1
|
Li H, Ou L, Zhang Y, Xiao W, Yi Z, Zhao Y, Fu H. N-Sulfonyl Imidazoliums as the Versatile Coupling Reagents and Sulfonating Reagents in Synthesis of Amides, Esters, Thioesters, Phosphoramides, Phosphoesters, Glycosides, Sulfonamides, and Sulfonates. Chemistry 2025:e202501206. [PMID: 40326681 DOI: 10.1002/chem.202501206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/07/2025]
Abstract
Here, we report a novel strategy for the first time: bench-stable N-sulfonyl imidazoliums were used as the robust and versatile coupling reagents and sulfonating reagents. Fast reactions of N-sulfonyl imidazoliums with carboxylic acids or phosphodiesters formed carboxylic acid-sulfonic acid mixed anhydrides and phospho-sulfonic acid mixed anhydrides, respectively, and the subsequent treatments of the highly active intermediates with the corresponding nucleophilic partners in the presence of imidazoles at room temperature provided amides, dipeptides, carboxylic esters, carboxylic thioesters (almost without racemization during the formation of amides, dipeptides, esters, thioesters), phosphamides, and phosphoesters in high to excellent yields. This kind of N-sulfonyl imidazolium as the coupling reagent was successfully applied in solid phase synthesis of a polypeptide containing 32 amino acid residues. This strategy was effectively extended to the construction of glycosides, and high steroselectivity and good yields were provided. In addition, reactions of N-sulfonyl imidazoliums with amines or alcohols afforded the corresponding sulfonamides and sulfonates in excellent yields. This study should provide a highly efficient, economical, and practical strategy for construction of diverse molecules.
Collapse
Affiliation(s)
- Hongyun Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lunyu Ou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yue Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weixin Xiao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhengyi Yi
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Shennan BDA, Fukuta T, Yamane M, Koyama T, Mitsunuma H, Kanai M. Catalytic Phosphorylation of Tyrosine via a Radical Arbuzov Reaction. J Am Chem Soc 2025; 147:6349-6354. [PMID: 39933554 DOI: 10.1021/jacs.4c17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Synthetic protein/peptide modification is a powerful strategy for the development of new therapeutics and tools for chemical biology. Accordingly, the development of a synthetic variant of biological tyrosine phosphorylation, a cornerstone of the post-translational modification landscape, could find widespread application in the study of this fundamental biochemical signal. This work describes the development of a mechanistically novel, redox-neutral, photocatalytic tyrosine phosphorylation reaction via a radical Arbuzov-type mechanism. The reaction proceeds with good tyrosine selectivity in di-, tri-, and oligopeptides under mild conditions near neutral pH, tolerating potentially problematic functionality. As the first photocatalytic tyrosine phosphorylation reaction, this work represents a major advance toward the goal of synthetic tyrosine phosphorylation.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Tomoyuki Fukuta
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mina Yamane
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Koyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Fukuta T, Tatsumi T, Fujiyoshi K, Koyama T, Kawashima SA, Mitsunuma H, Yamatsugu K, Kanai M. Umpolung Phosphorylation of Tyrosine via 1,2-Phospha-Brook Rearrangement. Org Lett 2024; 26:8827-8831. [PMID: 39387660 DOI: 10.1021/acs.orglett.4c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Phosphorylated tyrosine is a fundamental building block of bioactive peptides and proteins. However, the chemoselective phosphorylation of tyrosine over other nucleophilic amino acid residues in unprotected peptides remains a significant challenge. Here we report an umpolung strategy that converts the C-terminal tyrosine into an electrophilic spirolactone cyclohexadienone motif through hypervalent iodine oxidation, followed by a 1,2-phospha-Brook rearrangement using phosphite diesters as nucleophilic phosphoryl donors. This reaction proceeds chemoselectively at the tyrosine phenol and is applicable to a wide range of peptide substrates containing various nucleophilic amino acid residues, including serine and threonine.
Collapse
Affiliation(s)
- Tomoyuki Fukuta
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Isotope Science Center, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kohei Fujiyoshi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Koyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Saito Y, Cho SM, Danieli LA, Matsunaga A, Kobayashi S. A highly efficient catalytic method for the synthesis of phosphite diesters. Chem Sci 2024; 15:8190-8196. [PMID: 38817565 PMCID: PMC11134407 DOI: 10.1039/d4sc01401d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
In contrast to conventional methods that rely on stoichiometric activation of phosphonylating reagents, we have developed a highly efficient catalytic method for the synthesis of phosphite diesters using a readily available phosphonylation reagent and alcohols with environmentally benign Zn(ii) catalysts. Two alcohols could be introduced consecutively on the P center with release of trifluoroethanol as the sole byproduct, without any additive, under mild conditions. The products could be oxidized smoothly to access phosphate triesters. A range of alcohols, including sterically demanding and highly functionalized alcohols such as carbohydrates and nucleosides, can be applied in this reaction.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Soo Min Cho
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Luca Alessandro Danieli
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Akira Matsunaga
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
5
|
Shinotsuka Y, Nakajima R, Ogawa K, Takise K, Takeuchi Y, Tanaka H, Sasaki K. Stereoselective synthesis of D- glycero-D- manno-heptose-1β,7-bisphosphate (HBP) from D-mannurono-2,6-lactone. Org Biomol Chem 2024; 22:2544-2548. [PMID: 38414338 DOI: 10.1039/d4ob00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The synthesis of D-glycero-D-manno-heptose-1β,7-bisphosphate (HBP) from D-mannose is described. This synthetic approach is notable for the elongation of the seventh carbon, employing mannurono-2,6-lactone, the substrate-controlled establishment of the C-6 configuration, and the nucleophilic introduction of phosphate at the C-1 position through the utilization of 4,6-O-benzylidene-α-triflate.
Collapse
Affiliation(s)
- Yuta Shinotsuka
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | - Riko Nakajima
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | - Kohei Ogawa
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | - Kaede Takise
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| | - Yutaka Takeuchi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101, Ookayama, Muguro-ku, Tokyo 152-8552, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101, Ookayama, Muguro-ku, Tokyo 152-8552, Japan
| | - Kaname Sasaki
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan.
| |
Collapse
|
6
|
Wang XH, Liu X, Xue YW, Wang YB, Wei XH, Su Q. Lewis-acid-catalyzed phosphorylation of alcohols. RSC Adv 2024; 14:3757-3760. [PMID: 38268541 PMCID: PMC10807371 DOI: 10.1039/d3ra08214h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
An efficient method has been developed for reacting dialkyl H-phosphonates or diarylphosphine oxides with alcohols for constructing C-P bonds. This reaction was catalyzed by Lewis acid and involved nucleophilic substitution. A series of diphenylphosphonates and diphenylphosphine oxides were obtained, from the phosphorylation of alcohols, with good-to-excellent yields.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou 730030 P.R. China
| | - Xuan Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou 730030 P.R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou 730030 P.R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou 730030 P.R. China
| | - Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou 730030 P.R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University No. 1, Northwest Xincun Lanzhou 730030 P.R. China
| |
Collapse
|
7
|
Zhang S, Chen D, Wang JY, Yan S, Li G. Four-layer folding framework: design, GAP synthesis, and aggregation-induced emission. Front Chem 2023; 11:1259609. [PMID: 37638105 PMCID: PMC10450629 DOI: 10.3389/fchem.2023.1259609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
The design and synthesis of a type of [1 + 4 + 2] four-layer framework have been conducted by taking advantage of Suzuki-Miyaura cross-coupling and group-assisted purification (GAP) chemistry. The optimized coupling of double-layer diboronic esters with 1-bromo-naphth-2-yl phosphine oxides resulted in a series of multilayer folding targets, showing a broad scope of substrates and moderate to excellent yields. The final products were purified using group-assisted purification chemistry/technology, achieved simply by washing crude products with 95% EtOH without the use of chromatography and recrystallization. The structures were fully characterized and assigned by performing X-ray crystallographic analysis. UV-vis absorption, photoluminescence (PL), and aggregation-induced emission (AIE) were studied for the resulting multilayer folding products.
Collapse
Affiliation(s)
- Sai Zhang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Daixiang Chen
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Shenghu Yan
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA. Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues. Chem Sci 2023; 14:7782-7817. [PMID: 37502317 PMCID: PMC10370606 DOI: 10.1039/d3sc02543h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Peptide and protein selective modification at tyrosine residues has become an exploding field of research as tyrosine constitutes a robust alternative to lysine and cysteine-targeted traditional peptide/protein modification protocols. This review offers a comprehensive summary of the latest advances in tyrosine-selective cleavage, functionalization, and conjugation of peptides and proteins from the past three years. This updated overview complements the extensive body of work on site-selective modification of peptides and proteins, which holds significant relevance across various disciplines, including chemical, biological, medical, and material sciences.
Collapse
Affiliation(s)
- Shengping Zhang
- Center for Translational Medicine, Shenzhen Bay Laboratory New Zealand
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
| | | | - Freda F Li
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| |
Collapse
|
9
|
Chen YG, Yu HB, Tian Y, Peng C, Xie MS, Guo HM. ArPNO-Catalyzed Acylative Dynamic Kinetic Resolution of 3-Hydroxyphthalides: Access to Enantioenriched Phthalidyl Esters. Org Lett 2023. [PMID: 37471120 DOI: 10.1021/acs.orglett.3c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A chiral 4-aryl-pyridine-N-oxide nucleophilic organocatalyst was used to synthesize chiral phthalidyl ester prodrugs by the acylative dynamic kinetic resolution process. By using the 3,5-dimethylphenyl-derived ArPNO catalyst, the phthalidyl esters were obtained in up to 97% yield with 97% ee at room temperature. Two phthalidyl esters of prodrugs, talosalate and talmetacin, were generated. By control experiments and density functional theory calculations, an acyl transfer mechanism was proposed.
Collapse
Affiliation(s)
- Yang-Guang Chen
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Heng-Bin Yu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Si L, Xiong B, Xu S, Zhu L, Liu Y, Xu W, Tang KW. Copper-Catalyzed Cross-Dehydrogenative Coupling of P(O)−H Compounds with O-/S-nucleophiles. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
11
|
Qu C, Hao J, Ding H, Lv Y, Zhao XE, Zhao X, Wei W. Visible-Light-Initiated Multicomponent Reactions of α-Diazoesters to Access Organophosphorus Compounds. J Org Chem 2022; 87:12921-12931. [PMID: 36130274 DOI: 10.1021/acs.joc.2c01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple visible-light-initiated strategy has been established for the construction of organophosphorus compounds via aerobic multicomponent reaction of α-diazoesters, cyclic ethers, and P(O)H compounds under air. A number of phosphonates and phosphinates could be efficiently isolated in moderate to good yields without the use of photosensitizers and metal reagents. This multicomponent reaction has advantages of mild condition, simple operation, eco-friendly energy, good functional-group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Hongyu Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| |
Collapse
|
12
|
Fallek R, Ashush N, Fallek A, Fleischer O, Portnoy M. Controlling the Site Selectivity in Acylations of Amphiphilic Diols: Directing the Reaction toward the Apolar Domain in a Model Diol and the Midecamycin A 1 Macrolide Antibiotic. J Org Chem 2022; 87:9688-9698. [PMID: 35801540 PMCID: PMC9361358 DOI: 10.1021/acs.joc.2c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeking to improve the site selectivity of acylation of amphiphilic diols, which is induced by imidazole-based nucleophilic catalysts and directs the reaction toward apolar sites, as we recently reported, we examined a new improved catalytic design and an alteration of the acylating agent. The new catalysts performed slightly better selectivity-wise in the model reaction, compared to the previous set, but notably could be prepared in a much more synthetically economic way. The change of the acylating agent from anhydride to acyl chloride, particularly in combination with the new catalysts, accelerated the reaction and increased the selectivity in favor of the apolar site. The new selectivity-inducing techniques were applied to midecamycin, a natural amphiphilic antibiotic possessing a secondary alcohol moiety in each of its two domains, polar as well as apolar. In the case of the anhydride, a basic dimethylamino group, decorating this substrate, overrides the catalyst's selectivity preference and forces selective acylation of the alcohol in the polar domain with a more than 91:1 ratio of the monoacylated products. To counteract the internal base influence, an acid additive was used or the acylating agent was changed to acyl chloride. The latter adjustment leads, in combination with our best catalyst, to the reversal of the ratio between the products to 1:11.
Collapse
Affiliation(s)
- Reut Fallek
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Natali Ashush
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Amit Fallek
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Or Fleischer
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Moshe Portnoy
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Norman JP, Larson NG, Entz ED, Neufeldt SR. Unconventional Site Selectivity in Palladium-Catalyzed Cross-Couplings of Dichloroheteroarenes under Ligand-Controlled and Ligand-Free Systems. J Org Chem 2022; 87:7414-7421. [PMID: 35584051 DOI: 10.1021/acs.joc.2c00665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Halides adjacent to nitrogen are conventionally more reactive in Pd-catalyzed cross-couplings of dihalogenated N-heteroarenes. However, a very sterically hindered N-heterocyclic carbene ligand is shown to promote room-temperature cross-coupling at C4 of 2,4-dichloropyridines with high selectivity (∼10:1). This work represents the first highly selective method with a broad scope for C4-coupling of these substrates where selectivity is clearly under ligand control. Under the optimized conditions, diverse substituted 2,4-dichloropyridines and related compounds undergo cross-coupling to form C4-C(sp2) and C4-C(sp3) bonds using organoboron, -zinc, and -magnesium reagents. The synthetic utility of this method is highlighted in multistep syntheses that combine C4-selective cross-coupling with subsequent nucleophilic aromatic substitution reactions. The majority of the products herein (71%) have not been previously reported, emphasizing the ability of this methodology to open up underexplored chemical space. Remarkably, we find that ligand-free "Jeffery" conditions enhance the C4 selectivity of Suzuki coupling by an order of magnitude (>99:1). These ligand-free conditions enable the first C5-selective cross-couplings of 2,5-dichloropyridine and 2,5-dichloropyrimidine.
Collapse
Affiliation(s)
- Jacob P Norman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Nathaniel G Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Emily D Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
14
|
Baldini L, Lenci E, Bianchini F, Trabocchi A. Identification of a Common Pharmacophore for Binding to MMP2 and RGD Integrin: Towards a Multitarget Approach to Inhibit Cancer Angiogenesis and Metastasis. Molecules 2022; 27:molecules27041249. [PMID: 35209039 PMCID: PMC8879803 DOI: 10.3390/molecules27041249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
During tumor angiogenesis different growth factors, cytokines and other molecules interact closely with each other to facilitate tumor cell invasion and metastatic diffusion. The most intensively studied as molecular targets in anti-angiogenic therapies are vascular endothelial growth factor (VEGF) and related receptors, integrin receptors and matrix metalloproteinases (MMPs). Considering the poor efficacy of cancer angiogenesis monotherapies, we reasoned combining the inhibition of αvβ3 and MMP2 as a multitarget approach to deliver a synergistic blockade of tumor cell migration, invasion and metastasis. Accordingly, we identified a common pharmacophore in the binding cavity of MMP2 and αvβ3, demonstrating such approach with the design, synthesis and bioassays of tyrosine-derived peptidomimetics carrying the necessary functional groups to bind to key pharmacophoric elements of MMP2 and αvβ3 RGD integrin.
Collapse
Affiliation(s)
- Lorenzo Baldini
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (L.B.); (E.L.)
| | - Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (L.B.); (E.L.)
| | - Francesca Bianchini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (L.B.); (E.L.)
- Correspondence:
| |
Collapse
|
15
|
Xie MS, Shan M, Li N, Chen YG, Wang XB, Cheng X, Tian Y, Wu XX, Deng Y, Qu GR, Guo HM. Chiral 4-Aryl-pyridine-N-oxide Nucleophilic Catalysts: Design, Synthesis, and Application in Acylative Dynamic Kinetic Resolution. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ming-Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Meng Shan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ning Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yang-Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xiao-Bing Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuan Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Xia Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
16
|
Ociepa M, Knouse KW, He D, Vantourout JC, Flood DT, Padial NM, Chen JS, Sanchez BB, Sturgell EJ, Zheng B, Qiu S, Schmidt MA, Eastgate MD, Baran PS. Mild and Chemoselective Phosphorylation of Alcohols Using a Ψ-Reagent. Org Lett 2021; 23:9337-9342. [PMID: 34499517 PMCID: PMC8733960 DOI: 10.1021/acs.orglett.1c02736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An operationally simple, scalable, and chemoselective method for the direct phosphorylation of alcohols using a P(V)-approach based on the Ψ-reagent platform is disclosed. The method features a broad substrate scope of utility in both simple and complex settings and provides access to valuable phosphorylated alcohols that would be otherwise difficult to obtain.
Collapse
Affiliation(s)
- Michał Ociepa
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Kyle W. Knouse
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - David He
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Julien C. Vantourout
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Dillon T. Flood
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Natalia M. Padial
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Jason S. Chen
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Brittany B. Sanchez
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Emily J. Sturgell
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Bin Zheng
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Shenjie Qiu
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Michael A. Schmidt
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Martin D. Eastgate
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| |
Collapse
|
17
|
Portnoy M, Fallek R, Ashush N, Fallek A. Goldilocks Effect of Base Strength on Site Selectivity in Acylation of Amphiphilic Diols. Synlett 2021. [DOI: 10.1055/a-1631-1885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractTwo series of competitive acylation experiments with a polar and an apolar alcohol substrate, imitating two parts of amphiphilic diols, examined the influence of bases of varying strength on the substrate selectivity. While weakly basic 2,4,6-collidine only mildly accelerates the acylation of the polar substrate without affecting that of the apolar one, the acylation of both substrates is drastically hastened by strongly basic DBU. In both cases there is a notable, though not overwhelming, shift of the substrate selectivity towards the polar substrate, compared to the base-free acylation, which favors that of the apolar one. The extraordinarily strong change in the substrate selectivity in favor of the polar substrate was induced, however, by aliphatic tertiary amine bases, DIPEA and Et3N, of ‘Goldilocks’ moderate base strength, which strongly accelerate the acylation of the polar substrate, while almost not affecting that of the apolar one. These effects of the bases on the substrate selectivity are reflected in the site-selectivity trends observed in the acylation of a model diol amphiphile.
Collapse
|
18
|
Wang R, Dong X, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Enabled Cascade Phosphorylation of N-H/O-H/S-H Bonds with P-H Compounds: An Efficient Access to P(O)-X Bonds. Chemistry 2021; 27:14931-14935. [PMID: 34449952 DOI: 10.1002/chem.202102262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/13/2022]
Abstract
An electrochemical three component cascade phosphorylation reaction of various heteroatoms-containing nucleophiles including carbazoles, indoles, phenols, alcohols, and thiols with Ph2 PH has been established. Electricity is used as the "traceless" oxidant and water and air are utilized as the "green" oxygen source. All kinds of structurally diverse organophosphorus compounds with P(O)-N/P(O)-O/P(O)-S bonds are assembled in moderate to excellent yields (three categories of phosphorylation products, 50 examples, up to 97 % yield). A tentative free radical course is put forward to rationalize the reaction procedure.
Collapse
Affiliation(s)
- Ruige Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Xiaojuan Dong
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| |
Collapse
|
19
|
Xie MS, Li N, Tian Y, Wu XX, Deng Y, Qu GR, Guo HM. Dynamic Kinetic Resolution of Carboxylic Esters Catalyzed by Chiral PPY N-Oxides: Synthesis of Nonsteroidal Anti-Inflammatory Drugs and Mechanistic Insights. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming-Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People’s Republic of China
| | - Ning Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People’s Republic of China
| | - Yin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
| | - Xiao-Xia Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People’s Republic of China
| | - Yun Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People’s Republic of China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People’s Republic of China
| |
Collapse
|
20
|
Ouellette ET, Lougee MG, Bucknam AR, Endres PJ, Kim JY, Lynch EJ, Sisko EJ, Sculimbrene BR. Desymmetrization of Diols by Phosphorylation with a Titanium-BINOLate Catalyst. J Org Chem 2021; 86:7450-7459. [PMID: 33999638 DOI: 10.1021/acs.joc.1c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The desymmetrization of ten prochiral diols by phosphoryl transfer with a titanium-BINOLate complex is discussed. The phosphorylation of nine 1,3-propane diols is achieved in yields of 50-98%. Enantiomeric ratios as high as 92:8 are achieved with diols containing a quaternary C-2 center incorporating a protected amine. The chiral ligand, base, solvent, and stoichiometry are evaluated along with a nonlinear effect study to support an active catalyst species that is oligomeric in chiral ligand. The use of pyrophosphates as the phosphorylating agent in the desymmetrization facilitates a user-friendly method for enantioselective phosphorylation with desirable protecting groups (benzyl, o-nitrobenzyl) on the phosphate product.
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Marshall G Lougee
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Andrea R Bucknam
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Paul J Endres
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - John Y Kim
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Emma J Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Elizabeth J Sisko
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Bianca R Sculimbrene
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| |
Collapse
|
21
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
22
|
An JH, Kim KD, Lee JH. Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents. J Org Chem 2021; 86:2876-2894. [DOI: 10.1021/acs.joc.0c02805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ju Hyeon An
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Kyu Dong Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| |
Collapse
|
23
|
Xie MS, Huang B, Li N, Tian Y, Wu XX, Deng Y, Qu GR, Guo HM. Rational Design of 2-Substituted DMAP- N-oxides as Acyl Transfer Catalysts: Dynamic Kinetic Resolution of Azlactones. J Am Chem Soc 2020; 142:19226-19238. [PMID: 33119307 DOI: 10.1021/jacs.0c09075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel concept that conversion of chiral 2-substituted DMAP into its DMAP-N-oxide could significantly enhance the catalytic activity and still be used as an acyl transfer catalyst is presented. A new type of chiral 2-substituted DMAP-N-oxides, derived from l-prolinamides, has been rationally designed, facilely synthesized, and applied in the dynamic kinetic resolution of azlactones. Using simple MeOH as the nucleophile, various l-amino acid derivatives were produced in high yields (up to 98% yield) and enantioselectivities (up to 96% ee). Furthermore, α-deuterium labeled l-phenylalanine derivative was also obtained. Experiments and DFT calculations revealed that in 2-substituted DMAP-N-oxide, the oxygen atom acted as the nucleophilic site and the N-H bond functioned as the H-bond donor. High enantioselectivity of the reaction was governed by steric factors, and the addition of benzoic acid reduced the activation energy by participating in the construction of a H-bond bridge. The theoretical chemical study indicated that only when attack directions of the chiral catalyst were fully considered could the correct calculation results be obtained. This work paves the way for the utilization of the C2 position of the pyridine ring and the development of chiral 2-substituted DMAP-N-oxides as efficient acyl transfer catalysts.
Collapse
Affiliation(s)
- Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Huang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ning Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Xia Wu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yun Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Makukhin N, Ciulli A. Recent advances in synthetic and medicinal chemistry of phosphotyrosine and phosphonate-based phosphotyrosine analogues. RSC Med Chem 2020; 12:8-23. [PMID: 34041480 PMCID: PMC8130623 DOI: 10.1039/d0md00272k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphotyrosine-containing compounds attract significant attention due to their potential to modulate signalling pathways by binding to phospho-writers, erasers and readers such as SH2 and PTB domain containing proteins. Phosphotyrosine derivatives provide useful chemical tools to study protein phosphorylation/dephosphorylation, and as such represent attractive starting points for the development of binding ligands and chemical probes to study biology, and for inhibitor and degrader drug design. To overcome enzymatic lability of the phosphate group, physiologically stable phosphonate-based phosphotyrosine analogues find utility in a wide range of applications. This review covers advances over the last decade in the design of phosphotyrosine and its phosphonate-based derivatives, highlights the improved and expanded synthetic toolbox, and illustrates applications in medicinal chemistry.
Collapse
Affiliation(s)
- Nikolai Makukhin
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| |
Collapse
|
25
|
Fallek A, Weiss-Shtofman M, Kramer M, Dobrovetsky R, Portnoy M. Phosphorylation Organocatalysts Highly Active by Design. Org Lett 2020; 22:3722-3727. [PMID: 32319783 DOI: 10.1021/acs.orglett.0c01226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of nucleophilic organocatalysts for alcohol/phenol phosphorylation was enhanced through attaching oligoether appendages to a benzyl substituent on imidazole- or aminopyridine-based active units, presumably because of stabilizing n-cation interactions of the ethereal oxygens with the positively charged aza-heterocycle in the catalytic intermediates, and was substantially higher than that of known benchmark catalysts for a range of substrates. Density functional theory calculations and the study of analogues having a lower potential for such stabilizing interactions support our hypothesis.
Collapse
Affiliation(s)
- Amit Fallek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mor Weiss-Shtofman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Kramer
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Portnoy
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
26
|
Saito Y, Cho SM, Danieli LA, Kobayashi S. Zinc-Catalyzed Phosphonylation of Alcohols with Alkyl Phosphites. Org Lett 2020; 22:3171-3175. [PMID: 32251599 DOI: 10.1021/acs.orglett.0c00932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the presence of a catalytic amount of either Zn(acac)2 or bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc(II) (Zn(TMHD)2), primary, secondary, and tertiary alcohol substituents on a wide range of substrates, including acyclic and cyclic structures, carbohydrates, steroids, and amino acids, reacted with dimethyl phosphite to afford the corresponding H-phosphonate diesters in high to excellent yields.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Soo Min Cho
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Luca Alessandro Danieli
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Sherwood AM, Halberstadt AL, Klein AK, McCorvy JD, Kaylo KW, Kargbo RB, Meisenheimer P. Synthesis and Biological Evaluation of Tryptamines Found in Hallucinogenic Mushrooms: Norbaeocystin, Baeocystin, Norpsilocin, and Aeruginascin. JOURNAL OF NATURAL PRODUCTS 2020; 83:461-467. [PMID: 32077284 DOI: 10.1021/acs.jnatprod.9b01061] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A general synthetic method was developed to access known tryptamine natural products present in psilocybin-producing mushrooms. In vitro and in vivo experiments were then conducted to inform speculations on the psychoactive properties, or lack thereof, of the natural products. In animal models, psychedelic activity by baeocystin alone was not evident using the mouse head twitch response assay, despite its putative dephosphorylated metabolite, norpsilocin, possessing potent agonist activity at the 5-HT2A receptor.
Collapse
Affiliation(s)
- Alexander M Sherwood
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Adam L Halberstadt
- Department of Psychiatry , University of California San Diego , La Jolla , California 92093 , United States
- Research Service , VA San Diego Healthcare System , San Diego , California 92161 , United States
| | - Adam K Klein
- Department of Psychiatry , University of California San Diego , La Jolla , California 92093 , United States
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Kristi W Kaylo
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Robert B Kargbo
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Poncho Meisenheimer
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| |
Collapse
|
28
|
Arribat M, Cavelier F, Rémond E. Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–S or P–N bond: from synthesis to applications. RSC Adv 2020. [DOI: 10.1039/c9ra10917j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strategies for the preparation of phosphorus-containing amino acids and their utility in the organic chemistry, physico-chemistry, agrochemistry, and pharmacology fields are reported.
Collapse
Affiliation(s)
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| |
Collapse
|
29
|
Dubovtsev AY, Shcherbakov NV, Dar’in DV, Kukushkin VY. Nature of the Nucleophilic Oxygenation Reagent Is Key to Acid-Free Gold-Catalyzed Conversion of Terminal and Internal Alkynes to 1,2-Dicarbonyls. J Org Chem 2019; 85:745-757. [DOI: 10.1021/acs.joc.9b02785] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Nikolay V. Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
30
|
Shan M, Liang T, Zhang YF, Xie MS, Qu GR, Guo HM. Enantioselective rearrangement of indolyl carbonates catalyzed by chiral DMAP-N-oxides. Org Chem Front 2019. [DOI: 10.1039/c9qo01146c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bifunctional chiral DMAP-N-oxides, which utilize the oxygen atom as a nucleophilic site, have been reported for the highly enantioselective rearrangement of indolyl carbonates.
Collapse
Affiliation(s)
- Meng Shan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Tao Liang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Ye-Fei Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| |
Collapse
|
31
|
Jia J, Fan D, Zhang J, Zhang Z, Zhang W. AnAtroposBiphenyl Bisphosphine Ligand with 2,2′-tert-Butylmethylphosphino Groups for the Rhodium-Catalyzed Asymmetric Hydrogenation of Enol Esters. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jia Jia
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Dongyang Fan
- School of Pharmacy; Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; People's Republic of China
| | - Jian Zhang
- School of Pharmacy; Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; People's Republic of China
| | - Zhenfeng Zhang
- School of Pharmacy; Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; People's Republic of China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
- School of Pharmacy; Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; People's Republic of China
| |
Collapse
|
32
|
Tasnádi G, Jud W, Hall M, Baldenius K, Ditrich K, Faber K. Evaluation of Natural and Synthetic Phosphate Donors for the Improved Enzymatic Synthesis of Phosphate Monoesters. Adv Synth Catal 2018; 360:2394-2401. [PMID: 30333715 PMCID: PMC6174958 DOI: 10.1002/adsc.201800306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Indexed: 11/18/2022]
Abstract
Undesired product hydrolysis along with large amounts of waste in form of inorganic monophosphate by-product are the main obstacles associated with the use of pyrophosphate in the phosphatase-catalyzed synthesis of phosphate monoesters on large scale. In order to overcome both limitations, we screened a broad range of natural and synthetic organic phosphate donors with several enzymes on a broad variety of hydroxyl-compounds. Among them, acetyl phosphate delivered stable product levels and high phospho-transfer efficiency at the lower functional pH-limit, which translated into excellent productivity. The protocol is generally applicable to acid phosphatases and compatible with a range of diverse substrates. Preparative-scale transformations using acetyl phosphate synthesized from cheap starting materials yielded multiple grams of various sugar phosphates with up to 433 g L-1 h-1 space-time yield and 75% reduction of barium phosphate waste.
Collapse
Affiliation(s)
- Gábor Tasnádi
- Austrian Centre of Industrial Biotechnology, c/o
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Jud
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Mélanie Hall
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Kai Baldenius
- White Biotechnology Research Biocatalysis BASF SE Carl-Bosch-Strasse 38 67056 Ludwigshafen Germany
| | - Klaus Ditrich
- White Biotechnology Research Biocatalysis BASF SE Carl-Bosch-Strasse 38 67056 Ludwigshafen Germany
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
33
|
Masi M, Nocera P, Boari A, Cimmino A, Zonno MC, Infantino A, Vurro M, Evidente A. Lathyroxins A and B, Phytotoxic Monosubstituted Phenols Isolated from Ascochyta lentis var. lathyri, a Fungal Pathogen of Grass Pea ( Lathyrus sativus). JOURNAL OF NATURAL PRODUCTS 2018; 81:1093-1097. [PMID: 29489357 DOI: 10.1021/acs.jnatprod.7b01034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ascochyta lentis var. lathyri has recently been reported to be the causal agent of Ascochyta blight of grass pea ( Lathyrus sativus), a disease characterized by the appearance of necrotic lesions of leaves and stems. Considering the novelty of the pathogen and the possible involvement of secondary metabolites in symptom appearance, a study was carried out to ascertain the capability of this fungus to produce bioactive metabolites. Some phytotoxic phenols were isolated from the culture filtrates of the fungus. In particular, two new phytotoxic metabolites, named lathyroxins A and B, were characterized by spectroscopic methods as 4-(2-hydroxy-3,3-dimethoxypropyl)phenol and 3-(4-hydroxyphenyl)propane-1,2-diol, respectively, and the R absolute configuration of C-2 of their 2-dimethoxy- and 2,3-diol-propyl side chain was assigned. Moreover, other well-known fungal metabolites, namely, p-hydroxybenzaldehyde, p-methoxyphenol, and tyrosol, were also identified. Lathyroxins A and B showed interesting phytotoxic properties, being able to cause necrosis on leaves and to inhibit seed germination and rootlet elongation. Moreover, both of the new metabolites had no effect against bacteria, arthropods, and nematodes.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Via Cintia 4 , 80126 Napoli , Italy
| | - Paola Nocera
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Via Cintia 4 , 80126 Napoli , Italy
| | - Angela Boari
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche , Via Amendola, 122/O , 70126 Bari , Italy
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Via Cintia 4 , 80126 Napoli , Italy
| | - Maria Chiara Zonno
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche , Via Amendola, 122/O , 70126 Bari , Italy
| | - Alessandro Infantino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Difesa e Certificazione , Via C.G. Bertero 22 , 00156 Rome , Italy
| | - Maurizio Vurro
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche , Via Amendola, 122/O , 70126 Bari , Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Via Cintia 4 , 80126 Napoli , Italy
| |
Collapse
|
34
|
Toda Y, Sakamoto T, Komiyama Y, Kikuchi A, Suga H. A Phosphonium Ylide as an Ionic Nucleophilic Catalyst for Primary Hydroxyl Group Selective Acylation of Diols. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasunori Toda
- Department of Materials
Chemistry,
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Tomoyuki Sakamoto
- Department of Materials
Chemistry,
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Yutaka Komiyama
- Department of Materials
Chemistry,
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Ayaka Kikuchi
- Department of Materials
Chemistry,
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyuki Suga
- Department of Materials
Chemistry,
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
35
|
Tasnádi G, Zechner M, Hall M, Baldenius K, Ditrich K, Faber K. Investigation of acid phosphatase variants for the synthesis of phosphate monoesters. Biotechnol Bioeng 2017; 114:2187-2195. [DOI: 10.1002/bit.26352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/18/2017] [Accepted: 06/05/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Gábor Tasnádi
- Austrian Centre of Industrial Biotechnology, c/o
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Michaela Zechner
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Mélanie Hall
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Kai Baldenius
- White Biotechnology Research Biocatalysis; BASF SE; Ludwigshafen 67056 Germany
| | - Klaus Ditrich
- White Biotechnology Research Biocatalysis; BASF SE; Ludwigshafen 67056 Germany
| | - Kurt Faber
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
36
|
Wohlgemuth R, Liese A, Streit W. Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. Trends Biotechnol 2017; 35:452-465. [DOI: 10.1016/j.tibtech.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
|
37
|
Murray JI, Flodén NJ, Bauer A, Fessner ND, Dunklemann DL, Bob-Egbe O, Rzepa HS, Bürgi T, Richardson J, Spivey AC. Kinetic Resolution of 2-Substituted Indolines by N-Sulfonylation using an Atropisomeric 4-DMAP-N-oxide Organocatalyst. Angew Chem Int Ed Engl 2017; 56:5760-5764. [PMID: 28444918 DOI: 10.1002/anie.201700977] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Indexed: 01/01/2023]
Abstract
The first catalytic kinetic resolution by N-sulfonylation is described. 2-Substituted indolines are resolved (s=2.6-19) using an atropisomeric 4-dimethylaminopyridine-N-oxide (4-DMAP-N-oxide) organocatalyst. Use of 2-isopropyl-4-nitrophenylsulfonyl chloride is critical to the stereodiscrimination and enables facile deprotection of the sulfonamide products with thioglycolic acid. A qualitative model that accounts for the stereodiscrimination is proposed.
Collapse
Affiliation(s)
- James I Murray
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Nils J Flodén
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Adriano Bauer
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Nico D Fessner
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Daniel L Dunklemann
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Opetoritse Bob-Egbe
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Henry S Rzepa
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Thomas Bürgi
- Université de Genève, Département de Chimie Physique, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Jeffery Richardson
- Eli Lilly and Company Limited, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Alan C Spivey
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
38
|
Murray JI, Flodén NJ, Bauer A, Fessner ND, Dunklemann DL, Bob-Egbe O, Rzepa HS, Bürgi T, Richardson J, Spivey AC. Kinetic Resolution of 2-Substituted Indolines by N
-Sulfonylation using an Atropisomeric 4-DMAP-N
-oxide Organocatalyst. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- James I. Murray
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Nils J. Flodén
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Adriano Bauer
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Nico D. Fessner
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Daniel L. Dunklemann
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Opetoritse Bob-Egbe
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Henry S. Rzepa
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Thomas Bürgi
- Université de Genève; Département de Chimie Physique; Quai Ernest-Ansermet 30 1211 Genève 4 Switzerland
| | - Jeffery Richardson
- Eli Lilly and Company Limited; Erl Wood Manor Windlesham Surrey GU20 6PH UK
| | - Alan C. Spivey
- Department of Chemistry; Imperial College London; South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
39
|
Frampton CS, Murray JI, Spivey AC. Crystal structure of 1-methylimidazole 3-oxide monohydrate. Acta Crystallogr E Crystallogr Commun 2017; 73:372-374. [PMID: 28316812 PMCID: PMC5347057 DOI: 10.1107/s2056989017002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 11/14/2022]
Abstract
1-Methylimidazole 3-N-oxide (NMI-O) crystallizes as a monohydrate, C4H6N2O·H2O, in the monoclinic space group P21 with Z' = 2 (mol-ecules A and B). The imidazole rings display a planar geometry (r.m.s. deviations = 0.0008 and 0.0002 Å) and are linked in the crystal structure into infinite zigzag strands of ⋯NMI-O(A)⋯OH2⋯NMI-O(B)⋯OH2⋯ units by O-H⋯O hydrogen bonds. These chains propagate along the b-axis direction of the unit cell.
Collapse
Affiliation(s)
- Christopher S. Frampton
- Wolfson Centre for Materials Processing, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - James I. Murray
- Department of Chemistry, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Alan C. Spivey
- Department of Chemistry, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
40
|
Wałejko P, Witkowski S. Selective removal of phenyl group from alkyl diphenyl phosphates. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2016.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Pyridine N-Oxides and Derivatives Thereof in Organocatalysis. TOPICS IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1007/7081_2017_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Yoshida K, Suzuki H, Inoue H, Matsui K, Fujino Y, Kanoko Y, Itatsu Y, Takao KI. Organocatalytic Regioselective Chlorosilylation of Oxirane Derivatives: Mild and Effective Insertion of Bulky Silyl Chloride by Using 4-MethoxypyridineN-Oxide. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Materna M, Stawinski J, Kiliszek A, Rypniewski W, Sobkowski M. Oxyonium phosphobetaines – unusually stable nucleophilic catalyst–phosphate complexes formed from H-phosphonates and N-oxides. RSC Adv 2016. [DOI: 10.1039/c5ra27465f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Murray JI, Spivey AC. Aminesvs. N-Oxides as Organocatalysts for Acylation, Sulfonylation and Silylation of Alcohols: 1-MethylimidazoleN-Oxide as an Efficient Catalyst for Silylation of Tertiary Alcohols. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|