acs.est.3c05861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) are emerging environmental contaminants that are ubiquitously detected in various environments and have toxic effects on various organisms. Nevertheless, the transgenerational reproductive toxicity and underlying mechanisms of PS-NPs remain largely unknown, especially for photoaged PS-NPs under ultraviolet irradiation. In this study, only the parental generation (P0) was exposed to virgin and aged PS-NPs at environmentally relevant concentrations (0.1-100 μg/L), and subsequent generations (F1-F4) were cultured under normal conditions. Ultraviolet irradiation induced the generation of environmentally persistent free radicals and reactive oxygen species, which altered the physical and chemical characteristics of PS-NPs. The results of toxicity testing suggested that exposure to aged PS-NPs caused a more severe decrease in brood size, egg ejection rate, number of fertilized eggs, and hatchability than did the virgin PS-NPs in the P0, F1, and F2 generations. Additionally, a single maternal exposure to aged PS-NPs resulted in transgenerational effects on fertility in the F1 and F2 generations. Increased levels of H3K4 and H3K9 methylation were observed in the F1 and F2 generations, which were concomitant with the transgenerational downregulation of the expression of associated genes, such as spr-5, set-17, and met-2. On the basis of correlation analyses, the levels of histone methylation and the expression of these genes were significantly correlated to transgenerational reproductive effects. Further research showed that transgenerational effects on fertility were not observed in spr-5(by134), met-2(n4256), and set-17(n5017) mutants. Overall, maternal exposure to aged PS-NPs induced transgenerational reproductive effects via H3K4 and H3K9 methylation, and the spr-5, met-2, and set-17 genes were involved in the regulation of transgenerational toxicity. This study provides new insights into the potential risks of photoaging PS-NPs in the environment.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Zhu M, Zhang M, Tang M, Wang J, Liu L, Wang Z. The concentration-dependent physiological damage, oxidative stress, and DNA lesions in Caenorhabditis elegans by subacute exposure to landfill leachate. CHEMOSPHERE 2023; 339:139544. [PMID: 37474030 DOI: 10.1016/j.chemosphere.2023.139544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The leakage of landfill leachate (LL) into environmental media would be happened even in the sanitary/controlled landfill, due to the deterioration of geomembrane and the blockage of drainage system after long-term operation. Considering the complex composition and high concentration of pollutants in LL, its toxicity assessment should be conducted as a whole liquid contaminant. Therefore, the impacts of LL on Caenorhabditis elegans (C. elegans) were investigated under the condition of different exposure time and exposure volume fraction (EVF). The stimulating effects on locomotion behavior and growth of C. elegans were observed after acute (24 h) exposure to LL, which were increased firstly and then decreased with the increase of EVF. Meanwhile, the intestinal barrier was not affected by LL, and levels of reactive oxygen species (ROS) and cell apoptosis significantly decreased. However, stimulation and inhibition effects on locomotion behavior and growth of C. elegans were observed when subacute (72 h) exposure to 0.25%-0.5% and 1%-4% of LL, respectively. The intestinal injury index and levels of ROS and cell apoptosis significantly increased when EVF were 2% and 4%. Although the acute exposure of LL had resulted in obviously biological adaptability and antioxidant defense in C. elegans, the protective mechanisms failed to be induced as the exposure time increased (subacute exposure). The toxic effects were confirmed by the down-regulation of genes associated with antioxidant defense and neurobehavior, accompanied by the up-regulation of intestinal injury and cell apoptosis related genes. Moreover, the disturbance of metabolic pathways that associated with locomotion behaviors, growth, and antioxidant defense provided good supplementary evidence for the confirmation of oxidative stress in C. elegans. The research results verified the potential of C. elegans as model organism to determine the complex toxic effects of LL.
Collapse
Affiliation(s)
- Manman Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Mingqi Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Cui J, Zhang Z, Zhong H, Zhang T. Phosphorylcholine-grafted graphene oxide loaded with irinotecan for potential oncology therapy. RSC Adv 2023; 13:28642-28651. [PMID: 37790105 PMCID: PMC10543201 DOI: 10.1039/d3ra04987f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
2-Methacryloyloxyethyl phosphorylcholine (MPC) zwitterions were modified onto self-made graphene oxide (GO) through the atom transfer radical polymerization method. The chemical structures of the products were verified using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc. It was found that the modified GO (GO-PCn) is well dispersed in water with an average hydrodynamic diameter of about 170 nm. By utilizing the 2D planar structure of this modified graphene, the irinotecan@GO-PCn composite can be loaded with about 20% of irinotecan via π-π stacking interaction and exhibit pH-sensitive drug release performance, releasing faster in the acidic environment. The in vitro cytotoxicity assessments confirmed that GO-PCn composed of phosphorylcholine moiety represented low cytotoxicity and acted as a certain effect on reducing the acute toxicity of irinotecan, which established a foundation for further studies of the system in oncology therapy.
Collapse
Affiliation(s)
- Jia Cui
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Ziyi Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Han Zhong
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Tao Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214105 China
| |
Collapse
|
12
|
Wu Y, Tan X, Shi X, Han P, Liu H. Combined Effects of Micro- and Nanoplastics at the Predicted Environmental Concentration on Functional State of Intestinal Barrier in Caenorhabditis elegans. TOXICS 2023; 11:653. [PMID: 37624159 PMCID: PMC10459583 DOI: 10.3390/toxics11080653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 μg/L) and PS-500 (1 μg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 μg/L) or PS-500 (1 μg/L). Additionally, coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.
Collapse
Affiliation(s)
| | | | | | | | - Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
14
|
Liu X, Ge P, Lu Z, Cao M, Chen W, Yan Z, Chen M, Wang J. Ecotoxicity induced by total, water soluble and insoluble components of atmospheric fine particulate matter exposure in Caenorhabditis elegans. CHEMOSPHERE 2023; 316:137672. [PMID: 36587918 DOI: 10.1016/j.chemosphere.2022.137672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Although PM2.5 could cause toxicity in environmental organisms, the toxicity difference of PM2.5 under different solubilities is still poorly understood. To acquire a better knowledge of the ecotoxicity of PM2.5 under different solubilities, the model animal Caenorhabditis elegans (C. elegans) was exposed to Total-PM2.5, water insoluble components of PM2.5 (WIS-PM2.5) and water soluble components of PM2.5 (WS-PM2.5). The physiological (growth, locomotion behavior, and reproduction), biochemical (germline apoptosis, and reactive oxygen species (ROS) production) indices, and the related gene expression were examined. According to the findings, acute exposure to these three components caused adverse physiological effects on growth and locomotion behavior, and significantly induced germline apoptosis or ROS production. In contrast, prolonged exposure showed stronger adverse effects than acute exposure. Additionally, the results of multiple toxicological endpoints showed that the toxicity effects of WIS-PM2.5 are more intense than WS-PM2.5, which means that insoluble components contributed more to the toxicity of PM2.5. Prolonged exposure to 1000 mg/L WS-PM2.5, WIS-PM2.5, and Total-PM2.5 dramatically altered the expression of stress-related genes, which further indicated that apoptosis, DNA damage and oxidative stress play a crucial part in toxicity induced by PM2.5.
Collapse
Affiliation(s)
- Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Maoyu Cao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
15
|
Gubert P, Gubert G, de Oliveira RC, Fernandes ICO, Bezerra IC, de Ramos B, de Lima MF, Rodrigues DT, da Cruz AFN, Pereira EC, Ávila DS, Mosca DH. Caenorhabditis elegans as a Prediction Platform for Nanotechnology-Based Strategies: Insights on Analytical Challenges. TOXICS 2023; 11:239. [PMID: 36977004 PMCID: PMC10059662 DOI: 10.3390/toxics11030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Nanotechnology-based strategies have played a pivotal role in innovative products in different technological fields, including medicine, agriculture, and engineering. The redesign of the nanometric scale has improved drug targeting and delivery, diagnosis, water treatment, and analytical methods. Although efficiency brings benefits, toxicity in organisms and the environment is a concern, particularly in light of global climate change and plastic disposal in the environment. Therefore, to measure such effects, alternative models enable the assessment of impacts on both functional properties and toxicity. Caenorhabditis elegans is a nematode model that poses valuable advantages such as transparency, sensibility in responding to exogenous compounds, fast response to perturbations besides the possibility to replicate human disease through transgenics. Herein, we discuss the applications of C. elegans to nanomaterial safety and efficacy evaluations from one health perspective. We also highlight the directions for developing appropriate techniques to safely adopt magnetic and organic nanoparticles, and carbon nanosystems. A description was given of the specifics of targeting and treatment, especially for health purposes. Finally, we discuss C. elegans potential for studying the impacts caused by nanopesticides and nanoplastics as emerging contaminants, pointing out gaps in environmental studies related to toxicity, analytical methods, and future directions.
Collapse
Affiliation(s)
- Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Pure and Applied Chemistry, POSQUIPA, Federal University of Western of Bahia, Bahia 47808-021, Brazil
| | - Greici Gubert
- Postdoctoral Program in Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | | | - Isabel Cristina Oliveira Fernandes
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Bruna de Ramos
- Oceanography Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Milena Ferreira de Lima
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Daniela Teixeira Rodrigues
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | | - Ernesto Chaves Pereira
- Postdoctoral Program in Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Daiana Silva Ávila
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
- Graduate Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, Brazil
| | - Dante Homero Mosca
- Postdoctoral Program in Physics, Federal University of Paraná, Curitiba 80060-000, Brazil
| |
Collapse
|
16
|
Hua X, Feng X, Liang G, Chao J, Wang D. Long-term exposure to tire-derived 6-PPD quinone causes intestinal toxicity by affecting functional state of intestinal barrier in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160591. [PMID: 36464050 DOI: 10.1016/j.scitotenv.2022.160591] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione (6-PPDQ) is the ozonation product of 6-PPD, a commonly used tire preservative. Although the 6-PPDQ has been frequently detected in different environmental ecosystems, its long-term effects on organisms remain still largely unknown. We here used Caenorhabditis elegans as an experimental animal to investigate the toxic effect of prolonged exposure to 6-PPDQ (0.1-100 μg/L). After the exposure, we found that 100 μg/L 6-PPDQ caused the lethality. We further selected concentrations of 0.1-10 μg/L to examine the possible intestinal toxicity induced by 6-PPDQ. Although 0.1-10 μg/L 6-PPDQ could not influence intestinal morphology, the intestinal permeability was significantly enhanced by 1-10 μg/L 6-PPDQ as indicated by erioglaucine disodium staining. In addition, the expression of intestinal fatty acid transporter ACS-22 governing functional state of intestinal barrier was decreased by exposure to 1-10 μg/L 6-PPDQ. Meanwhile, intestinal reactive oxygen species (ROS) production was induced by 0.1-10 μg/L 6-PPDQ and lipofuscin accumulation reflected by intestinal autofluorescence was activated by 1-10 μg/L 6-PPDQ. Accompanied with activation of intestinal oxidative stress, expressions of some anti-oxidation related genes (ctl-2, sod-2, sod-3, and sod-4) were significantly increased by 0.1-10 μg/L 6-PPDQ. Moreover, intestinal RNAi of acs-22 strengthened the susceptibility of nematodes to intestinal toxicity of 6-PPDQ. Therefore, considering that the environmentally relevant concentrations of 6-PPDQ were ≤10 μg/L, our data suggested that long-term exposure to 6-PPDQ at environmentally relevant concentrations potentially results in intestinal toxicity by disrupting functional state of intestinal barrier in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Medical School, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
17
|
Sivaselvam S, Mohankumar A, Narmadha R, Selvakumar R, Sundararaj P, Viswanathan C, Ponpandian N. Effect of gamma-ray irradiated reduced graphene oxide (rGO) on environmental health: An in-vitro and in-vivo studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120933. [PMID: 36565492 DOI: 10.1016/j.envpol.2022.120933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The unique properties of reduced graphene oxide (rGO) have drawn the attention of scientists worldwide since the last decade and it is explored for a wide range of applications. However, the rapid expansion of rGO use in various products will eventually lead to environenal exposure and rises a safety concern on the environment and humal health risk. Moreover, the utilization of toxic chemicals for the reduction of graphene oxide (GO) into rGO is not environmentally friendly, warranting the exploration of non-toxic approaches. In the present work, rGO was synthesized using a different dose of gamma-ray irradiation and characterized. The in-vitro and in-vivo analysis indicated that the gamma-irradiated rGO induced toxicity depending on its degree of reduction and dosage. In the L929 cells, rGO-30 KGy significantly induced cytotoxicity even at low concentration (1 mg L-1) by inducing reactive oxygen species (ROS), lactate dehydrogenase (LDH) enzyme production, nuclear fragmentation and apoptosis. The change in morphology of the cells like membrane blebbing and cell rounding was also observed via FESEM. In the in-vivo model Caenorhabditis elegans, rGO-30 KGy significantly affected the functioning of primary and secondary targeted organs and also negatively influenced the nuclear accumulation of transcription factors (DAF-16/FOXO and SKN-1/Nrf2), neuronal health, and antioxidant defense mechanism of the nematodes. The real-time PCR analysis showed significant up-regulation (ced-3, ced-4, cep-1, egl-1, and hus-1) and down-regulation (ced-9) of the gene involved in germ-line and DNA damage-induced apoptosis. The detailed toxicity mechanism of gamma irradiated rGO has been elucidated. This work highlights the toxicity of rGO prepared by gamma-ray radiation and paves way for understating the toxicity mechanism.
Collapse
Affiliation(s)
- S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - A Mohankumar
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - R Narmadha
- Nanobiotechnology Laboratory, Department of Nanobiotechnology, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - R Selvakumar
- Nanobiotechnology Laboratory, Department of Nanobiotechnology, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - P Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
18
|
Yang R, Ge P, Liu X, Chen W, Yan Z, Chen M. Chemical Composition and Transgenerational Effects on Caenorhabditis elegans of Seasonal Fine Particulate Matter. TOXICS 2023; 11:116. [PMID: 36850991 PMCID: PMC9964627 DOI: 10.3390/toxics11020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
While numerous studies have demonstrated the adverse effects of fine particulate matter (PM) on human health, little attention has been paid to its impact on offspring health. The multigenerational toxic effects on Caenorhabditis elegans (C. elegans) were investigated by acute exposure. PM2.5 and PM1 samples were collected and analysed for their chemical composition (inorganic ions, metals, OM, PAHs) in different seasons from April 2019 to January 2020 in Lin'an, China. A higher proportion of organic carbon components (34.3%, 35.9%) and PAHs (0.0144%, 0.0200%) occupied the PM2.5 and PM1 samples in winter, respectively. PM1 in summer was enriched with some metal elements (2.7%). Exposure to fine PM caused developmental slowing and increased germ cell apoptosis, as well as inducing intestinal autofluorescence and reactive oxygen species (ROS) production. PM1 caused stronger toxic effects than PM2.5. The correlation between PM component and F0 generation toxicity index was analysed. Body length, germ cell apoptosis and intestinal autofluorescence were all highly correlated with Cu, As, Pb, OC and PAHs, most strongly with PAHs. The highest correlation coefficients between ROS and each component are SO42- (R = 0.743), Cd (R = 0.816) and OC (R = 0.716). The results imply that OC, PAHs and some transition metals play an important role in the toxicity of fine PM to C. elegans, where the organic fraction may be the key toxicogenic component. The multigenerational studies show that PM toxicity can be passed from parent to offspring, and gradually returns to control levels in the F3-F4 generation with germ cell apoptosis being restored in the F4 generation. Therefore, the adverse effects of PM on reproductive damage are more profound.
Collapse
|
19
|
Velumani M, Thiruppathi G, Mohankumar A, Kalaiselvi D, Sundararaj P, Premasudha P. Green synthesis of zinc oxide nanoparticles using Cananga odorata essential oil and its antibacterial efficacy in vitro and in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109448. [PMID: 36064134 DOI: 10.1016/j.cbpc.2022.109448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Zinc oxide (ZnO) nanostructure exhibits antimicrobial properties, which have prompted more research on their bactericidal effect against foodborne pathogens. The present work focused on the green synthesis of ZnO nanoparticles (ZnO NPs) using Cananga odorata essential oil. The synthesized ZnO NPs were characterized by XRD, UV-Vis spectroscopy, zeta potential, SEM, and FT-IR analysis. The bactericidal activity of biosynthesized ZnO NPs was tested against Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro results indicate that ZnO NPs have excellent antibacterial activity and that the bactericidal and bacteriostatic mechanisms are based on ROS production and depend on its penetration and interaction with bacterial cells. Moreover, ZnO NPs were found to be non-toxic to Caenorhabditis elegans, an in vivo animal model, up to 1 g/L and exert antibacterial activity by reducing the growth and colonization of pathogens. By reducing pathogen virulence, ZnO NPs significantly improved worms' physiological functions such as pharyngeal pumping, body length, reproduction, and movement. The competitive effect of ZnO NPs against pathogenic bacteria increased the gut-barrier integrity of C. elegans. The most interesting observation was noted that ZnO treatment increased the mean survival rate of P. aeruginosa and S. aureus infected C. elegans by 56.6 % and 62.4 %, respectively. As an outcome, our study proved that green synthesized ZnO NPs exhibit remarkable biological properties and can be used as an efficient bactericidal agent against foodborne pathogens.
Collapse
Affiliation(s)
- Muthusamy Velumani
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | | | - Amirthalingam Mohankumar
- Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu 641046, India. https://twitter.com/@amir_mohankumar
| | - Duraisamy Kalaiselvi
- Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu 641046, India. https://twitter.com/@KalaiselviDura1
| | | | - Paramasivam Premasudha
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India.
| |
Collapse
|
20
|
Ghazimoradi MM, Azad FV, Jalali F, Rafieian-Kopaei M. The Neurotoxic Mechanisms of Graphene Family Nanomaterials at the Cellular Level: A Solution-based Approach Review. Curr Pharm Des 2022; 28:3572-3581. [PMID: 36464882 DOI: 10.2174/1381612829666221202093813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/09/2022]
Abstract
The graphene family nanomaterials (GFNs) have been recognized to have potential applications in biomedicine, especially in the rag nostic, drug delivery and neuroimaging. Multiple studies have examined the neurotoxicity of GFNs to assay their toxic effects on organisms and ecosystems. In this article, we reviewed the different neurotoxicity effects of GFNs at intracellular levels, including nucleus-related effects and cytosolic mechanisms, as well as extracellular levels, including effects on enzyme activity, oxidative stress, behavior, neurotransmitters, and central nervous system (CNS). Furthermore, for the sake of the solution, we discussed the reducing ways of graphene toxicity. A schematic description is shown in Fig. (1).
Collapse
Affiliation(s)
| | - Farhan Vahdat Azad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Jalali
- Medical Laboratory Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
21
|
Sun J, Kim J, Jeong H, Kwon D, Moon Y. Xenobiotic-induced ribosomal stress compromises dysbiotic gut barrier aging: A one health perspective. Redox Biol 2022; 59:102565. [PMID: 36470131 PMCID: PMC9720106 DOI: 10.1016/j.redox.2022.102565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Upon exposure to internal or environmental insults, ribosomes stand sentinel. In particular, stress-driven dysregulation of ribosomal homeostasis is a potent trigger of adverse outcomes in mammalians. The present study assessed whether the ribosomal insult affects the aging process via the regulation of sentinel organs such as the gut. Analyses of the human aging dataset demonstrated that elevated features of ribosomal stress are inversely linked to barrier maintenance biomarkers during the aging process. Ribosome-insulted worms displayed reduced lifespan, which was associated with the disruption of gut barriers. Mechanistically, ribosomal stress-activated Sek-1/p38 signaling, a central platform of ribosomal stress responses, counteracted the gut barrier deterioration through the maintenance of the gut barrier, which was consistent with the results in a murine insult model. However, since the gut-protective p38 signaling was attenuated with aging, the ribosomal stress-induced distress was exacerbated in the gut epithelia and mucosa of the aged animals, subsequently leading to increased bacterial exposure. Moreover, the bacterial community-based evaluation predicted concomitant increases in the abundance of mucosal sugar utilizers and mucin metabolic enzymes in response to ribosomal insult in the aged host. All of the present evidence on ribosomal insulting against the gut barrier integrity from worms to mammals provides new insights into organelle-associated translational modulation of biological longevity in a one health perspective.
Collapse
Affiliation(s)
- Junjie Sun
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Hoyoung Jeong
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Dasom Kwon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
22
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
23
|
Feng W, Wang J, Li B, Liu Y, Xu D, Cheng K, Zhuang J. Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells. Int J Biochem Cell Biol 2022; 146:106206. [PMID: 35398141 DOI: 10.1016/j.biocel.2022.106206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022]
Abstract
Owing to its unique physical and chemical properties, graphene oxide (GO) has a wide range of applications in biomedical field. However, with the gradual improvement of biosafety investigations on nanomaterials, growing literatures have pointed out that GO could lead to oxidative stress, aggravation of inflammatory responses, and even irreversible lesions in human multi-tissues, while its damage to small intestinal remained unclear. In this study, we conducted an in-depth study on the toxicological effect of GO on intestinal tissues, and further clarified its toxic effect and molecular mechanism on inducing intestinal cell death. Firstly, we characterized the shape size, potential value, Fourier Transform infrared spectroscopy (FT-IR) characterization and pro-oxidant properties of GO nanosheets. The cytotoxicity of different concentrations of GO to Caco-2 and IEC-6 cell lines was thereafter observed, which was specifically manifested as invoking NADPH Oxidase 1 (NOX1) proteins, accompanied generation of reactive oxygen species (ROS). Since that, more p53 flowed into mitochondria to combine with cyclophilin D (CYPD), thus induced mitochondrial permeability transition pore (mPTP) opening. Through ROS-CyPD-mPTP signaling pathway, GO exerted imbalance of mitochondrial homeostasis, while released cytochrome c (CytC) would ultimate caspase-dependent cell apoptosis. In vivo experiment also confirmed that the microstructure of small intestine was damaged, and the apoptosis rate and oxidative markers were significantly increased in GO-treated Sprague- Dawley (SD) rats (40 mg/kg once every other day from day 1 to day 9 by oral gavage). Based on these findings, we conclude that the adverse effects of oral exposure of GO on the biological system mainly concentrate in the digestive tract, and clarify the key role of ROS-mitochondrial homeostasis-apoptosis axis in GO-derived intestinal toxicity. Considering all these results and the fact that GO exhibited intestinal toxicity, we believe that this research providing a safety reference for its biomedical applications.
Collapse
Affiliation(s)
- Weiyu Feng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jinbang Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Baodong Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonggang Liu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dongli Xu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ke Cheng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhuang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
24
|
|
25
|
Guo Q, Yang Y, Zhao L, Chen J, Duan G, Yang Z, Zhou R. Graphene oxide toxicity in W 1118 flies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150302. [PMID: 34536880 DOI: 10.1016/j.scitotenv.2021.150302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The risk of graphene oxide (GO) exposure to various species has been greatly amplified in recent years due to its booming production and applications in various fields. However, a deep understanding of the GO biosafety lags its wide applications. Herein, we used W1118 flies as a model organism to study GO toxicity at relatively low concentrations. We found that GO exposure led to remarkable weight loss, delayed development, retarded motion, and shortened lifespan of these flies. On the other hand, the GO influence on their sex ratio and the total number of pupae and adults were insignificant. The toxicological effect of GO was shown to be related to its serious compromise of the nutrient absorption in flies due to the severe damages in midguts. These damages were then attributed to the excessive accumulation of reactive oxygen species (ROS), which triggers the oxidative stress. These findings reveal the underlying mechanisms of GO biotoxicities in fruit flies, which might provide a useful reference to assess the risks of these newly invented nanomaterials likely never encountered by various species before.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China; Institute of Quantitative Biology and College of Life Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
26
|
Jin L, Dou TT, Chen JY, Duan MX, Zhen Q, Wu HZ, Zhao YL. Sublethal toxicity of graphene oxide in Caenorhabditis elegans under multi-generational exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113064. [PMID: 34890989 DOI: 10.1016/j.ecoenv.2021.113064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have received increasing attentions owing to their potential hazards to the environment and human health; however, the multi-generational toxicity of graphene oxide under consecutive multi-generational exposure scenario still remains unclear. In the present study, Caenorhabditis elegans as an in vivo model organism was employed to explore the multi-generational toxicity effects of graphene oxide and the underlying mechanisms. Endpoints including development and lifespan, locomotion behaviors, defecation cycle, brood sizes, and oxidative response were evaluated in the parental generation and subsequent five filial generations. After continuous exposure for several generations, worms grew smaller and lived shorter. The locomotion behaviors were reduced across the filial generations and these reduced trends were following the impairments of locomotion-related neurons. In addition, the extended defecation cycles from the third filial generation were in consistency with the relative size reduction of the defecation related neuron. Simultaneously, the fertility function of the nematode was impaired under consecutive exposure as reduced brood sizes and oocytes numbers, increased apoptosis of germline, and aberrant expression of reproductive related genes ced-3, ced-4, ced-9, egl-1 and ced-13 were detected in exposed worms. Furthermore, the antioxidant enzyme, SOD-3 was significantly increased in the parent and filial generations. Thus, continuous multi-generational exposure to graphene oxide caused damage to the neuron development and the reproductive system in nematodes. These toxic effects could be reflected by indicators such as growth inhibition, shortened lifespan, and locomotion behavior impairment and induced oxidative response.
Collapse
Affiliation(s)
- Ling Jin
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ting-Ting Dou
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Jing-Ya Chen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ming-Xiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Quan Zhen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Hua-Zhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China.
| | - Yun-Li Zhao
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China.
| |
Collapse
|
27
|
Sun J, Li L, Xing F, Yang Y, Gong M, Liu G, Wu S, Luo R, Duan X, Liu M, Zou M, Xiang Z. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Stem Cell Res Ther 2021; 12:591. [PMID: 34863288 PMCID: PMC8642892 DOI: 10.1186/s13287-021-02634-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background The invasive and complicated procedures involving the use of traditional stem cells limit their application in bone tissue engineering. Cell-free, tissue-engineered bones often have complex scaffold structures and are usually engineered using several growth factors (GFs), thus leading to costly and difficult preparations. Urine-derived stem cells (USCs), a type of autologous stem cell isolated noninvasively and with minimum cost, are expected to solve the typical problems of using traditional stem cells to engineer bones. In this study, a graphene oxide (GO)-modified silk fibroin (SF)/nanohydroxyapatite (nHA) scaffold loaded with USCs was developed for immunomodulation and bone regeneration. Methods The SF/nHA scaffolds were prepared via lyophilization and cross-linked with GO using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS). Scaffolds containing various concentrations of GO were characterized using scanning electron microscopy (SEM), the elastic modulus test, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). Examinations of cell adhesion, proliferation, viability, morphology, alkaline phosphatase activity, and osteogenesis-related gene expression were performed to compare the osteogenesis-related biological behaviors of USCs cultured on the scaffolds. The effect of USC-laden scaffolds on the differentiation of macrophages was tested using ELISA, qRT-PCR, and immunofluorescence staining. Subcutaneous implantations in rats were performed to evaluate the inflammatory response of the USC-laden scaffolds after implantation. The scaffolds loaded with USCs were implanted into a cranial defect model in rats to repair bone defects. Micro-computed tomography (μCT) analyses and histological evaluation were performed to evaluate the bone repair effects. Results GO modification enhanced the mechanical properties of the scaffolds. Scaffolds containing less than 0.5% GO had good biocompatibility and promoted USC proliferation and osteogenesis. The scaffolds loaded with USCs induced the M2-type differentiation and inhibited the M1-type differentiation of macrophages. The USC-laden scaffolds containing 0.1% GO exhibited the best capacity for promoting the M2-type differentiation of macrophages and accelerating bone regeneration and almost bridged the site of the rat cranial defects at 12 weeks after surgery. Conclusions This composite system has the capacity for immunomodulation and the promotion of bone regeneration and shows promising potential for clinical applications of USC-based, tissue-engineered bones. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02634-w.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Lang Li
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yun Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Guoming Liu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shangdong, People's Republic of China
| | - Shuang Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Rong Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min Zou
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, People's Republic of China.
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
28
|
Bortolozzo LS, Côa F, Khan LU, Medeiros AMZ, Da Silva GH, Delite FS, Strauss M, Martinez DST. Mitigation of graphene oxide toxicity in C. elegans after chemical degradation with sodium hypochlorite. CHEMOSPHERE 2021; 278:130421. [PMID: 33839394 DOI: 10.1016/j.chemosphere.2021.130421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/28/2023]
Abstract
Graphene oxide (GO) is a promising and strategic carbon-based nanomaterial for innovative and disruptive technologies. It is therefore essential to address its environmental health and safety aspects. In this work, we evaluated the chemical degradation of graphene oxide by sodium hypochlorite (NaClO, bleach water) and its consequences over toxicity, on the nematode Caenorhabditis elegans. The morphological, chemical, and structural properties of GO and its degraded product, termed NaClO-GO, were characterized, exploring an integrated approach. After the chemical degradation of GO at room temperature, its flake size was reduced from 156 to 29 nm, while NaClO-GO showed changes in UV-vis absorption, and an increase in the amount of oxygenated surface groups, which dramatically improved its colloidal stability in moderately hard reconstituted water (EPA medium). Acute and chronic exposure endpoints (survival, growth, fertility, and reproduction) were monitored to evaluate material toxicities. NaClO-GO presented lower toxicity at all endpoints. For example, an increase of over 100% in nematode survival was verified for the degraded material when compared to GO at 10 mg L-1. Additionally, enhanced dark-field hyperspectral microscopy confirmed the oral uptake of both materials by C. elegans. Finally, this work represents a new contribution toward a better understanding of the links between the transformation of graphene-based materials and nanotoxicity effects (mitigation), which is mandatory for the safety improvements that are required to maximize nanotechnological benefits to society.
Collapse
Affiliation(s)
- Leandro S Bortolozzo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Aline M Z Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Fabricio S Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Centre of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil.
| |
Collapse
|
29
|
Li Y, Zhong L, Zhang L, Shen X, Kong L, Wu T. Research Advances on the Adverse Effects of Nanomaterials in a Model Organism, Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2406-2424. [PMID: 34078000 DOI: 10.1002/etc.5133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Along with the rapid development of nanotechnology, the biosafety assessment of nanotechnology products, including nanomaterials (NMs), has become more and more important. The nematode Caenorhabditis elegans is a valuable model organism that has been widely used in the field of biology because of its excellent advantages, including low cost, small size, short life span, and highly conservative genomes with vertebral animals. In recent years, the number of nanotoxicological researchers using C. elegans has been growing. According to these available studies, the present review classified the adverse effects of NMs in C. elegans into systematic, cellular, and molecular toxicity, and focused on summarizing and analyzing the underlying mechanisms of metal, metal oxide, and nonmetallic NMs causing toxic effects in C. elegans. Our findings provide insights into what further studies are needed to assess the biosafety of NMs in the ecosystem using C. elegans. Environ Toxicol Chem 2021;40:2406-2424. © 2021 SETAC.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lishi Zhong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Heat-Treated Bifidobacterium longum CECT-7347: A Whole-Cell Postbiotic with Antioxidant, Anti-Inflammatory, and Gut-Barrier Protection Properties. Antioxidants (Basel) 2021; 10:antiox10040536. [PMID: 33808122 PMCID: PMC8067082 DOI: 10.3390/antiox10040536] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Non-viable preparations of probiotics, as whole-cell postbiotics, attract increasing interest because of their intrinsic technological stability, and their functional properties, such as immune system modulation, gut barrier maintenance, and protection against pathogens. However, reports on Bifidobacteria-derived postbiotics remain scarce. This study aims to demonstrate the functional properties of a heat-treated (HT), non-viable, Bifidobacterium longum strain, CECT-7347, a strain previously selected for its anti-inflammatory phenotype and ability to improve biomarkers of intestinal integrity in clinical trials. The study used the nematode Caenorhabditis elegans and HT-29 cell cultures as eukaryotic model systems. Our results show that HT-CECT-7347 preserves the capacity to protect against oxidative stress damage, while it also reduces acute inflammatory response and gut-barrier disruption, and inhibits bacterial colonization, by activating pathways related to innate immune function. These findings highlight the interest of the ingredient as a novel postbiotic and pave the way to broaden the range of HT-CECT-7347 applications in gut health.
Collapse
|
31
|
Liu S, Xu A, Gao Y, Xie Y, Liu Z, Sun M, Mao H, Wang X. Graphene oxide exacerbates dextran sodium sulfate-induced colitis via ROS/AMPK/p53 signaling to mediate apoptosis. J Nanobiotechnology 2021; 19:85. [PMID: 33766052 PMCID: PMC7995754 DOI: 10.1186/s12951-021-00832-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 03/14/2021] [Indexed: 12/30/2022] Open
Abstract
Background Graphene oxide (GO), a novel carbon-based nanomaterial, has promising applications in biomedicine. However, it induces potential cytotoxic effects on the gastrointestinal (GI) tract cells, and these effects have been largely uncharacterized. The present study aimed to explore the toxic effects of GO on the intestinal tract especially under pre-existing inflammatory conditions, such as inflammatory bowel disease (IBD), and elucidate underlying mechanisms. Results Our findings indicated that oral gavage of GO worsened acute colitis induced by 2.5% dextran sodium sulfate (DSS) in mice. In vitro, GO exacerbated DSS-induced inflammation and apoptosis in the FHC cell line, an ideal model of intestinal epithelial cells (IECs). Further, the potential mechanism underlying GO aggravated mice colitis and cell inflammation was explored. Our results revealed that GO treatment triggered apoptosis in FHC cells through the activation of reactive oxygen species (ROS)/AMP-activated protein kinase (AMPK)/p53 pathway, as evidenced by the upregulation of cytochrome c (Cytc), Bax, and cleaved caspase-3 (c-cas3) and the downregulation of Bcl-2. Interestingly, pretreatment with an antioxidant, N-acetyl-L-cysteine, and a specific inhibitor of AMPK activation, Compound C (Com.C), effectively inhibited GO-induced apoptosis in FHC cells. Conclusions Our data demonstrate that GO-induced IECs apoptosis via ROS/AMPK/p53 pathway activation accounts for the exacerbation of colitis in vivo and aggravation of inflammation in vitro. These findings provide a new insight into the pathogenesis of IBD induced by environmental factors. Furthermore, our findings enhance our understanding of GO as a potential environmental toxin, which helps delineate the risk of exposure to patients with disturbed intestinal epithelial barrier/inflammatory disorders such as IBD. ![]()
Collapse
Affiliation(s)
- Siliang Liu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Angao Xu
- Huizhou Medicine Institute, Huizhou, 516003, People's Republic of China
| | - Yanfei Gao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yue Xie
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhipeng Liu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Meiling Sun
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hua Mao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
32
|
Shaikhulova S, Fakhrullina G, Nigamatzyanova L, Akhatova F, Fakhrullin R. Worms eat oil: Alcanivorax borkumensis hydrocarbonoclastic bacteria colonise Caenorhabditis elegans nematodes intestines as a first step towards oil spills zooremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143209. [PMID: 33160671 DOI: 10.1016/j.scitotenv.2020.143209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The environmental hazards of oil spills cannot be underestimated. Bioremediation holds promise among various approaches to tackle oil spills in soils and sediments. In particular, using oil-degrading bacteria is an efficient and self-regulating way to remove oil spills. Using animals for oil spills remediation is in its infancy, mostly due to the lack of efficient oil-degrading capabilities in eukaryotes. Here we show that Caenorhabditis elegans nematodes survive for extended periods (up to 22 days) on pure crude oil diet. Moreover, we report for the first time the use of Alcanivorax borkumensis hydrocarbonoclastic bacteria for colonisation of C. elegans intestines, which allows for effective digestion of crude oil by the nematodes. The worms fed and colonised by A. borkumensis demonstrated the similar or even better longevity, resistance against oxidative and thermal stress and reproductivity as those animals fed with Escherichia coli bacteria (normal food). Importantly, A. borkumensis-carrying nematodes were able to accumulate oil droplet from oil-contaminated soils. Artificial colonisation of soil invertebrates with oil-degrading bacteria will be an efficient way to distribute microorganisms in polluted soil, thus opening new avenues for oil spills zooremediation.
Collapse
Affiliation(s)
- Särbinaz Shaikhulova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gӧlnur Fakhrullina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Läysän Nigamatzyanova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
33
|
Abstract
Applications of nanomaterials cause a general concern on their toxicity when they intentionally (such as in medicine) or unintentionally (environment exposure) enter into the human body. As a special subpopulation, pregnant women are more susceptible to nanoparticle (NP)-induced toxicity. More importantly, prenatal exposures may affect the entire life of the fetus. Through blood circulation, NPs may cross placental barriers and enter into fetus. A cascade of events, such as damage in placental barriers, generation of oxidative stress, inflammation, and altered gene expression, may induce delayed or abnormal fetal development. The physicochemical properties of NPs, exposure time, and other factors directly affect nanotoxicity in pregnant populations. Even though results from animal studies cannot directly extrapolate to humans, compelling evidence has already shown that, for pregnant women, caution must be taken when dealing with nanomedicines or NP pollutants.
Collapse
Affiliation(s)
- Zengjin Wang
- School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhiping Wang
- School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
34
|
Liu H, Wang D. Intestinal mitochondrial unfolded protein response induced by nanoplastic particles in Caenorhabditis elegans. CHEMOSPHERE 2021; 267:128917. [PMID: 33189400 DOI: 10.1016/j.chemosphere.2020.128917] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/18/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
In organisms, activation of mitochondrial unfolded protein response (mt UPR) provides the protective strategy against toxicity of environmental exposures. The aim of this study was to determine the activation of intestinal mt UPR and the underlying mechanisms in nanopolystyrene (100 nm) exposed Caenorhabditis elegans. The exposure was performed from L1-larvae for approximately 6.5-day. Activation of mt UPR as reflected by expressions of both HSP-6::GFP and hsp-6 in the intestine could be detected in nanopolystyrene (1-100 μg/L) exposed nematodes. Meanwhile, the susceptibility to nanoplastic toxicity was observed in hsp-6(RNAi) nematodes, suggesting the protective function of intestinal activation of mt UPR. After nanoplastic exposure, the activation of intestinal mt UPR was due to increase in expressions of ATFS-1, UBL-5, and DVE-1. Moreover, the activations of intestinal mt UPR mediated by ATFS-1, DVE-1, and UBL-5 was under the control of ELT-2 signaling, Wnt signaling, and insulin signaling, respectively. In the intestine, UBL-5, DVE-1, and ATFS-1 functioned in different pathways to control nanoplastic toxicity. Therefore, we provide an important molecular network of mt UPR activation in intestine of nematodes against the nanoplastic toxicity. Our findings highlight the importance of mt UPR activation in mediating a protective response to nanoplastics at low concentrations in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
35
|
Sivaselvam S, Mohankumar A, Thiruppathi G, Sundararaj P, Viswanathan C, Ponpandian N. Engineering the surface of graphene oxide with bovine serum albumin for improved biocompatibility in Caenorhabditis elegans. NANOSCALE ADVANCES 2020; 2:5219-5230. [PMID: 36132053 PMCID: PMC9418892 DOI: 10.1039/d0na00574f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) has been extensively studied for its potential biomedical applications. However, its potential risk associated with the interactions of GO in a biological system hampers its biomedical applications. Therefore, there is an urgent need to enhance the biocompatibility of GO. In the present study, we decorated the surface of GO with bovine serum albumin (GO-BSA) to mitigate the in vivo toxic properties of GO. An in vivo model Caenorhabditis elegans has been used to study the potential protective effect of BSA decoration in mitigating GO induced toxicity. The BSA decoration on the surface of GO prevents the acute and prolonged toxicity induced by GO in primary and secondary organs by maintaining normal intestinal permeability, defecation behavior, development, and reproduction. Notably, GO-BSA treatment at 0.5-100 mg L-1 does not affect the intracellular redox status and lifespan of C. elegans. Reporter gene expression analysis revealed that exposure to GO-BSA (100 mg L-1) did not significantly influence the nuclear accumulation and expression patterns of DAF-16/FOXO and SKN-1/Nrf2 transcription factors and their downstream target genes sod-3, hsp-16.2, ctl-1,2,3, gcs-1, and gst-4 when compared to exposure to pristine GO. Also, quantitative real-time PCR results showed that GO-BSA did not alter the expression of genes involved in regulating DNA damage checkpoints (cep-1, hus-1 and egl-1) and core signaling pathways of apoptosis (ced-4, ced-3 and ced-9), in contrast to GO treatment. All these findings will have an impact on the future development of safer nanomaterial formulations of graphene and graphene-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641 046 India +91-422-2422387 +91-422-2428421
| | - A Mohankumar
- Department of Zoology, Bharathiar University Coimbatore 641 046 India
| | - G Thiruppathi
- Department of Zoology, Bharathiar University Coimbatore 641 046 India
| | - P Sundararaj
- Department of Zoology, Bharathiar University Coimbatore 641 046 India
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641 046 India +91-422-2422387 +91-422-2428421
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641 046 India +91-422-2422387 +91-422-2428421
| |
Collapse
|
36
|
Guo T, Cheng L, Zhao H, Liu Y, Yang Y, Liu J, Wu Q. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine. Sci Rep 2020; 10:16933. [PMID: 33037257 PMCID: PMC7547681 DOI: 10.1038/s41598-020-73712-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
The increased application of graphene oxide (GO), a new carbon-based engineered nanomaterial, has generated a potential toxicity in humans and the environment. Previous studies have identified some dysregulated microRNAs (miRNAs), such as up-regulated mir-235, in organisms exposed to GO. However, the detailed mechanisms of the dysregulation of miRNA underlying GO toxicity are still largely elusive. In this study, we employed Caenorhabditis elegans as an in vivo model to investigate the biological function and molecular basis of mir-235 in the regulation of GO toxicity. After low concentration GO exposure, mir-235 (n4504) mutant nematodes were sensitive to GO toxicity, implying that mir-235 mediates a protection mechanism against GO toxicity. Tissue-specific assays suggested that mir-235 expressed in intestine is required for suppressing the GO toxicity in C. elegans. daf-12, a gene encoding a member of the steroid hormone receptor superfamily, acts as a target gene of mir-235 in the nematode intestine in response to GO treatment, and RNAi knockdown of daf-12 suppressed the sensitivity of mir-235(n4503) to GO toxicity. Further genetic analysis showed that DAF-12 acted in the upstream of DAF-16 in insulin/IGF-1 signaling pathway and PMK-1 in p38 MAPK signaling pathway in parallel to regulate GO toxicity. Altogether, our results revealed that mir-235 may activate a protective mechanism against GO toxicity by suppressing the DAF-12-DAF-16 and DAF-12-PMK-1 signaling cascade in nematodes, which provides an important molecular basis for the in vivo toxicity of GO at the miRNA level.
Collapse
Affiliation(s)
- Tiantian Guo
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Lu Cheng
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Huimin Zhao
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yingying Liu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yunhan Yang
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Liu
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Qiuli Wu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
37
|
Graphene oxide-modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111603. [PMID: 33321647 DOI: 10.1016/j.msec.2020.111603] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
Articular cartilage regeneration is a challenge in orthopedics and tissue engineering. This study prepared a graphene oxide (GO)-modified 3D acellular cartilage extracellular matrix (ACM) scaffold for cartilage repair. Cartilage slices were decellularized using a combination of physical and chemical methods of fabricating ACM particles. GO was crosslinked with the ACM by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy succinimide to prepare a composite scaffold. GO modification improved the internal structure and mechanical properties of the scaffold. The GO-modified (2 mg/mL) composite scaffold promoted cell adhesion, cell proliferation, and chondrogenic differentiation in vitro. Experiments on subcutaneous implantation in rats demonstrated that the composite scaffold had good biocompatibility and mild inflammatory response. After 12 weeks of implantation, the composite scaffold loaded with bone marrow mesenchymal stem cells completely bridged the cartilage defects in the rabbit knee with hyaline cartilage. Results indicated that the GO-modified 3D ACM composite scaffold can provide a powerful platform for cartilage tissue engineering and articular cartilage injury treatment.
Collapse
|
38
|
Patel TN, R P, Vashi Y, Bhattacharya P. Toxic impacts and industrial potential of graphene. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:269-297. [PMID: 32897810 DOI: 10.1080/26896583.2020.1812335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Advancement in the field of nanotechnology has increased the synthesis and exploitation of graphene-like nanomaterials. Graphene is a two-dimensional planar and hexagonal array of carbon atoms. Due to its flexible nature graphene and its derivatives have several significant prospects extending from electronics to life sciences and drug delivery systems. In this review, we enlist some of the toxic effects of graphene family nanomaterials (GFNs) in various aspects of biosystems viz., in vitro, in vivo, microbial, molecular and environmental. We also appreciate their extensive and promising applications though with some underlying challenges. This review also draws attention toward current and future prospect of global graphene market for wide-range commercialization.
Collapse
Affiliation(s)
- Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India
| | - Priyanka R
- College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Yash Vashi
- Operations and Product Development Department, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
39
|
Yu Y, Hua X, Chen H, Wang Y, Li Z, Han Y, Xiang M. Toxicity of lindane induced by oxidative stress and intestinal damage in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114731. [PMID: 32416425 DOI: 10.1016/j.envpol.2020.114731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/13/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Lindane, a lipophilic pollutant, may be toxic to organisms. To explore the toxic effects of lindane and the underlying mechanisms of this toxicity, the animal model Caenorhabditis elegans (C. elegans) was exposed to lindane for 3 d at environmentally relevant concentrations (0.01-100 ng/L) and the physiological, biochemical, and molecular indices were evaluated. Subacute exposure to 10-100 ng/L of lindane caused adverse physiological effects on the development, reproduction, and locomotion behaviors in C. elegans. Exposure to 1-100 ng/L of lindane increased the accumulation of Nile red and blue food dye, which suggested high permeability of the intestine in nematodes. Lindane exposure also significantly influenced the expression of genes related to intestinal development (e.g., mtm-6 and opt-2). Moreover, reactive oxygen species production, lipofuscin accumulation, and expression of oxidation resistance genes (e.g., sod-5 and isp-1) were significantly increased in C. elegans exposed to 10-100 ng/L of lindane, which indicated that lindane exposure induced oxidative stress. According to Pearson correlation analyses, oxidative stress and intestinal damage were significantly correlated with the adverse physiological effects of lindane. Therefore, the adverse effects of lindane may have been induced by intestinal damage and oxidative stress, and mtm-6, opt-2, sod-5, isp-1, and mev-1 might play important roles in the toxicity of lindane.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
40
|
Yu Y, Chen H, Hua X, Dang Y, Han Y, Yu Z, Chen X, Ding P, Li H. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138679. [PMID: 32320865 DOI: 10.1016/j.scitotenv.2020.138679] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 05/07/2023]
Abstract
To understand the toxicity and mechanism of polystyrene microplastics (PS-MPs) exposure, Caenorhabditis elegans (C. elegans) was exposed to various concentrations (0, 0.1, 1, 10, and 100 μg/L) of PS-MPs, and the levels physiological, biochemical, and molecular parameters were measured as endpoints. Subacute exposure to 1-100 μg/L of PS-MPs resulted in adverse physiological effects in C. elegans, and PS-MPs were ingested and accumulated in the intestine of C. elegans. Exposure to 100 μg/L of PS-MPs significantly increased reactive oxygen species (ROS) production, lipofuscin accumulation, and the expression oxidative stress-related genes, which suggests that PS-MPs exposure induced oxidative stress by ROS. In addition, exposure to 100 μg/L of PS-MPs caused a hyperpermeable state of the intestinal barrier and altered the expression of genes related to intestinal development, which indicates intestinal damage in C. elegans. According to Pearson correlation analyses, oxidative stress and intestinal damage were significantly correlated with adverse effects of PS-MPs in C. elegans. Therefore, it was speculated that the toxicity induced by PS-MPs resulted from the combination of oxidative stress and intestinal injury.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
41
|
Josende ME, Nunes SM, de Oliveira Lobato R, González-Durruthy M, Kist LW, Bogo MR, Wasielesky W, Sahoo S, Nascimento JP, Furtado CA, Fattorini D, Regoli F, Machado K, Werhli AV, Monserrat JM, Ventura-Lima J. Graphene oxide and GST-omega enzyme: An interaction that affects arsenic metabolism in the shrimp Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136893. [PMID: 32059295 DOI: 10.1016/j.scitotenv.2020.136893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is one of the most widespread contaminants; it is found in almost every environment. Its toxic effects on living organisms have been studied for decades, but the interaction of this metalloid with other contaminants is still relatively unknown, mainly whether this interaction occurs with emerging contaminants such as nanomaterials. To examine this relationship, the marine shrimp Litopenaeus vannamei was exposed for 48 h to As, graphene oxide (GO; two different concentrations) or a combination of both, and gills, hepatopancreas and muscle tissues were sampled. Glutathione S-transferase (GST)-omega gene expression and activity were assessed. As accumulation and speciation (metabolisation capacity) were also examined. Finally, a molecular docking simulation was performed to verify the possible interaction between the nanomaterial and GST-omega. The main finding was that GO modulated the As toxic effect: it decreased GST-omega activity, a consequence related to altered As accumulation and metabolism. Besides, the molecular docking simulation confirmed the capacity of GO to interact with the enzyme structure, which also can be related to the decreased GST-omega activity and subsequently to the altered As accumulation and metabolisation pattern.
Collapse
Affiliation(s)
- Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Roberta de Oliveira Lobato
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Michael González-Durruthy
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Luiza Wilges Kist
- Centro de Biologia Genômica e Molecular - Pontifícia, Universidade Católica do Rio Grande do Sul - PUCRS, RS, Brazil
| | - Maurício Reis Bogo
- Centro de Biologia Genômica e Molecular - Pontifícia, Universidade Católica do Rio Grande do Sul - PUCRS, RS, Brazil
| | - Wilson Wasielesky
- Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Brazil; Programa de Pós-Graduação em Aquicultura - FURG, Brazil
| | - Sangran Sahoo
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Brazil
| | | | | | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Karina Machado
- Centro de Ciências Computacionais - FURG, Brazil; Programa de Pós-Graduação em Computação - FURG, Brazil
| | - Adriano V Werhli
- Centro de Ciências Computacionais - FURG, Brazil; Programa de Pós-Graduação em Computação - FURG, Brazil
| | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil; Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil.
| |
Collapse
|
42
|
Ramasamy M, Nanda SS, Lee JH, Lee J. Construction of Alizarin Conjugated Graphene Oxide Composites for Inhibition of Candida albicans Biofilms. Biomolecules 2020; 10:biom10040565. [PMID: 32272698 PMCID: PMC7226399 DOI: 10.3390/biom10040565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Biofilm inhibition using nanoparticle-based drug carriers has emerged as a noninvasive strategy to eradicate microbial contaminants such as fungus Candida albicans. In this study, one-step adsorption strategy was utilized to conjugate alizarin (AZ) on graphene oxide (GO) and characterized by ultraviolet-visible spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray powder diffraction (XRD), dynamic light-scattering (DLS), and transmission electron microscopy (TEM). Crystal violet assay was performed to evaluate the antibiofilm efficacy of GO-AZs against C. albicans. Different characterizations disclosed the loading of AZ onto GO. Interestingly, TEM images indicated the abundant loading of AZ by producing a unique inward rolling of GO-AZ sheets as compared to GO. When compared to the nontreatment, GO-AZ at 10 µg/mL significantly reduced biofilm formation to 96% almost equal to the amount of AZ (95%). It appears that the biofilm inhibition is due to the hyphal inhibition of C. albicans. The GO is an interesting nanocarrier for loading AZ and could be applied as a novel antibiofilm agent against various microorganisms including C. albicans.
Collapse
Affiliation(s)
- Mohankandhasamy Ramasamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (M.R.); (J.-H.L.)
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | | | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (M.R.); (J.-H.L.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (M.R.); (J.-H.L.)
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|
43
|
Liu P, Shao H, Kong Y, Wang D. Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans. J Environ Sci (China) 2020; 88:200-208. [PMID: 31862061 DOI: 10.1016/j.jes.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to engineered nanomaterials (ENMs), such as graphene oxide (GO), can potentially induce the response of various molecular signaling pathways, which can mediate the protective function or the toxicity induction. Wnt signaling pathway is conserved evolutionarily in organisms. Using Caenorhabditis elegans as an in vivo assay model, we investigated the effect of GO exposure on intestinal Wnt signaling. In the intestine, GO exposure dysregulated Frizzled receptor MOM-5, Disheveled protein DSH-2, GSK-3 (a component of APC complex), and two β-catenin proteins (BAR-1 and HMP-2), which mediated the induction of GO toxicity. In GO exposed nematodes, a Hox protein EGL-5 acted as a downstream target of BAR-1, and fatty acid transport ACS-22 acted as a downstream target of HMP-2. Functional analysis on HMP-2 and ACS-22 suggested that the dysregulation of these two proteins provides an important basis for the observed deficit in functional state of intestinal barrier. Our results imply the association of dysregulation in physiological and functional states of intestinal barrier with toxicity induction of GO in organisms.
Collapse
Affiliation(s)
- Peidang Liu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huimin Shao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yan Kong
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
44
|
Zhao Y, Chen H, Yang Y, Wu Q, Wang D. Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134492. [PMID: 31627046 DOI: 10.1016/j.scitotenv.2019.134492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) is a carbon-based engineered nanomaterial (ENM). Using Caenorhabditis elegans as an animal model, we investigated the effect of GO exposure on protein-protein interactions. In nematodes, NLG-1/Neuroligin, a postsynaptic protein, acted only in the neurons to regulate the GO toxicity. In the neurons, DLG-1, a PSD-95 protein, and MAGI-1, a S-SCAM protein, were identified as the downstream targets of NLG-1 in the regulation of GO toxicity. PKC-1, a serine/threonine protein kinase C, further acted downstream of neuronal DLG-1 and MAGI-1 to regulate the GO toxicity. Co-immunoprecipitation analysis demonstrated the protein-protein interaction between NLG-1 and DLG-1 or MAGI-1. After GO expression, this protein-protein interaction between NLG-1 and DLG-1 or MAGI-1 was significantly inhibited. Therefore, our data raised the evidence to suggest the potential of GO exposure in disrupting protein-protein interactions in organisms.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Department of Preventive Medicine, Bengbu Medical College, Bengbu 233030, China
| | - He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
45
|
Kim M, Eom HJ, Choi I, Hong J, Choi J. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans. Neurotoxicology 2019; 77:30-39. [PMID: 31862286 DOI: 10.1016/j.neuro.2019.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO) and graphene-based nanomaterials have been widely applied in recent years, but their potential health risk and neurotoxic potentials remain poorly understood. In this study, neurotoxic potential of GO and its underlying molecular and cellular mechanism were investigated using the nematode, Caenorhabditis elegans. Deposition of GO in the head region and increased reactive oxygen species (ROS) was observed in C. elegans after exposure to GO. The neurotoxic potential of GO was then investigated, focusing on neurotransmitters contents and neuronal activity using AFD sensory neurons. The contents of all neurotransmitters, such as, tyrosine, tryptophan, dopamine, tyramine, and GABA, decreased significantly by GO exposure. Decreased fluorescence of Pgcy-8:GFP, a marker of AFD sensory neuron, by GO exposure suggested GO could cause neuronal damage on AFD neuron. GO exposure led decreased expression of ttx-1 and ceh-14, genes required for the function of AFD neurons also confirmed possible detrimental effect of GO to AFD neuron. To understand physiological meaning of AFD neuronal damage by GO exposure, locomotive behavior was then investigated in wild-type as well as in loss-of-function mutants of ttx-1 and ceh-14. GO exposure significantly altered locomotor behavior markers, such as, speed, acceleration, stop time, etc., in wild-type C. elegans, which were mostly rescued in AFD neuron mutants. The present study suggested the GO possesses neurotoxic potential, especially on neurotransmitters and AFD neuron in C. elegans. These findings provide useful information to understand the neurotoxic potential of GO and other graphene-based nanomaterials, which will guide their safe application.
Collapse
Affiliation(s)
- Mina Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 130-701, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea.
| |
Collapse
|
46
|
Zhu A, Ji Z, Zhao J, Zhang W, Sun Y, Zhang T, Gao S, Li G, Wang Q. Effect of Euphorbia factor L1 on intestinal barrier impairment and defecation dysfunction in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153102. [PMID: 31654989 DOI: 10.1016/j.phymed.2019.153102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Euphorbia factor L1 (EFL1) is a lathyrane-type diterpenoid from the medicinal herb Euphorbia lathyris L., and has been reported with intestinal toxicity, but the potential mechanisms remain unknown. PURPOSE The objective of this study was to investigate the intestinal toxicity of EFL1 and the underlying mechanisms using nematode Caenorhabditis elegans. METHODS C. elegans were exposed to 0-200 μM EFL1 for 72 h, then the survival rate, body length and body width, locomotion and chemoreception behavior, intestinal ROS and lipofuscin accumulation, intestinal permeability, and defecation rhythm were detected. The γ-aminobutyric acid(GABA) energic neurons AVL and DVB were shown via green fluorescent protein under a laser scanning confocal microscope. The structure of GABA transporter UNC-47 were predicted by homology modeling, and the interaction between EFL1 and UNC-47 was simulated by molecular docking. The mRNA expression of genes related to oxidative stress, intestinal permeability and defecation after EFL1 exposure were detected by RT-qPCR. RESULTS EFL1 did not induce lethality of nematodes. The general toxicity was characterized by abnormal growth, locomotion and chemoreception. The intestinal barrier was leaky, due to down-regulated cell junction and active cation transport. The mean defecation cycle length in nematodes was decreased, relating to disorder vesicular and ion transport, enhanced rhythm behavior and muscle contraction. The dysfunctional defecation also attributed to injured UNC-47 protein, as well as GABAergic neurons AVL and DVB. Excessive ROS and lipofuscin accumulation were observed in intestine, along with activation of antioxidant enzymes of SOD, COQ7 and CAT. CONCLUSION This study elucidated the EFL1-induced intestinal toxicity in nematodes, characterized as leaky intestinal barrier and accelerated defecation behavior. The underlying mechanisms were involved in oxidative stress, cell junctions, transportation, rhythm behavior, muscle contraction, and GABAergic neurons.
Collapse
Affiliation(s)
- An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Zonghui Ji
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jingwei Zhao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing Center of Preventive Medicine Research, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuqing Sun
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Shan Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing Center of Preventive Medicine Research, Beijing 100013, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing Center of Preventive Medicine Research, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
47
|
Rive C, Reina G, Wagle P, Treossi E, Palermo V, Bianco A, Delogu LG, Rieckher M, Schumacher B. Improved Biocompatibility of Amino-Functionalized Graphene Oxide in Caenorhabditis elegans. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902699. [PMID: 31576668 DOI: 10.1002/smll.201902699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) holds high promise for diagnostic and therapeutic applications in nanomedicine but reportedly displays immunotoxicity, underlining the need for developing functionalized GO with improved biocompatibility. This study describes adverse effects of GO and amino-functionalized GO (GONH2 ) during Caenorhabditis elegans development and ageing upon acute or chronic exposure. Chronic GO treatment throughout the C. elegans development causes decreased fecundity and a reduction of animal size, while acute treatment does not lead to any measurable physiological decline. However, RNA-Sequencing data reveal that acute GO exposure induces innate immune gene expression. The p38 MAP kinase, PMK-1, which is a well-established master regulator of innate immunity, protects C. elegans from chronic GO toxicity, as pmk-1 mutants show reduced tissue-functionality and facultative vivipary. In a direct comparison, GONH2 exposure does not cause detrimental effects in the wild type or in pmk-1 mutants, and the innate immune response is considerably less pronounced. This work establishes enhanced biocompatibility of amino-functionalized GO in a whole-organism, emphasizing its potential as a biomedical nanomaterial.
Collapse
Affiliation(s)
- Corvin Rive
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Giacomo Reina
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000, Strasbourg, France
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | | | | | - Alberto Bianco
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000, Strasbourg, France
| | - Lucia Gemma Delogu
- University of Sassari, via Muroni, 23, 07100, Sassari, Italy
- Institute of Pediatric Research, Fondazione Città della Speranza, corso stati uniti 4, 35127, Padua, Italy
- Department of Biomedical Sciences, University of Padua, via Ugo bassi 58, 35121, Padua, Italy
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| |
Collapse
|
48
|
Worm-Based Alternate Assessment of Probiotic Intervention against Gut Barrier Infection. Nutrients 2019; 11:nu11092146. [PMID: 31500368 PMCID: PMC6770392 DOI: 10.3390/nu11092146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial barrier is the frontline defense against enteropathogenic bacteria and nutrition-linked xenobiotic stressors in the alimentary tract. In particular, enteropathogenic Escherichia coli (EPEC) insults the gut barrier and is increasingly implicated in chronic intestinal diseases such as inflammatory bowel disease. For the efficient development of intervention against barrier-linked distress, the present study provided a Caenorhabditis elegans-based assessment instead of extensive preclinical evaluations using mammalian models. In particular, EPEC infected the gut and shortened the lifespan of C. elegans, which was counteracted by colonization of E. coli strain Nissle 1917 (EcN). In addition to the competitive actions of EcN against EPEC, EcN improved the gut barrier integrity of worms via the Zonula occludens ortholog (Zoo-1) induction, which was verified in the murine infection and colitis model. The worm-based assessment provided a crucial methodology and important insights into the potent chronic events in the human gut barrier after the ingestion of probiotic candidates as a mucoactive dietary or therapeutic agent.
Collapse
|
49
|
Qu M, Qiu Y, Lv R, Yue Y, Liu R, Yang F, Wang D, Li Y. Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:54-62. [PMID: 30769203 DOI: 10.1016/j.ecoenv.2019.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Quantum dots (QDs), considered as a type of excellent semiconductor nanomaterial, are widely employed and have a number of important applications. However, QDs have the potential to produce adverse effects and toxicity with the underlying molecular mechanisms not well understood. Herein, Caenorhabditis elegans was used for in vivo toxicity assessment to detect the reproductive toxicity of CdTe QDs. We found that exposure to CdTe QDs particles (≥ 50 mg/L) resulted in a defect in reproductive capacity, dysfunctional proliferation and differentiation, as well as an imbalance in oogenesis by reducing the number of cells in pachytene and diakinesis. Further, we identified a SPO-11 and PCH-2 mediated toxic mechanism and a GLP-1/Notch mediated protective mechanism in response to CdTe QDs particles (≥ 50 mg/L). Taken together, these results demonstrate the potential adverse impact of CdTe QDs (≥ 50 mg/L) exposure on oogenesis and provide valuable data and guidelines for evaluation of QD biocompatibility.
Collapse
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Rongrong Lv
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ying Yue
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
50
|
Andrade M, De Marchi L, Pretti C, Chiellini F, Morelli A, Figueira E, Rocha RJM, Soares AMVM, Freitas R. The impacts of warming on the toxicity of carbon nanotubes in mussels. MARINE ENVIRONMENTAL RESEARCH 2019; 145:11-21. [PMID: 30771907 DOI: 10.1016/j.marenvres.2019.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
With the increased production and research on nanoparticles, the presence of carbon nanotubes (CNTs) in aquatic systems is very likely to increase. Although it has been shown that CNTs may cause toxicity in marine organisms, to our knowledge, the possible impacts under global temperature increase is still unknown. For this reason, biochemical and physiological impacts induced in Mytilus galloprovincialis due to the presence of functionalized multi-walled CNTs (f-MWCNTs) and increased temperature were investigated in the present study. The mussels exposed to increased temperature alone presented higher metabolic capacity and expenditure of glycogen as an energy resource to fuel up defense mechanisms and thus preventing oxidative damage. Contrarily, organisms exposed to f-MWCNTs alone seemed not stressed enough to demonstrate differences in the metabolism capacity. Furthermore, f-MWCNTs seemed not able to significantly activate their antioxidant and biotransformation enzymes, which in turn may led to oxidative damage in the cells especially when organisms were exposed to a warmer temperature. In fact, at higher temperature, the antioxidant response of organisms exposed to f-MWCNTs was not effective and oxidative damage levels were observed. Nevertheless, no additive or synergetic effects were observed when mussels were exposed to both stressors simultaneously.
Collapse
Affiliation(s)
- Madalena Andrade
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy; Consortium for the Interuniversity Center of Marine Biology and Applied Ecology, Livorno, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui J M Rocha
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|