1
|
Mazumder S, Das T, Vankayala R. Ultrasonic-assisted europium decorated cuprous oxide nanoparticles: exploring their photothermal capabilities and antioxidant properties for biomedical applications. RSC Adv 2025; 15:6984-6993. [PMID: 40041375 PMCID: PMC11877118 DOI: 10.1039/d4ra08914f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Metal oxide nanoparticles offer capabilities for cancer therapeutics, but their applicability is often jeopardized due to toxicity hurdles. To tackle this problem, in this study, we have synthesized europium decorated cuprous oxide nanoparticles (Eu-Cu2O NPs) via a facile ultrasonic-assisted method. Surface decoration of nanoparticles is an effective strategy to tailor their physicochemical and biological properties. The decorated nanoparticles were found to possess improved stability, superior biocompatibility and enhanced photothermal properties than the undecorated pristine nanoparticles (Cu2O NPs). In vitro studies validated the capacity of the decorated nanoparticles to regulate the production of reactive oxygen species (ROS) and in turn combat the inherent toxicity of cuprous nanoparticles. By controlling the ROS dynamics and decreasing inadvertent toxic effects minimize possibilities of higher toxicity enabling this innovative strategy to potentially transform into an effective platform for drug delivery systems.
Collapse
Affiliation(s)
- Sarmistha Mazumder
- Center for Medical Technologies, Indian Institute of Technology Jodhpur 342030 Rajasthan India
| | - Tiasa Das
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur 342030 Rajasthan India
| | - Raviraj Vankayala
- Center for Medical Technologies, Indian Institute of Technology Jodhpur 342030 Rajasthan India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur 342030 Rajasthan India
| |
Collapse
|
2
|
Zhang S, Peng S. Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives. Acta Biomater 2025; 193:107-127. [PMID: 39800096 DOI: 10.1016/j.actbio.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy. STATEMENT OF SIGNIFICANCE: This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.
Collapse
Affiliation(s)
- Shufang Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Murugesan S, Balasubramanian S, Perumal E. Copper oxide nanoparticles induced reactive oxygen species generation: A systematic review and meta-analysis. Chem Biol Interact 2025; 405:111311. [PMID: 39551423 DOI: 10.1016/j.cbi.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely employed in various industrial and biomedical applications owing to their enhanced physicochemical characteristics. However, concerns regarding their adverse effects on biological systems upon entering the environment remain unexplored. The generation of reactive oxygen species (ROS) is one of the primary mechanisms in CuO NPs induced toxicity. This meta-analysis was conducted to assess the associative link between CuO NPs exposure and ROS generation. A literature survey was performed in PubMed, Web of Science, Scopus, and Google Scholar, following PRISMA guidelines. After comprehensive initial and primary screening, 28 in vitro studies were selected for meta-analysis. Overall, our results show a substantial increase of ROS in the experimental group when compared to control (SMD = 3.3; 95 % CI: 2.82-3.77, p = 0.00001), with substantial heterogeneity (82 %). Subgroup analysis revealed that larger-sized NPs, higher dosages, and longer exposure duration were associated with ROS generation. Meta-regression analysis identified size, and dosage as significant factors influencing ROS levels. Sensitivity analysis revealed an outlier study and the funnel plot results suggested potential publication bias. Overall, our results provide valuable insights of CuO NPs induced ROS generation, and the relation of variables such as size, dose, and duration in nanotoxicity assessments.
Collapse
Affiliation(s)
- Srimathi Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
4
|
Jawad SEZ, Ahmed S, Hussain D, Najeeb J, Alam A, Najam-Ul-Haq M, Fatima B. Ascorbic acid-immobilized zinc selenide for electrochemical monitoring of hydrogen peroxide in liver cancer samples. Sci Rep 2025; 15:237. [PMID: 39747282 PMCID: PMC11696354 DOI: 10.1038/s41598-024-81411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (H2O2), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells. This study describes a medically effective and sensitive electrochemical sensor based on ascorbic acid immobilized zinc selenide nanoparticles (AsA@Zn-Se NPs) decorated on a glassy carbon electrode (GCE) for determining H2O2 in PBS and human serum samples of liver cancer patients. The morphological and structural characterization of fabricated sensor is done by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, energy dispersive X-ray (EDX), and scanning electron microscopy (SEM). Ascorbic acid (AsA), an antioxidant for H2O2 redox behavior, is immobilized on Zn-Se NPs to aid H2O2 detection through cyclic voltammetry (CV). The sensor exhibits a low detection limit, and board linear range of 0.49 µM and 0-70 µM, respectively. The low-cost electrochemical sensor is robust for up to 100 cycles. Elecys AFP assay results validate that increasing alpha-fetoprotein (AFP) concentration, a biomarker for liver cancer, can increase the H2O2 levels in serum samples. Therefore, the proposed sensor can be used to diagnose liver cancer in clinical settings.
Collapse
Affiliation(s)
- Shan E Zahra Jawad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sibtain Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Javerya Najeeb
- Drugs Testing Laboratory, near Multan Institute of Kidney Disease, Muzaffargarh Road, Multan, 261000, Pakistan
| | - Ayub Alam
- Department of Chemistry, The Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
5
|
Wang X, Gao Y, Wang T, Wang Z, Hang H, Li S, Feng F. Photoactivated hydride therapy under hypoxia beyond ROS. Chem Sci 2024; 15:20292-20302. [PMID: 39568933 PMCID: PMC11575613 DOI: 10.1039/d4sc06576j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
As compared to oxidative phototherapy, studies on reactive reductive species-participating photodynamic therapy (PDT) are rare. Porphyrins are typical photosensitizers restricted by the oxygen level, but efficacy and selectivity are always incompatible in PDT. Herein, we report that phlorins are ideal hydride (H-) donors and explore a water-soluble triphenylphosphonium-modified zinc-coordinated porphyrin (mitoZnPor) for in situ photogeneration of zinc-cored phlorin (mitoZnPhl). Driven by 1,4-dihydronicotinamide adenine dinucleotide (NADH), the mitoZnPor/mitoZnPhl couple can reduce electron acceptors like iron heme and ubiquinone that play key roles in the mitochondrial electron transport chain (Mito-ETC). Under hypoxia, mitoZnPor showed excellent cancer-selectivity and a highly efficient in vitro PDT effect with IC50 at nanomolar levels and potent tumor growth inhibition in a 4T1 tumor-xenografted mouse model with good biosafety, which underlines the great potential of Mito-ETC targeted non-classical PDT via a H--transfer mechanism beyond reactive oxygen species (ROS) in precision cancer phototherapy using NADH as a biomarker and original electron donor.
Collapse
Affiliation(s)
- Xia Wang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhaobin Wang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - He Hang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
6
|
Wang R, Zhao Y, Zhou L, Lin F, Wan M, Gan A, Wu B, Yan T, Jia Y. Costunolide ameliorates MNNG-induced chronic atrophic gastritis through inhibiting oxidative stress and DNA damage via activation of Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155581. [PMID: 38810553 DOI: 10.1016/j.phymed.2024.155581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a chronic digestive disease. Modern research has revealed substantial evidence indicating that the progression of CAG is closely linked to the occurrence of oxidative stress-induced DNA damage and apoptosis in the gastric mucosa. Additionally, research has indicated that Costunolide (COS), the primary active compound found in Aucklandiae Radix, a traditional herb, exhibits antioxidant properties. Nevertheless, the therapeutic potential of COS in treating CAG and its molecular targets have not yet been determined. PURPOSE The objective of this research was to explore the potential gastric mucosal protective effects and mechanisms of COS against N-Methyl-N´-nitro-N-nitrosoguanidine (MNNG)-induced CAG. METHODS Firstly, the MNNG-induced rat CAG model was established in vivo. Occurrence of CAG was detected through macroscopic examination of the stomachs and H&E staining. Additionally, we assessed oxidative stress, DNA damage, and apoptosis using biochemical detection, Western blot, immunohistochemistry and immunofluorescence. Then, an in vitro model was developed to induce MNNG-induced damage in GES-1 cells, and the occurrence of cell damage was determined by Hoechst 33,342 staining and flow cytometry. Finally, the key targets of COS for the treatment of CAG were identified through molecular docking, cellular thermal shift assay (CETSA), and inhibitor ML385. RESULTS In vivo studies demonstrated that COS promotes the expression of Nrf2 in gastric tissues. This led to an increased expression of SOD, GSH, HO-1, while reducing the production of MDA. Furthermore, COS inhibited DNA damage and apoptosis by suppressing the expression of γH2AX and PARP1 in gastric tissues. In vitro studies showed that COS effectively reversed apoptosis induced by MNNG in GES-1 cells. Additionally, COS interacted with Nrf2 to promote its expression. Furthermore, the expression levels of SOD, GSH, and HO-1 were augmented, while the generation of ROS and MDA was diminished. CONCLUSIONS Our results indicate that COS exhibits therapeutic effects on CAG through the promotion of Nrf2 expression and inhibition of oxidative stress and DNA damage. Therefore, COS has the potential to provide new drugs for the treatment of CAG.
Collapse
Affiliation(s)
- Ruixuan Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Youdong Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Lei Zhou
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Fei Lin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Meiqi Wan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Anna Gan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
7
|
Liu X, Bai Y, Zhou B, Yao W, Song S, Liu J, Zheng C. Recent advances in hepatocellular carcinoma-targeted nanoparticles. Biomed Mater 2024; 19:042004. [PMID: 38697209 DOI: 10.1088/1748-605x/ad46d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the field of medicine, we often brave the unknown like interstellar explorers, especially when confronting the formidable opponent of hepatocellular carcinoma (HCC). The global burden of HCC remains significant, with suboptimal treatment outcomes necessitating the urgent development of novel drugs and treatments. While various treatments for liver cancer, such as immunotherapy and targeted therapy, have emerged in recent years, improving their transport and therapeutic efficiency, controlling their targeting and release, and mitigating their adverse effects remains challenging. However, just as we grope through the darkness, a glimmer of light emerges-nanotechnology. Recently, nanotechnology has attracted attention because it can increase the local drug concentration in tumors, reduce systemic toxicity, and has the potential to enhance the effectiveness of precision therapy for HCC. However, there are also some challenges hindering the clinical translation of drug-loaded nanoparticles (NPs). Just as interstellar explorers must overcome interstellar dust, we too must overcome various obstacles. In future researches, the design and development of nanodelivery systems for novel drugs treating HCC should be the first attention. Moreover, researchers should focus on the active targeting design of various NPs. The combination of the interventional therapies and drug-loaded NPs will greatly advance the process of precision HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Binqian Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Cao Y, Tian S, Geng Y, Zhang L, Zhao Q, Chen J, Li Y, Hu X, Huang J, Ning P. Interactions between CuO NPs and PS: The release of copper ions and oxidative damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166285. [PMID: 37586511 DOI: 10.1016/j.scitotenv.2023.166285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) can adversely affect lung health possibly by inducing oxidative damage through the release of copper ions. However, the migration and transformation processes of CuO NPs in lung lining fluid is still unclear, and there are still conflicting reports of redox reactions involving copper ions. To address this, we examined the release of copper ions from CuO NPs in simulated lung fluid supplemented with pulmonary surfactant (PS), and further analyzed the mechanisms of PS-CuO NPs interactions and the health hazards. The results showed that the phospholipid of PS was adsorbed on the particle surface, which not only induced aggregation of the particles but also provided a reaction environment for the interaction of PS with CuO NPs. PS was able to promote the release of ions from CuO NPs, of which the protein was a key component. Lipid peroxidation, protein destabilization, and disruption of the interfacial chemistry also occurred in the PS-CuO NPs interactions, during which copper ions were present only as divalent cations. Meanwhile, the contribution of the particle surface cannot be neglected in the oxidative damage to the lung caused by CuO NPs. Through reacting with biomolecules, CuO NPs accomplished ion release and induced oxidative damage associated with PS. This research was the first to reveal the mechanism of CuO NPs releasing copper ions and inducing lipid oxidative damage in the presence of PS, which provides a new idea of transition metal-induced health risk in human body.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jie Chen
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
9
|
Bauer EM, Talone A, Imperatori P, Briancesco R, Bonadonna L, Carbone M. The Addition of Co into CuO-ZnO Oxides Triggers High Antibacterial Activity and Low Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2823. [PMID: 37947668 PMCID: PMC10649786 DOI: 10.3390/nano13212823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
In the present work, a simple two-step method is proposed for mixed oxide synthesis aimed at the achievement of antibacterial nanomaterials. In particular, Cu, Zn and Co have been selected to achieve single-, double- and triple-cation oxides. The synthesized samples are characterized by XRD, IR, SEM and EDX, indicating the formation of either crystalline or amorphous hydrocarbonate precursors. The oxides present one or two crystalline phases, depending on their composition; the triple-cation oxides form a solid solution of tenorite. Also, the morphology of the samples varies with the composition, yielding nanoparticles, filaments and hydrangea-like microaggregates. The antibacterial assays are conducted against E. coli and indicate an enhanced efficacy, especially displayed by the oxide containing 3% Co and 9% Zn incorporated into the CuO lattice. The oxides with the highest antibacterial properties are tested for their cytotoxicity, indicating a low toxicity impact, in line with literature data.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Alessandro Talone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Patrizia Imperatori
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Rossella Briancesco
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Lucia Bonadonna
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| |
Collapse
|
10
|
Çiçek S. α-tocopherol ameliorates copper II oxide nanoparticles-induced cytotoxic, biochemical, apoptotic, and genotoxic damages in the rainbow trout gonad cells-2 (RTG-2) culture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104168. [PMID: 37295739 DOI: 10.1016/j.etap.2023.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
We investigated the effects of α-tocopherol on oxidative stress-caused damage caused by copper II oxide nanoparticles (CuO NPs) on Oncorhynchus mykiss gonadal cells (RTG-2) for 24 and 48 h. α-Tocopherol reversed the cell death and alterations in the expressions of genes such as sod1, gpx1a, gpx4b, and igf2 caused by CuO NPs; it also supported the expressions of cat, igf1, and gapdh genes caused by CuO NPs for 24 h and promoted alterations in the expressions of the sod2, gh1, and igf1 genes for 48 h. Additionally, α-tocopherol reversed the caspase 3/7 activity increased by CuO NPs for 24 h and supported it's decrease for 48 h. α-Tocopherol supported the increase in tail DNA (%) affected by CuO NPs for 24 h and reversed it for 48 h. Therefore, α-tocopherol may have the potential to protect against cellular alterations induced by CuO NPs in a time-dependent manner.
Collapse
Affiliation(s)
- Semra Çiçek
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
11
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
12
|
Dolati M, Tafvizi F, Salehipour M, Komeili Movahed T, Jafari P. Biogenic copper oxide nanoparticles from Bacillus coagulans induced reactive oxygen species generation and apoptotic and anti-metastatic activities in breast cancer cells. Sci Rep 2023; 13:3256. [PMID: 36828883 PMCID: PMC9958044 DOI: 10.1038/s41598-023-30436-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
The present study examined the anticancer capabilities of Bacillus coagulans supernatant-produced copper oxide nanoparticles (BC-CuONPs) on MCF-7 and SKBR3 cancer cells. The X-ray diffraction, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and zeta potential techniques were used to characterize BC-CuONPs. This study also investigated the cellular and molecular processes of NPs' anti-proliferative and apoptotic properties on human breast cancer cells and compared them to the commercial pharmaceutical tamoxifen. The size of the spherical NP was from 5 to 47 nm with negative zeta potential. The MTT results showed the great cytotoxic effect of BC-CuONPs against breast cancer cells. The BC-CuONPs inhibited the growth of breast cancer cells in a time- and dose-dependent manner. The up-regulation of BCL2-associated X (BAX), cyclin dependent kinase inhibitor 1A (P21), Caspase 3 (CASP3), and Caspase 9 (CASP9), the down-regulation of BCL2 apoptosis regulator (BCL2), Annexin V-FITC/propidium iodide, and reactive oxygen species (ROS) generation results suggested that BC-CuONPs had a significant apoptotic impact when compared to the control. Scratch tests and vascular endothelial growth factor receptor gene (VEGF) down-regulation demonstrated that BC-CuONPs had anti-metastatic activity. The cell cycle analysis and down-regulation of Cyclin D1 (CCND1) and cyclin dependent kinase 4 (CDK4) revealed that cancer cells were arrested in the sub-G1 phase. Finally, the results showed that the secondary metabolites in the supernatant of Bacillus coagulans could form CuONPs, and biogenic BC-CuONPs showed anti-metastasis and anticancer properties on breast cancer cells while having less adverse effects on normal cells. Therefore, the synthesized CuONPs using B. coagulans supernatant can be shown as a potential candidate for a new therapeutic strategy in cancer management.
Collapse
Affiliation(s)
- Masoumeh Dolati
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Masoud Salehipour
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | | | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
13
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Chen CW, Dong CD. The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. ENVIRONMENTAL RESEARCH 2023; 216:114656. [PMID: 36341791 DOI: 10.1016/j.envres.2022.114656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 μg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
14
|
Farshori NN, Siddiqui MA, Al-Oqail MM, Al-Sheddi ES, Al-Massarani SM, Ahamed M, Ahmad J, Al-Khedhairy AA. Copper Oxide Nanoparticles Exhibit Cell Death Through Oxidative Stress Responses in Human Airway Epithelial Cells: a Mechanistic Study. Biol Trace Elem Res 2022; 200:5042-5051. [PMID: 35000107 DOI: 10.1007/s12011-022-03107-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Copper oxide nanoparticles (CuONPs) are purposefully used to inhibit the growth of bacteria, algae, and fungi. Several studies on the beneficial and harmful effects of CuONPs have been conducted in vivo and in vitro, but there are a few studies that explain the toxicity of CuONPs in human airway epithelial cells (HEp-2). As a result, the purpose of this study is to look into the dose-dependent toxicity of CuONPs in HEp-2 cells. After 24 h of exposure to 1-40 µg/ml CuONPs, the MTT and neutral red assays were used to test for cytotoxicity. To determine the mechanism(s) of cytotoxicity in HEp-2 cells, additional oxidative stress assays (LPO and GSH), the amount of ROS produced, the loss of MMP, caspase enzyme activities, and apoptosis-related genes were performed using qRT-PCR. CuONPs exhibited dose-dependent cytotoxicity in HEp-2 cells, with an IC50 value of ~ 10 μg/ml. The morphology of HEp-2 cells was also altered in a dose-dependent manner. The involvement of oxidative stress in CuONP-induced cytotoxicity was demonstrated by increased LPO levels and ROS generation, as well as decreased levels of GSH and MMP. Furthermore, activated caspase enzymes and altered apoptotic genes support CuONPs' ability to induce apoptosis in HEp-2 cells. Overall, this study demonstrated that CuONPs can cause apoptosis in HEp-2 cells via oxidative stress; therefore, CuONPs may pose a risk to human health and should be handled and used with caution.
Collapse
Affiliation(s)
- Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Maqsood A Siddiqui
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Javed Ahmad
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
A review on the epigenetics modifications to nanomaterials in humans and animals: novel epigenetic regulator. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In the nanotechnology era, nanotechnology applications have been intensifying their prospects to embrace all the vigorous sectors persuading human health and animal. The safety and concerns regarding the widespread use of engineered nanomaterials (NMA) and their potential effect on human health still require further clarification. Literature elucidated that NMA exhibited significant adverse effects on various molecular and cellular alterations. Epigenetics is a complex process resulting in the interactions between an organism’s environment and genome. The epigenetic modifications, including histone modification and DNA methylation, chromatin structure and DNA accessibility alteration, regulate gene expression patterns. Disturbances of epigenetic markers induced by NMA might promote the sensitivity of humans and animals to several diseases. Also, this paper focus on the epigenetic regulators of some dietary nutrients that have been confirmed to stimulate the epigenome and, more exactly, DNA histone modifications and non-histone proteins modulation by acetylation, and phosphorylation inhibition, which counteracts oxidative stress generations. The present review epitomizes the recent evidence of the potential effects of NMA on histone modifications, in addition to in vivo and in vitro cytosine DNA methylation and its toxicity. Furthermore, the part of epigenetic fluctuations as possible translational biomarkers for uncovering untoward properties of NMA is deliberated.
Collapse
|
16
|
Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Wang X, Wang WX. Cell-Type-Dependent Dissolution of CuO Nanoparticles and Efflux of Cu Ions following Cellular Internalization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12404-12415. [PMID: 35946305 DOI: 10.1021/acs.est.2c02575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CuO nanoparticles (NPs) show promising applications in biosensors, waste treatment, and energy materials, but the growing manufacture of CuO NPs also leads to the concerns for their potential environmental and health risks. However, the cellular fates of CuO NPs such as Cu ion dissolution, transformation, and efflux remain largely speculative. In the present study, we for the first time combined the gold-core labeling and Cu ion bioimaging technologies to reveal the intracellular fates of CuO NPs in different cells following cellular internalization of NPs. We demonstrated that the dissolution rate of CuO NPs depended on the cell type. Following CuO dissolution, limited transformation of Cu(II) to Cu(I) occurred within the cellular microenvironment. Instead, Cu(II) was rapidly eliminated from the cells, and such rapid efflux in different cells was highly dependent on the GSH-mediated pathway and lysosome exocytosis. The labile Cu(I) level in the two cancerous cell lines was immediately regulated upon Cu exposure, which explained their tolerance to Au@CuO NPs. Overall, our study demonstrated a very rapid turnover of Cu in the cells following CuO internalization, which subsequently determined the cellular toxicity of CuO. The results will have important implications for assessing the health risk of CuO NPs.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
18
|
Singh S, Ghosh C, Roy P, Pal K. Biosynthesis of folic acid appended PHBV modified copper oxide nanorods for pH sensitive drug release in targeted breast cancer therapy. Int J Pharm 2022; 622:121831. [PMID: 35589004 DOI: 10.1016/j.ijpharm.2022.121831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Multifunctional nanoplatforms as nanocarriers have attracted the interest of many scientists because they can achieve greater therapeutic effect in anticancer drug delivery to tumors with potential to improve cancer treatment, while currently available therapies are nonspecific and ineffectual. In present study, notable cancer therapeutic strategy which combines PEG functionalized poly (3-hydroxybutyric acid-co-hydroxyvaleric acid) (PHBV) nanospheres decorated with folic acid for delivery of paclitaxel (PTX) drug conjugated with copper oxide (CuO) nanoparticles (NPs) is proposed. Moreover, PTX loading with CuO NPs in PHBV nanosphere was done to increase its solubility and analyze its apoptotic effects in human breast cancer (MCF-7) cells. The pH-sensitive CuO-PTX@PHBV-PEG-FA nanosystem was successfully developed, as evidenced by number of characterizations. Resultant CuO-PTX@PHBV-PEG-FA NPs were 148.93 ± 10.5 nm in size, having 0.206 PDI, with -20.3 ± 0.6 mV zeta potential. MTT assay in MCF-7 cells was used to assess cell viability, while anticancer potential of CuO-PTX@PHBV-PEG-FA nanosystem was confirmed through different staining techniques. According to invitro studies, FA-conjugated PHBV modified CuO-PTX targeted nanoparticles exhibited higher anticancer effect than free PTX probably due to binding interaction of folate receptor with cells that overexpress the target. This nanosystem has the potential to be a promising breast cancer treatment agent.
Collapse
Affiliation(s)
- Swati Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Chandrachur Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India; Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
19
|
Xu J, Xiao X, Yan B, Yuan Q, Dong X, Du Q, Zhang J, Shan L, Ding Z, Zhou L, Efferth T. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression. Cancer Cell Int 2022; 22:39. [PMID: 35078476 PMCID: PMC8788116 DOI: 10.1186/s12935-022-02468-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
Theabrownin (TB) is a bioactive component of tea and has been reported to exert effects against many human cancers, but its efficacy and mechanism on hepatocellular carcinoma (HCC) with different p53 genotypes remains unclarified.
Methods
MTT assay, DAPI staining, flow cytometry and SA-β-gal staining were applied to evaluate the effects of TB on HCC cells. Quantitative real time PCR (qPCR) and Western blot (WB) were conducted to explore the molecular mechanism of TB. A xenograft model of zebrafish was established to evaluate the anti-tumor effect of TB.
Results
MTT assays showed that TB significantly inhibited the proliferation of SK-Hep-1, HepG2, and Huh7 cells in a dose-dependent manner, of which SK-Hep-1 was the most sensitive one with the lowest IC50 values. The animal data showed that TB remarkably suppressed SK-Hep-1 tumor growth in xenograft model of zebrafish. The cellular data showed TB's pro-apoptotic and pro-senescent effect on SK-Hep-1 cells. The molecular results revealed the mechanism of TB that p53 signaling pathway (p-ATM, p-ATR, γ-H2AX, p-Chk2, and p-p53) was activated with up-regulation of downstream senescent genes (P16, P21, IL-6 and IL-8) as well as apoptotic genes (Bim, Bax and PUMA) and proteins (Bax, c-Casp9 and c-PARP). The p53-mediated mechanism was verified by using p53-siRNA. Moreover, by using JNK-siRNA, we found JNK as a bypass regulator in TB's mechanism.
Conclusions
To sum up, TB exerted tumor-inhibitory, pro-senescent and pro-apoptotic effects on SK-Hep-1 cells through ATM-Chk2-p53 signaling axis in accompany with JNK bypass regulation. This is the first report on the pro-senescent effect and multi-target (p53 and JNK) mechanism of TB on HCC cells, providing new insights into the underlying mechanisms of TB's anti-HCC efficacy.
Collapse
|
20
|
Synthesis, Characterization, In Vitro and In Vivo Toxicity of CuO Nanoparticles Fabricated Through Rhus punjabensis Leaf Extract. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00906-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Zhang X, Wei Y, Li C, Wang W, Zhang R, Jia J, Yan B. Intracellular Exposure Dose-Associated Susceptibility of Steatotic Hepatocytes to Metallic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312643. [PMID: 34884447 PMCID: PMC8657991 DOI: 10.3390/ijms222312643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), mainly characterized by the accumulation of excess fat in hepatocytes, is the most prevalent liver disorder afflicting ~25% of adults worldwide. In vivo studies have shown that adult rodents with NAFLD were more sensitive to metallic nanoparticles (MNPs) than healthy MNPs. However, due to the complex interactions between various cell types in a fatty liver, it has become a major challenge to reveal the toxic effects of MNPs to specific types of liver cells such as steatotic hepatocytes. In this study, we reported the susceptibility of steatotic hepatocytes in cytotoxicity and the induction of oxidative stress to direct exposures to MNPs with different components (silver, ZrO2, and TiO2 NPs) and sizes (20-30 nm and 125 nm) in an oleic acid (OA) -induced steatotic HepG2 (sHepG2) cell model. Furthermore, the inhibitory potential of MNPs against the process of fatty acid oxidation (FAO) were obvious in sHepG2 cells, even at extremely low doses of 2 or 4 μg/mL, which was not observed in non-steatotic HepG2 (nHepG2) cells. Further experiments on the differential cell uptake of MNPs in nHepG2 and sHepG2 cells demonstrated that the susceptibility of steatotic hepatocytes to MNP exposures was in association with the higher cellular accumulation of MNPs. Overall, our study demonstrated that it is necessary and urgent to take the intracellular exposure dose into consideration when assessing the potential toxicity of environmentally exposed MNPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Yongyi Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Chengjun Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Weiyu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Rui Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
- Correspondence: ; Tel.: +86-20-3714-2113
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| |
Collapse
|
22
|
Ude VC, Brown DM, Stone V, Johnston HJ. Time dependent impact of copper oxide nanomaterials on the expression of genes associated with oxidative stress, metal binding, inflammation and mucus secretion in single and co-culture intestinal in vitro models. Toxicol In Vitro 2021; 74:105161. [PMID: 33839236 DOI: 10.1016/j.tiv.2021.105161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022]
Abstract
The potential for ingestion of copper oxide nanomaterials (CuO NMs) is increasing due to their increased exploitation. Investigation of changes in gene expression allows toxicity to be detected at an early stage of NM exposure and can enable investigation of the mechanism of toxicity. Here, undifferentiated Caco-2 cells, differentiated Caco-2 cells, Caco-2/HT29-MTX (mucus secreting) and Caco-2/Raji B (M cell model) co-cultures were exposed to CuO NMs and copper sulphate (CuSO4) in order to determine their impacts. Cellular responses were measured in terms of production of reactive oxygen species (ROS), the gene expression of an antioxidant (haem oxygenase 1 (HMOX1)), the pro-inflammatory cytokine (interleukin 8 (IL8)), the metal binding (metallothionein 1A and 2A (MT1A and MT2A)) and the mucus secreting (mucin 2 (MUC2)), as well as HMOX-1 protein level. While CuSO4 induced ROS production in cells, no such effect was observed for CuO NMs. However, these particles did induce an increase in the level of HMOX-1 protein and upregulation of HMOX1, MT2A, IL8 and MUC2 genes in all cell models. In conclusion, the expression of HMOX1, IL8 and MT2A were responsive to CuO NMs at 4 to 12 h post exposure when investigating the toxicity of NMs using intestinal in vitro models. These findings can inform the selection of endpoints, timepoints and models when investigating NM toxicity to the intestine in vitro in the future.
Collapse
Affiliation(s)
- Victor C Ude
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - David M Brown
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Helinor J Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
23
|
Maor I, Asadi S, Korganbayev S, Dahis D, Shamay Y, Schena E, Azhari H, Saccomandi P, Weitz IS. Laser-induced thermal response and controlled release of copper oxide nanoparticles from multifunctional polymeric nanocarriers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:218-233. [PMID: 33795974 PMCID: PMC7971204 DOI: 10.1080/14686996.2021.1883406] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/09/2021] [Accepted: 01/26/2021] [Indexed: 05/29/2023]
Abstract
Multifunctional nanocarriers have attracted considerable interest in improving cancer treatment outcomes. Poly(lactide-co-glycolide) (PLGA) nanospheres encapsulating copper oxide nanoparticles (CuO-NPs) are characterized by antitumor activity and exhibit dual-modal contrast-enhancing capabilities. An in vitro evaluation demonstrates that this delivery system allows controlled and sustained release of CuO-NPs. To achieve localized release on demand, an external stimulation by laser irradiation is suggested. Furthermore, to enable simultaneous complementary photothermal therapy, polydopamine (PDA) coating for augmented laser absorption is proposed. To this aim, two formulations of CuO-NPs loaded nanospheres are prepared from PLGA polymers RG-504 H (H-PLGA) and RG-502 H (L-PLGA) as scaffolds for surface modification through in situ polymerization of dopamine and then PEGylation. The obtained CuO-NPs-based multifunctional nanocarriers are characterized, and photothermal effects are examined as a function of wavelength and time. The results show that 808 nm laser irradiation of the coated nanospheres yields maximal temperature elevation (T = 41°C) and stimulates copper release at a much faster rate compared to non-irradiated formulations. Laser-triggered CuO-NP release is mainly depended on the PLGA core, resulting in faster release with L-PLGA, which also yielded potent anti-tumor efficacy in head and neck cancer cell line (Cal-33). In conclusion, the suggested multifunctional nanoplatform offers the integrated benefits of diagnostic imaging and laser-induced drug release combined with thermal therapy.
Collapse
Affiliation(s)
- Inbal Maor
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | | | - Daniel Dahis
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Technion City, Israel
| | - Yosi Shamay
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Technion City, Israel
| | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Università Campus Bio‐Medico di Roma, Rome, Italy
| | - Haim Azhari
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Technion City, Israel
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Iris Sonia Weitz
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| |
Collapse
|
24
|
Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021; 19:2. [PMID: 33407537 PMCID: PMC7789336 DOI: 10.1186/s12951-020-00740-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The rise of nanotechnology and widespread use of engineered nanomaterials in everyday human life has led to concerns regarding their potential effect on human health. Adverse effects of nanomaterials and nanoparticles on various molecular and cellular alterations have been well-studied. In contrast, the role of epigenetic alterations in their toxicity remains relatively unexplored. This review summarizes current evidence of alterations in cytosine DNA methylation and histone modifications in response to nanomaterials and nanoparticles exposures in vivo and in vitro. This review also highlights existing knowledge gaps regarding the role of epigenetic alterations in nanomaterials and nanoparticles toxicity. Additionally, the role of epigenetic changes as potential translational biomarkers for detecting adverse effects of nanomaterials and nanoparticles is discussed.
Collapse
Affiliation(s)
- Marta Pogribna
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - George Hammons
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
25
|
Dror I, Fink L, Weiner L, Berkowitz B. Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species. CHEMOSPHERE 2020; 258:127266. [PMID: 32535443 DOI: 10.1016/j.chemosphere.2020.127266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Copper oxide nanoparticles (CuO-NPs) have been suggested as effective catalysts to degrade many persistent organic contaminants. In parallel, CuO-NPs are considered toxic to soil microorganisms, plants and human cells, possibly because they induce oxidative stress and generation of reactive oxygen species (ROS). However, the mechanism of the catalytic process and the generated ROS are poorly understood. Here we discuss the reaction mechanism of CuO-NPs during the catalytic degradation of enrofloxacin - an antibiotic pharmaceutical used in this study as a representative persistent organic compound. The degradation of an aqueous solution of the enrofloxacin exposed to CuO-NPs and hydrogen peroxide was studied showing fast removal of the enrofloxacin at ambient conditionsns. ROS production was identified by electron spin resonance and a spin trapping technique. The distribution of the free radical species indicated production of a high percentage of superoxide (O2-.) radicals as well as hydroxyl radicals; this production is similar to the "radical production" activity of the superoxide dismutase (SOD) enzyme in the presence of hydrogen peroxide. This activity was also tested in the opposite direction, to examine if CuO-NPs show reactivity that potentially mimics the classical SOD enzymatic activity. The CuO-NPs were found to catalyze the dismutation of superoxide to hydrogen peroxide and oxygen in a set of laboratory experiments.
Collapse
Affiliation(s)
- Ishai Dror
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Lea Fink
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel; Currently at the Institute of Chemistry and Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Lev Weiner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Brian Berkowitz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
26
|
Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Etessamifar F, Jaberizadeh AH, Shakeri A. Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications. Int J Nanomedicine 2020; 15:3983-3999. [PMID: 32606660 PMCID: PMC7294052 DOI: 10.2147/ijn.s255398] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction In recent years, the use of cost-effective, multifunctional, environmentally friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably. In this manner, different synthesizing methods were reported and optimized, but there is still lack of a comprehensive method with multifunctional properties. Materials and Methods In this study, we aim to synthesis the copper oxide nanoparticles using Achillea millefolium leaf extracts for the first time. Catalytic activity was investigated by in situ azide alkyne cycloaddition click and also A3 coupling reaction, and optimized in terms of temperature, solvent, and time of the reaction. Furthermore, the photocatalytic activity of the synthesized nanoparticles was screened in terms of degradation methylene blue dye. Biological activity of the synthesized nanoparticles was evaluated in terms of antibacterial and anti-fungal assessments against Staphylococcus aureus, M. tuberculosis, E. coli, K. pneumoniae, P. mirabili, C. diphtheriae and S. pyogenes bacteria's and G. albicans, A. flavus, M. canis and G. glabrata fungus. In the next step, the biosynthesized CuO-NPs were screened by MTT and NTU assays. Results Based on our knowledge, this is a comprehensive study on the catalytic and biological activity of copper oxide nanoparticles synthesizing from Achillea millefolium, which presents great and significant results (in both catalytic and biological activities) based on a simple and green procedure. Conclusion Comprehensive biomedical and catalytic investigation of the biosynthesized CuO-NPs showed the mentioned method leads to synthesis of more eco-friendly nanoparticles. The in vitro studies showed promising and considerable results, and due to the great stability of these nanoparticles in a green media, effective biological activity considered as an advantageous.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Fatemeh Etessamifar
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Cheng MH, Pan CY, Chen NF, Yang SN, Hsieh S, Wen ZH, Chen WF, Wang JW, Lu WH, Kuo HM. Piscidin-1 Induces Apoptosis via Mitochondrial Reactive Oxygen Species-Regulated Mitochondrial Dysfunction in Human Osteosarcoma Cells. Sci Rep 2020; 10:5045. [PMID: 32193508 PMCID: PMC7081333 DOI: 10.1038/s41598-020-61876-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OSA) is the most common type of cancer that originates in the bone and usually occurs in young children. OSA patients were treated with neoadjuvant chemotherapy and surgery, and the results were disappointing. Marine antimicrobial peptides (AMPs) have been the focus of antibiotic research because they are resistant to pathogen infection. Piscidin-1 is an AMP from the hybrid striped bass (Morone saxatilis × M. chrysops) and has approximately 22 amino acids. Research has shown that piscidin-1 can inhibit bacterial infections and has antinociception and anti-cancer properties; however, the regulatory effects of piscidin-1 on mitochondrial dysfunction in cancer cells are still unknown. We aimed to identify the effects of piscidin-1 on mitochondrial reactive oxygen species (mtROS) and apoptosis in OSA cells. Our analyses indicated that piscidin-1 has more cytotoxic effects against OSA cells than against lung and ovarian cancer cells; however, it has no effect on non-cancer cells. Piscidin-1 induces apoptosis in OSA cells, regulates mtROS, reduces mitochondrial antioxidant manganese superoxide dismutase and mitochondrial transmembrane potential, and decreases adenosine 5′-triphosphate production, thus leading to mitochondrial dysfunction and apoptosis. The mitochondrial antioxidant, mitoTempo, reduces the apoptosis induced by piscidin-1. Results suggest that piscidin-1 has potential for use in OSA treatment.
Collapse
Affiliation(s)
- Meng-Hsuan Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 81101, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - San-Nan Yang
- Department of Internal Medicine, E-DA Hospital and College of Medicine, I-SHOU University, Kaohsiung, 84001, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Jin-Wei Wang
- Department of Orthopedic, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan.
| | - Wen-Hsien Lu
- Department of Orthopedic, Feng Yuan Hospital of the Ministry of Health, Taichung, 42055, Taiwan.
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. .,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
28
|
Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10030550. [PMID: 32197515 PMCID: PMC7153614 DOI: 10.3390/nano10030550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
We investigated the transcriptomic response and epigenetic changes in the lungs of mice exposed to inhalation of copper(II) oxide nanoparticles (CuO NPs) (8 × 105 NPs/m3) for periods of 3 days, 2 weeks, 6 weeks, and 3 months. A whole genome transcriptome and miRNA analysis was performed using next generation sequencing. Global DNA methylation was assessed by ELISA. The inhalation resulted in the deregulation of mRNA transcripts: we detected 170, 590, 534, and 1551 differentially expressed transcripts after 3 days, 2 weeks, 6 weeks, and 3 months of inhalation, respectively. Biological processes and pathways affected by inhalation, differed between 3 days exposure (collagen formation) and longer treatments (immune response). Periods of two weeks exposure further induced apoptotic processes, 6 weeks of inhalation affected the cell cycle, and 3 months of treatment impacted the processes related to cell adhesion. The expression of miRNA was not affected by 3 days of inhalation. Prolonged exposure periods modified miRNA levels, although the numbers were relatively low (17, 18, and 38 miRNAs, for periods of 2 weeks, 6 weeks, and 3 months, respectively). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis based on miRNA–mRNA interactions, revealed the deregulation of processes implicated in the immune response and carcinogenesis. Global DNA methylation was not significantly affected in any of the exposure periods. In summary, the inhalation of CuO NPs impacted on both mRNA and miRNA expression. A significant transcriptomic response was already observed after 3 days of exposure. The affected biological processes and pathways indicated the negative impacts on the immune system and potential role in carcinogenesis.
Collapse
|
29
|
Yao Y, Zang Y, Qu J, Tang M, Zhang T. The Toxicity Of Metallic Nanoparticles On Liver: The Subcellular Damages, Mechanisms, And Outcomes. Int J Nanomedicine 2019; 14:8787-8804. [PMID: 31806972 PMCID: PMC6844216 DOI: 10.2147/ijn.s212907] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Metallic nanoparticles (MNPs) are new engineering materials with broad prospects for biomedical applications; thus, their biosafety has drawn great concern. The liver is the main detoxification organ of vertebrates. However, many issues concerning the interactions between MNPs and biological systems (cells and tissues) are unclear, particularly the toxic effects of MNPs on hepatocytes and other liver cells. Numerous researchers have shown that some MNPs can induce decreased cell survival rate, production of reactive oxygen species (ROS), mitochondrial damage, DNA strand breaks, and even autophagy, pyroptosis, apoptosis, or other forms of cell death. Our review focuses on the recent researches on the liver toxicity of MNPs and its mechanisms at cellular and subcellular levels to provide a scientific basis for the subsequent hepatotoxicity studies of MNPs.
Collapse
Affiliation(s)
- Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Yiteng Zang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Jing Qu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| |
Collapse
|
30
|
Chavez Soria NG, Aga DS, Atilla-Gokcumen GE. Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Mol Omics 2019; 15:30-38. [PMID: 30560257 DOI: 10.1039/c8mo00162f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engineered nanomaterials have unique properties compared to their bulk counterparts. Copper oxide nanoparticles (CuO NPs) are one example of nanomaterials used in a wide range of consumer products due to their conductivity and biocidal properties. While CuO NPs can induce toxicity in various organisms, their interactions with different organisms and how they affect cellular homeostasis is yet to be fully understood. In this work, the toxicity of CuO NPs was evaluated in different human cell lines (colorectal carcinoma, cervical cancer, embryonic kidney, and lung fibroblast), showing a dose-dependent toxicity. An untargeted lipidomics approach using liquid chromatography-quadrupole time of flight mass spectrometry was employed in a human colon carcinoma cell line to investigate the impact of CuO NP exposure at the cellular level. A 24 h CuO NP exposure at 2.5 and 5 μg mL-1 resulted in upregulation of different metabolites: triacylglycerols, phosphatidylcholines, and ceramides accumulated. The most profound increase in a dose-dependent manner was observed in ceramides, specifically in C18:0, C18:1, and C22:0 species, with up to ∼10 fold accumulations. Further experiments suggested that activation of autophagy and oxidative stress could be responsible for the toxicity observed in these cell lines. Increases in the level of glutathione oxide (∼7 fold) also supported the activation of oxidative stress upon CuO NP treatment. Based on the changes in different metabolites induced by CuO NP exposure and previous studies from our laboratory, we propose that autophagy and oxidative stress could play a role in CuO NP-induced toxicity.
Collapse
Affiliation(s)
- N G Chavez Soria
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
31
|
Mitophagy and Oxidative Stress in Cancer and Aging: Focus on Sirtuins and Nanomaterials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6387357. [PMID: 31210843 PMCID: PMC6532280 DOI: 10.1155/2019/6387357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Mitochondria are the cellular center of energy production and of several important metabolic processes. Mitochondrion health is maintained with a substantial intervention of mitophagy, a process of macroautophagy that degrades selectively dysfunctional and irreversibly damaged organelles. Because of its crucial duty, alteration in mitophagy can cause functional and structural adjustment in the mitochondria, changes in energy production, loss of cellular adaptation, and cell death. In this review, we discuss the dual role that mitophagy plays in cancer and age-related pathologies, as a consequence of oxidative stress, evidencing the triggering stimuli and mechanisms and suggesting the molecular targets for its therapeutic control. Finally, a section has been dedicated to the interplay between mitophagy and therapies using nanoparticles that are the new frontier for a direct and less invasive strategy.
Collapse
|
32
|
Verma N, Kumar N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater Sci Eng 2019; 5:1170-1188. [DOI: 10.1021/acsbiomaterials.8b01092] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nishant Verma
- National Centre for Flexible Electronics, Indian Institute of Technology, Kanpur, Kalyanpur, Kanpur, Uttar Pradesh−208016, India
| | - Nikhil Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, G.E. Road, Opposite Science College, Raipur, Chhattisgarh−492010, India
| |
Collapse
|
33
|
Wu CC, Lin CL, Huang CY, Hsieh S, Liu CH, Hsieh SL. α-Phellandrene enhances the immune response and resistance against Vibrio alginolyticus in white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2019; 84:1108-1114. [PMID: 30414490 DOI: 10.1016/j.fsi.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
Innate immunity and resistance against Vibrio alginolyticus in white shrimp, Litopenaeus vannamei, that received α-phellandrene were examined. The results indicated that the percent survival of shrimp receiving 4, 8, and 12 μg g-1 α-phellandrene was significantly higher than that of control shrimp after 72 h (p < 0.05). In a separate experiment, the phenoloxidase (PO), respiratory bursts, superoxide dismutase (SOD), and phagocytic and lysozyme activity of L. vannamei receiving 8 and 12 μg g-1 α-phellandrene were significantly higher than those of the other groups upon challenge with V. alginolyticus at 24-60, 36-60, 12-60, 12-72 and 48-72 h, respectively. However, no significant differences in the total haemocyte counts (THC) of L. vannamei receiving any dose of α-phellandrene and of control shrimp were observed at 12-72 h. The expression (mRNA transcripts) of the immune genes prophenoloxidase (proPO), LPS- and β-1,3-glucan-binding protein (LGBP) and peroxinectin (PE) of shrimp receiving α-phellandrene at 8 and 12 μg g-1 significantly increased after challenge with V. alginolyticus for 72 h (p < 0.05). We conclude that the immune ability and resistance against V. alginolyticus infection increased in L. vannamei receiving >4 μg g-1 α-phellandrene. These results indicated that α-phellandrene plays an important role in the innate immunity of white shrimp.
Collapse
Affiliation(s)
- Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Chia-Ling Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
34
|
Zhang J, Wang B, Wang H, He H, Wu Q, Qin X, Yang X, Chen L, Xu G, Yuan Z, Yi Q, Zou Z, Yu C. Disruption of the superoxide anions-mitophagy regulation axis mediates copper oxide nanoparticles-induced vascular endothelial cell death. Free Radic Biol Med 2018; 129:268-278. [PMID: 30248444 DOI: 10.1016/j.freeradbiomed.2018.09.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Copper oxide nanoparticles (CuONPs) have been widely used in the industrial and pharmaceutical fields; however, their toxicity profile is deeply concerning. Currently, nanomaterials-induced toxicity in the cardiovascular system is receiving increased attention. Our previous toxicological study found that lysosomal deposition of CuONPs triggered vascular endothelial cell death, indicating that the involvement of autophagic dysfunction was crucial for CuONPs-induced toxicity in human umbilical vein endothelial cells (HUVECs). In the current study, we investigated the detailed mechanism underlying the autophagic dysfunction induced by CuONPs. We demonstrated that CuONPs exposure caused accumulation of superoxide anions, which likely resulted from mitochondrial dysfunctions. MnTBAP, a superoxide anions scavenger, alleviated CuONPs-induced HUVECs death, indicating that excessive superoxide anions were directly related to the CuONPs cytotoxicity in HUVECs. Interestingly, we found that mitophagy (a protective mechanism for clearance of damaged mitochondria and excessive superoxide anions) was initiated but failed to be cleared in CuONPs-treated cells, resulting in the accumulation of damaged mitochondria. Inhibition of mitophagy through Atg5 knockout or blocking of mitochondria fission with Mdivi-1 significantly aggravated CuONPs-induced superoxide anions accumulation and cell death, suggesting that mitophagy is a protective mechanism against CuONPs cytotoxicity in HUVECs. In summary, we demonstrate that superoxide anions (originating from damaged mitochondria) are involved in CuONPs-associated toxicity and that impaired mitophagic flux aggravates the accumulation of excessive superoxide anions, which leads to HUVECs death. Our findings indicate that there are crucial roles for superoxide anions and mitophagy in CuONPs-induced toxicity in vascular endothelial cells.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Hong Wang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Hui He
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Qiong Wu
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Xia Qin
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Xi Yang
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Linmu Chen
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Qiying Yi
- Laboratory Animal Center, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China.
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
35
|
Fernández-Bertólez N, Costa C, Bessa MJ, Park M, Carriere M, Dussert F, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V. Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 845:402989. [PMID: 31561889 DOI: 10.1016/j.mrgentox.2018.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022]
Abstract
Iron oxide nanoparticles (ION) have received much attention for their utility in biomedical applications, such as magnetic resonance imaging, drug delivery and hyperthermia, but concerns regarding their potential harmful effects are also growing. Even though ION may induce different toxic effects in a wide variety of cell types and animal systems, there is a notable lack of toxicological data on the human nervous system, particularly important given the increasing number of applications on this specific system. An important mechanism of nanotoxicity is reactive oxygen species (ROS) generation and oxidative stress. On this basis, the main objective of this work was to assess the oxidative potential of silica-coated (S-ION) and oleic acid-coated (O-ION) ION on human SH-SY5Y neuronal and A172 glial cells. To this aim, ability of ION to generate ROS (both in the absence and presence of cells) was determined, and consequences of oxidative potential were assessed (i) on DNA by means of the 8-oxo-7,8-dihydroguanine DNA glycosylase (OGG1)-modified comet assay, and (ii) on antioxidant reserves by analyzing ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Conditions tested included a range of concentrations, two exposure times (3 and 24 h), and absence and presence of serum in the cell culture media. Results confirmed that, even though ION were not able to produce ROS in acellular environments, ROS formation was increased in the neuronal and glial cells by ION exposure, and was parallel to induction of oxidative DNA damage and, only in the case of neuronal cells treated with S-ION, to decreases in the GSH/GSSG ratio. Present findings suggest the production of oxidative stress as a potential action mechanism leading to the previously reported cellular effects, and indicate that ION may pose a health risk to human nervous system cells by generating oxidative stress, and thus should be used with caution.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain; Universidade da Coruña, Department of Cell and Molecular Biology, Facultad de Ciencias, Campus A Zapateira s/n, 15071-A Coruña, Spain
| | - Carla Costa
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Maria João Bessa
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Margriet Park
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000 Grenoble, France
| | - Fanny Dussert
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000 Grenoble, France
| | - João Paulo Teixeira
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Eduardo Pásaro
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Blanca Laffon
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain.
| | - Vanessa Valdiglesias
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| |
Collapse
|
36
|
Akhtar MJ, Ahamed M, Alhadlaq HA. Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clin Chim Acta 2018; 487:186-196. [PMID: 30291894 DOI: 10.1016/j.cca.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
This review examines the interaction of nanomaterials (NMs) with cells from the perspective of major cellular differentiations. The structure and composition of cells reflect their role and function in a particular organ or environment. The normal differentiated-state and diseased cells may respond to NMs very differently. This review progresses with due care on nanotoxicology while emphasizing the potential of NMs in treating stress-associated disorders, including cancer and degeneration. The striking potential of NMs in inducing ROS, scavenging ROS, depleting cellular antioxidants, replenishing antioxidants, mimicking antioxidant enzyme activity, and modulating the immune system all show their considerable potential in treating cancer and other aging-associated disorders. It is now clear that NMs become more active and versatile when they come into contact with biological machinery, surprisingly in some cases, in a manner dependent on cell type. The mechanisms leading to the contrasting bioresponse of NMs ranging from toxicity to anticancer and from cell survival to carcinogenicity followed by their immuno-modulating potential show NMs to be a highly promising agent in biomedical therapy. This first-of-its-kind article seeks the challenges to be addressed that could provide a solid rationale in translating the promises of nanomedicine. A thorough understanding of normal and cancer biology could help to minimize the gap between basic and translational research in nanotechnology-based therapy.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia..
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.; Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Wang J, Wang H, Xia Q. Ubidecarenone-Loaded Nanostructured Lipid Carrier (UB-NLC): Percutaneous Penetration and Protective Effects Against Hydrogen Peroxide-Induced Oxidative Stress on HaCaT Cells. Int J Mol Sci 2018; 19:ijms19071865. [PMID: 29941831 PMCID: PMC6073307 DOI: 10.3390/ijms19071865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
The objective of the investigation was to evaluate the percutaneous penetration of a ubidecarenone-loaded nanostructured lipid carrier (UB-NLC) and to illuminate the protective effects of UB-NLC for amelioration of hydrogen peroxide-induced oxidative damage on HaCaT cells. Ubidecarenone (UB) was encapsulated in a nanostructured lipid carrier (NLC), which was manufactured by homogenization. The morphological and dimensional properties of the prepared UB-NLC were studied by freeze-fracture transmission electron microscopy (FF-TEM) and photon correlation spectroscopy (PCS). Percutaneous penetration of UB-NLC was carried out by the Franz diffusion cells method. The change of cellular morphology was identified through a non-invasive time-lapse imaging system. The assessment was achieved via the evaluation of the levels of oxidative stress markers: reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA). Percutaneous penetration of UB loaded in NLC formulation was enhanced in comparison to free UB. Preincubation of HaCaT cells with UB-NLC attenuated the level of intracellular generation of ROS. Lipid peroxidation was diminished by UB-NLC via inhibition of MDA formation. Pretreatment of cells with UB-NLC reestablished the activity of cellular antioxidant enzymes (SOD and GSH-PX). On the basis of the investigation conducted, results suggest that formulating UB as NLC is advantageous for topical delivery and treatment of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
- Jianmin Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China.
| | - Huiyun Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China.
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
38
|
Perlman O, Weitz IS, Sivan SS, Abu-Khalla H, Benguigui M, Shaked Y, Azhari H. Copper oxide loaded PLGA nanospheres: towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy. NANOTECHNOLOGY 2018; 29:185102. [PMID: 29451124 DOI: 10.1088/1361-6528/aab00c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Copper oxide nanoparticles (CuO-NPs) are increasingly becoming the subject of investigation exploring their potential use for diagnostic and therapeutic purposes. Recent work has demonstrated their anticancer potential, as well as contrast agent capabilities for magnetic resonance imaging (MRI) and through-transmission ultrasound. However, no capability of CuO-NPs has been demonstrated using conventional ultrasound systems, which, unlike the former, are widely deployed in the clinic. Furthermore, in spite of their potential as multifunctional nano-based materials for diagnosis and therapy, CuO-NPs have been delayed from further clinical application due to their inherent toxicity. Herein, we present the synthesis of a novel nanoscale system, composed of CuO-loaded PLGA nanospheres (CuO-PLGA-NS), and demonstrate its imaging detectability and augmented heating effect by therapeutic ultrasound. The CuO-PLGA-NS were prepared by a double emulsion (W/O/W) method with subsequent solvent evaporation. They were characterized as sphere-shaped, with size approximately 200 nm. Preliminary results showed that the viability of PANC-1, human pancreatic adenocarcinoma cells was not affected after 72 h exposure to CuO-PLGA-NS, implying that PLGA masks the toxic effects of CuO-NPs. A systematic ultrasound imaging evaluation of CuO-PLGA-NS, using a conventional system, was performed in vitro and ex vivo using poultry heart and liver, and also in vivo using mice, all yielding a significant contrast enhancement. In contrast to CuO-PLGA-NS, neither bare CuO-NPs nor blank PLGA-NS possess these unique advantageous ultrasonic properties. Furthermore, CuO-PLGA-NS accelerated ultrasound-induced temperature elevation by more than 4 °C within 2 min. The heating efficiency (cumulative equivalent minutes at 43 °C) was increased approximately six-fold, demonstrating the potential for improved ultrasound ablation. In conclusion, CuO-PLGA-NS constitute a versatile platform, potentially useful for combined imaging and therapeutic ultrasound-based procedures.
Collapse
Affiliation(s)
- Or Perlman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
Exosome-Mimetic Nanovesicles from Hepatocytes promote hepatocyte proliferation in vitro and liver regeneration in vivo. Sci Rep 2018; 8:2471. [PMID: 29410409 PMCID: PMC5802835 DOI: 10.1038/s41598-018-20505-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The liver has great regenerative capacity after functional mass loss caused by injury or disease. Many studies have shown that primary hepatocyte-derived exosomes, which can deliver biological information between cells, promote the regenerative process of the liver. However, the yield of exosomes is very limited. Recent studies have demonstrated that exosome-mimetic nanovesicles (NVs) can be prepared from cells with almost 100 times the production yield compared with exosomes. Thus, this study investigated the therapeutic capacity of exosome-mimetic NVs from primary hepatocytes in liver regeneration. Exosome-mimetic NVs were prepared by serial extrusions of cells through polycarbonate membranes, and the yield of these NVs was more than 100 times that of exosomes. The data indicated that the NVs could promote hepatocyte proliferation and liver regeneration by significantly enhancing the content of sphingosine kinase 2 in recipient cells. To the best of our knowledge, this is the first time that exosome-mimetic NVs from primary hepatocytes have been prepared, and these NVs have components similar to exosomes from primary hepatocytes and, in some respects, biofunctions similar to exosomes. Strategies inspired by this study may lead to substitution of exosomes with exosome-mimetic NVs for biofunctional purposes, including utilization in tissue repair and regeneration.
Collapse
|
40
|
Woźniak-Budych MJ, Przysiecka Ł, Maciejewska BM, Wieczorek D, Staszak K, Jarek M, Jesionowski T, Jurga S. Facile Synthesis of Sulfobetaine-Stabilized Cu2O Nanoparticles and Their Biomedical Potential. ACS Biomater Sci Eng 2017; 3:3183-3194. [DOI: 10.1021/acsbiomaterials.7b00465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical
Centre, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-712, Poland
| | - Łucja Przysiecka
- NanoBioMedical
Centre, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-712, Poland
| | - Barbara M. Maciejewska
- NanoBioMedical
Centre, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-712, Poland
| | - Daria Wieczorek
- Department
of Technology and Instrumental Analysis, Faculty of Commodity Science, Poznan University of Economics and Business, al. Niepodległości
10, Poznan 61-875, Poland
| | - Katarzyna Staszak
- Institute
of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan 60-965, Poland
| | - Marcin Jarek
- NanoBioMedical
Centre, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-712, Poland
| | - Teofil Jesionowski
- Institute
of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan 60-965, Poland
| | - Stefan Jurga
- NanoBioMedical
Centre, Adam Mickiewicz University in Poznan, Umultowska 85, Poznan 61-712, Poland
| |
Collapse
|
41
|
Kung ML, Tai MH, Lin PY, Wu DC, Wu WJ, Yeh BW, Hung HS, Kuo CH, Chen YW, Hsieh SL, Hsieh S. Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse. Colloids Surf B Biointerfaces 2017; 155:399-407. [DOI: 10.1016/j.colsurfb.2017.04.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/08/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
|
42
|
Khan S, Ansari AA, Khan AA, Abdulla M, Al-Obaid O, Ahmad R. In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles. Colloids Surf B Biointerfaces 2017; 153:320-326. [DOI: 10.1016/j.colsurfb.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
|
43
|
Lee CY, Hsieh SL, Hsieh S, Tsai CC, Hsieh LC, Kuo YH, Wu CC. Inhibition of human colorectal cancer metastasis by notoginsenoside R1, an important compound from Panax notoginseng. Oncol Rep 2016; 37:399-407. [DOI: 10.3892/or.2016.5222] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 11/05/2022] Open
|
44
|
Caballero-Díaz E, Valcárcel Cases M. Analytical methodologies for nanotoxicity assessment. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Chibber S, Shanker R. Can CuO nanoparticles lead to epigenetic regulation of antioxidant enzyme system? J Appl Toxicol 2016; 37:84-91. [PMID: 27687502 DOI: 10.1002/jat.3392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/11/2022]
Abstract
Copper has been used from ancient time in various applications. Scientists have exploited its means of exposure and consequences to living organisms. The peculiar property of nanomaterials that is a high surface to volume ratio has increased the range of application in products. Copper oxide nanoparticles (CuO NPs) are widely used in industrial applications such as semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics, heat transfer fluids and consumer products. In contrast, acute toxicity of CuO NPs has also been reported. Subsequently, human and environmental health may be at a high risk. Their frequent use can also contaminate ecosystems. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this review, we have tried to discuss the recent facts and mechanism that have been explored for CuO NPs-induced toxicity at a cellular, in vivo and ecotoxicological level. Accordingly, the main cause for induction of toxicity by CuO NPs is the generation of reactive oxygen species (ROS) followed by the mitochondrial destruction that leads to apoptosis via the intrinsic pathway or under the condition such as hypoxia cell on exposure to CuO NPs may commit to necrosis. Moreover, CuO NPs also result in activation of MAPK pathways, ERKs and JNK/SAPK thus play an important role in the activation of AP-1. Furthermore, CuO NPs also leads to up-regulation of p53 and caspase three genes. Therefore, careful measures are required to explore omic technology to understand the molecular mechanism of the deleterious effects caused by CuO NPs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandesh Chibber
- School of Arts and Science, Division of Biology and Life Sciences, Ahmedabad University, Ahmedabad, 380009, India
| | - Rishi Shanker
- School of Arts and Science, Division of Biology and Life Sciences, Ahmedabad University, Ahmedabad, 380009, India
| |
Collapse
|
46
|
Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9697-707. [PMID: 27483188 DOI: 10.1021/acs.est.6b02763] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Cruz Ortiz
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Qirui Hu
- Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Hongjun Zhou
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| |
Collapse
|
47
|
Nelson BC, Wright CW, Ibuki Y, Moreno-Villanueva M, Karlsson HL, Hendriks G, Sims CM, Singh N, Doak SH. Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis 2016; 32:215-232. [PMID: 27565834 DOI: 10.1093/mutage/gew037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided.
Collapse
Affiliation(s)
- Bryant C Nelson
- National Institute of Standards and Technology, Material Measurement Laboratory - Biosystems and Biomaterials Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA,
| | - Christa W Wright
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue Building 1/Room 1309, Boston, MA 02115, USA
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Maria Moreno-Villanueva
- Department of Biology, University of Konstanz, Molecular Toxicology Group, D-78457 Konstanz, Germany
| | - Hanna L Karlsson
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giel Hendriks
- Toxys, Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Christopher M Sims
- National Institute of Standards and Technology, Material Measurement Laboratory - Biosystems and Biomaterials Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Neenu Singh
- Faculty of Health and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK and
| | - Shareen H Doak
- Swansea University Medical School, Institute of Life Science, Centre for NanoHealth, Swansea University Medical School, Wales SA2 8PP, UK
| |
Collapse
|
48
|
Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R. Uptake and Toxicity of Copper Oxide Nanoparticles in C6 Glioma Cells. Neurochem Res 2016; 41:3004-3019. [DOI: 10.1007/s11064-016-2020-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
|
49
|
Hsieh SL, Hsieh S, Kuo YH, Wang JJ, Wang JC, Wu CC. Effects of Panax notoginseng on the Metastasis of Human Colorectal Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:851-70. [PMID: 27222068 DOI: 10.1142/s0192415x16500476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The goal of this study was to investigate the effect of the Panax notoginseng ethanol extract (PNEE) on the regulation of human colorectal cancer (CRC) metastasis. The migratory, invasive, and adhesive abilities and the expression of metastasis-associated regulatory molecules in cultured human CRC cells (HCT-116) treated with the PNEE were analyzed in this study. The migratory and invasive abilities of HCT-116 cells were reduced after PNEE treatment. The incubation of HCT-116 cells with the PNEE for 24 h decreased MMP-9 expression and increased E-cadherin expression compared with the control group. The adhesion reaction assay indicated that treatment with the PNEE led to significantly decreased HCT-116 adhesion to endothelial cells (EA.hy926 cells). The integrin-1 protein levels in HCT-116 cells were significantly decreased following treatment with the PNEE. Similarly, the protein levels of E-selectin and intercellular adhesion molecule-1 (ICAM-1) were significantly decreased by treatment of the EA.hy926 endothelial cells with PNEE. A scanning electron microscope (SEM) examination indicated that HCT-116 cells treated with LPS combined with the PNEE had a less flattened and retracted shape compared with LPS-treated cells, and this change in shape was found to be a phenomenon of extravasation invasion. The transepithelial electrical resistance (TEER) of the EA.hy926 endothelial cell monolayer increased after incubation with the PNEE for 24 h. A cell-cell permeability assay indicated that HCT-116 cells treated with the PNEE displayed significantly reduced levels of phosphorylated VE-cadherin (p-VE-cadherin). These results demonstrate the antimetastatic properties of the PNEE and show that the PNEE affects cells by inhibiting cell migration, invasion, and adhesion and regulating the expression of metastasis-associated signaling molecules.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- * Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Shuchen Hsieh
- † Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Hao Kuo
- * Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Jyh-Jye Wang
- ‡ Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
| | - Jinn-Chyi Wang
- § Department of Food Science and Technology, Tajen University, Pingtung 90741, Taiwan
| | - Chih-Chung Wu
- ¶ Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan
| |
Collapse
|
50
|
Guo DD, Li Q, Tang HY, Su J, Bi HS. Zinc oxide nanoparticles inhibit expression of manganese superoxide dismutase via amplification of oxidative stress, in murine photoreceptor cells. Cell Prolif 2016; 49:386-94. [PMID: 27094462 DOI: 10.1111/cpr.12257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES As a parenchymal cell, the photoreceptor is more susceptible to alterations in outer micro-environmental conditions than other cells. In the present study, we aimed to investigate inhibitory effects of zinc oxide (ZnO) nanoparticles on expression of manganese superoxide dismutase (MnSOD) in murine photoreceptor-derived cells. MATERIALS AND METHODS We investigated effects of ZnO nanoparticles on murine photoreceptor cell viability and on expression and activity of MnSOD using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, immunofluorescence analysis, flow cytometry, quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). RESULTS ZnO nanoparticles were found to have higher cytotoxic effects in concentration- and time-dependent manners, to elevate intracellular levels of hydrogen peroxide and hydroxyl radicals, and thus to induce overproduction of reactive oxygen species (ROS) and collapse of mitochondrial membrane potential, leading to cell damage. Moreover, ZnO nanoparticles also significantly reduced expression of MnSOD at both the mRNA and protein levels, reduced its activity, and further aggravated oxidative stress-mediated cell damage. CONCLUSION Overall, ZnO nanoparticle-induced cytotoxicity was associated with elevated levels of oxidative stress due to overproduction of ROS and reduced expression and activity of MnSOD.
Collapse
Affiliation(s)
- Da Dong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qin Li
- Emergency centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai, China
| | - Hong Ying Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Su
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Sheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|