1
|
Yang P, Gao Y, Wang N, Zhu Y, Xue L, Han Y, Liu J, He W, Feng Y. The restricted mass transfer inside the anode pore channel affects the electroactive biofilms formation, community composition and the power production in microbial electrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165448. [PMID: 37442459 DOI: 10.1016/j.scitotenv.2023.165448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Porous anodes improve system performance in microbial electrochemical systems by increasing the specific surface area for electroactive bacteria. In this study, multilayer anodes with different pore diameters were constructed to assess the impact of pore size and depth on anode performance. This layered structure makes detecting electroactive biofilms more accessible layer by layer, which is the first study to examine electroactive biofilms' molecular biology and electrochemical properties at different depths in pores with varied pore sizes. The millimeter-scale pores inside the bioanode have a limited effect in increasing power. The larger the pore diameter, the higher the maximum power density (Pmax) obtained. The Pmax of anodes with 4 mm pore (1.91 ± 0.15 W m-2) was 1.4 times higher than that of the non-perforated (1.37 ± 0.07 W m-2) and 0.5 mm pore anodes (1.39 ± 0.04 W m-2). Electricigens can colonize into pore channels for at least 10 mm with a pore diameter ≥3 mm and current densities >0.05 A m-2. However, in the pores channel with 0.5 mm diameter, electricigens can only colonize to a depth of 2 mm. The biofilm thickness, electricity output, metabolic activity, and biocommunity changed with pore depth and were restricted by the limited mass transfer. The Geobacter sp. was the dominant species in inter-pore biofilms, with 43.8 %-78.6 % in abundance and decreased in quantity as pore depth increased. The inter-pore biofilms on the outer layer contributed a current density of 0.17 ± 0.003 A m-2, while that of the inner layer was only 0.02 ± 0.01 A m-2. Further studies found that the pore edge mass transfer effect can contribute up to 75 % of the current. The mass transfer process at the pore edge region could be a multidirectional mass transfer rather than a pore channel mass transfer.
Collapse
Affiliation(s)
- Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yujie Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| |
Collapse
|
2
|
Yang Y, Lin J, Li X, Chen Z, Lin Y, Xu M, Li W. High power density output and durability of microbial fuel cells enabled by dispersed cobalt nanoparticles on nitrogen-doped carbon as the cathode electrocatalyst. Phys Chem Chem Phys 2023; 25:25205-25213. [PMID: 37724059 DOI: 10.1039/d3cp02582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
To endow microbial fuel cells (MFCs) with low cost, long-term stability and high-power output, a novel cobalt-based cathode electrocatalyst (Nano-Co@NC) is synthesized from a polygonal metal-organic framework ZIF-67. After calcining the resultant ZIF-67, the as-synthesized Nano-Co@NC is characteristic of cobalt nanoparticles (Nano-Co) embedded in nitrogen-doped carbon (NC) that inherits the morphology of ZIF-67 with a large surface area. The Nano-Co particles that are highly dispersed and firmly fixed on NC not only ensure electrocatalytic activity of Nano-Co@NC toward the oxygen reduction reaction on the cathode, but also inhibit the growth of non-electrogenic bacteria on the anode. Consequently, the MFC using Nano-Co@NC as the cathode electrocatalyst demonstrates excellent performance, delivering a comparable initial power density and exhibiting far better durability than that using Pt/C (20 wt%) as the cathode electrocatalyst. The low cost and the excellent performance of Nano-Co@NC make it promising for MFCs to be used in practice.
Collapse
Affiliation(s)
- Yuxian Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Jialuo Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Xin Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Zhuoyue Chen
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Yingyu Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Mengqing Xu
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou 510006, Guangzhou, China
| | - Weishan Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou 510006, Guangzhou, China
| |
Collapse
|
3
|
Prudente M, Massazza DA, Procaccini RA, Rodríguez NA, Romeo HE. Flow-through laminar anodes with variable interlaminar distance to modulate the current density of urine-fed bio-electrochemical systems. Bioelectrochemistry 2023; 151:108408. [PMID: 36871403 DOI: 10.1016/j.bioelechem.2023.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Three-dimensional (3D) porous anodes used in urine-powered bio-electrochemical applications usually lead to the growth of electro-active bacteria on the outer electrode surface, due to limited microbial access to the internal structure and lack of permeation of culture medium through the entire porous architecture. In this study, we propose the use of 3D monolithic Ti4O7 porous electrodes with controlled laminar structures as microbial anodes for urine-fed bio-electrochemical systems. The interlaminar distance was tuned to modulate the anode surface areas and, thus, the volumetric current densities. To profit from the true area of the electrodes, urine feeding was performed as a continuous flow through the laminar architectures. The system was optimized according to the response surface methodology (RSM). The electrode interlaminar distance and the concentration of urine were selected as independent variables, with the volumetric current density as the output response to optimize. Maximum current densities of 5.2 kA.m-3 were produced from electrodes with 12 µm-interlaminar distance and 10 %v/v urine concentrations. The present study demonstrates the existence of a trade-off between the accesibility to the internal electrode structure and the effective usage of the surface area to maximize the volumetric current density when diluted urine is used as flowing-through feeding fuel.
Collapse
Affiliation(s)
- Mariano Prudente
- Nanostructured Polymers Division, Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Mar del Plata, Argentina; Bio-procesess and Interface Engineering Division, Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Mar del Plata, Argentina
| | - Diego A Massazza
- Bio-procesess and Interface Engineering Division, Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Mar del Plata, Argentina
| | - Raúl A Procaccini
- Applied Electrochemistry Division, Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Mar del Plata, Argentina
| | - Nicolás A Rodríguez
- Ceramics Division, Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Mar del Plata, Argentina; Department of Chemistry and Biochemistry, School of Exact and Natural Sciences, University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Hernán E Romeo
- Nanostructured Polymers Division, Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Mar del Plata, Argentina.
| |
Collapse
|
4
|
Yang P, Gao Y, Xue L, Han Y, An J, He W, Feng Y. Lignocellulose reconstituted shape-controllable self-supporting carbonaceous capacitance-anodes with high electron transfer rates for high-performance microbial electrochemical system. BIORESOURCE TECHNOLOGY 2023; 380:129072. [PMID: 37088429 DOI: 10.1016/j.biortech.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Natural biomass is a promising candidate for manufacturing an efficient anode in the microbial electrochemical system (MES) for its abundance and low cost. However, the structure and performance of the electrode highly depend on the biomass species. A simple and sustainable method for creating a self-supporting electrode is proposed by freeze-drying and carbonizing a blend of cellulose, lignin, and hemicellulose. This strategy leads to a cork-like structure and improved mechanical strength of the lignocellulose carbon. A power density of 4780 ± 260 mW m-2 (CLX-800) was achieved, which was the highest record for unmodified lignocellulose-based anodes in the microbial fuel cells. The morphological as lamellar multilayer and rich in hydrophilic functional groups could facilitate the formation of thick electroactive biofilms and enrich Geobacter with the highest abundance of 92.3%. The CLX material is expected to be the ideal electrode for high performance and functionally controllability.
Collapse
Affiliation(s)
- Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District 300072 Tianjin, China
| | - Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District 300072 Tianjin, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District 300072 Tianjin, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District 300072 Tianjin, China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District 300072 Tianjin, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District 300072 Tianjin, China
| |
Collapse
|
5
|
Martinez Ostormujof L, Teychené S, Achouak W, Fochesato S, Bakarat M, Rodriguez‐Ruiz I, Bergel A, Erable B. Systemic Analysis of the Spatiotemporal Changes in Multi‐Species Electroactive Biofilms to Clarify the Gradual Decline of Current Generation in Microbial Anodes. ChemElectroChem 2023. [DOI: 10.1002/celc.202201135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Wang S, Adekunle A, Raghavan V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115333. [PMID: 35617867 DOI: 10.1016/j.jenvman.2022.115333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) are considered efficient and sustainable technologies for bioenergy generation and simultaneously removal/recovery metal (loid)s from soil and wastewater. However, several current challenges of BES-based metal removal and recovery, especially concentrating target metals from complex contaminated wastewater or soil and their economic feasibility of engineering applications. This review summarized the applications of BES-based metal removal and recovery systems from wastewater and contaminated soil and evaluated their performances on electricity generation and metal removal/recovery efficiency. In addition, an in depth review of several key parameters (BES configurations, electrodes, catalysts, metal concentration, pH value, substrate categories, etc.) of BES-based metal removal and recovery was carried out to facilitate a deep understanding of their development and to suggest strategies for scaling up their specific application fields. Finally, the future intervention on multifunctional BES to improve their performances of mental removal and recovery were revealed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
7
|
Guette-Marquet S, Basseguy R, Roques C, Bergel A. The electrochemical potential is a key parameter for cell adhesion and proliferation on carbon surface. Bioelectrochemistry 2022; 144:108045. [PMID: 35016068 DOI: 10.1016/j.bioelechem.2021.108045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023]
Abstract
The Nernst potential of the support/cell interface is suspected to play a key role in cell adhesion and proliferation. However, the studies that have addressed this topic have generally varied the electrochemical potential of the interface by comparing different materials or by varying the chemical composition of the surface coating. It is consequently hard to definitively separate the actual effect of the potential from possible side-effects due to differences in the surface composition or topography. Here, a 3-electrode set-up was used to apply different values of potential to identical carbon electrodes. Potentials were applied in the range -200 to 400 mV vs. silver pseudo-reference (SPR), i.e. 90 to 690 mV/SHE, to screen-printed carbon electrodes used to grow Vero or Raw 264.7 cell lines. Values up to 200 mV/SPR prohibited cell adhesion and even caused detachment of cells that were previously adhered. The value of 400 mV/DRP allowed cell adhesion and proliferation, leading to confluent and sometimes very compact mats. The zero charge potential, measured around 200 mV/DRP, showed that the drastic effect of the applied potential was probably due to the negative/positive switch of the surface charge.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, 35 chemin des maraîchers, 31062 Toulouse cedex 4, France
| | - Régine Basseguy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, 35 chemin des maraîchers, 31062 Toulouse cedex 4, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
8
|
Santoro C, Babanova S, Cristiani P, Artyushkova K, Atanassov P, Bergel A, Bretschger O, Brown RK, Carpenter K, Colombo A, Cortese R, Erable B, Harnisch F, Kodali M, Phadke S, Riedl S, Rosa LFM, Schröder U. How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross-Laboratory Study. CHEMSUSCHEM 2021; 14:2313-2330. [PMID: 33755321 PMCID: PMC8252665 DOI: 10.1002/cssc.202100294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Indexed: 05/05/2023]
Abstract
A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 μW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Material ScienceUniversity of Milan BicoccaU5 Via Cozzi 55Milan20125Italy
| | - Sofia Babanova
- Aquacycl LLC2180 Chablis Court, Suite 102EscondidoCA 92029USA
| | - Pierangela Cristiani
- Department of Sustainable Development and Energy ResourcesRicerca sul Sistema Energetico S.p.A.Via Rubattino 54Milan20134Italy
| | | | - Plamen Atanassov
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Alain Bergel
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | | | - Robert K. Brown
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Kayla Carpenter
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Alessandra Colombo
- Department of ChemistryUniversità degli Studi di MilanoVia Golgi 19Milan20133Italy
| | - Rachel Cortese
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Benjamin Erable
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Mounika Kodali
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Sujal Phadke
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Sebastian Riedl
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Luis F. M. Rosa
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
9
|
Vishwanathan AS. Microbial fuel cells: a comprehensive review for beginners. 3 Biotech 2021; 11:248. [PMID: 33968591 PMCID: PMC8088421 DOI: 10.1007/s13205-021-02802-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial fuel cells (MFCs) have shown immense potential as a one-stop solution for three major sustainability issues confronting the world today-energy security, global warming and wastewater management. MFCs represent a cross-disciplinary platform for research at the confluence of the natural and engineering sciences. The diversity of variables influencing performance of MFCs has garnered research interest across varied scientific disciplines since the beginning of this century. The increasing number of research publications has made it necessary to keep track of work being carried out by research groups across the globe and consolidate significant findings on a regular basis. Review articles are often the nodal points for beginners who are required to undertake an exploratory survey of literature to identify a suitable research problem. This 'review of reviews' is a ready-reckoner that directs readers to relevant reviews and research articles reporting significant developments in MFC research in the last two decades. The article also highlights the areas needing research attention which when addressed could take this technology a few more steps closer to practical implementation.
Collapse
Affiliation(s)
- A. S. Vishwanathan
- WATER Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, 515134 Andhra Pradesh India
| |
Collapse
|
10
|
Hoareau M, Erable B, Chapleur O, Midoux C, Bureau C, Goubet A, Bergel A. Oxygen-reducing bidirectional microbial electrodes designed in real domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124663. [PMID: 33529981 DOI: 10.1016/j.biortech.2021.124663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microbial electrodes were designed in domestic wastewaters to catalyse the oxidation of organic matter (anode) and the reduction of oxygen (cathode) alternately. The successive aeration phases (cathode) enhanced the anodic efficiency, resulting in current densities of up to 6.4 Am-2 without the addition of any substrate. Using nitrogen during the anodic phases affected the microbial populations and the electrodes showed a lower ability to subsequently turn to O2 reduction than the microbial anodes formed in open-to-air conditions did. No strong difference was observed between internal and external biofilm, both of which showed a very large variety of taxa in terms of abundance as well as variance. They comprised a mix of aerobic and anaerobic species, many of which have already been identified separately in bioelectrochemical systems. Such a large diversity, which had not been observed in aerobic bidirectional bioelectrodes so far, can explain the efficiency and robustness observed here.
Collapse
Affiliation(s)
- Morgane Hoareau
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Chrystelle Bureau
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Anne Goubet
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
11
|
Roubaud E, Lacroix R, Da Silva S, Esvan J, Etcheverry L, Bergel A, Basséguy R, Erable B. Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater. iScience 2021; 24:102162. [PMID: 33665578 PMCID: PMC7907815 DOI: 10.1016/j.isci.2021.102162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Acid and electrochemical surface treatments of graphite electrode, used individually or in combination, significantly improved the microbial anode current production, by +17% to +56%, in well-regulated and duplicated electroanalytical experimental systems. Of all the consequences induced by surface treatments, the modifications of the surface nano-topography preferentially justify an improvement in the fixation of bacteria, and an increase of the specific surface area and the electrochemically accessible surface of graphite electrodes, which are at the origin of the higher performances of the bioanodes supplied with domestic wastewater. The evolution of the chemical composition and the appearance of C-O, C=O, and O=C-O groups on the graphite surface created by combining acid and electrochemical treatments was prejudicial to the formation of efficient domestic-wastewater-oxidizing bioanodes. The comparative discussion, focused on the positioning of the performances, shows the industrial interest of applying the surface treatment method to the world of bioelectrochemical systems.
Collapse
Affiliation(s)
- Emma Roubaud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Rémy Lacroix
- 6T-MIC Ingénieries, 9 rue du développement – ZI de Vic, 31320 Castanet-Tolosan, France
| | - Serge Da Silva
- 6T-MIC Ingénieries, 9 rue du développement – ZI de Vic, 31320 Castanet-Tolosan, France
| | - Jérôme Esvan
- Cirimat, Université de Toulouse, CNRS-INP-UPS, 4 allée Emile MONSO, BP 44362, 31030 Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Régine Basséguy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
12
|
|
13
|
Guette-Marquet S, Roques C, Bergel A. Theoretical analysis of the electrochemical systems used for the application of direct current/voltage stimuli on cell cultures. Bioelectrochemistry 2021; 139:107737. [PMID: 33494030 DOI: 10.1016/j.bioelechem.2020.107737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
Endogenous electric fields drive many essential functions relating to cell proliferation, motion, differentiation and tissue development. They are usually mimicked in vitro by using electrochemical systems to apply direct current or voltage stimuli to cell cultures. The many studies devoted to this topic have given rise to a wide variety of experimental systems, whose results are often difficult to compare. Here, these systems are analysed from an electrochemical standpoint to help harmonize protocols and facilitate optimal understanding of the data produced. The theoretical analysis of single-electrode systems shows the necessity of measuring the Nernst potential of the electrode and of discussing the results on this basis rather than using the value of the potential gradient. The paper then emphasizes the great complexity that can arise when high cell voltage is applied to a single electrode, because of the possible occurrence of anode and cathode sites. An analysis of two-electrode systems leads to the advice to change experimental practices by applying current instead of voltage. It also suggests that the values of electric fields reported so far may have been considerably overestimated in macro-sized devices. It would consequently be wise to revisit this area by testing considerably lower electric field values.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
14
|
Askri R, Erable B, Etcheverry L, Saadaoui S, Neifar M, Cherif A, Chouchane H. Allochthonous and Autochthonous Halothermotolerant Bioanodes From Hypersaline Sediment and Textile Wastewater: A Promising Microbial Electrochemical Process for Energy Recovery Coupled With Real Textile Wastewater Treatment. Front Bioeng Biotechnol 2020; 8:609446. [PMID: 33392172 PMCID: PMC7773924 DOI: 10.3389/fbioe.2020.609446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
The textile and clothing industry is the first manufacture sector in Tunisia in terms of employment and number of enterprises. It generates large volumes of textile dyeing wastewater (TDWW) containing high concentrations of saline, alkaline, and recalcitrant pollutants that could fuel tenacious and resilient electrochemically active microorganisms in bioanodes of bioelectrochemical systems. In this study, a designed hybrid bacterial halothermotolerant bioanode incorporating indigenous and exogenous bacteria from both hypersaline sediment of Chott El Djerid (HSCE) and TDWW is proposed for simultaneous treatment of real TDWW and anodic current generation under high salinity. For the proposed halothermotolerant bioanodes, electrical current production, chemical oxygen demand (COD) removal efficiency, and bacterial community dynamics were monitored. All the experiments of halothermotolerant bioanode formation have been conducted on 6 cm2 carbon felt electrodes polarized at -0.1 V/SCE and inoculated with 80% of TDWW and 20% of HSCE for 17 days at 45°C. A reproducible current production of about 12.5 ± 0.2 A/m2 and a total of 91 ± 3% of COD removal efficiency were experimentally validated. Metagenomic analysis demonstrated significant differences in bacterial diversity mainly at species level between anodic biofilms incorporating allochthonous and autochthonous bacteria and anodic biofilm containing only autochthonous bacteria as a control. Therefore, we concluded that these results provide for the first time a new noteworthy alternative for achieving treatment and recover energy, in the form of a high electric current, from real saline TDWW.
Collapse
Affiliation(s)
- Refka Askri
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia.,Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Sirine Saadaoui
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Mohamed Neifar
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
15
|
Pinck S, Ostormujof LM, Teychené S, Erable B. Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. Microorganisms 2020; 8:E1841. [PMID: 33238493 PMCID: PMC7700166 DOI: 10.3390/microorganisms8111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is the ambition of many researchers to finally be able to close in on the fundamental, coupled phenomena that occur during the formation and expression of electrocatalytic activity in electroactive biofilms. It is because of this desire to understand that bioelectrochemical systems (BESs) have been miniaturized into microBES by taking advantage of the worldwide development of microfluidics. Microfluidics tools applied to bioelectrochemistry permit even more fundamental studies of interactions and coupled phenomena occurring at the microscale, thanks, in particular, to the concomitant combination of electroanalysis, spectroscopic analytical techniques and real-time microscopy that is now possible. The analytical microsystem is therefore much better suited to the monitoring, not only of electroactive biofilm formation but also of the expression and disentangling of extracellular electron transfer (EET) catalytic mechanisms. This article reviews the details of the configurations of microfluidic BESs designed for selected objectives and their microfabrication techniques. Because the aim is to manipulate microvolumes and due to the high modularity of the experimental systems, the interfacial conditions between electrodes and electrolytes are perfectly controlled in terms of physicochemistry (pH, nutrients, chemical effectors, etc.) and hydrodynamics (shear, material transport, etc.). Most of the theoretical advances have been obtained thanks to work carried out using models of electroactive bacteria monocultures, mainly to simplify biological investigation systems. However, a huge virgin field of investigation still remains to be explored by taking advantage of the capacities of microfluidic BESs regarding the complexity and interactions of mixed electroactive biofilms.
Collapse
Affiliation(s)
| | | | | | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432 Toulouse, France; (S.P.); (L.M.O.); (S.T.)
| |
Collapse
|
16
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Rodríguez-González V, Obregón S, Patrón-Soberano OA, Terashima C, Fujishima A. An approach to the photocatalytic mechanism in the TiO 2-nanomaterials microorganism interface for the control of infectious processes. APPLIED CATALYSIS. B, ENVIRONMENTAL 2020; 270:118853. [PMID: 32292243 DOI: 10.1016/j.apcatb.2020.118857] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 05/21/2023]
Abstract
The approach of this timely review considers the current literature that is focused on the interface nanostructure/cell-wall microorganism to understand the annihilation mechanism. Morphological studies use optical and electronic microscopes to determine the physical damage on the cell-wall and the possible cell lysis that confirms the viability and microorganism death. The key parameters of the tailoring the surface of the photoactive nanostructures such as the metal functionalization with bacteriostatic properties, hydrophilicity, textural porosity, morphology and the formation of heterojunction systems, can achieve the effective eradication of the microorganisms under natural conditions, ranging from practical to applications in environment, agriculture, and so on. However, to our knowledge, a comprehensive review of the microorganism/nanomaterial interface approach has rarely been conducted. The final remarks point the ideal photocatalytic way for the effective prevention/eradication of microorganisms, considering the resistance that the microorganism could develop without the appropriate regulatory aspects for human and ecosystem safety.
Collapse
Affiliation(s)
- Vicente Rodríguez-González
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Olga A Patrón-Soberano
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Biología Molecular, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
18
|
Rousseau R, Ketep SF, Etcheverry L, Délia ML, Bergel A. Microbial electrolysis cell (MEC): A step ahead towards hydrogen-evolving cathode operated at high current density. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
A journey in the complex interactions between electrochemistry and bacteriology: From electroactivity to electromodulation of bacterial biofilms. Bioelectrochemistry 2019; 131:107401. [PMID: 31707278 DOI: 10.1016/j.bioelechem.2019.107401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Although the term bioelectrochemistry tends to be associated with animal and human tissues, bioelectric currents exist also in plants and bacteria. Especially the latter, when agglomerated in the form of biofilms, can exhibit electroactivity and susceptibility to electrical stimulation. Therefore, electrochemical methods appear to become powerful techniques to expand the conventional strategies of biofilm characterization and modification. In this review, we aim to provide the insight into the electrochemical behaviour of bacteria and present the variety of electrochemical techniques that can be used either for the non-destructive monitoring of bacterial communities or modulation of their growth. The most common applications of electrical stimulation on biofilms are presented, including the prevention of bacterial growth by charging the surface of the materials, changing the direction of bacterial movement under the influence of the electric field and increasing of the potency of antibiotics when bactericides are coupled with the electric field. Also, the industrial applications of microbial electro-technologies are described, such as bioremediation, wastewater treatment, and microbial fuel cells. Consequently, we are showing the complexity of interactions that exist between electrochemistry and bacteriology that can be used for the benefit of these two disciplines.
Collapse
|
20
|
Chong P, Erable B, Bergel A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. BIORESOURCE TECHNOLOGY 2019; 289:121641. [PMID: 31300306 DOI: 10.1016/j.biortech.2019.121641] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.
Collapse
Affiliation(s)
- Poehere Chong
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
21
|
Rimboud M, Achouak W. Electroautotrophy of Thioalkalivibrio nitratireducens. Bioelectrochemistry 2019; 126:48-55. [DOI: 10.1016/j.bioelechem.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
22
|
Liu Y, Song P, Gai R, Yan C, Jiao Y, Yin D, Cai L, Zhang L. Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs). JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Li D, Li J, Liu D, Ma X, Cheng L, Li W, Qian C, Mu Y, Yu H. Potential regulates metabolism and extracellular respiration of electroactiveGeobacterbiofilm. Biotechnol Bioeng 2019; 116:961-971. [DOI: 10.1002/bit.26928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/26/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Dao‐Bo Li
- Department of Applied ChemistryUniversity of Science and Technology of ChinaHefei China
| | - Jie Li
- Department of Applied ChemistryUniversity of Science and Technology of ChinaHefei China
| | - Dong‐Feng Liu
- Department of Applied ChemistryUniversity of Science and Technology of ChinaHefei China
| | - Xin Ma
- School of Life Sciences, University of Science and Technology of ChinaHefei China
| | - Lei Cheng
- School of Life Sciences, University of Science and Technology of ChinaHefei China
| | - Wen‐Wei Li
- Department of Applied ChemistryUniversity of Science and Technology of ChinaHefei China
| | - Chen Qian
- Department of Applied ChemistryUniversity of Science and Technology of ChinaHefei China
| | - Yang Mu
- Department of Applied ChemistryUniversity of Science and Technology of ChinaHefei China
| | - Han‐Qing Yu
- Department of Applied ChemistryUniversity of Science and Technology of ChinaHefei China
| |
Collapse
|
24
|
Champigneux P, Delia ML, Bergel A. Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes. Biosens Bioelectron 2018; 118:231-246. [PMID: 30098490 DOI: 10.1016/j.bios.2018.06.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023]
Abstract
From a fundamental standpoint, microbial electrochemistry is unravelling a thrilling link between life and materials. Technically, it may be the source of a large number of new processes such as microbial fuel cells for powering remote sensors, autonomous sensors, microbial electrolysers and equipment for effluent treatment. Microbial electron transfers are also involved in many natural processes such as biocorrosion. In these contexts, a huge number of studies have dealt with the impact of electrode materials, coatings and surface functionalizations but very few have focused on the effect of the surface topography, although it has often been pointed out as a key parameter impacting the performance of electroactive biofilms. The first part of the review gives an overview of the influence of electrode topography on abiotic electrochemical reactions. The second part recalls some basics of the effect of surface topography on bacterial adhesion and biofilm formation, in a broad domain reaching beyond the context of electroactivity. On these well-established bases, the effect of surface topography is reviewed and analysed in the field of electroactive biofilms. General trends are extracted and fundamental questions are pointed out, which should be addressed to boost future research endeavours. The objective is to provide basic guidelines useful to the widest possible range of research communities so that they can exploit surface topography as a powerful lever to improve, or to mitigate in the case of biocorrosion for instance, the performance of electrode/biofilm interfaces.
Collapse
Affiliation(s)
- Pierre Champigneux
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| | - Marie-Line Delia
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
25
|
Kokko M, Epple S, Gescher J, Kerzenmacher S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 258:376-389. [PMID: 29548640 DOI: 10.1016/j.biortech.2018.01.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given.
Collapse
Affiliation(s)
- Marika Kokko
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Stefanie Epple
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany.
| |
Collapse
|
26
|
Roubaud E, Lacroix R, Da Silva S, Bergel A, Basséguy R, Erable B. Catalysis of the hydrogen evolution reaction by hydrogen carbonate to decrease the voltage of microbial electrolysis cell fed with domestic wastewater. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Oliot M, Erable B, Solan MLD, Bergel A. Increasing the temperature is a relevant strategy to form microbial anodes intended to work at room temperature. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms. Biosens Bioelectron 2017; 94:74-80. [DOI: 10.1016/j.bios.2017.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/28/2017] [Accepted: 02/23/2017] [Indexed: 11/23/2022]
|
29
|
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. JOURNAL OF POWER SOURCES 2017; 356:225-244. [PMID: 28717261 PMCID: PMC5465942 DOI: 10.1016/j.jpowsour.2017.03.109] [Citation(s) in RCA: 546] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 05/03/2023]
Abstract
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), University of New Mexico, 87106, Albuquerque, NM, USA
| | - Catia Arbizzani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Benjamin Erable
- University of Toulouse, CNRS, Laboratoire de Génie Chimique, CAMPUS INP – ENSIACET, 4 Allée Emile Monso, CS 84234, 31432, Toulouse Cedex 4, France
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T Block, University of the West of England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY, United Kingdom
| |
Collapse
|
30
|
Selim HMM, Kamal AM, Ali DMM, Hassan RYA. Bioelectrochemical Systems for Measuring Microbial Cellular Functions. ELECTROANAL 2017. [DOI: 10.1002/elan.201700110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hend M. M. Selim
- Department of Botany; Faculty of Science; Fayoum University; Fayoum Egypt
| | | | - Dina M. M. Ali
- Analytical and Inorganic Chemistry Depart; Suez Canal University; Ismailia Egypt
| | - Rabeay Y. A. Hassan
- Microanalysis Lab; Applied Organic Chemistry; Department, National Research Centre (NRC); El Bohouth st. Dokki 12622-Giza Egypt
| |
Collapse
|
31
|
Li DB, Huang YX, Li J, Li LL, Tian LJ, Yu HQ. Electrochemical activities of Geobacter biofilms growing on electrodes with various potentials. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Halotolerant bioanodes: The applied potential modulates the electrochemical characteristics, the biofilm structure and the ratio of the two dominant genera. Bioelectrochemistry 2016; 112:24-32. [DOI: 10.1016/j.bioelechem.2016.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
|
33
|
Oliot M, Etcheverry L, Bergel A. Removable air-cathode to overcome cathode biofouling in microbial fuel cells. BIORESOURCE TECHNOLOGY 2016; 221:691-696. [PMID: 27712857 DOI: 10.1016/j.biortech.2016.09.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
An innovative microbial fuel cell (MFC) design is described, which allows the air-cathode to be replaced easily without draining the electrolyte. MFCs equipped with 9-cm2 or 50-cm2 bioanodes provided 0.6 and 0.7W/m2 (referred to the cathode surface area) and were boosted to 1.25 and 1.96W/m2, respectively, when the initial air-cathode was replaced by a new one. These results validate the practical interest of removable air-cathodes and evidence the importance of the cathode biofouling that takes place during the MFC starting phase. As this biofouling is compensated by the concomitant improvement of the bioanodes it cannot be detected on the power curves and may be a widespread cause of performance underestimation.
Collapse
Affiliation(s)
- Manon Oliot
- Laboratoire de Génie Chimique CNRS - Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France.
| | - Luc Etcheverry
- Laboratoire de Génie Chimique CNRS - Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique CNRS - Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
34
|
Santoro C, Babanova S, Erable B, Schuler A, Atanassov P. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions. Bioelectrochemistry 2016; 108:1-7. [DOI: 10.1016/j.bioelechem.2015.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022]
|
35
|
Successive bioanode regenerations to maintain efficient current production from biowaste. Bioelectrochemistry 2015; 106:133-40. [DOI: 10.1016/j.bioelechem.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/17/2015] [Accepted: 05/06/2015] [Indexed: 01/05/2023]
|
36
|
Yuan Y, Shin H, Kang C, Kim S. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells. Bioelectrochemistry 2015; 108:8-12. [PMID: 26599210 DOI: 10.1016/j.bioelechem.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/29/2022]
Abstract
An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2).
Collapse
Affiliation(s)
- Yong Yuan
- Guangdong Key laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Hyosul Shin
- Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University, Chonju 561-756, South Korea
| | - Chan Kang
- Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University, Chonju 561-756, South Korea.
| | - Sunghyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
37
|
Rimboud M, Desmond-Le Quemener E, Erable B, Bouchez T, Bergel A. Multi-system Nernst-Michaelis-Menten model applied to bioanodes formed from sewage sludge. BIORESOURCE TECHNOLOGY 2015; 195:162-169. [PMID: 26027903 DOI: 10.1016/j.biortech.2015.05.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Bioanodes were formed under constant polarization at -0.2 V/SCE from fermented sewage sludge. Current densities reached were 9.3±1.2 A m(-2) with the whole fermented sludge and 6.2±0.9 A m(-2) with the fermented sludge supernatant. The bioanode kinetics was analysed by differentiating among the contributions of the three redox systems identified by voltammetry. Each system ensured reversible Nernstian electron transfer but around a different central potential. The global overpotential required to reach the maximum current plateau was not imposed by slow electron transfer rates but was due to the potential range covered by the different redox systems. The microbial communities of the three bioanodes were analysed by 16S rRNA gene pyrosequencing. They showed a significant microbial diversity around a core of Desulfuromonadales, the proportion of which was correlated with the electrochemical performance of the bioanodes.
Collapse
Affiliation(s)
- Mickaël Rimboud
- Laboratoire de Génie Chimique, CNRS - Université de Toulouse, 4 allée Emile Monso, 31432 Toulouse, France.
| | - Elie Desmond-Le Quemener
- IRSTEA-Unité de Recherche Hydrosystèmes et Bioprocédés, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, CNRS - Université de Toulouse, 4 allée Emile Monso, 31432 Toulouse, France
| | - Théodore Bouchez
- IRSTEA-Unité de Recherche Hydrosystèmes et Bioprocédés, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, CNRS - Université de Toulouse, 4 allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
38
|
Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway. ACS Synth Biol 2015; 4:815-23. [PMID: 25621739 DOI: 10.1021/sb500331x] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavins regulate the rate and direction of extracellular electron transfer (EET) in Shewanella oneidensis. However, low concentration of endogenously secreted flavins by the wild-type S. oneidensis MR-1 limits its EET efficiency in bioelectrochemical systems (BES). Herein, a synthetic flavin biosynthesis pathway from Bacillus subtilis was heterologously expressed in S. oneidensis MR-1, resulting in ∼25.7 times' increase in secreted flavin concentration. This synthetic flavin module enabled enhanced bidirectional EET rate of MR-1, in which its maximum power output in microbial fuel cells increased ∼13.2 times (from 16.4 to 233.0 mW/m(2)), and the inward current increased ∼15.5 times (from 15.5 to 255.3 μA/cm(2)).
Collapse
Affiliation(s)
- Yun Yang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yuanzhao Ding
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yidan Hu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Cao
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School
of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637798, Singapore
| | - Scott A. Rice
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Staffan Kjelleberg
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hao Song
- Key
Laboratory of Systems Bioengineering (Ministry of Education), SynBio
Research Platform, Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
39
|
Blanchet E, Desmond E, Erable B, Bridier A, Bouchez T, Bergel A. Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment. BIORESOURCE TECHNOLOGY 2015; 185:106-115. [PMID: 25765989 DOI: 10.1016/j.biortech.2015.02.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The objective was to replace synthetic medium by wastewater as a strategy to design low-cost scalable bioanodes. The addition of activated sludge was necessary to form primary bioanodes that were then used as the inoculum to form the secondary bioanodes. Bioanodes formed in synthetic medium with acetate 10mM provided current densities of 21.9±2.1A/m(2), while bioanodes formed in wastewater gave 10.3±0.1A/m(2). The difference was explained in terms of biofilm structure, electrochemical kinetics and redox charge content of the biofilms. In both media, current densities were straightforwardly correlated with the biofilm enrichment in Geobacteraceae but, inside this family, Geobacter sulfurreducens and an uncultured Geobacter sp. were dominant in the synthetic medium, while growth of another Geobacter sp. was favoured in wastewater. Finally, the primary/secondary procedure succeeded in designing bioanodes to treat food wastes by using wastewater as dilution medium, with current densities of 7±1.1A/m(2).
Collapse
Affiliation(s)
- Elise Blanchet
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France.
| | - Elie Desmond
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Arnaud Bridier
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Théodore Bouchez
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Alain Bergel
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| |
Collapse
|
40
|
Rimboud M, Desmond-Le Quemener E, Erable B, Bouchez T, Bergel A. The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community. Bioelectrochemistry 2015; 102:42-9. [DOI: 10.1016/j.bioelechem.2014.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
|
41
|
Sharma M, Sarma PM, Pant D, Dominguez-Benetton X. Optimization of electrochemical parameters for sulfate-reducing bacteria (SRB) based biocathode. RSC Adv 2015. [DOI: 10.1039/c5ra04120a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study focuses on the effect of operational and physiochemical factors on a stable sulfate reducing bacteria biocathode and their effect on the electrochemical response thereof.
Collapse
Affiliation(s)
- Mohita Sharma
- TERI University
- New Delhi
- India
- The Energy and Resource Institute (TERI)
- IHC
| | | | - Deepak Pant
- Separation & Conversion Technologies
- VITO – Flemish Institute for Technological Research
- 2400 Mol
- Belgium
| | | |
Collapse
|
42
|
Webb HK, Notley SM, Evans DR. Observation of electron transfer between bacteria and high conductivity graphene–PEDOT composites. RSC Adv 2015. [DOI: 10.1039/c5ra08720a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The direct observation of electron transfer in a system comprising bacteria and a conducting polymer substrate is reported.
Collapse
Affiliation(s)
- H. K. Webb
- Department of Chemistry and Biotechnology
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Australia
| | - S. M. Notley
- Department of Chemistry and Biotechnology
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Australia
| | - D. R. Evans
- Thin Film Coatings Group
- Mawson Institute
- University of South Australia
- Australia
| |
Collapse
|
43
|
Blanchet E, Pécastaings S, Erable B, Roques C, Bergel A. Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes. BIORESOURCE TECHNOLOGY 2014; 173:224-230. [PMID: 25305652 DOI: 10.1016/j.biortech.2014.09.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Reversible bioelectrodes were designed by alternating acetate and oxygen supply. It was demonstrated that the protons produced and accumulated inside the biofilm during the anodic phase greatly favored the oxygen reduction reaction when the electrode was switched to become the biocathode. Protons accumulation, which hindered the bioanode operation, thus became an advantage for the biocathode. The bioanodes, formed from garden compost leachate under constant polarization at -0.2 V vs. SCE, were able to support long exposure to forced aeration, with only a slight alteration of their anodic efficiency. They produced a current density of 16±1.7 A/m2 for acetate oxidation and up to -0.4 A/m2 for oxygen reduction. Analysis of the microbial communities by 16S rRNA pyrosequencing revealed strong selection of Chloroflexi (49±1%), which was not observed for conventional bioanodes not exposed to oxygen. Chloroflexi were found as the dominant phylum of electroactive biofilms for the first time.
Collapse
Affiliation(s)
- Elise Blanchet
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France.
| | - Sophie Pécastaings
- Laboratoire de Génie Chimique, BioSym Department, Université de Toulouse, 35 chemin des Maraîchers, 31062 Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, BioSym Department, Université de Toulouse, 35 chemin des Maraîchers, 31062 Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| |
Collapse
|