1
|
Wang W, Du L, Wei Q, Lu M, Xu D, Li Y. Synthesis and Health Effects of Phenolic Compounds: A Focus on Tyrosol, Hydroxytyrosol, and 3,4-Dihydroxyacetophenone. Antioxidants (Basel) 2025; 14:476. [PMID: 40298838 PMCID: PMC12024331 DOI: 10.3390/antiox14040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Tyrosol (Tyr), hydroxytyrosol (TH), and 3,4-Dihydroxyacetophenone (3,4-DHAP) are three phenolic compounds naturally present in plants that have attracted considerable research attention due to their potent antioxidant, anti-inflammatory, anticancer, and cardiovascular protective properties. In recent years, mounting evidence has indicated that these phenolic compounds hold broad potential in both disease prevention and treatment. This paper reviews the chemical structures and synthetic methods of Tyr, HT, and 3,4-DHAP, as well as their multifaceted effects on human health, particularly their roles and mechanisms in antioxidation, anti-inflammation, cardiovascular protection, neuroprotection, and anticancer activity. In addition, this paper explores the future prospects of these compounds and the current challenges associated with their application-such as low bioavailability and long-term safety concerns-and proposes directions for further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Dehong Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.W.); (L.D.); (Q.W.); (M.L.)
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.W.); (L.D.); (Q.W.); (M.L.)
| |
Collapse
|
2
|
Xu J, Wei H, Sun Z, Li W, Long J, Liu J, Feng Z, Cao K. Hydroxytyrosol as a Mitochondrial Homeostasis Regulator: Implications in Metabolic Syndrome and Related Diseases. Antioxidants (Basel) 2025; 14:398. [PMID: 40298640 PMCID: PMC12024272 DOI: 10.3390/antiox14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Hydroxytyrosol (HT), a principal bioactive phytochemical abundant in Mediterranean dietary sources, has emerged as a molecule of significant scientific interest owing to its multifaceted health-promoting properties. Accumulating evidence suggests that HT's therapeutic potential in metabolic disorders extends beyond conventional antioxidant capacity to encompass mitochondrial regulatory networks. This review synthesizes contemporary evidence from our systematic investigations and the existing literature to delineate HT's comprehensive modulatory effects on mitochondrial homeostasis. We systematically summarized the impact of HT on mitochondrial dynamics (fusion/fission equilibrium), biogenesis and energy metabolism, mitophagy, inter-organellar communication with the endoplasmic reticulum, and microbiota-mitochondria crosstalk. Through this multidimensional analysis, we established HT as a mitochondrial homeostasis modulator with potential therapeutic applications in metabolic syndrome (MetS) and its related pathologies including type 2 diabetes mellitus, obesity-related metabolic dysfunction, dyslipidemia, non-alcoholic steatohepatitis, and hypertension-related complications. Moreover, we further discussed translational challenges in HT research, emphasizing the imperative for direct target identification, mitochondrial-targeted delivery system development, and combinatorial therapeutic strategies. Collectively, this review provides a mechanistic framework for advancing HT research and accelerating its clinical implementation in MetS and its related diseases.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Huanglong Wei
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Zhenyu Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Wankang Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhihui Feng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| |
Collapse
|
3
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 PMCID: PMC11847308 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
4
|
Melo Ferreira D, Oliveira MBPP, Alves RC. A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes. Antioxidants (Basel) 2025; 14:237. [PMID: 40002421 PMCID: PMC11852221 DOI: 10.3390/antiox14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Olive oil is widely recognized for its cancer-prevention properties, and its by-products, such as pomace and leaves, offer an opportunity for compound extraction. This study comprehensively reviews the antitumor activities of olive extracts and compounds in both in vitro and in vivo studies. Key compounds, including hydroxytyrosol (HT), oleuropein (OL), oleocanthal (OC), and maslinic acid (MA), demonstrated significant antiproliferative, apoptotic, antimigratory, and anti-invasive effects, along with selective cytotoxicity, particularly against breast and colorectal cancer. HT, OC, and MA showed anti-angiogenic effects, while HT and OC showed antimetastatic effects. Moreover, HT, OL, and OC also presented synergistic effects when combined with anticancer drugs, improving their efficacy. Additionally, HT, OL, and MA exhibited protective effects against several side effects of chemotherapy. These compounds are able to modulate important signaling pathways such as the mammalian target of rapamycin, regulate oxidative stress through reactive oxygen species production, modulate angiogenic factors, and induce autophagy. Interestingly, the synergistic effects of the compounds within olive extracts appear to be stronger than their individual action. There is a need for dose optimization, further mechanistic studies to clarify the precise mechanisms of action, and future studies using olive pomace extracts with animal models.
Collapse
Affiliation(s)
| | | | - Rita Carneiro Alves
- REQUIMTE/LAQV (Rede de Química e Tecnologia/Laboratório Associado para a Química Verde), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal (M.B.P.P.O.)
| |
Collapse
|
5
|
Wang E, Jiang Y, Zhao C. Hydroxytyrosol isolation, comparison of synthetic routes and potential biological activities. Food Sci Nutr 2024; 12:6899-6912. [PMID: 39479663 PMCID: PMC11521723 DOI: 10.1002/fsn3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroxytyrosol (HT) is a polyphenol found in the olive plant (Olea europaea) that has garnered attention from the food, feed, supplement, and pharmaceutical industries. HT has evolved from basic separation and extraction to chemical and biocatalytic synthesis. The yield of HT can reach 1.93 g/L/h through chemical synthesis and 7.7 g/L/h through biocatalysis; however, both methods are subject to inherent limitations. Furthermore, the potential health benefits associated with HT have been highlighted, including its ability to act as an antioxidant, reduce inflammation, combat cancer and obesity, and exert antibacterial and antiviral effects. Its neuroprotective effects, skin protection, and wound healing capabilities are also discussed. Given these remarkable biological properties, HT stands out as one of the most extensively investigated natural phenols. This review highlights future methods and pathways for the synthesis of HT, providing insights based on its bioactivity characteristics, health benefits, and potential future applications.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| |
Collapse
|
6
|
Bernini R, Campo M, Cassiani C, Fochetti A, Ieri F, Lombardi A, Urciuoli S, Vignolini P, Villanova N, Vita C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12871-12895. [PMID: 38829927 DOI: 10.1021/acs.jafc.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Campo
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Cassiani
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Ieri
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Urciuoli
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Pamela Vignolini
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Vita
- QuMAP - PIN, University Center "Città di Prato" Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| |
Collapse
|
7
|
Ali T, Li D, Ponnamperumage TNF, Peterson AK, Pandey J, Fatima K, Brzezinski J, Jakusz JAR, Gao H, Koelsch GE, Murugan DS, Peng X. Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment. Cancers (Basel) 2024; 16:2171. [PMID: 38927877 PMCID: PMC11201821 DOI: 10.3390/cancers16122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells show altered antioxidant defense systems, dysregulated redox signaling, and increased generation of reactive oxygen species (ROS). Targeting cancer cells through ROS-mediated mechanisms has emerged as a significant therapeutic strategy due to its implications in cancer progression, survival, and resistance. Extensive research has focused on selective generation of H2O2 in cancer cells for selective cancer cell killing by employing various strategies such as metal-based prodrugs, photodynamic therapy, enzyme-based systems, nano-particle mediated approaches, chemical modulators, and combination therapies. Many of these H2O2-amplifying approaches have demonstrated promising anticancer effects and selectivity in preclinical investigations. They selectively induce cytotoxicity in cancer cells while sparing normal cells, sensitize resistant cells, and modulate the tumor microenvironment. However, challenges remain in achieving selectivity, addressing tumor heterogeneity, ensuring efficient delivery, and managing safety and toxicity. To address those issues, H2O2-generating agents have been combined with other treatments leading to optimized combination therapies. This review focuses on various chemical agents/approaches that kill cancer cells via H2O2-mediated mechanisms. Different categories of compounds that selectively generate H2O2 in cancer cells are summarized, their underlying mechanisms and function are elucidated, preclinical and clinical studies as well as recent advancements are discussed, and their prospects as targeted therapeutic agents and their therapeutic utility in combination with other treatments are explored. By understanding the potential of these compounds, researchers can pave the way for the development of effective and personalized cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, USA; (T.A.); (D.L.); (T.N.F.P.); (A.K.P.); (J.P.); (K.F.); (J.B.); (J.A.R.J.); (H.G.); (G.E.K.); (D.S.M.)
| |
Collapse
|
8
|
Nsairat H, Jaber AM, Faddah H, Ahmad S. Oleuropein impact on colorectal cancer. Future Sci OA 2024; 10:FSO. [PMID: 38817366 PMCID: PMC11137855 DOI: 10.2144/fsoa-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 06/01/2024] Open
Abstract
Colorectal cancer (CRC) is considered the third most common cancer in the world. In Mediterranean region, olives and olive oil play a substantial role in diet and medical traditional behaviors. They totally believe that high consumption of olive products can treat a wide range of diseases and decrease risk of illness. Oleuropein is the main active antioxidant molecule found in pre-mature olive fruit and leaves. Recently, it has been demonstrated that oleuropein is used in cancer therapy as an anti-proliferative and apoptotic agent for some cancer cells. In this review, we would like to explore the conclusive effects of oleuropein on CRC with respect to in vitro and in vivo studies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Areej M Jaber
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Haya Faddah
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Somaya Ahmad
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
9
|
Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ. Anti-Cancer, Anti-Angiogenic, and Anti-Atherogenic Potential of Key Phenolic Compounds from Virgin Olive Oil. Nutrients 2024; 16:1283. [PMID: 38732529 PMCID: PMC11085358 DOI: 10.3390/nu16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
10
|
Wei J, Zheng Z, Hou X, Jia F, Yuan Y, Yuan F, He F, Hu L, Zhao L. Echinacoside inhibits colorectal cancer metastasis via modulating the gut microbiota and suppressing the PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116866. [PMID: 37429503 DOI: 10.1016/j.jep.2023.116866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echinacoside (ECH) is the dominant phenylethanoid glycoside-structured compound identified from our developed herbal formula Huangci granule, which has been previously reported to inhibit the invasion and metastasis of CRC and prolong patients' disease-free survival duration. Though ECH has inhibitory activity against aggressive colorectal cancer (CRC) cells, its anti-metastasis effect in vivo and the action mechanism is undetermined. Given that ECH has an extremely low bioavailability and gut microbiota drives the CRC progression, we hypothesized that ECH could inhibit metastatic CRC by targeting the gut microbiome. AIM OF THE STUDY The purpose of this study was to investigate the impact of ECH on colorectal cancer liver metastasis in vivo and its potential mechanisms. MATERIALS AND METHODS An intrasplenic injection-induced liver metastatic model was established to examine the efficiency of ECH on tumor metastasis in vivo. Fecal microbiota from the model group and the ECH group were separately transplanted into pseudo-sterile CRLM mice in order to verify the role of gut flora in the ECH anti-metastatic effect. The 16S rRNA gene sequence was applied to analyze the structure and composition of the gut microbiota after ECH intervention, and the effect of ECH on short-chain fatty acid (SCFAs)-producing bacteria growth was proven by anaerobic culturing in vitro. GC-MS was applied to quantitatively analyze the serum SCFAs levels in mice. RNA-seq was performed to detect the gene changes involving tumor-promoting signaling pathway. RESULTS ECH inhibited CRC metastasis in a dose-dependent manner in the metastatic colorectal cancer (mCRC) mouse model. Manipulation of gut bacteria in the mCRC mouse model further proved that SCFA-generating gut bacteria played an indispensable role in mediating the antimetastatic action of ECH. Under an anaerobic condition, ECH benefited SCFA-producing microbiota without affecting the total bacterial load, presenting a dose-dependent promotion on the growth of a butyrate producer, Faecalibacterium prausnitzii (F.p). Furthermore, ECH-reshaped or F.p-colonized microbiota with a high butyrate-producing capability inhibited liver metastasis by suppressing PI3K/AKT signaling and reversing the epithelial-mesenchymal transition (EMT) process, whereas this anti-metastatic ability was abrogated by the butyrate synthase inhibitor heptanoyl-CoA. CONCLUSION This study demonstrated that ECH exhibits oral anti-metastatic efficacy by facilitating butyrate-producing gut bacteria, which downregulates PI3K/AKT signaling and EMT. It hints at a novel role for ECH in CRC therapy.
Collapse
Affiliation(s)
- Jiao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongmei Zheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
11
|
Khan A, Pradeep S, Dastager SG. In vitro anticancer evaluation of Enceleamycin A and its underlying mechanism. RSC Adv 2023; 13:34183-34193. [PMID: 38019992 PMCID: PMC10663723 DOI: 10.1039/d3ra06204j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
It has become more crucial than ever to find novel anticancer compounds due to the rise in cancer mortality and resistance to the present chemotherapeutic drugs. Naphthoquinones are regarded as privileged structures for their ability to inhibit various cancers. The current study examined three novel furo-naphthoquinones (Enceleamycins A-C) previously isolated from Amycolatopsis sp. MCC 0218 for their anticancer potential. Enceleamycin A demonstrated considerable cytotoxicity for triple-negative breast cancer (TNBC) MDA-MB-231 cells with an IC50 value of 1.25 μg mL-1 (3.78 μM). It also showed the ability to inhibit MDA-MB-231 cell migration. Enceleamycin A raises intracellular ROS levels in TNBC cells, ultimately leading to apoptotic cell death, as demonstrated by Annexin V/PI staining. The molecular docking and simulation investigation revealed better binding affinity of Enceleamycin A with AKT2, which plays a vital role in breast cancer's invasiveness and chemo-resistance. Enceleamycin A inhibits the AKT2 enzyme in vitro with an IC50 value of 0.736 μg mL-1 (2.22 μM), further validating the docking study. The in silico physicochemical and pharmacokinetics characteristics of Enceleamycin A demonstrated its drug-likeness. Intriguingly, Enceleamycin A is non-hemolytic in nature. Taken together, Enceleamycin A could be a candidate molecule for treating TNBC cells by targeting the AKT2 signaling pathway.
Collapse
Affiliation(s)
- Abujunaid Khan
- NCIM-Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - S Pradeep
- NCIM-Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - Syed G Dastager
- NCIM-Resource Center, Biochemical Sciences Division, CSIR-National Chemical Laboratory Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| |
Collapse
|
12
|
Ali M, Benfante V, Stefano A, Yezzi A, Di Raimondo D, Tuttolomondo A, Comelli A. Anti-Arthritic and Anti-Cancer Activities of Polyphenols: A Review of the Most Recent In Vitro Assays. Life (Basel) 2023; 13:life13020361. [PMID: 36836717 PMCID: PMC9967894 DOI: 10.3390/life13020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Polyphenols have gained widespread attention as they are effective in the prevention and management of various diseases, including cancer diseases (CD) and rheumatoid arthritis (RA). They are natural organic substances present in fruits, vegetables, and spices. Polyphenols interact with various kinds of receptors and membranes. They modulate different signal cascades and interact with the enzymes responsible for CD and RA. These interactions involve cellular machinery, from cell membranes to major nuclear components, and provide information on their beneficial effects on health. These actions provide evidence for their pharmaceutical exploitation in the treatment of CD and RA. In this review, we discuss different pathways, modulated by polyphenols, which are involved in CD and RA. A search of the most recent relevant publications was carried out with the following criteria: publication date, 2012-2022; language, English; study design, in vitro; and the investigation of polyphenols present in extra virgin olive, grapes, and spices in the context of RA and CD, including, when available, the underlying molecular mechanisms. This review is valuable for clarifying the mechanisms of polyphenols targeting the pathways of senescence and leading to the development of CD and RA treatments. Herein, we focus on research reports that emphasize antioxidant properties.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- Correspondence:
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
13
|
Van Blarigan EL, Ma C, Ou FS, Bainter TM, Venook AP, Ng K, Niedzwiecki D, Giovannucci E, Lenz HJ, Polite BN, Hochster HS, Goldberg RM, Mayer RJ, Blanke CD, O’Reilly EM, Ciombor KK, Meyerhardt JA. Dietary fat in relation to all-cause mortality and cancer progression and death among people with metastatic colorectal cancer: Data from CALGB 80405 (Alliance)/SWOG 80405. Int J Cancer 2023; 152:123-136. [PMID: 35904874 PMCID: PMC9691576 DOI: 10.1002/ijc.34230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Data on diet and survival among people with metastatic colorectal cancer are limited. We examined dietary fat in relation to all-cause mortality and cancer progression or death among 1149 people in the Cancer and Leukemia Group B (Alliance)/Southwest Oncology Group (SWOG) 80405 trial who completed a food frequency questionnaire at initiation of treatment for advanced or metastatic colorectal cancer. We examined saturated, monounsaturated, total and specific types (n-3, long-chain n-3 and n-6) of polyunsaturated fat, animal and vegetable fats. We hypothesized higher vegetable fat intake would be associated with lower risk of all-cause mortality and cancer progression. We used Cox proportional hazards regression to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI). Over median follow-up of 6.1 years (interquartile range [IQR]: 5.3, 7.2 y), we observed 974 deaths and 1077 events of progression or death. Participants had a median age of 59 y; 41% were female and 86% identified as White. Moderate or higher vegetable fat was associated with lower risk of mortality and cancer progression or death (HRs comparing second, third and fourth to first quartile for all-cause mortality: 0.74 [0.62, 0.90]; 0.75 [0.61, 0.91]; 0.79 [0.63, 1.00]; P trend: .12; for cancer progression or death: 0.74 [0.62, 0.89]; 0.78 [0.64, 0.95]; 0.71 [0.57, 0.88]; P trend: .01). No other fat type was associated with all-cause mortality and cancer progression or death. Moderate or higher vegetable fat intake may be associated with lower risk of cancer progression or death among people with metastatic colorectal cancer.
Collapse
Affiliation(s)
| | - Chao Ma
- Dana-Farber Cancer Institute, Boston, MA
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Tiffany M. Bainter
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Alan P. Venook
- University of California, San Francisco, San Francisco, CA
| | - Kimmie Ng
- Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Heinz-Josef Lenz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Blase N. Polite
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | | | | | - Charles D. Blanke
- SWOG Group Chair’s Office, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | | | | | | |
Collapse
|
14
|
Future Prospective of Radiopharmaceuticals from Natural Compounds Using Iodine Radioisotopes as Theranostic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228009. [PMID: 36432107 PMCID: PMC9694974 DOI: 10.3390/molecules27228009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
Collapse
|
15
|
Laghezza Masci V, Bernini R, Villanova N, Clemente M, Cicaloni V, Tinti L, Salvini L, Taddei AR, Tiezzi A, Ovidi E. In Vitro Anti-Proliferative and Apoptotic Effects of Hydroxytyrosyl Oleate on SH-SY5Y Human Neuroblastoma Cells. Int J Mol Sci 2022; 23:12348. [PMID: 36293207 PMCID: PMC9604296 DOI: 10.3390/ijms232012348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
The antitumor activity of polyphenols derived from extra virgin olive oil and, in particular the biological activity of HTyr, has been studied extensively. However, the use of HTyr as a therapeutic agent for clinical applications is limited by its low bioavailability and rapid excretion in humans. To overcome these limitations, several synthetic strategies have been optimized to prepare lipophenols and new compounds derived from HTyr to increase lipophilicity and bioavailability. One very promising ester is hydroxytyrosyl oleate (HTyr-OL) because the chemical structure of HTyr, which is responsible for several biological activities, is linked to the monounsaturated chain of oleic acid (OA), giving the compound high lipophilicity and thus bioavailability in the cellular environment. In this study, the in vitro cytotoxic, anti-proliferative, and apoptotic induction activities of HTyr-OL were evaluated against SH-SY5Y human neuroblastoma cells, and the effects were compared with those of HTyr and OA. The results showed that the biological activity of HTyr was maintained in HTyr-OL treatments at lower dosages. In addition, the shotgun proteomic approach was used to study HTyr-OL-treated and untreated neuroblastoma cells, revealing that the antioxidant, anti-proliferative and anti-inflammatory activities of HTyr-OL were observed in the unique proteins of the two groups of samples.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Vittoria Cicaloni
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura Salvini
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Anna Rita Taddei
- High Equipment Centre, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Antonio Tiezzi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Elisa Ovidi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| |
Collapse
|
16
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
18
|
Leo M, Muccillo L, Dugo L, Bernini R, Santi L, Sabatino L. Polyphenols Extracts from Oil Production Waste Products (OPWPs) Reduce Cell Viability and Exert Anti-Inflammatory Activity via PPARγ Induction in Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11040624. [PMID: 35453308 PMCID: PMC9029425 DOI: 10.3390/antiox11040624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Olive oil production is associated with the generation of oil production waste products (OPWPs) rich in water-soluble polyphenols that represent serious environmental problems. Yet OPWPs can offer new opportunities by exploiting their bioactive properties. In this study, we chemically characterized OPWPs polyphenolic extracts and investigated their biological activities in normal and colorectal cancer cells. Hydroxytyrosol (HTyr), the major constituent of these extracts, was used as the control. We show that both HTyr and the extracts affect cell viability by inducing apoptosis and cell cycle arrest. They downregulate inflammation by impairing NF-κB phosphorylation and expression of responsive cytokine genes, as TNF-α and IL-8, at both mRNA and protein levels, and prevent any further increase elicited by external challenges. Mechanistically, HTyr and the extracts activate PPARγ while hampering pro-inflammatory genes expression, acting as a specific agonist, likely through a trans-repression process. Altogether, OPWPs polyphenolic extracts show stronger effects than HTyr, conceivably due to additive or synergistic effects of all polyphenols contained. They display anti-inflammatory properties and these results may pave the way for improving OPWPs extraction and enrichment methods to reduce the environmental impact and support their use to ameliorate the inflammation associated with diseases and tumors.
Collapse
Affiliation(s)
- Manuela Leo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Laura Dugo
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
- Correspondence: ; Tel.: +39-0824-305149 or +39-0824-305167
| |
Collapse
|
19
|
Rawat L, Nayak V. Piperlongumine induces ROS mediated apoptosis by transcriptional regulation of SMAD4/P21/P53 genes and synergizes with doxorubicin in osteosarcoma cells. Chem Biol Interact 2022; 354:109832. [PMID: 35085581 DOI: 10.1016/j.cbi.2022.109832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 01/21/2023]
Abstract
Piperlongumine is a herbal drug, with well-known anti-microbial and anti-neoplastic properties. The anti-carcinogenic potential of piperlongumine has been extensively explored for breast, colorectal, lungs, pancreatic, prostate, and oral carcinoma. However, a few numbers of studies are available on its bio-activity in osteosarcoma. Therefore, the present study aimed at exploring the therapeutic potential and possible mechanisms of action of piperlongumine in three human osteosarcoma cell lines in-vitro. The cytotoxicity of piperlongumine was determined by MTT assay, which shows dose and time-dependent inhibition of MG-63, 143B and KHOS/NP cells. Piperlongumine arrest the cells in G2/M phase of cell cycle and increases reactive oxygen species production, which possibly leads to lethal oxidative stress and apoptosis. Piperlongumine treatment significantly upregulated the expression of genes BAX, P21, P53, and SMAD4; while the BCL-2, SURVIVIN, TNFA, and NFKB genes expression was found down-regulated. Furthermore, piperlongumine exposure inhibited the migration of osteosarcoma cells as the expression of migration marker genes CDH2, CTNNB1, FN1, and TWIST were found to be down-regulated. The drug combination studies show the synergistic effect of piperlongumine with the conventional chemotherapeutic drug doxorubicin in osteosarcoma cells. Taken together, the above results suggest that PL displays anticancer properties against osteosarcoma and can be used as a therapeutic agent for osteosarcoma treatment in clinical settings.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India.
| | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
20
|
Alemán-Jiménez C, Domínguez-Perles R, Fanti F, Gallego-Gómez JI, Simonelli-Muñoz A, Moine E, Durand T, Crauste C, Gil-Izquierdo Á, Medina S. Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
22
|
Zhang SP, Zhou J, Fan QZ, Lv XM, Wang T, Wang F, Chen Y, Hong SY, Liu XP, Xu BS, Hu L, Zhang C, Zhang YM. Discovery of hydroxytyrosol as thioredoxin reductase 1 inhibitor to induce apoptosis and G 1/S cell cycle arrest in human colorectal cancer cells via ROS generation. Exp Ther Med 2021; 22:829. [PMID: 34149875 PMCID: PMC8200807 DOI: 10.3892/etm.2021.10261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types and a leading cause of cancer-associated mortality in China. Increased thioredoxin reductase 1 (TrxR1) levels have been previously identified as possible target for CRC. The present study revealed that the natural product hydroxytyrosol (HT), which exhibits a polyphenol scaffold, is a potent inhibitor of TrxR1. Inhibition of TrxR1 was indicated to result in accumulation of reactive oxygen species, inhibit proliferation and induce apoptosis and G1/S cell cycle arrest of CRC cells. Using a C-terminal mutant TrxR1 enzyme activity assay, TrxR1 RNA interference assay and HT binding model assay, the present study demonstrated the core character of the selenocysteine residue in the interaction between HT and TrxR1. HT can serve as polyphenol scaffold to develop novel TrxR1 inhibitors for CRC treatment in the future.
Collapse
Affiliation(s)
- Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ji Zhou
- Center for Reproductive Medicine, The First Affiliated Hospital, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiao-Mei Lv
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Tian Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Fan Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yang Chen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Sen-Yan Hong
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Bing-Song Xu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ye-Ming Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
23
|
Cao K, Wang K, Yang M, Liu X, Lv W, Liu J. Punicalagin improves hepatic lipid metabolism via modulation of oxidative stress and mitochondrial biogenesis in hyperlipidemic mice. Food Funct 2021; 11:9624-9633. [PMID: 32975274 DOI: 10.1039/d0fo01545h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hyperlipidemia is closely associated with various liver diseases, and effective intervention for prevention and treatment is in great need. Here, we aim to explore the protective effects of punicalagin (PU), a major ellagitannin in pomegranate, on acute hyperlipidemia-induced hepatic lipid metabolic disorders. Male C57bl/6J mice were pretreated with 50 or 200 mg kg-1 day-1 PU for 9 days before the injection of poloxamer 407 to induce acute hyperlipidemia. PU significantly lowered lipids and liver damage markers in serum, reduced excessive lipid accumulation in the liver, attenuated hepatic oxidative stress by activating the NF-E2 related factor 2 (Nrf2)-mediated antioxidant pathway, and enhanced hepatic mitochondrial complex activities and mitochondrial DNA copy number by promoting the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α)-mediated mitochondrial biogenesis pathway. Moreover, the decreased mitochondrial fusion-related proteins were also restored by PU treatment. In vitro, PU effectively decreased triglycerides and total cholesterol levels, up-regulated Nrf2 and mitochondrial biogenesis pathways and partially restored the mitochondrial morphology in palmitic acid-treated HepG2 cells. These results suggest that PU could improve acute hyperlipidemia-induced hepatic lipid metabolic abnormalities via decreasing oxidative stress and improving mitochondrial function both in vivo and in vitro, indicating that PU might be a potential intervention for hyperlipidemia-related liver diseases.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|
24
|
Wang M, Zhang S, Zhong R, Wan F, Chen L, Liu L, Yi B, Zhang H. Olive Fruit Extracts Supplement Improve Antioxidant Capacity via Altering Colonic Microbiota Composition in Mice. Front Nutr 2021; 8:645099. [PMID: 33889594 PMCID: PMC8055859 DOI: 10.3389/fnut.2021.645099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, one of the most common biological dysfunctions, is usually associated with pathological conditions and multiple diseases in humans and animals. Chinese olive fruit (Canarium album L.) extracts (OE) are natural plant extracts rich in polyphenols (such as hydroxytyrosol, HT) and with antioxidant, anti-hyperlipidemia, and anti-inflammatory potentials. This study was conducted to investigate the antioxidant capacity of OE supplementation and its related molecular mechanism in mice. Mice (25.46 ± 1.65 g) were treated with 100 mg/kg body weight (BW) OE or saline solution for 4 weeks, and then the antioxidant and anti-inflammatory capacities of mice were examined. The results showed that OE supplement significantly increased the serum antioxidative enzyme activities of total antioxidant activity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase and decreased the serum malondialdehyde (MDA) level, indicating that OE treatment enhanced the antioxidant capacity in mice. qPCR results showed that the transcriptional expression of antioxidant SOD1, CAT, Gpx1, and Gpx2 were significantly down-regulated in the small intestine (jejunum and ileum) after OE administration. Meanwhile, OE treatment significantly decreased the T-AOC and increased the MDA level in the small intestine. Furthermore, OE administration dramatically reduced the mRNA expression of pro-inflammatory cytokines (TNF-α and IL-1β), which confirmed its antioxidant and anti-inflammatory capacities with OE administration. Using amplicon sequencing technology, 16S rRNA sequencing results showed that OE supplement significantly increased the colonic Firmicutes/Bacteroidetes ratio, which also had a negative correlation with the serum MDA level and positively correlated with serum GSH-Px activity through Pearson correlation analysis. Besides that, Alloprevotella was negatively correlated with serum T-AOC. Colidextribacter was positively correlated with serum MDA and negatively correlated with serum T-AOC, SOD, and GSH-Px levels. In summary, this study showed that treatment with 100 mg/kg BW polyphenol-rich OE could alter colonic microbiota community, which was strongly associated with improved antioxidant capacity in mice.
Collapse
Affiliation(s)
- Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The olive tree (Olea europaea L.) has featured as a significant part of medicinal history, used to treat a variety of ailments within folk medicine. The Mediterranean diet, which is rich in olive products, is testament to Olea europaeas positive effects on health, associated with reduced incidences of cancer and cardiovascular disease. This review aims to summarise the current literature regarding the therapeutic potential of Olea europaea products in cancer, detailing the possible compounds responsible for its chemotherapeutic effects. RECENT FINDINGS Much of the existing research has focused on the use of cell culture models of disease, demonstrating Olea europaea extracts, and specific compounds within these extracts, have efficacy in a range of in vitro and in vivo cancer models. The source of Olea europaeas cytotoxicity is yet to be fully defined; however, compounds such as oleuropein and verbascoside have independent cytotoxic effects on animal models of cancer. Initial results from animal models are promising but need to be translated to a clinical setting. Treatments utilising these compounds are likely to be well tolerated and represent a promising direction for future research.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Jonathon Hull
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
26
|
Li Z, Zhou X, Zhu H, Song X, Gao H, Niu Z, Lu J. Purpurin binding interacts with LHPP protein that inhibits PI3K/AKT phosphorylation and induces apoptosis in colon cancer cells HCT-116. J Biochem Mol Toxicol 2021; 35:e22665. [PMID: 33368780 DOI: 10.1002/jbt.22665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the leading type of diagnosed cancer; globally, it resides in the fourth-leading origin of cancer-interrelated mortality in the globe. The treatment strategies were chemotherapy and potent radiotherapy. Although chemotherapy treatment can eliminate tumor cells, it remains with unnecessary toxic effects in cancer patients. Therefore, the identification of natural-based compounds, which have selectively inhibiting target proteins with limited toxicity that can facilitate the therapeutic approaches against CRC. In this existing approach, which highlights the binding efficacy of our anthraquinone compound, purpurin against phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) protein restrains the CRC cell growth by inhibiting phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), cell proliferation, and inducing apoptosis signaling. Primarily, purpurin (36 μM) exposed to HCT-116 cells and incubated for 24 and 48 h could induce reactive oxygen species production, subsequently alter mitochondrion membrane, and increase the apoptotic cells in HCT-116. LHPP, a kind of histidine phosphatase protein, has been considered as a tumor suppressor in numerous carcinomas. However, purpurin-mediated LHPP proteins and its associated molecular events in CRC remain unclear. In our docking studies revealed that purpurin has been strongly interacts with LHPP via hydrophobic and hydrophilic binding interaction. Western blot results confirmed that purpurin enhances the expression of LHPP protein, thereby inhibits the expression of phosphorylated-PI3K/AKT, EGFR, cyclin-D1, PCNA in HCT-116 cells. Moreover, purpurin induces messenger RNA expression of apoptotic genes (Bax, CASP-9, and CASP-3) in HCT-116 cells. Thus, we conclude that purpurin could be a natural and useful compound, which inhibits the growth of CRC cells through the activation of LHPP proteins.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Colorectal and Anal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xie Song
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
27
|
Emma MR, Augello G, Di Stefano V, Azzolina A, Giannitrapani L, Montalto G, Cervello M, Cusimano A. Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. Int J Mol Sci 2021; 22:ijms22031234. [PMID: 33513799 PMCID: PMC7865905 DOI: 10.3390/ijms22031234] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet (MD) is a combination of foods mainly rich in antioxidants and anti-inflammatory nutrients that have been shown to have many health-enhancing effects. Extra-virgin olive oil (EVOO) is an important component of the MD. The importance of EVOO can be attributed to phenolic compounds, represented by phenolic alcohols, hydroxytyrosol, and tyrosol, and to secoiridoids, which include oleocanthal, oleacein, oleuropein, and ligstroside (along with the aglycone and glycosidic derivatives of the latter two). Each secoiridoid has been studied and characterized, and their effects on human health have been documented by several studies. Secoiridoids have antioxidant, anti-inflammatory, and anti-proliferative properties and, therefore, exhibit anti-cancer activity. This review summarizes the most recent findings regarding the pharmacological properties, molecular targets, and action mechanisms of secoiridoids, focusing attention on their preventive and anti-cancer activities. It provides a critical analysis of preclinical, in vitro and in vivo, studies of these natural bioactive compounds used as agents against various human cancers. The prospects for their possible use in human cancer prevention and treatment is also discussed.
Collapse
Affiliation(s)
- Maria Rita Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
| | - Vita Di Stefano
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy;
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Correspondence: (M.C.); (A.C.); Tel.: +39-091-680-9534/511/555 (M.C.); +39-091-680-9589 (A.C.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Correspondence: (M.C.); (A.C.); Tel.: +39-091-680-9534/511/555 (M.C.); +39-091-680-9589 (A.C.)
| |
Collapse
|
28
|
Antioxidant Efficacy of Olive By-Product Extracts in Human Colon HCT8 Cells. Foods 2020; 10:foods10010011. [PMID: 33374501 PMCID: PMC7822158 DOI: 10.3390/foods10010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022] Open
Abstract
The production of olive oil is accompanied by the generation of a huge amount of waste and by-products including olive leaves, pomace, and wastewater. The latter represents a relevant environmental issue because they contain certain phytotoxic compounds that may need specific treatments before the expensive disposal. Therefore, reducing waste biomass and valorizing by-products would make olive oil production more sustainable. Here, we explore the biological actions of extracts deriving from olive by-products including olive pomace (OP), olive wastewater (OWW), and olive leaf (OLs) in human colorectal carcinoma HCT8 cells. Interestingly, with the same phenolic concentration, the extract obtained from the OWW showed higher antioxidant ability compared with the extracts derived from OP and OLs. These biological effects may be related to the differential phenolic composition of the extracts, as OWW extract contains the highest amount of hydroxytyrosol and tyrosol that are potent antioxidant compounds. Furthermore, OP extract that contains a higher level of vanillic acid than the other extracts displayed a cytotoxic action at the highest concentration. Together these findings revealed that phenols in the by-product extracts may interfere with signaling molecules that cross-link several intracellular pathways, raising the possibility to use them for beneficial health effects.
Collapse
|
29
|
Beneficial effects of olive oil and Mediterranean diet on cancer physio-pathology and incidence. Semin Cancer Biol 2020; 73:178-195. [PMID: 33249203 DOI: 10.1016/j.semcancer.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Virgin olive oil is a characteristic component and the main source of fat of the Mediterranean diet. It is a mix of high-value health compounds, including monounsaturated fatty acids (mainly oleic acid), simple phenols (such as hydroxytyrosol and tyrosol), secoiridoids (such as oleuropein, oleocanthal), flavonoids, and terpenoids (such as squalene). Olive oil consumption has been shown to improve different aspects of human health and has been associated with a lower risk of cancer. However, the underlying cellular mechanisms involved in such effects are still poorly defined, but seem to be related to a promotion of apoptosis, modulation of epigenetic patterns, blockade of cell cycle, and angiogenesis regulation. The aim of this review is to update the current associations of cancer risk with the Mediterranean diet, olive oil consumption and its main components. In addition, the identification of key olive oil components involved in anticarcinogenic mechanisms and pathways according to experimental models is also addressed.
Collapse
|
30
|
The Hydroxytyrosol Induces the Death for Apoptosis of Human Melanoma Cells. Int J Mol Sci 2020; 21:ijms21218074. [PMID: 33137997 PMCID: PMC7662312 DOI: 10.3390/ijms21218074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/25/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and one of the most treatment-refractory malignancies. In metastatic melanoma cell lines, we analysed the anti-proliferative and pro-apoptotic potentials of a phenolic component of olive oil, the hydroxytyrosol. In particular, through MTS assay, DeadEnd™ Colorimetric TUNEL assay, Annexin V binding and PI uptake, western blot experiment, intracellular reactive oxygen species (ROS) analysis, and the cell colony assay, we showed that the hydroxytyrosol treatment remarkably reduces the cell viability inducing the death for apoptosis of melanoma cells. Moreover, we showed that the hydroxytyrosol treatment of melanoma cells leads to a significant increase of p53 and γH2AX expression, a significant decrease of AKT expression and the inhibition of cell colony formation ability. Finally, we propose that the increased amount of intracellular reactive oxygen species (ROS) that may be related to the regulation of the pathways involved in the activation of apoptosis and in the inhibition of melanoma growth could be the strategy used by hydroxytyrosol to exert its functions in melanoma. Therefore, for its role in melanoma growth inhibition, the hydroxytyrosol treatment could deeply interfere with melanoma progression as a promising therapeutic option for the treatment of this highly invasive tumour.
Collapse
|
31
|
Romani A, Campo M, Urciuoli S, Marrone G, Noce A, Bernini R. An Industrial and Sustainable Platform for the Production of Bioactive Micronized Powders and Extracts Enriched in Polyphenols From Olea europaea L. and Vitis vinifera L. Wastes. Front Nutr 2020; 7:120. [PMID: 32974376 PMCID: PMC7473407 DOI: 10.3389/fnut.2020.00120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few years, literature data have reported that health status is related to the consumption of foods rich in polyphenols, bioactive compounds found in the plant world, in particular in vegetables and fruit. These pieces of scientific evidence have led to an increase in the demand for functional foods and drinks enriched in polyphenols, so that plant materials are more and more requested. The availability of food and agricultural wastes has adverse effects on the economy, environment, and human health. On the other hand, these materials are a precious source of bioactive compounds as polyphenols. Their recovery and reuse from wastes are according to the circular economy strategy, which has introduced the “zero waste concept.” However, the process is convenient from an economic and environmental point of view only if the final products are standardized and obtained using sustainable and industrial technologies. In this panorama, this paper describes an industrial and sustainable platform for the production of micronized powders and extracts enriched in polyphenols from Olea europaea L. and Vitis vinifera L. wastes that are useful for food, cosmetics, and pharmaceuticals sectors. The platform is based on drying plant materials, extraction of polyphenols through membrane technologies with water, and, when necessary, the concentration of the final fractions under vacuum evaporation. All powders and extracts were characterized by high-performance liquid chromatography–diode array detector–mass spectrometry analysis to define the qualitative and quantitative content of bioactive compounds and insure their standardization and reproducibility. The chromatographic profiles evidenced the presence of secoiridoids, flavones, flavonols, anthocyanins, hydroxycinnamic acids, catechins, and condensed tannins. An overview of the biological activities of the main polyphenols present in Olea europaea L. and Vitis vinifera L. powders and extracts is reported because of biomedical applications.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Florence, Italy
| | - Giulia Marrone
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Rome, Italy.,UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
32
|
Sanchez-Morate E, Gimeno-Mallench L, Stromsnes K, Sanz-Ros J, Román-Domínguez A, Parejo-Pedrajas S, Inglés M, Olaso G, Gambini J, Mas-Bargues C. Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines 2020; 8:E287. [PMID: 32823858 PMCID: PMC7460310 DOI: 10.3390/biomedicines8080287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Due to medical advances and lifestyle changes, population life expectancy has increased. For this reason, it is important to achieve healthy aging by reducing the risk factors causing damage and pathologies associated with age. Through nutrition, one of the pillars of health, we are able to modify these factors through modulation of the intestinal microbiota. The Mediterranean and Oriental diets are proof of this, as well as the components present in them, such as fiber and polyphenols. These generate beneficial effects on the body thanks, in part, to their interaction with intestinal bacteria. Likewise, the low consumption of products with high fat content favors the state of the microbiota, contributing to the maintenance of good health.
Collapse
Affiliation(s)
- Elisa Sanchez-Morate
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
- Department of Biomedical Sciences, Faculty of Health Sciences, Cardenal Herrera CEU University, 46115 Valencia, Spain
| | - Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Sergi Parejo-Pedrajas
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain;
| | - Gloria Olaso
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| |
Collapse
|
33
|
Rawat L, Hegde H, Hoti SL, Nayak V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed Pharmacother 2020; 128:110243. [PMID: 32470748 DOI: 10.1016/j.biopha.2020.110243] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 01/20/2023] Open
Abstract
Piperlongumine (PL), a herbal drug extracted from long pepper (Piper longum L), is known for its anti-inflammatory and anti-cancer properties. Although, its anti-cancer potential has been evaluated in cancer models like breast, pancreatic, gastric, hepatocellular and lung carcinoma, there is no report on its bio-activity evaluation in intestinal cancers. Here, we report the anti-neoplastic potential of PL against human intestinal carcinoma in-vitro and its possible mechanisms of action. Cytotoxicity studies demonstrate that PL inhibits cell proliferation of INT-407 and HCT-116 cells in a concentration and time-dependent manner. Also, PL elevated the levels of intracellular reactive oxygen species, which may lead to lethal oxidative stress, mitochondrial dysfunction, and nuclear fragmentation. Remarkably, P53, P21, BAX, and SMAD4 were significantly upregulated after PL treatment whereas; BCL2 and SURVIVIN were down-regulated. Moreover, the combination study also shows the synergistic effect of PL with the current chemotherapeutic drug paclitaxel. These findings suggest that PL possesses anti-neoplastic properties in intestinal cancer cells.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India.
| | - Harsha Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, Karnataka, India.
| | | | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India.
| |
Collapse
|
34
|
Hydroxytyrosol Promotes Proliferation of Human Schwann Cells: An In Vitro Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124404. [PMID: 32575426 PMCID: PMC7344605 DOI: 10.3390/ijerph17124404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Recent advances in phytomedicine have explored some potential candidates for nerve regeneration, including hydroxytyrosol (HT). This study was undertaken to explore the potential effects of HT on human Schwann cells' proliferation. Methods: The primary human Schwann cell (hSC) was characterized, and the proliferation rate of hSC supplemented with various concentrations of HT was determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis and protein expression of glial fibrillary acidic protein (GFAP) and p75 nerve growth factor receptor (p75 NGFR) were evaluated via the immunofluorescence technique. Results: In vitro culture of hSCs revealed spindle-like, bipolar morphology with the expression of specific markers of hSC. Hydroxytyrosol at 10 and 20 ng/mL significantly increased the proliferation of hSCs by 30.12 ± 5.9% and 47.8 ± 6.7% compared to control (p < 0.05). Cell cycle analysis showed that HT-treated hSCs have a higher proliferation index (16.2 ± 0.2%) than the control (12.4 ± 0.4%) (p < 0.01). In addition, HT significantly increased the protein expression of GFAP and p75NGFR (p < 0.05). Conclusion: HT stimulates the proliferation of hSCs in vitro, indicated by a significant increase in the hSC proliferation index and protein expression of hSCs' proliferation markers, namely p75 NGFR and GFAP.
Collapse
|
35
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
36
|
Calahorra J, Martínez-Lara E, Granadino-Roldán JM, Martí JM, Cañuelo A, Blanco S, Oliver FJ, Siles E. Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells. Sci Rep 2020; 10:6361. [PMID: 32286485 PMCID: PMC7156391 DOI: 10.1038/s41598-020-63417-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Olive oil intake has been linked with a lower incidence of breast cancer. Hypoxic microenvironment in solid tumors, such as breast cancer, is known to play a crucial role in cancer progression and in the failure of anticancer treatments. HIF-1 is the foremost effector in hypoxic response, and given that hydroxytyrosol (HT) is one of the main bioactive compounds in olive oil, in this study we deepen into its modulatory role on HIF-1. Our results in MCF-7 breast cancer cells demonstrate that HT decreases HIF-1α protein, probably by downregulating oxidative stress and by inhibiting the PI3K/Akt/mTOR pathway. Strikingly, the expression of HIF-1 target genes does not show a parallel decrease. Particularly, adrenomedullin and vascular endothelial growth factor are up-regulated by high concentrations of HT even in HIF-1α silenced cells, pointing to HIF-1-independent mechanisms of regulation. In fact, we show, by in silico modelling and transcriptional analysis, that high doses of HT may act as an agonist of the aryl hydrocarbon receptor favoring the induction of these angiogenic genes. In conclusion, we suggest that the effect of HT in a hypoxic environment is largely affected by its concentration and involves both HIF-1 dependent and independent mechanisms.
Collapse
Affiliation(s)
- Jesús Calahorra
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - Esther Martínez-Lara
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - Juan M Martí
- Instituto López Neyra de Parasitología y Biomedicina, IPBLN, CSIC PTS-Granada, Armilla, 18016, Spain
| | - Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - Santos Blanco
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - F Javier Oliver
- Instituto López Neyra de Parasitología y Biomedicina, IPBLN, CSIC PTS-Granada, Armilla, 18016, Spain
| | - Eva Siles
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain.
| |
Collapse
|
37
|
Bertelli M, Kiani AK, Paolacci S, Manara E, Kurti D, Dhuli K, Bushati V, Miertus J, Pangallo D, Baglivo M, Beccari T, Michelini S. Hydroxytyrosol: A natural compound with promising pharmacological activities. J Biotechnol 2020; 309:29-33. [PMID: 31884046 DOI: 10.1016/j.jbiotec.2019.12.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022]
Abstract
Hydroxytyrosol is a phenolic phytochemical with antioxidant properties in vitro. It is a natural compound that can be found in olive leaves and oil. The main dietary source of hydroxytyrosol is extra virgin olive oil. Due to its bioavailability, chemical properties and easy formulation along with its lack of toxicity, hydroxytyrosol is considered an excellent food supplement by the nutraceutical and food industries. The purpose of this review is to discuss the potential therapeutic effects of hydroxytyrosol in vivo. To do so, we conducted an electronic search in PubMed and other literature databases using "hydroxytyrosol", "beneficial effect/s", "pharmacology" as key-words. From this search, we found that hydroxytyrosol has anti-inflammatory, anti-tumor, antiviral, antibacterial and antifungal properties. Hydroxytyrosol also improves endothelial dysfunction, decreases oxidative stress, and is neuro- and cardio-protective. Due to all these biological properties, hydroxytyrosol is currently the most actively investigated natural phenol. The evidence presented in this review suggests that hydroxytyrosol has great pharmacological potential.
Collapse
Affiliation(s)
- Matteo Bertelli
- EBTNA-Lab, Via Delle Maioliche, 57/G, 38068, Rovereto, TN, Italy; MAGI's Lab, Via Delle Maioliche, 57/D, 38068, Rovereto, TN, Italy; MAGI Euregio, Via Maso della Pieve, 60/A, 39100, Bolzano, Italy.
| | - Aysha Karim Kiani
- Allama Iqbal Open University, Sector H-8, 44000, Islamabad, Pakistan.
| | - Stefano Paolacci
- MAGI's Lab, Via Delle Maioliche, 57/D, 38068, Rovereto, TN, Italy.
| | - Elena Manara
- MAGI Euregio, Via Maso della Pieve, 60/A, 39100, Bolzano, Italy.
| | - Danjela Kurti
- MAGI Balkans, Rruga Andon Zako Cajupi, 1019, Tirana, Albania.
| | - Kristjana Dhuli
- MAGI Balkans, Rruga Andon Zako Cajupi, 1019, Tirana, Albania.
| | - Vilma Bushati
- MAGI Balkans, Rruga Andon Zako Cajupi, 1019, Tirana, Albania.
| | - Jan Miertus
- Genius n.o., Mestská poliklinika Starohájska 2, 91701, Trnava, Slovakia.
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, Bratislava, 84551, Slovakia.
| | - Mirko Baglivo
- MAGI Euregio, Via Maso della Pieve, 60/A, 39100, Bolzano, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via Ariodante Fabretti, 48, 06123, Perugia, Italy.
| | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Via Luigi Ercole Morselli, 13, 00148, Rome, Italy.
| |
Collapse
|
38
|
Sundarraj K, Raghunath A, Panneerselvam L, Perumal E. Fisetin, a phytopolyphenol, targets apoptotic and necroptotic cell death in HepG2 cells. Biofactors 2020; 46:118-135. [PMID: 31634424 DOI: 10.1002/biof.1577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/23/2019] [Indexed: 01/27/2023]
Abstract
Fisetin (3,7,3',4'-tetrahydroxyflavone), a bioactive dietary flavonoid, intrigued scientists for its anticancer potential against various cancer types. We investigated the fisetin-induced inhibition of growth and survival of human hepatocellular carcinoma. Fisetin decreased cell viability and proliferation of HepG2 cells as revealed from MTT and clonogenicity assays. Cell cycle arrest in the G2/M phase was observed. Annexin V/propidium iodide (PI) staining followed by flow cytometry revealed that fisetin induced both apoptosis and necroptosis in HepG2 cells. Apoptotic cells were significantly increased on fisetin treatment as observed in morphological evaluations and 4',6-diamidino-2-phenylindole and Acridine orange staining. Flow cytometry, fluorescence imaging, and 2', 7'-dichlorofluorescein diacetate analyses showed an increase in reactive oxygen species (ROS) generation on fisetin treatment. Pretreatment with N-acetyl cysteine inhibited ROS production and also rescued mitochondrial membrane potential in HepG2 cells. The underlying mechanisms of apoptosis and necroptosis were determined by analysis of their respective signaling molecules using qRT-PCR and Western blotting. Fisetin showed a marked increase in the expression of TNFα and IKκB with a decrease in NF-κB, pNF-κB and pIKκB expression. Fisetin reduced the expression of Bcl2, and elevated levels of Bax, caspase-3, and PARP and thus induced apoptosis in HepG2 cells. zVAD suppressed the fisetin-induced expression of caspase-8, RIPK1, RIPK3, and MLKL as opposed to fisetin treatment. Nec-1 + fisetin could not completely block necroptosis, which warrants further investigation. Taken together, our findings demonstrate that the fisetin exhibited anti-proliferative effects on HepG2 cells through apoptosis and necroptosis via multiple signaling pathways. Fiestin has potential as a therapeutic agent against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
39
|
Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:461-482. [PMID: 31639094 DOI: 10.2478/acph-2019-0052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
Cancer presents one of the leading causes of death in the world. Current treatment includes the administration of one or more anticancer drugs, commonly known as chemotherapy. The biggest issue concerning the chemotherapeutics is their toxicity on normal cells and persisting side effects. One approach to the issue is chemoprevention and the other one is the discovery of more effective drugs or drug combinations, including combinations with polyphenols. Olive oil polyphenols (OOPs), especially hydroxytyrosol (HTyr), tyrosol (Tyr) and their derivatives oleuropein (Ole), oleacein and oleocanthal (Oc) express anticancer activity on different cancer models. Recent studies report that phenolic extract of virgin olive oil may be more effective than the individual phenolic compounds. Also, there is a growing body of evidence about the combined treatment of OOPs with various anticancer drugs, such as cisplatin, tamoxifen, doxorubicin and others. These novel approaches may present an advanced strategy in the prevention and treatment of cancer.
Collapse
|
40
|
Ahmed K, Zaidi SF, Cui ZG, Zhou D, Saeed SA, Inadera H. Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer. Oncol Lett 2019; 18:487-498. [PMID: 31289520 PMCID: PMC6540497 DOI: 10.3892/ol.2019.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among men and women. Chemo-resistance, adverse effects and disease recurrence are major challenges in the development of effective cancer therapeutics. Substantial literature on this subject highlights that populations consuming diets rich in fibers, fruits and vegetables have a significantly reduced incidence rate of CRC. This chemo-preventive effect is primarily associated with the presence of phytochemicals in the dietary components. Plant-derived chemical agents act as a prominent source of novel compounds for drug discovery. Phytochemicals have been the focus of an increasing number of studies due to their ability to modulate carcinogenic processes through the alteration of multiple cancer cell survival pathways. Despite promising results from experimental studies, only a limited number of phytochemicals have entered into clinical trials. The purpose of the current review is to compile previously published pre-clinical and clinical evidence of phytochemicals in cases of CRC. A PubMed, Google Scholar and Science Direct search was performed for relevant articles published between 2008-2018 using the following key terms: 'Phytochemicals with colorectal cancers', 'apoptosis', 'cell cycle', 'reactive oxygen species' and 'clinical anticancer activities'. The present review may aid in identifying the most investigated phytochemicals in CRC cells, and due to the limited number of studies that make it from the laboratory bench to clinical trial stage, may provide a novel foundation for future research.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Dejun Zhou
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Sheikh Abdul Saeed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
41
|
Karković Marković A, Torić J, Barbarić M, Jakobušić Brala C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019; 24:molecules24102001. [PMID: 31137753 PMCID: PMC6571782 DOI: 10.3390/molecules24102001] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet and olive oil as its quintessential part are almost synonymous with a healthy way of eating and living nowadays. This kind of diet has been highly appreciated and is widely recognized for being associated with many favorable effects, such as reduced incidence of different chronic diseases and prolonged longevity. Although olive oil polyphenols present a minor fraction in the composition of olive oil, they seem to be of great importance when it comes to the health benefits, and interest in their biological and potential therapeutic effects is huge. There is a growing body of in vitro and in vivo studies, as well as intervention-based clinical trials, revealing new aspects of already known and many new, previously unknown activities and health effects of these compounds. This review summarizes recent findings regarding biological activities, metabolism and bioavailability of the major olive oil phenolic compounds—hydroxytyrosol, tyrosol, oleuropein, oleocanthal and oleacein—the most important being their antiatherogenic, cardioprotective, anticancer, neuroprotective and endocrine effects. The evidence presented in the review concludes that these phenolic compounds have great pharmacological potential, however, further studies are still required.
Collapse
Affiliation(s)
- Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
42
|
Tampucci S, Carpi S, Digiacomo M, Polini B, Fogli S, Burgalassi S, Macchia M, Nieri P, Manera C, Monti D. Diclofenac-Derived Hybrids for Treatment of Actinic Keratosis and Squamous Cell Carcinoma. Molecules 2019; 24:E1793. [PMID: 31075867 PMCID: PMC6539072 DOI: 10.3390/molecules24091793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 01/07/2023] Open
Abstract
In this work, hybrid compounds 1-4 obtained by conjugation of the non-steroidal anti-inflammatory drug diclofenac, with natural molecules endowed with antioxidant and antiproliferative activity were prepared. The antiproliferative activity of these hybrids was evaluated on immortalized human keratinocyte (HaCaT) cells stimulated with epidermal growth factor (EGF), an actinic keratosis (AK) model, and on human squamous cell carcinoma (SCC) cells (A431). Hybrid 1 presented the best activity in both cell models. Self-assembling surfactant nanomicelles have been chosen as the carrier to drive the hybrid 1 into the skin; the in vitro permeation through and penetration into pig ear skin have been evaluated. Among the nanostructured formulations tested, Nano3Hybrid20 showed a higher tendency of the hybrid 1 to be retained in the skin rather than permeating it, with a desirable topical and non-systemic action. On these bases, hybrid 1 may represent an attractive lead scaffold for the development of new treatments for AK and SCC.
Collapse
Affiliation(s)
- Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Interdepartmental Research Center "Nutraceuticals and Food for Health" (NutraFood), University of Pisa, 56126 Pisa, Italy.
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Interdepartmental Research Center "Nutraceuticals and Food for Health" (NutraFood), University of Pisa, 56126 Pisa, Italy.
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Interdepartmental Research Center "Nutraceuticals and Food for Health" (NutraFood), University of Pisa, 56126 Pisa, Italy.
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Stefano Fogli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy.
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Interdepartmental Research Center "Nutraceuticals and Food for Health" (NutraFood), University of Pisa, 56126 Pisa, Italy.
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Interdepartmental Research Center "Nutraceuticals and Food for Health" (NutraFood), University of Pisa, 56126 Pisa, Italy.
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Interdepartmental Research Center "Nutraceuticals and Food for Health" (NutraFood), University of Pisa, 56126 Pisa, Italy.
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
43
|
de Pablos RM, Espinosa-Oliva AM, Hornedo-Ortega R, Cano M, Arguelles S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol Res 2019; 143:58-72. [DOI: 10.1016/j.phrs.2019.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|
44
|
Celano M, Maggisano V, Lepore SM, Russo D, Bulotta S. Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: A critical analysis of experimental studies. Pharmacol Res 2019; 142:77-86. [PMID: 30772463 DOI: 10.1016/j.phrs.2019.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Phenolic secoiridoids from olive, including oleocanthal, oleuropein and related derivatives, are bioactive natural products with documented anticancer activities, that have mainly been attributed to their antioxidant, anti-inflammatory and antiproliferative effects. This review summarizes the results of the preclinical studies on the natural secoiridoids of olive used as single agents or in combination with other chemotherapeutics against cancer cells. The molecular targets of their action are described. A critical analysis of the importance of the experimental studies in view of the possible use in humans is also discussed.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Saverio Massimo Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
45
|
Effects of Long-Term Treatment with a Blend of Highly Purified Olive Secoiridoids on Cognition and Brain ATP Levels in Aged NMRI Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4070935. [PMID: 30510619 PMCID: PMC6232801 DOI: 10.1155/2018/4070935] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
Aging represents a major risk factor for developing neurodegenerative diseases such as Alzheimer's disease (AD). As components of the Mediterranean diet, olive polyphenols may play a crucial role in the prevention of AD. Since mitochondrial dysfunction acts as a final pathway in both brain aging and AD, respectively, the effects of a mixture of highly purified olive secoiridoids were tested on cognition and ATP levels in a commonly used mouse model for brain aging. Over 6 months, female NMRI mice (12 months of age) were fed with a blend containing highly purified olive secoiridoids (POS) including oleuropein, hydroxytyrosol and oleurosid standardized for 50 mg oleuropein/kg diet (equivalent to 13.75 mg POS/kg b.w.) or the study diet without POS as control. Mice aged 3 months served as young controls. Behavioral tests showed deficits in cognition in aged mice. Levels of ATP and mRNA levels of NADH-reductase, cytochrome-c-oxidase, and citrate synthase were significantly reduced in the brains of aged mice indicating mitochondrial dysfunction. Moreover, gene expression of Sirt1, CREB, Gap43, and GPx-1 was significantly reduced in the brain tissue of aged mice. POS-fed mice showed improved spatial working memory. Furthermore, POS restored brain ATP levels in aged mice which were significantly increased. Our results show that a diet rich in purified olive polyphenols has positive long-term effects on cognition and energy metabolism in the brain of aged mice.
Collapse
|
46
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Manna PP, Zhang J, Quiles JL, Battino M. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 2: Induction of oxidative stress, alteration of mitochondrial respiration and glycolysis, and suppression of metastatic ability. Food Funct 2018; 9:2158-2170. [PMID: 29644357 DOI: 10.1039/c8fo00165k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite its high content of phenolic compounds, the chemopreventive activity of Manuka honey (MH) is still elusive. The aim of the present work was to evaluate the effects of MH on oxidative stress, antioxidant enzymes, cellular metabolism and the metastatic ability in HCT-116 and LoVo cells, paying particular attention to the molecular mechanisms involved. We observed a strong induction of oxidative stress after MH treatment since it augmented the accumulation of reactive oxygen species and increased the damage to proteins, lipids and DNA. Furthermore, MH suppressed the Nrf2-dependent antioxidant enzyme expression (superoxide dismutase (SOD), catalase and heme oxygenase-1) and the activity of SOD, catalase, glutathione peroxidase and glutathione reductase. Cell metabolisms were markedly disrupted after MH treatment. It decreased maximal oxygen consumption and spare respiratory capacity, which could reduce the mitochondrial function that is correlated with cell survival potential. Simultaneously, MH decreased the extracellular acidification rate (glycolysis) of HCT-116 and LoVo cells. Furthermore, MH suppressed the p-AMPK/AMPK, PGC1α and SIRT1 activation, involved in the survival of HCT-116 and LoVo cells under metabolic stress conditions. Dose-dependently, MH reduced the migration and invasion (MMP-2 and MMP-9) ability, and concurrently regulated EMT-related markers (E cadherin, N cadherin, and β-catenin) in both cell types. The above findings indicate that MH induces HCT-116 and LoVo cell death partly by enhancing oxidative stress, as well as by regulating the energy metabolism in both aerobic and anaerobic pathways and suppressing the metastatic ability.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Phenolic Compounds Isolated from Olive Oil as Nutraceutical Tools for the Prevention and Management of Cancer and Cardiovascular Diseases. Int J Mol Sci 2018; 19:ijms19082305. [PMID: 30082650 PMCID: PMC6121682 DOI: 10.3390/ijms19082305] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
Non-communicable diseases (NCDs) have become the largest contributor to worldwide morbidity and mortality. Among them, cancer and cardiovascular diseases (CVDs) are responsible for a 47% of worldwide mortality. In general, preventive approaches modifying lifestyle are more cost-effective than treatments after disease onset. In this sense, a healthy diet could help a range of NCDs, such as cancer and CVDs. Traditional Mediterranean Diet (MD) is associated by the low-prevalence of certain types of cancers and CVDs, where olive oil plays an important role. In fact, different epidemiological studies suggest that olive oil consumption prevents some cancers, as well as coronary heart diseases and stroke incidence and mortality. Historically, the beneficial health effects of virgin olive oil (VOO) intake were first attributed to the high concentration of monounsaturated fatty acids. Nowadays, many studies indicate that phenolic compounds contained in olive oil have positive effects on different biomarkers related to health. Among them, phenolic compounds would be partially responsible for health benefits. The present work aims to explore, in studies published during the last five years, the effects of the main phenolic compounds isolated from olive oil on different cancer or CVD aspects, in order to clarify which compounds have more potential to be used as nutraceuticals with preventive or even therapeutic properties.
Collapse
|
48
|
Jeon S, Choi M. Anti-inflammatory and anti-aging effects of hydroxytyrosol on human dermal fibroblasts (HDFs). BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0031-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Imran M, Nadeem M, Gilani SA, Khan S, Sajid MW, Amir RM. Antitumor Perspectives of Oleuropein and Its Metabolite Hydroxytyrosol: Recent Updates. J Food Sci 2018; 83:1781-1791. [PMID: 29928786 DOI: 10.1111/1750-3841.14198] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022]
Abstract
Olive fruit is a significant and promising source of potential bioactive compounds such as oleuropein and hydroxytyrosol. Oleuropein is the ester of elenolic acid and 3,4-dihydroxyphenyl ethanol (HT). It is the main glycoside in olives, the degradation of which results in the formation of hydroxytyrosol in olive oil. Both plays a significant role in the reduction of coronary heart diseases and a certain type of cancers. Both olive oil phenols have an effective role counter to cell proliferation, cell growth, migration, invasion, and angiogenesis. They down regulate the expression of BCL-2 and COX-2 proteins, and reduced DNA damage. Hydroxytyrosol and oleuropein inhibited the multiple stages in colon carcinogenesis; initiation, promotion, and metastasis. They also provide protection against various human cancers including colorectal, skin, breast, thyroid, digestive, lung, brain, blood, and cervical. This review article discusses the anticancer perspectives and mechanisms of oleuropein and hydroxytyrosol in cell cultures and animal and human studies.
Collapse
Affiliation(s)
- Muhammad Imran
- Univ. Inst. of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The Univ. of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem
- Dept. of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Syed Amir Gilani
- Univ. Inst. of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The Univ. of Lahore, Lahore, Pakistan
| | - Shaista Khan
- Dept. of Biochemistry, Shah Abdul University, Khairpur, Pakistan
| | | | - Rai Muhammad Amir
- Inst. of Food and Nutritional Sciences, PMAS-Arid Agriculture Univ., Rawalpindi, Pakistan
| |
Collapse
|
50
|
Al Fazazi S, Casuso RA, Aragón-Vela J, Casals C, Huertas JR. Effects of hydroxytyrosol dose on the redox status of exercised rats: the role of hydroxytyrosol in exercise performance. J Int Soc Sports Nutr 2018; 15:20. [PMID: 29719493 PMCID: PMC5921979 DOI: 10.1186/s12970-018-0221-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background Hydroxytyrosol (HT) is a polyphenol found in olive oil that is known for its antioxidant effects. Here, we aimed to describe the effects of a low and high HT dose on the physical running capacity and redox state in both sedentary and exercised rats. Methods Male Wistar rats were allocated into 6 groups: sedentary (SED; n = 10); SED consuming 20 mg/kg/d HT (SED20; n = 7); SED consuming 300 mg/kg/d HT (SED300; n = 7); exercised (EXE; n = 10); EXE consuming 20 mg/kg/d HT (EXE20; n = 10) and EXE consuming 300 mg/kg/d HT (EXE300; n = 10). All the interventions lasted 10 weeks; the maximal running velocity was assessed throughout the study, whereas daily physical work was monitored during each training session. At the end of the study, the rats were sacrificed by bleeding. Hemoglobin (HGB) and hematocrit (HCT) were measured in the terminal blood sample. Moreover, plasma hydroperoxide (HPx) concentrations were quantified as markers of lipid peroxidation. Results In sedentary rats, HT induced an antioxidant effect in a dose-dependent manner without implications on running performance. However, if combined with exercise, the 300 mg/kg/d HT dosage exhibited a pro-oxidant effect in the EXE300 group compared with the EXE and EXE20 groups. The EXE20 rats showed a reduction in daily physical work and a lower maximal velocity than the EXE and EXE300 rats. The higher physical capacity exhibited by the EXE300 group was achieved despite the EXE300 rats expressing lower HGB levels and a lower HCT than the EXE20 rats. Conclusions Our results suggest that a high HT dose induces a systemic pro-oxidant effect and may prevent the loss of performance that was observed with the low HT dose.
Collapse
Affiliation(s)
- Saad Al Fazazi
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Rafael A Casuso
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Jerónimo Aragón-Vela
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Cristina Casals
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Jesús R Huertas
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| |
Collapse
|