1
|
Farrokhzad R, Seyedalipour B, Baziyar P, Hosseinkhani S. Insight Into Factors Influencing the Aggregation Process in Wild-Type and P66R Mutant SOD1: Computational and Spectroscopic Approaches. Proteins 2025; 93:885-907. [PMID: 39643934 DOI: 10.1002/prot.26765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level. Modifications in apo-SOD1 compared to holo-SOD1 were more pronounced in flexibility, stability, hydrophobicity, and intramolecular interactions, as indicated by molecular dynamics simulations. The enzymatic activities of holo/apo-WT SOD1 were 1.30 and 1.88-fold of the holo/apo P66R mutant, respectively. Under amyloid-inducing conditions, decreased ANS fluorescence intensity in the apo-form relative to the holo-form suggested pre-fibrillar species and amyloid aggregate growth due to occluded hydrophobic pockets. FTIR spectroscopy revealed that apo-WT-SOD1 and apo-P66R exhibited a mixture of parallel and intermolecular β-sheet structures, indicative of aggregation propensity. Aggregate species were identified using TEM, Congo red staining, and ThT/ANS fluorescence spectroscopy. Thermodynamic analyses with GdnHCl demonstrated that metal deficit, mutation, and intramolecular disulfide bond reduction are essential for initiating SOD1 misfolding and aggregation. These disruptions destabilize the dimer-monomer equilibrium, promoting dimer dissociation into monomers and decreasing the thermodynamic stability of SOD1 variants, thus facilitating amyloid/amorphous aggregate formation. Our findings offer novel insights into protein aggregation mechanisms in disease pathology and highlight potential therapeutic strategies against toxic protein aggregation, including SOD1.
Collapse
Affiliation(s)
- Roghayeh Farrokhzad
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
3
|
Ashkaran F, Seyedalipour B, Baziyar P, Hosseinkhani S. Mutation/metal deficiency in the "electrostatic loop" enhanced aggregation process in apo/holo SOD1 variants: implications for ALS diseases. BMC Chem 2024; 18:177. [PMID: 39300574 PMCID: PMC11411779 DOI: 10.1186/s13065-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Despite the many mechanisms it has created to prevent unfolding and aggregation of proteins, many diseases are caused by abnormal folding of proteins, which are called misfolding diseases. During this process, proteins undergo structural changes and become stable, insoluble beta-sheet aggregates called amyloid fibrils. Mutations/disruptions in metal ion homeostasis in the ALS-associated metalloenzyme superoxide dismutase (SOD1) reduce conformational stability, consistent with the protein aggregation hypothesis for neurodegenerative diseases. However, the exact mechanism of involvement is not well understood. Hence, to understand the role of mutation/ metal deficiency in SOD1 misfolding and aggregation, we investigated the effects of apo/holo SOD1 variants on structural properties using biophysical/experimental techniques. The MD results support the idea that the mutation/metal deficiency can lead to a change in conformation. The increased content of β-sheet structures in apo/holo SOD1 variants can be attributed to the aggregation tendency, which was confirmed by FTIR spectroscopy and dictionary of secondary structure in proteins (DSSP) results. Thermodynamic studies of GdnHCl showed that metal deficiency/mutation/intramolecular S-S reduction together are required to initiate misfolding/aggregation of SOD1. The results showed that apo/holo SOD1 variants under destabilizing conditions induced amyloid aggregates at physiological pH, which were detected by ThT/ANS fluorescence, as well as further confirmation of amyloid/amorphous species by TEM. This study confirms that mutations in the electrostatic loop of SOD1 lead to structural abnormalities, including changes in hydrophobicity, reduced disulfide bonds, and an increased propensity for protein denaturation. This process facilitates the formation of amyloid/amorphous aggregates ALS-associated.
Collapse
Affiliation(s)
- Faezeh Ashkaran
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Kosmachevskaya OV, Novikova NN, Yakunin SN, Topunov AF. Formation of Supplementary Metal-Binding Centers in Proteins under Stress Conditions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S180-S204. [PMID: 38621750 DOI: 10.1134/s0006297924140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/29/2023] [Indexed: 04/17/2024]
Abstract
In many proteins, supplementary metal-binding centers appear under stress conditions. They are known as aberrant or atypical sites. Physico-chemical properties of proteins are significantly changed after such metal binding, and very stable protein aggregates are formed, in which metals act as "cross-linking" agents. Supplementary metal-binding centers in proteins often arise as a result of posttranslational modifications caused by reactive oxygen and nitrogen species and reactive carbonyl compounds. New chemical groups formed as a result of these modifications can act as ligands for binding metal ions. Special attention is paid to the role of cysteine SH-groups in the formation of supplementary metal-binding centers, since these groups are the main target for the action of reactive species. Supplementary metal binding centers may also appear due to unmasking of amino acid residues when protein conformation changing. Appearance of such centers is usually considered as a pathological process. Such unilateral approach does not allow to obtain an integral view of the phenomenon, ignoring cases when formation of metal complexes with altered proteins is a way to adjust protein properties, activity, and stability under the changed redox conditions. The role of metals in protein aggregation is being studied actively, since it leads to formation of non-membranous organelles, liquid condensates, and solid conglomerates. Some proteins found in such aggregates are typical for various diseases, such as Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and some types of cancer.
Collapse
Affiliation(s)
- Olga V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | - Sergey N Yakunin
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Alexey F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
6
|
Alaskarov A, Barel S, Bakavayev S, Kahn J, Israelson A. MIF homolog d-dopachrome tautomerase (D-DT/MIF-2) does not inhibit accumulation and toxicity of misfolded SOD1. Sci Rep 2022; 12:9570. [PMID: 35688953 PMCID: PMC9187739 DOI: 10.1038/s41598-022-13744-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/27/2022] [Indexed: 12/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons. About 20% of familial ALS cases are caused by dominant mutations in SOD1. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is unclear why misfolded SOD1 accumulates within specific tissues. We have demonstrated that macrophage migration inhibitory factor (MIF), a multifunctional protein with cytokine/chemokine and chaperone-like activity, inhibits the accumulation and aggregation of misfolded SOD1. Although MIF homolog, D-dopachrome tautomerase (D-DT/MIF-2), shares structural and genetic similarities with MIF, its biological function is not well understood. In the current study, we investigated, for the first time, the mechanism of action of D-DT in a model of ALS. We show that D-DT inhibits mutant SOD1 amyloid aggregation in vitro, promoting the formation of amorphous aggregates. Moreover, we report that D-DT interacts with mutant SOD1, but does not inhibit misfolded mutant SOD1 accumulation and toxicity in neuronal cells. Finally, we show that D-DT is expressed mainly in liver and kidney, with extremely low expression in brain and spinal cord of adult mice. Our findings contribute to better understanding of D-DT versus MIF function in the context of ALS.
Collapse
Affiliation(s)
- Amina Alaskarov
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Shir Barel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Shamchal Bakavayev
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
7
|
Abstract
Amyloids are organized suprastructural polypeptide arrangements. The prevalence of amyloid-related processes of pathophysiological relevance has been linked to aging-related degenerative diseases. Besides the role of genetic polymorphisms on the relative risk of amyloid diseases, the contributions of nongenetic ontogenic cluster of factors remain elusive. In recent decades, mounting evidences have been suggesting the role of essential micronutrients, in particular transition metals, in the regulation of amyloidogenic processes, both directly (such as binding to amyloid proteins) or indirectly (such as regulating regulatory partners, processing enzymes, and membrane transporters). The features of transition metals as regulatory cofactors of amyloid proteins and the consequences of metal dyshomeostasis in triggering amyloidogenic processes, as well as the evidences showing amelioration of symptoms by dietary supplementation, suggest an exaptative role of metals in regulating amyloid pathways. The self- and cross-talk replicative nature of these amyloid processes along with their systemic distribution support the concept of their metastatic nature. The role of amyloidosis as nutrient sensors would act as intra- and transgenerational epigenetic metabolic programming factors determining health span and life span, viability, which could participate as an evolutive selective pressure.
Collapse
Affiliation(s)
- Luís Maurício T R Lima
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for Macromolecules (LAMAC-DIMAV), National Institute of Metrology, Quality and Technology - INMETRO, Duque de Caxias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Tajiri M, Aoki H, Shintani A, Sue K, Akashi S, Furukawa Y. Metal distribution in Cu/Zn-superoxide dismutase revealed by native mass spectrometry. Free Radic Biol Med 2022; 183:60-68. [PMID: 35314356 DOI: 10.1016/j.freeradbiomed.2022.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023]
Abstract
Cu/Zn-superoxide dismutase (SOD1) is a homodimer with two identical subunits, each of which binds a copper and zinc ion in the native state. In contrast to such a text book case, SOD1 proteins purified in vitro or even in vivo have been often reported to bind a non-stoichiometric amount of the metal ions. Nonetheless, it is difficult to probe how those metal ions are distributed in the two identical subunits. By utilizing native mass spectrometry, we showed here that addition of a sub-stoichiometric copper/zinc ion to SOD1 led to the formation of a homodimer with a stochastic combination of the subunits binding 0, 1, and even 2 metal ions. We also found that the homodimer was able to bind four copper or four zinc ions, implying the binding of a copper and zinc ion at the canonical zinc and copper site, respectively. Such ambiguity in the metal quota and selectivity could be avoided when an intra-subunit disulfide bond in SOD1 was reduced before addition of the metal ions. Apo-SOD1 in the disulfide-reduced state was monomeric and was found to bind only one zinc ion per monomer. By binding a zinc ion, the disulfide-reduced SOD1 became conformationally compact and acquired the ability to dimerize. Based upon the results in vitro, we describe the pathway in vivo enabling SOD1 to bind copper and zinc ions with high accuracy in their quota and selectivity. A failure of correct metallation in SOD1 will also be discussed in relation to amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michiko Tajiri
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Hiroto Aoki
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Atsuko Shintani
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Kaori Sue
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
9
|
Furukawa Y. A pathological link between dysregulated copper binding in Cu/Zn-superoxide dismutase and amyotrophic lateral sclerosis. J Clin Biochem Nutr 2022; 71:73-77. [PMID: 36213785 PMCID: PMC9519421 DOI: 10.3164/jcbn.22-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Mutations in the gene coding Cu/Zn-superoxide dismutase (SOD1) are linked to a familial form of amyotrophic lateral sclerosis (ALS), and its pathological hallmark includes abnormal accumulation of mutant SOD1 proteins in spinal motorneurons. Mutant SOD1 proteins are considered to be susceptible to misfolding, resulting in the accumulation as oligomers/aggregates. While it remains obscure how and why SOD1 becomes misfolded under pathological conditions in vivo, the failure to bind a copper and zinc ion in SOD1 in vitro leads to the significant destabilization of its natively folded structure. Therefore, genetic and pharmacological attempts to promote the metal binding in mutant SOD1 could serve as an effective treatment of ALS. Here, I briefly review the copper and zinc binding process of SOD1 in vivo and discuss a copper chaperone for SOD1 as a potential target for developing ALS therapeutics.
Collapse
|
10
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
11
|
Koo BK, Munroe W, Gralla EB, Valentine JS, Whitelegge JP. A Novel SOD1 Intermediate Oligomer, Role of Free Thiols and Disulfide Exchange. Front Neurosci 2021; 14:619279. [PMID: 33679289 PMCID: PMC7930385 DOI: 10.3389/fnins.2020.619279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Wild-type human SOD1 forms a highly conserved intra-molecular disulfide bond between C57-C146, and in its native state is greatly stabilized by binding one copper and one zinc atom per monomer rendering the protein dimeric. Loss of copper extinguishes dismutase activity and destabilizes the protein, increasing accessibility of the disulfide with monomerization accompanying disulfide reduction. A further pair of free thiols exist at C6 and C111 distant from metal binding sites, raising the question of their function. Here we investigate their role in misfolding of SOD1 along a pathway that leads to formation of amyloid fibrils. We present the seeding reaction of a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) to exclude variables caused by these free cysteines. Completely reduced fibril seeds decreasing the kinetic barrier to cleave the highly conserved intramolecular disulfide bond, and accelerating SOD1 reduction and initiation of fibrillation. Presence or absence of the pair of free thiols affects kinetics of fibrillation. Previously, we showed full maturation with both Cu and Zn prevents this behavior while lack of Cu renders sensitivity to fibrillation, with presence of the native disulfide bond modulating this propensity much more strongly than presence of Zn or dimerization. Here we further investigate the role of reduction of the native C57-C146 disulfide bond in fibrillation of wild-type hSOD1, firstly through removal of free thiols by paired mutations C6A, C111S (AS-SOD1), and secondly in seeded fibrillation reactions modulated by reductant tris (2-carboxyethyl) phosphine (TCEP). Fibrillation of AS-SOD1 was dependent upon disulfide reduction and showed classic lag and exponential growth phases compared with wild-type hSOD1 whose fibrillation trajectories were typically somewhat perturbed. Electron microscopy showed that AS-SOD1 formed classic fibrils while wild-type fibrillation reactions showed the presence of smaller “sausage-like” oligomers in addition to fibrils, highlighting the potential for mixed disulfides involving C6/C111 to disrupt efficient fibrillation. Seeding by addition of sonicated fibrils lowered the TCEP concentration needed for fibrillation in both wild-type and AS-SOD1 providing evidence for template-driven structural disturbance that elevated susceptibility to reduction and thus propensity to fibrillate.
Collapse
Affiliation(s)
- Bon-Kyung Koo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - William Munroe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Edith B Gralla
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julian P Whitelegge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States.,The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, NPI-Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
13
|
Pro-Oxidant Activity of an ALS-Linked SOD1 Mutant in Zn-Deficient Form. Molecules 2020; 25:molecules25163600. [PMID: 32784718 PMCID: PMC7464938 DOI: 10.3390/molecules25163600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Cu, Zn superoxide dismutase (SOD1) is a representative antioxidant enzyme that catalyzes dismutation of reactive oxygen species in cells. However, (E,E)-SOD1 mutants in which both copper and zinc ions were deleted exhibit pro-oxidant activity, contrary to their antioxidant nature, at physiological temperatures, following denaturation and subsequent recombination of Cu2+. This oxidative property is likely related to the pathogenesis of amyotrophic lateral sclerosis (ALS); however, the mechanism by which Cu2+ re-binds to the denatured (E,E)-SOD1 has not been elucidated, since the concentration of free copper ions in cells is almost zero. In this study, we prepared the (Cu,E) form in which only a zinc ion was deleted using ALS-linked mutant H43R (His43→Arg) and found that (Cu,E)-H43R showed an increase in the pro-oxidant activity even at physiological temperature. The increase in the pro-oxidant activity of (Cu,E)-H43R was also observed in solution mimicking intracellular environment and at high temperature. These results suggest that the zinc-deficient (Cu,E) form can contribute to oxidative stress in cells, and that the formation of (E,E)-SOD1 together with the subsequent Cu2+ rebinding is not necessary for the acquisition of the pro-oxidant activity.
Collapse
|
14
|
Novikova NN, Yakunin SN, Koval’chuk MV, Yur’eva EA, Stepina ND, Rogachev AV, Kremennaya MA, Yalovega GE, Kosmachevskaya OV, Topunov AF. Possibilities of X-Ray Absorption Spectroscopy in the Total External Reflection Geometry for Studying Protein Films on Liquids. CRYSTALLOGR REP+ 2019. [DOI: 10.1134/s1063774519060130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Redox active metals in neurodegenerative diseases. J Biol Inorg Chem 2019; 24:1141-1157. [PMID: 31650248 DOI: 10.1007/s00775-019-01731-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
Copper (Cu) and iron (Fe) are redox active metals essential for the regulation of cellular pathways that are fundamental for brain function, including neurotransmitter synthesis and release, neurotransmission, and protein turnover. Cu and Fe are tightly regulated by sophisticated homeostatic systems that tune the levels and localization of these redox active metals. The regulation of Cu and Fe necessitates their coordination to small organic molecules and metal chaperone proteins that restrict their reactions to specific protein centres, where Cu and Fe cycle between reduced (Fe2+, Cu+) and oxidised states (Fe3+, Cu2+). Perturbation of this regulation is evident in the brain affected by neurodegeneration. Here we review the evidence that links Cu and Fe dyshomeostasis to neurodegeneration as well as the promising preclinical and clinical studies reporting pharmacological intervention to remedy Cu and Fe abnormalities in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS).
Collapse
|
16
|
Novikova NN, Kovalchuk MV, Yurieva EA, Konovalov OV, Stepina ND, Rogachev AV, Yalovega GE, Kosmachevskaya OV, Topunov AF, Yakunin SN. The Enhancement of Metal-Binding Properties in Hemoglobin: The Role of Mild Damaging Factors. J Phys Chem B 2019; 123:8370-8377. [PMID: 31513409 DOI: 10.1021/acs.jpcb.9b06571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray studies revealed the considerable enhancement of metal-binding properties in human hemoglobin under exposure to mild damaging factors (in the presence of 0.09 M urea or upon heating for 30 min at 50 °C). Changes in the element composition of the hemoglobin monolayer, formed on the water subphase in the Langmuir trough, have been monitored in real time by the total external reflection X-ray fluorescence measurements. X-ray absorption spectroscopy has been applied to study the local environment of zinc ions bound on hemoglobin molecules. According to these data, each zinc ion is coordinated by four ligands, two of which are cysteine and histidine. The oxidative stress has been found to accelerate extensively the enhancement of metal-binding ability in protein. A two-stage mechanism has been proposed as a possible explanation of the observed phenomenon: First, in the presence of the mild damaging agents, protein molecules can undergo a transition from the native conformation to a more labile intermediate state that increases the accessibility of amino acid residues (in particular cysteine). At the second stage, oxidation of cysteine and the subsequent activation of cysteine SH groups can affect markedly the protein-metal interaction. The presented investigations provide a deeper insight into the pathogenesis of metabolic disorders that excessive concentrations of the endogenic toxicants might trigger in an organism.
Collapse
Affiliation(s)
- N N Novikova
- National Research Center "Kurchatov Institute" , Moscow , Russia
| | - M V Kovalchuk
- National Research Center "Kurchatov Institute" , Moscow , Russia
| | - E A Yurieva
- Veltischev Research and Clinical Institute for Paediatrics , Pirogov Russian National Research Medical University , Moscow , Russia
| | - O V Konovalov
- European Synchrotron Radiation Facility , Grenoble , France
| | - N D Stepina
- Shubnikov Institute of Crystallography, Federal Scientific Research Center "Crystallography and Photonics" , Russian Academy of Sciences , Moscow , Russia
| | - A V Rogachev
- National Research Center "Kurchatov Institute" , Moscow , Russia
| | - G E Yalovega
- Southern Federal University , Rostov-on-Don , Russia
| | - O V Kosmachevskaya
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology , Russian Academy of Sciences , Moscow , Russia
| | - A F Topunov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology , Russian Academy of Sciences , Moscow , Russia
| | - S N Yakunin
- National Research Center "Kurchatov Institute" , Moscow , Russia
| |
Collapse
|
17
|
Zacco E, Graña-Montes R, Martin SR, de Groot NS, Alfano C, Tartaglia GG, Pastore A. RNA as a key factor in driving or preventing self-assembly of the TAR DNA-binding protein 43. J Mol Biol 2019; 431:1671-1688. [PMID: 30742796 PMCID: PMC6461199 DOI: 10.1016/j.jmb.2019.01.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are incurable motor neuron diseases associated with muscle weakness, paralysis and respiratory failure. Accumulation of TAR DNA-binding protein 43 (TDP-43) as toxic cytoplasmic inclusions is one of the hallmarks of these pathologies. TDP-43 is an RNA-binding protein responsible for regulating RNA transcription, splicing, transport and translation. Aggregated TDP-43 does not retain its physiological function. Here, we exploit the ability of TDP-43 to bind specific RNA sequences to validate our hypothesis that the native partners of a protein can be used to interfere with its ability to self-assemble into aggregates. We propose that binding of TDP-43 to specific RNA can compete with protein aggregation. This study provides a solid proof of concept to the hypothesis that natural interactions can be exploited to increase protein solubility and could be adopted as a more general rational therapeutic strategy. We found that binding of the RRM domains of TDP-43 to specific RNA competes with protein aggregation. This study provides a solid proof of concept to the hypothesis that natural interactions can be exploited to increase protein solubility. The concept could be adopted as a more general rationale for protein-specific drug design.
Collapse
Affiliation(s)
- Elsa Zacco
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom; The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom
| | - Ricardo Graña-Montes
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Institutio Catalan de Recerca I Estudis Avancats (ICREA), 23 Passeig Lluıs Companys, 08010 Barcelona, Spain; Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom; The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom; Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, 56126, Italy.
| |
Collapse
|
18
|
Cristóvão JS, Henriques BJ, Gomes CM. Biophysical and Spectroscopic Methods for Monitoring Protein Misfolding and Amyloid Aggregation. Methods Mol Biol 2019; 1873:3-18. [PMID: 30341600 DOI: 10.1007/978-1-4939-8820-4_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins exhibit a remarkable structural plasticity and may undergo conformational changes resulting in protein misfolding both in a biological context and upon perturbing physiopathological conditions. Such nonfunctional protein conformers, including misfolded states and aggregates, are often associated to protein folding diseases. Understanding the biology of protein folding diseases thus requires tools that allow the structural characterization of nonnative conformations of proteins and their interconversions. Here we present detailed procedures to monitor protein conformational changes and aggregation based on spectroscopic and biophysical methods that include circular dichroism, ATR-Fourier-transformed infrared spectroscopy, fluorescence spectroscopy and dynamic light scattering. To illustrate the application of these methods we report to our previous studies on misfolding, aggregation and amyloid fibril formation by superoxide dismutase 1 (SOD1), a protein whose toxic deposition is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Joana S Cristóvão
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal
| | - Bárbara J Henriques
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal
| | - Cláudio M Gomes
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal. .,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
19
|
Atlasi RS, Malik R, Corrales CI, Tzeplaeff L, Whitelegge JP, Cashman NR, Bitan G. Investigation of Anti-SOD1 Antibodies Yields New Structural Insight into SOD1 Misfolding and Surprising Behavior of the Antibodies Themselves. ACS Chem Biol 2018; 13:2794-2807. [PMID: 30110532 DOI: 10.1021/acschembio.8b00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in Cu/Zn-superoxide dismutase (SOD1) gene are linked to 10-20% of familial amyotrophic lateral sclerosis (fALS) cases. The mutations cause misfolding and self-assembly of SOD1 into toxic oligomers and aggregates, resulting in motor neuron degeneration. The molecular mechanisms underlying SOD1 aggregation and toxicity are unclear. Characterization of misfolded SOD1 is particularly challenging because of its metastable nature. Antibodies against misfolded SOD1 are useful tools for this purpose, provided their specificity and selectivity are well-characterized. Here, we characterized three recently introduced antimisfolded SOD1 antibodies and compared them with two commercial, antimisfolded SOD1 antibodies raised against the fALS-linked variant G93A-SOD1. As controls, we compared the reactivity of these antibodies to two polyclonal anti-SOD1 antibodies expected to be insensitive to misfolding. We asked to what extent the antibodies could distinguish between WT and variant SOD1 and between native and misfolded conformations. WT, G93A-SOD1, or E100K-SOD1 were incubated under aggregation-promoting conditions and monitored using thioflavin-T fluorescence, electron microscopy, and dot blots. WT and G93A-SOD1 also were analyzed using native-PAGE/Western blot. The new antimisfolded SOD1 and the commercial antibody B8H10 showed variable reactivity using dot blots but generally showed maximum reactivity at the time misfolded SOD1 oligomers were expected to be most abundant. In contrast, only B8H10 and the control antibodies were reactive in Western blots. Unexpectedly, the polyclonal antibodies showed strong preference for the misfolded form of G93A-SOD1 in dot blots. Surprisingly, antimisfolded SOD1 antibody C4F6 was specific for the apo form of G93A-SOD1 but insensitive to misfolding. Antibody 10C12 showed preference for early misfolded structures, whereas 3H1 bound preferentially to late structures. These new antibodies allow distinction between putative early- and late-forming prefibrillar SOD1 oligomers.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil R. Cashman
- Department of Neurology, University of British Columbia (UBC), Vancouver, British Columbia V6T 2B5, Canada
| | | |
Collapse
|
20
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
21
|
Santur KB, Sevenich MM, Schwarten M, Nischwitz V, Willbold D, Mohrlüder J. In Vitro Reconstitution of the Highly Active and Natively Folded Recombinant Human Superoxide Dismutase 1 Holoenzyme. ChemistrySelect 2018. [DOI: 10.1002/slct.201801319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karoline B. Santur
- Institute of Complex Systems (ICS-6)Forschungszentrum Jülich Germany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf Germany
| | - Marc M. Sevenich
- Institute of Complex Systems (ICS-6)Forschungszentrum Jülich Germany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf Germany
| | - Melanie Schwarten
- Institute of Complex Systems (ICS-6)Forschungszentrum Jülich Germany
| | - Volker Nischwitz
- Central Institute for Engineering, Electronics and Analytics (ZEA-3)Forschungszentrum Jülich Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6)Forschungszentrum Jülich Germany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf Germany
| | | |
Collapse
|
22
|
Piacenza F, Biesemeier A, Farina M, Piva F, Jin X, Pavoni E, Nisi L, Cardelli M, Costarelli L, Giacconi R, Basso A, Pierpaoli E, Provinciali M, Hwang JCM, Morini A, di Donato A, Malavolta M. Measuring zinc in biological nanovesicles by multiple analytical approaches. J Trace Elem Med Biol 2018; 48:58-66. [PMID: 29773195 DOI: 10.1016/j.jtemb.2018.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 03/09/2018] [Indexed: 12/15/2022]
Abstract
Exosomes are nanovesicles known to mediate intercellular communication. Although it is established that zinc ions can act as intracellular signaling factors, the measurement of zinc in circulating nanovesicles has not yet been attempted. Providing evidence of the existence of this zinc fraction and methods for its measurement might be important to advance our knowledge of zinc status and its relevance in diseases. Exosomes from 0.5 ml of either fresh or frozen human plasma were isolated by differential centrifugation. A morphological and dimensional evaluation at the nanoscale level was performed by atomic force microscopy (AFM) and Transmission Electron Microscopy (TEM). Energy Dispersive X-Ray Microanalysis (EDX) revealed the elemental composition of exosomes and their respective total Zinc content on a quantitative basis. The zinc mole fraction (in at%) was correlated to the phosphorous mole fraction, which is indicative for exosomal membrane material. Both fresh (Zn/P 0.09 ± 0.01) and frozen exosomes (Zn/P 0.08 ± 0.02) had a significant zinc content, which increased up to 1.09 ± 0.12 for frozen exosomes when treated with increasing amounts of zinc (100-500 μM; each p < 0.05). Interestingly, after zinc addition, the Calcium mole fractions decreased accordingly suggesting a possible exchange by zinc. In order to estimate the intra-exosomal labile zinc content, an Imaging Flow Cytometry approach was developed by using the specific membrane permeable zinc-probe Fluozin-3AM. A labile zinc content of 0.59 ± 0.27 nM was calculated but it is likely that the measurement may be affected by purification and isolation conditions. This study suggests that circulating nano-vesicular-zinc can represent a newly discovered zinc fraction in the blood plasma whose functional and biological properties will have to be further investigated in future studies.
Collapse
Affiliation(s)
- Francesco Piacenza
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy.
| | - Antje Biesemeier
- Center for Ophthalmology, Division for Experimental Vitreoretinal Surgery, Core Facility for Electron Microscopy, University Hospital Tuebingen, Germany
| | - Marco Farina
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche Region, Ancona, Italy
| | - Xin Jin
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015 USA
| | - Eleonora Pavoni
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lorenzo Nisi
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| | - Maurizio Cardelli
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| | - Laura Costarelli
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| | - Robertina Giacconi
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| | - Andrea Basso
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| | - Elisa Pierpaoli
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| | - Mauro Provinciali
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| | - James C M Hwang
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015 USA
| | - Antonio Morini
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Andrea di Donato
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Marco Malavolta
- National Institute of Health & Aging, INRCA, Scientific and Technological Pole, Advanced Technology Center for Aging Research, Italy
| |
Collapse
|
23
|
Cezar LC, Kirsten TB, da Fonseca CCN, de Lima APN, Bernardi MM, Felicio LF. Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:173-180. [PMID: 29481896 DOI: 10.1016/j.pnpbp.2018.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 01/18/2023]
Abstract
Autism is characterized by numerous behavioral impairments, such as in communication, socialization and cognition. Recent studies have suggested that valproic acid (VPA), an anti-epileptic drug with teratogenic activity, is related to autism. In rodents, VPA exposure during pregnancy induces autistic-like effects. Exposure to VPA may alter zinc metabolism resulting in a transient deficiency of zinc. Therefore, we selected zinc as a prenatal treatment to prevent VPA-induced impairments in a rat model of autism. Wistar female rats received either saline solution or VPA (400 mg/kg, i.p) on gestational day (GD) 12.5. To test the zinc supplementation effect, after 1 h of treatment with saline or VPA, a dose of zinc (2 mg/kg, s.c.) was injected. The offspring were tested for abnormal communication behaviors with an ultrasound vocalization task on postnatal day (PND) 11, repetitive behaviors and cognitive ability with a T-maze task on PND 29, and social interaction with a play behavior task on PND 30. Tyrosine hydroxylase protein (TH) expression was evaluated in the striatum. Prenatal VPA decreased ultrasonic vocalization, induced repetitive/restricted behaviors and cognitive inflexibility, impaired socialization, and reduced striatal TH levels compared with control group. Zinc treatment reduced VPA-induced autistic-like behaviors. However, we found no evidence of an effect of zinc on the VPA-induced reduction in TH expression. The persistence of low TH expression in the VPA-Zn group suggests that Zn-induced behavioral improvement in autistic rats may not depend on TH activity.
Collapse
Affiliation(s)
- Luana Carvalho Cezar
- University of São Paulo, School of Veterinary Medicine, Department of Pathology, Sao Paulo, Brazil.
| | - Thiago Berti Kirsten
- Paulista University, Environmental and Experimental Pathology, Sao Paulo, Brazil
| | | | | | | | - Luciano Freitas Felicio
- University of São Paulo, School of Veterinary Medicine, Department of Pathology, Sao Paulo, Brazil
| |
Collapse
|
24
|
Effects of maturation on the conformational free-energy landscape of SOD1. Proc Natl Acad Sci U S A 2018; 115:E2546-E2555. [PMID: 29483249 DOI: 10.1073/pnas.1721022115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating fatal syndrome characterized by very rapid degeneration of motor neurons. A leading hypothesis is that ALS is caused by toxic protein misfolding and aggregation, as also occurs in many other neurodegenerative disorders, such as prion, Alzheimer's, Parkinson's, and Huntington's diseases. A prominent cause of familial ALS is mutations in the protein superoxide dismutase (SOD1), which promote the formation of misfolded SOD1 conformers that are prone to aberrant interactions both with each other and with other cellular components. We have shown previously that immature SOD1, lacking bound Cu and Zn metal ions and the intrasubunit disulfide bond (apoSOD12SH), has a rugged free-energy surface (FES) and exchanges with four other conformations (excited states) that have millisecond lifetimes and sparse populations on the order of a few percent. Here, we examine further states of SOD1 along its maturation pathway, as well as those off-pathway resulting from metal loss that have been observed in proteinaceous inclusions. Metallation and disulfide bond formation lead to structural transformations including local ordering of the electrostatic loop and native dimerization that are observed in rare conformers of apoSOD12SH; thus, SOD1 maturation may occur via a population-switch mechanism whereby posttranslational modifications select for preexisting structures on the FES. Metallation and oxidation of SOD1 stabilize the native, mature conformation and decrease the number of detected excited conformational states, suggesting that it is the immature forms of the protein that contribute to misfolded conformations in vivo rather than the highly stable enzymatically active dimer.
Collapse
|
25
|
Zamorano Cuervo N, Osseman Q, Grandvaux N. Virus Infection Triggers MAVS Polymers of Distinct Molecular Weight. Viruses 2018; 10:E56. [PMID: 29385716 PMCID: PMC5850363 DOI: 10.3390/v10020056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial antiviral signaling (MAVS) adaptor protein is a central signaling hub required for cells to mount an antiviral response following virus sensing by retinoic acid-inducible gene I (RIG-I)-like receptors. MAVS localizes in the membrane of mitochondria and peroxisomes and in mitochondrial-associated endoplasmic reticulum membranes. Structural and functional studies have revealed that MAVS activity relies on the formation of functional high molecular weight prion-like aggregates. The formation of protein aggregates typically relies on a dynamic transition between oligomerization and aggregation states. The existence of intermediate state(s) of MAVS polymers, other than aggregates, has not yet been documented. Here, we used a combination of non-reducing SDS-PAGE and semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) to resolve whole cell extract preparations to distinguish MAVS polymerization states. While SDD-AGE analysis of whole cell extracts revealed the formation of previously described high molecular weight prion-like aggregates upon constitutively active RIG-I ectopic expression and virus infection, non-reducing SDS-PAGE allowed us to demonstrate the induction of lower molecular weight oligomers. Cleavage of MAVS using the NS3/4A protease revealed that anchoring to intracellular membranes is required for the appropriate polymerization into active high molecular weight aggregates. Altogether, our data suggest that RIG-I-dependent MAVS activation involves the coexistence of MAVS polymers with distinct molecular weights.
Collapse
Affiliation(s)
- Natalia Zamorano Cuervo
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, QC H2X 0A9, Canada.
| | - Quentin Osseman
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, QC H2X 0A9, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, QC H2X 0A9, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
26
|
MIF inhibits the formation and toxicity of misfolded SOD1 amyloid aggregates: implications for familial ALS. Cell Death Dis 2018; 9:107. [PMID: 29371591 PMCID: PMC5833700 DOI: 10.1038/s41419-017-0130-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the progressive loss of motor neurons in the brain and spinal cord. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is yet unclear why misfolded SOD1 accumulates specifically within motor neurons. We recently demonstrated that macrophage migration inhibitory factor (MIF)-a multifunctional protein with cytokine/chemokine activity and cytosolic chaperone-like properties-inhibits the accumulation of misfolded SOD1. Here, we show that MIF inhibits mutant SOD1 nuclear clearance when overexpressed in motor neuron-like NSC-34 cells. In addition, MIF alters the typical SOD1 amyloid aggregation pathway in vitro, and, instead, promotes the formation of disordered aggregates, as measured by Thioflavin T (ThT) assay and transmission electron microscopy (TEM) imaging. Moreover, we report that MIF reduces the toxicity of misfolded SOD1 by directly interacting with it, and that the chaperone function and protective effect of MIF in neuronal cultures do not require its intrinsic catalytic activities. Importantly, we report that the locked-trimeric MIFN110C mutant, which exhibits strongly impaired CD74-mediated cytokine functions, has strong chaperone activity, dissociating, for the first time, these two cellular functions. Altogether, our study implicates MIF as a potential therapeutic candidate in the treatment of ALS.
Collapse
|
27
|
Kim JM, Billington E, Reyes A, Notarianni T, Sage J, Agbas E, Taylor M, Monast I, Stanford JA, Agbas A. Impaired Cu-Zn Superoxide Dismutase (SOD1) and Calcineurin (Cn) Interaction in ALS: A Presumed Consequence for TDP-43 and Zinc Aggregation in Tg SOD1 G93A Rodent Spinal Cord Tissue. Neurochem Res 2018; 44:228-233. [PMID: 29299811 PMCID: PMC6345727 DOI: 10.1007/s11064-017-2461-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Impaired interactions between Calcineurin (Cn) and (Cu/Zn) superoxide dismutase (SOD1) are suspected to be responsible for the formation of hyperphosphorylated protein aggregation in amyotrophic lateral sclerosis (ALS). Serine (Ser)- enriched phosphorylated TDP-43 protein aggregation appears in the spinal cord of ALS animal models, and may be linked to the reduced phosphatase activity of Cn. The mutant overexpressed SOD1G93A protein does not properly bind zinc (Zn) in animal models; hence, mutant SOD1G93A–Cn interaction weakens. Consequently, unstable Cn fails to dephosphorylate TDP-43 that yields hyperphosphorylated TDP-43 aggregates. Our previous studies had suggested that Cn and SOD1 interaction was necessary to keep Cn enzyme functional. We have observed low Cn level, increased Zn concentrations, and increased TDP-43 protein levels in cervical, thoracic, lumbar, and sacral regions of the spinal cord tissue homogenates. This study further supports our previously published work indicating that Cn stability depends on functional Cn–SOD1 interaction because Zn is crucial for maintaining the Cn stability. Less active Cn did not efficiently dephosphorylate TDP-43; hence TDP-43 aggregations appeared in the spinal cord tissue.
Collapse
Affiliation(s)
- Jolene M Kim
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Elizabeth Billington
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Ada Reyes
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Tara Notarianni
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Jessica Sage
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Emre Agbas
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Michael Taylor
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - Ian Monast
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA
| | - John A Stanford
- University of Kansas Medical Center, 3901 Rainbow Blvd., 2096 HLSIC, Kansas City, KS, 66160, USA
| | - Abdulbaki Agbas
- Division of Basic Sciences, College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO, 6410, USA.
| |
Collapse
|
28
|
The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Molecules 2017; 22:molecules22091429. [PMID: 28850080 PMCID: PMC6151412 DOI: 10.3390/molecules22091429] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1) associated to amyotrophic lateral sclerosis (ALS). SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.
Collapse
|
29
|
Ayers JI, McMahon B, Gill S, Lelie HL, Fromholt S, Brown H, Valentine JS, Whitelegge JP, Borchelt DR. Relationship between mutant Cu/Zn superoxide dismutase 1 maturation and inclusion formation in cell models. J Neurochem 2016; 140:140-150. [PMID: 27727458 DOI: 10.1111/jnc.13864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023]
Abstract
A common property of Cu/Zn superoxide dismutase 1 (SOD1), harboring mutations associated with amyotrophic lateral sclerosis, is a high propensity to misfold and form abnormal aggregates. The aggregation of mutant SOD1 has been demonstrated in vitro, with purified proteins, in mouse models, in human tissues, and in cultured cell models. In vitro translation studies have determined that SOD1 with amyotrophic lateral sclerosis mutations is slower to mature, and thus perhaps vulnerable to off-pathway folding that could generate aggregates. The aggregation of mutant SOD1 in living cells can be monitored by tagging the protein with fluorescent fluorophores. In this study, we have taken advantage of the Dendra2 fluorophore technology in which excitation can be used to switch the output color from green to red, thereby clearly creating a time stamp that distinguishes pre-existing and newly made proteins. In cells that transiently over-express the Ala 4 to Val variant of SOD1-Dendra2, we observed that newly made mutant SOD1 was rapidly captured by pathologic intracellular inclusions. In cell models of mutant SOD1 aggregation over-expressing untagged A4V-SOD1, we observed that immature forms of the protein, lacking a Cu co-factor and a normal intramolecular disulfide, persist for extended periods. Our findings fit with a model in which immature forms of mutant A4V-SOD1, including newly made protein, are prone to misfolding and aggregation.
Collapse
Affiliation(s)
- Jacob I Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Benjamin McMahon
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Sabrina Gill
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Herman L Lelie
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Susan Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Hilda Brown
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Abdolvahabi A, Shi Y, Chuprin A, Rasouli S, Shaw BF. Stochastic Formation of Fibrillar and Amorphous Superoxide Dismutase Oligomers Linked to Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2016; 7:799-810. [PMID: 26979728 DOI: 10.1021/acschemneuro.6b00048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent reports suggest that the nucleation and propagation of oligomeric superoxide dismutase-1 (SOD1) is effectively stochastic in vivo and in vitro. This perplexing kinetic variability-observed for other proteins and frequently attributed to experimental error-plagues attempts to discern how SOD1 mutations and post-translational modifications linked to amyotrophic lateral sclerosis (ALS) affect SOD1 aggregation. This study used microplate fluorescence spectroscopy and dynamic light scattering to measure rates of fibrillar and amorphous SOD1 aggregation at high iteration (ntotal = 1.2 × 10(3)). Rates of oligomerization were intrinsically irreproducible and populated continuous probability distributions. Modifying reaction conditions to mimic random and systematic experimental error could not account for kinetic outliers in standard assays, suggesting that stochasticity is not an experimental artifact, rather an intrinsic property of SOD1 oligomerization (presumably caused by competing pathways of oligomerization). Moreover, mean rates of fibrillar and amorphous nucleation were not uniformly increased by mutations that cause ALS; however, mutations did increase kinetic noise (variation) associated with nucleation and propagation. The stochastic aggregation of SOD1 provides a plausible statistical framework to rationalize how a pathogenic mutation can increase the probability of oligomer nucleation within a single cell, without increasing the mean rate of nucleation across an entire population of cells.
Collapse
Affiliation(s)
- Alireza Abdolvahabi
- Department of Chemistry and Biochemistry, and ‡Institute
of Biomedical Studies, Baylor University, Waco, Texas 76798-7348, United States
| | - Yunhua Shi
- Department of Chemistry and Biochemistry, and ‡Institute
of Biomedical Studies, Baylor University, Waco, Texas 76798-7348, United States
| | - Aleksandra Chuprin
- Department of Chemistry and Biochemistry, and ‡Institute
of Biomedical Studies, Baylor University, Waco, Texas 76798-7348, United States
| | - Sanaz Rasouli
- Department of Chemistry and Biochemistry, and ‡Institute
of Biomedical Studies, Baylor University, Waco, Texas 76798-7348, United States
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, and ‡Institute
of Biomedical Studies, Baylor University, Waco, Texas 76798-7348, United States
| |
Collapse
|
31
|
Pan K, Yi CW, Chen J, Liang Y. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:907-18. [DOI: 10.1016/j.bbapap.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
|