1
|
Wang Y, Lin M, Fan T, Zhou M, Yin R, Wang X. Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy. Int J Nanomedicine 2025; 20:1-24. [PMID: 39776491 PMCID: PMC11700880 DOI: 10.2147/ijn.s495387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy. In recent years, stimuli-responsive amphiphilic copolymer micelles have attracted significant attention. These micelles can respond to specific stimuli, including physical triggers (light, temperature, etc). chemical stimuli (pH, redox, etc). and physiological factors (enzymes, ATP, etc). Under these stimuli, the structures or properties of the micelles can change, enabling targeted therapy and controlled drug release in tumors. These stimuli-responsive strategies offer new avenues and approaches to enhance the tumor efficacy and reduce drug side effects. We will review the applications of different types of stimuli-responsive amphiphilic copolymer micelles in tumor therapy, aiming to provide valuable guidance for future research directions and clinical translation.
Collapse
Affiliation(s)
- Yao Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Meng Lin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tianfei Fan
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Minglu Zhou
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ruxi Yin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
2
|
Waheed S, Huang G, Shekh M, Wang F, Li Z, Wu J. A magnetic mucus-penetrating nanoagent boosting phlegm elimination for inhalation injury treatment. Biomater Sci 2024; 12:4713-4726. [PMID: 39082607 DOI: 10.1039/d4bm00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Inhalation injuries arising from exposure to toxic gases or smoke in fires or industrial accidents pose grave risks and significant respiratory complications. The limited efficacy of current treatment strategies stems from challenges in delivering therapeutic agents across the mucus barrier to the damaged trachea and bronchus. This research explores the reparative potential and underlying mechanisms of sputum-penetrable magnetic nanoparticles (MNPs) coated with poly(N-isopropylacrylamide) (PNIPAM), combined with polyethylene glycol (PEG), and loaded with ambroxol hydrochloride (AH) (MNPs@PNIPAM-AH@PEG) as an innovative therapeutic approach for inhalation injuries. The PNIPAM coating, a thermo-responsive polymer, aims to enhance targeted drug release under an external stimulus. The PEG component is designed to mitigate hydrophobic repulsion and electrostatic forces, facilitating nanoagent penetration of the mucus barrier-an obstacle in inhalation injury treatment. PEG's hydrophilicity, combined with the magnetically attracted NPs, enables deep penetration through the mucus layer adhering to the mucus epithelium. Thermal effects break the outer thermal shell of MNPs, accelerating drug release, resolving sputum, and reducing inflammation. The results showed improved therapeutic impact by significantly reducing inflammation, enhancing mucociliary clearance, and promoting tissue repair. Moreover, the MNPs@PNIPAM-AH@PEG NPs showed good biocompatibility and biosafety both in vitro and in vivo. This research underscores the potential of MNPs@PNIPAM-AH@PEG NPs as a novel therapeutic strategy for inhalation injuries, paving the way for innovative treatments in emergency medicine and respiratory care.
Collapse
Affiliation(s)
- Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Mehdihasan Shekh
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Feng Wang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| |
Collapse
|
3
|
Torres J, Dhas N, Longhi M, García MC. Overcoming Biological Barriers With Block Copolymers-Based Self-Assembled Nanocarriers. Recent Advances in Delivery of Anticancer Therapeutics. Front Pharmacol 2020; 11:593197. [PMID: 33329001 PMCID: PMC7734332 DOI: 10.3389/fphar.2020.593197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Cancer is one of the most common life-threatening illness and it is the world's second largest cause of death. Chemotherapeutic anticancer drugs have many disadvantages, which led to the need to develop novel strategies to overcome these shortcomings. Moreover, tumors are heterogenous in nature and there are various biological barriers that assist in treatment reisistance. In this sense, nanotechnology has provided new strategies for delivery of anticancer therapeutics. Recently, delivery platforms for overcoming biological barriers raised by tumor cells and tumor-bearing hosts have been reported. Among them, amphiphilic block copolymers (ABC)-based self-assembled nanocarriers have attracted researchers worldwide owing to their unique properties. In this work, we addressed different biological barriers for effective cancer treatment along with several strategies to overcome them by using ABC-based self-assembled nanostructures, with special emphasis in those that have the ability to act as responsive nanocarriers to internal or external environmental clues to trigger release of the payload. These nanocarriers have shown promising properties to revolutionize cancer treatment and diagnosis, but there are still challenges for their successful translation to clinical applications.
Collapse
Affiliation(s)
- Jazmin Torres
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Marcela Longhi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mónica C. García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
4
|
Synthesis of a new triple-responsive biocompatible block copolymer: Self-assembled nanoparticles as potent anticancer drug delivery vehicle. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020; 9:e1901058. [PMID: 32196144 PMCID: PMC7482193 DOI: 10.1002/adhm.201901058] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Indexed: 12/16/2022]
Abstract
There is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools. Recent advancements in nanotechnology have resulted in the realization of the next generation of MNPs suitable for these and other biomedical applications. This review discusses methods utilized for the fabrication and engineering of MNPs. Recent progress in the use of MNPs for hyperthermia therapy, controlling drug release, MRI, and biosensing is also critically reviewed. Finally, challenges in the field and potential opportunities for the use of MNPs toward improving their properties are discussed.
Collapse
Affiliation(s)
- A. Farzin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - S. Alireza Etesami
- Department of Mechanical Engineering, The University of Memphis. Memphis, TN 38152, USA
| | - Jacob Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Adnan Memic
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Division of Engineering in Medicine Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| |
Collapse
|
6
|
Leitão MM, de Melo‐Diogo D, Alves CG, Lima‐Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020; 9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities. Upon interaction with NIR light, the tumor-homed heptamethine cyanine-incorporating nanomaterials can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. This progress report analyses the application of nanomaterials incorporating prototypic NIR-light responsive heptamethine cyanines (IR775, IR780, IR783, IR797, IR806, IR808, IR820, IR825, IRDye 800CW, and Cypate) for cancer photothermal therapy, photodynamic therapy, and imaging. Overall, the continuous development of nanomaterials incorporating the prototypic NIR absorbing heptamethine cyanines will cement their phototheragnostic capabilities.
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Cátia G. Alves
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Rita Lima‐Sousa
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Ilídio J. Correia
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
- CIEPQPF‐Departamento de Engenharia QuímicaUniversidade de CoimbraRua Sílvio Lima 3030‐790 Coimbra Portugal
| |
Collapse
|
7
|
Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019; 138:167-192. [PMID: 30315832 DOI: 10.1016/j.addr.2018.10.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Polymer nanocarriers allow drug encapsulation leading to fragile molecule protection from early degradation/metabolization, increased solubility of poorly soluble drugs and improved plasmatic half-life. However, efficiently controlling the drug release from nanocarriers is still challenging. Thermoresponsive polymers exhibiting either a lower critical solution temperature (LCST) or an upper critical solution temperature (UCST) in aqueous medium may be the key to build spatially and temporally controlled drug delivery systems. In this review, we provide an overview of LCST and UCST polymers used as building blocks for thermoresponsive nanocarriers for biomedical applications. Recent nanocarriers based on thermoresponsive polymer exhibiting unprecedented features useful for biomedical applications are also discussed. While LCST nanocarriers have been studied for over two decades, UCST nanocarriers have recently emerged and already show great potential for effective thermoresponsive drug release.
Collapse
Affiliation(s)
- Alexandre Bordat
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tanguy Boissenot
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
8
|
Li B, Wang F, Gui L, He Q, Yao Y, Chen H. The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine (Lond) 2018; 13:2099-2118. [DOI: 10.2217/nnm-2018-0017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Bowen Li
- Department of Bioengineering, University of Washington, Seattle, Washington WA 98195, USA
| | - Fei Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Qing He
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Yuxin Yao
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| |
Collapse
|
9
|
Khatoon M, Shah KU, Din FU, Shah SU, Rehman AU, Dilawar N, Khan AN. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv 2017; 24:56-69. [PMID: 29130758 PMCID: PMC8812579 DOI: 10.1080/10717544.2017.1384520] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vesicular drug delivery systems have gained wide attention in the field of nanotechnology. Among them proniosomes become the superior over other vesicular carriers. Proniosomes are dry formulations of water soluble nonionic surfactant coated carrier system which immediately forms niosomes upon hydration. They have the capability to overcome the instability problems associated with niosomes and liposomes and have the potential to improve solubility, bioavailability, and absorption of various drugs. Furthermore, they offer versatile drug delivery concept for enormous number of hydrophilic and hydrophobic drugs. They have the potential to deliver drugs effectively through different routes at specific site of action to achieve controlled release action and reduce toxic effects associated with drugs. This review discusses the general preparation techniques of proniosomes and mainly focus on the applications of proniosomes in drug delivery and targeting. Moreover, this review demonstrates critical appraisal of the literature for proniosomes. Additionally, this review extensively explains the potential of proniosomes in delivering drugs via different routes, such as oral, parenteral, dermal and transdermal, ocular, oral mucosal, vaginal, pulmonary, and intranasal. Finally, the comparison of proniosomes with niosomes manifests the clear distinction between them. Moreover, proniosomes need to be explored for proteins and peptide delivery and in the field of nutraceuticals and develop pilot plant scale up studies to investigate them in industrial set up.
Collapse
Affiliation(s)
- Maryam Khatoon
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | | | - Fakhar Ud Din
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | - Naz Dilawar
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | - Ahmad Nawaz Khan
- School of Chemical and materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
10
|
Zuo Y, Kong M, Mu Y, Feng C, Chen X. Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. Int J Biol Macromol 2017; 104:157-164. [PMID: 28600203 DOI: 10.1016/j.ijbiomac.2017.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/07/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Chitosan based nanogels with pH/redox sensitivities tunable to stepwise response to intracellular delivery kinetics were developed. The nanogels were simply constructed by ionic gelation first, between O-Carboxymethyl-chitosan (CMCS) and thiolated chitosan (TCS), and then oxidation to form disulfide bonds for CMCS-TCS nanogels (CTNGs). Doxorubicin loaded nanogels (DOX/CTNGs) exhibited desirable stability under physiological pH with a mean size of 150.5nm, and quickly aggregated at pH 5.5 (mimic endo/lysosomes) due to protonation of the carboxyl groups on CMCS. DOX/CTNGs would maintain their TCS skeleton in acidic pH and compromised as treated with 10mM glutathione (mimic cytosol). In agreement with the structural variation, release of DOX was dramatically enhanced by the synergetic effects of acidic pH and reductive potential. Stepwise responses to intracellular delivery kinetics were evidenced by laser confocal images showing that DOX/CTNGs underwent efficient cellular internalization through endocytosis, endo/lysomse escape via self-precipitation, cleavage of disulfide linkage in cytosol and disintegration in nucleus, achieving enhanced nuclear delivery and rapid release of doxorubicin. DOX/CTNGs exerted comparable or higher anticancer efficacies than that of free DOX against hela cells. The simple construction of the nanogels and their capacity of enhancing anticancer activities of DOX are potential for translational applications in cancer chemotherapy.
Collapse
Affiliation(s)
- Yajun Zuo
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao, Shandong Province 266003, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao, Shandong Province 266003, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao, Shandong Province 266003, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
11
|
Yin H, Meng T, Shu L, Mao M, Zhou L, Chen H, Song D. Novel reduction-sensitive micellar nanoparticles assembled from Rituximab-doxorubicin conjugates as smart and intuitive drug delivery systems for the treatment of non-Hodgkin's lymphoma. Chem Biol Drug Des 2017; 90:892-899. [PMID: 28440948 DOI: 10.1111/cbdd.13010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Huabin Yin
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - Tong Meng
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - Ling Shu
- Department of Hematology; Yancheng City's No. 1 People's Hospital affiliated to Medical School of Nantong University; Yancheng Jiangsu Province China
| | - Min Mao
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - Lei Zhou
- Department of Bone Tumor Surgery; Changzheng Hospital Affiliated to the Second Military Medical University; Shanghai China
| | - Haiyan Chen
- Department of Rheumatology; Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine; Shanghai China
| | - Dianwen Song
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| |
Collapse
|
12
|
Kong M, Zuo Y, Wang M, Bai X, Feng C, Chen X. Simply constructed chitosan nanocarriers with precise spatiotemporal control for efficient intracellular drug delivery. Carbohydr Polym 2017; 169:341-350. [PMID: 28504154 DOI: 10.1016/j.carbpol.2017.03.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
A novel intelligent nanocarrier with pH and redox sensitivities was developed based on Carboxymethyl-chitosan (CMCS) and thioglycolic acid conjugated chitosan (TCS) to provide precise spatiotemporal control for efficient intracellular delivery. Doxorubicin (DOX) loaded nanocarriers (DOX/CMCS-TCS NPs) were simply prepared by ionic gelation and then oxidation crosslink. The nanocarriers exhibited decent stability at pH 7.4 for up to 3days and underwent aggregation under acidic pH (5.5) due to protonation of the carboxyl groups on CMCS. The TCS skeleton was stable at pH 5.5 (mimic endo/lysosomes) but disintegrated in the presence of 10mM glutathione (GSH) at pH 7.4 (mimic cytosol). In vitro DOX release from DOX/CMCS-TCS NPs was enhanced at pH 5.5 compared with physiological condition, with 64.2% and 31.6% DOX released in 2h, respectively. While 85.2% of DOX was released within 2h as treated with 10mM GSH, suggesting the release was closely associated with structural disintegration of nanocarriers. The maximum release of DOX was obtained at 10mM GSH and pH 5.5 with 92.3% of DOX released in 5h. Confocal laser scanning microscopy observation indicated that DOX/CMCS-TCS NPs efficiently escaped from endo/lysosomes within 1h incubation with MCF-7 cells and gave the best performance in delivering DOX into nucleus in 2h. Anticancer activity assay revealed that DOX/CMCS-TCS NPs had comparable or even better inhibition of cell viability at high drug concentrations than free DOX, with the IC50 of 0.6μg/mL following 48h incubation. In summary, the simply constructed DOX/CMCS-TCS NPs could not only respond to intracellular delivery temporally, they also achieve rapid release spatially in nucleus, which provide a precise spatiotemporal control of drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yajun Zuo
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Man Wang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Xiaoyu Bai
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
13
|
PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment. J Colloid Interface Sci 2017; 490:542-552. [DOI: 10.1016/j.jcis.2016.11.089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022]
|
14
|
Kashyap S, Singh N, Surnar B, Jayakannan M. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Biomacromolecules 2015; 17:384-98. [PMID: 26652038 DOI: 10.1021/acs.biomac.5b01545] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dual responsive polymer nanoscaffolds for administering anticancer drugs both at the tumor site and intracellular compartments are made for improving treatment in cancers. The present work reports the design and development of new thermo- and enzyme-responsive amphiphilic copolymer core-shell nanoparticles for doxorubicin delivery at extracellular and intracellular compartments, respectively. A hydrophobic acrylate monomer was tailor-made from 3-pentadecylphenol (PDP, a natural resource) and copolymerized with oligoethylene glycol acrylate (as a hydrophilic monomer) to make new classes of thermo and enzyme dual responsive polymeric amphiphiles. Both radical and reversible addition-fragmentation chain transfer (RAFT) methodologies were adapted for making the amphiphilic copolymers. These amphiphilic copolymers were self-assembled to produce spherical core-shell nanoparticles in water. Upon heating, the core-shell nanoparticles underwent segregation to produce larger sized aggregates above the lower critical solution temperature (LCST). The dual responsive polymer scaffold was found to be capable of loading water insoluble drug, such as doxorubicin (DOX), and fluorescent probe-like Nile Red. The drug release kinetics revealed that DOX was preserved in the core-shell assemblies at normal body temperature (below LCST, ≤ 37 °C). At closer to cancer tissue temperature (above LCST, ∼43 °C), the polymeric scaffold underwent burst release to deliver 90% of loaded drugs within 2 h. At the intracellular environment (pH 7.4, 37 °C) in the presence of esterase enzyme, the amphiphilic copolymer ruptured in a slow and controlled manner to release >95% of the drugs in 12 h. Thus, both burst release of cargo at the tumor microenvironment and control delivery at intracellular compartments were accomplished in a single polymer scaffold. Cytotoxicity assays of the nascent and DOX-loaded polymer were carried out in breast cancer (MCF-7) and cervical cancer (HeLa) cells. Among the two cell lines, the DOX-loaded polymers showed enhanced killing in breast cancer cells. Furthermore, the cellular uptake of the DOX was studied by confocal and fluorescence microscopes. The present investigation opens a new enzyme and thermal-responsive polymer scaffold approach for DOX delivery in cancer cells.
Collapse
Affiliation(s)
- Smita Kashyap
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| | - Nitesh Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| | - Bapurao Surnar
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homo Bhabha Road, Pune 410008, Maharashtra, INDIA
| |
Collapse
|
15
|
Liu J, Deng H, Liu Q, Chu L, Zhang Y, Yang C, Zhao X, Huang P, Deng L, Dong A, Liu J. Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo. NANOSCALE 2015; 7:4451-60. [PMID: 25679795 DOI: 10.1039/c4nr07435a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The key to developing more nanocarriers for the delivery of drugs in clinical applications is to consider the route of the carrier from the administration site to the target tissue and to look for a simple design to complete this whole journey. We synthesized the amphiphilic copolymer cRGDfK-poly(ethylene glycol)-b-poly(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate) (cRGD-PETM) to construct multifunctional micelles. These micelles combined enhanced drug-loading efficiency with tumor-targeting properties, visual detection and controllable intracellular drug release, resulting in an improved chemotherapeutic effect in vivo. Doxorubicin (DOX) was encapsulated within the cRGD-PETM micelles as a model drug (termed as cRGD-PETM/DOX Ms). The size and morphology of the micelles were characterized systematically. As a result of the hydrophobic interaction and the π-π conjugation between the DOX molecules and the PTTMA copolymers, the cRGD-PETM/DOX Ms showed an excellent drug-loading capacity. The results of in vitro drug-release studies indicated that the cumulative release of DOX from cRGD-PETM/DOX Ms at pH 5.0 was twice that at pH 7.4. The results of fluorescent microscopic analysis showed that the cRGD-PETM/DOX Ms could be internalized by 4T1 and HepG2 cells via receptor-mediated endocytosis with rapid intracellular drug release, which resulted in increased cytotoxicity compared with free DOX. Ex vivo imaging studies showed that the cRGD-PETM/DOX Ms improved the accumulation and retention of the drug in tumor tissues. Studies of the in vivo anticancer effects showed that the cRGD-PETM/DOX Ms had a significantly higher therapeutic efficacy with lower side-effects than free DOX and PETM/DOX Ms. These results show that the multifunctional cRGD-PETM/DOX Ms have great potential as vehicles for the delivery of hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy. Biomaterials 2015; 44:91-102. [DOI: 10.1016/j.biomaterials.2014.12.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/27/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
|
17
|
Yu Q, Liu Y, Cao C, Le F, Qin X, Sun D, Liu J. The use of pH-sensitive functional selenium nanoparticles shows enhanced in vivo VEGF-siRNA silencing and fluorescence imaging. NANOSCALE 2014; 6:9279-9292. [PMID: 24986368 DOI: 10.1039/c4nr02423k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The utility of small interfering RNAs (siRNAs) has shown great promise in treating a variety of diseases including many types of cancer. While their ability to silence a wide range of target genes underlies their effectiveness, the application of therapies remains hindered by a lack of an effective delivery system. In this study, we sought to develop an siRNA-delivery system for VEGF, a known signaling molecule involved in cancer, that consists of two selenium nanoparticles SeNPs and G2/PAH-Cit/SeNPs. A G2/PAH-Cit/SeNP is a pH-sensitive delivery system that is capable of enhancing siRNA loading, thus increasing siRNA release efficiency and subsequent target gene silencing both in vitro and in vivo. In vivo experiments using G2/PAH-Cit/SeNPs@siRNA led to significantly higher accumulation of siRNA within the tumor itself, VEGF gene silencing, and reduced angiogenesis in the tumor. Furthermore, the G2/PAH-Cit/SeNP delivery system not only enhanced anti-tumor effects on tumor-bearing nude mice as compared to SeNPs@siRNA, but also resulted in weak occurrence of lesions in major target organs. In sum, this study provides a new class of siRNA delivery system, thereby providing an alternative therapeutic route for cancer treatment.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Survival
- Gene Silencing
- Gene Transfer Techniques
- HeLa Cells
- Hep G2 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Hydrogen-Ion Concentration
- Inhibitory Concentration 50
- Male
- Metal Nanoparticles/chemistry
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Neoplasm Transplantation
- Neoplasms/metabolism
- Neovascularization, Pathologic
- RNA, Small Interfering/metabolism
- Selenium/chemistry
- Vascular Endothelial Growth Factor A/chemistry
Collapse
Affiliation(s)
- Qianqian Yu
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang S, Zhang S, Liu J, Liu Z, Su L, Wang H, Chang J. pH- and reduction-responsive polymeric lipid vesicles for enhanced tumor cellular internalization and triggered drug release. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10706-10713. [PMID: 24941446 DOI: 10.1021/am502579e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enhanced tumor cellular internalization and triggered drug release are two main concerns in the development of nanoparticles for antitumor drug delivery. In this article, a new kind of smart pH- and reduction-dual-responsive drug- loaded PEG coated polymeric lipid vesicle (PPLV) that can achieve both enhanced tumor cellular internalization and triggered drug release has been designed and prepared. The PPLVs were formed from amphiphilic dextran derivatives. The antitumor drug, doxorubicin (DOX), was loaded in the cores of the PPLVs. The newly developed PPLVs had a nanosized structure (∼40 nm) with PEG coating, so they were neutral and had high colloidal stability in the blood circulation. The in vitro physicochemical characterizations showed that the PPLVs lose their PEG coating and expose the positive surface charge under acidic environments. The in vitro cellular uptake study indicated that the acidic-treated PPLVs can efficiently enter tumor cells. It has been demonstrated by in vitro DOX release profiles that the PPLVs can achieve a triggered drug release in response to the reduction environment. The MTT assay demonstrated that DOX-loaded PPLVs treated with pH 5.0 solution had higher antitumor activity than DOX-loaded PPLVs treated with pH 7.4 solution. These results suggested that the PPLVs were promising nanoparticles for smart antitumor drug delivery applications.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials , Tianjin 300072, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen H, Chen Y, Yang H, Xu W, Zhang M, Ma Y, Achilefu S, Gu Y. A dual-targeting nanocarrier based on modified chitosan micelles for tumor imaging and therapy. Polym Chem 2014. [DOI: 10.1039/c4py00495g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Guan X, Hu X, Liu S, Huang Y, Jing X, Xie Z. Cyclic RGD targeting nanoparticles with pH sensitive polymer–drug conjugates for effective treatment of melanoma. RSC Adv 2014. [DOI: 10.1039/c4ra08537j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclic RGD targeting polymeric nanomedicines prepared from pH sensitive polymer–drug conjugates for effective treatment of melanoma.
Collapse
Affiliation(s)
- Xingang Guan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- Life Science Research Center
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- The University of Chinese Academy of Sciences
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| |
Collapse
|
21
|
Kashyap S, Jayakannan M. Thermo-responsive and shape transformable amphiphilic scaffolds for loading and delivering anticancer drugs. J Mater Chem B 2014; 2:4142-4152. [DOI: 10.1039/c4tb00134f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Guo W, Yang C, Lin H, Qu F. P(EO-co-LLA) functionalized Fe3O4@mSiO2 nanocomposites for thermo/pH responsive drug controlled release and hyperthermia. Dalton Trans 2014; 43:18056-65. [DOI: 10.1039/c4dt02441a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe3O4@mSiO2 nanocarrier that consisted of a magnetic Fe3O4 nanoparticle core and a mesoporous silica (mSiO2) shell was synthesized.
Collapse
Affiliation(s)
- Wei Guo
- Laboratory for Photon and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025, China
| | - Chunyu Yang
- Laboratory for Photon and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025, China
| | - Huiming Lin
- Laboratory for Photon and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025, China
| | - Fengyu Qu
- Laboratory for Photon and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025, China
| |
Collapse
|