1
|
He A, Huang Y, Cao C, Li X. Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles. Drug Deliv 2024; 31:2425156. [PMID: 39520082 PMCID: PMC11552282 DOI: 10.1080/10717544.2024.2425156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
Collapse
Affiliation(s)
- Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang Z, Zhang M, Niu X, Mao X, Yue T, Zhang X. Clathrin-Mediated Endocytosis of Multiple Nanoparticles Tends to Be Less Cooperative: A Computational Study. J Phys Chem B 2024; 128:9785-9797. [PMID: 39352204 DOI: 10.1021/acs.jpcb.4c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Yezhuo Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Man Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinhui Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Liu R, Zhang Z, Liu L, Li X, Duan R, Ren Y, Du B, Zhang Q, Zhou Z. The effects of stiffness on the specificity and avidity of antibody-coated microcapsules with target cells are strongly shape dependent. Colloids Surf B Biointerfaces 2024; 234:113752. [PMID: 38219638 DOI: 10.1016/j.colsurfb.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Antibody modification is a common method for endowing drug carriers with the ability to target specific cells. Recent studies suggest that the efficacy of these antibody-modified drug carriers is closely related to their physicochemical properties, such as size, shape, stiffness, charge, and surface chemistry. In this study, we functionalized microcapsules with antibodies to investigate the combined effect of shape and stiffness on their targeting ability. We synthesized hollow microcapsules, both spherical and rod-shaped, with adjustable stiffness using calcium carbonate particles as templates and silk fibroin (SF) as the shell material. These microcapsules were then functionalized with trastuzumab (TTZ) to enhance targeting capabilities. Our analysis revealed that increasing stiffness significantly improved the specificity and avidity of TTZ-coated rod-shaped microcapsules, but not spherical ones, indicating a strong shape-dependent influence of stiffness on these properties. Additionally, we explored the mechanisms of endocytosis using various inhibitors and found that both macropinocytosis and clathrin played critical roles in the cellular uptake of microcapsules. Furthermore, we loaded microcapsules with doxorubicin (DOX) to evaluate their anti-tumor efficacy. The stiffest TTZ-coated, DOX-loaded rod-shaped microcapsules demonstrated the most potent anti-tumor effects on BT-474 cells and the highest uptake in BT-474 3D spheroids. This research contributes to the development of more effective microcapsule-based target delivery systems and the realization of the full potential of microcapsule drug delivery systems.
Collapse
Affiliation(s)
- Rui Liu
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xuemin Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ruiping Duan
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ying Ren
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; Fujian Bote Biotechnology Co. Ltd, Fuzhou, Fujian 350013, China; Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Zhimin Zhou
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
4
|
Zhang L, Liu N, Wang X. Probe the nanoparticle-nucleus interaction via coarse-grained molecular model. Phys Chem Chem Phys 2023; 25:30319-30329. [PMID: 37908190 DOI: 10.1039/d3cp02981f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The present study reports on a computational model that systematically evaluates the effect of physical factors, including size, surface modification, and rigidity, on the nuclear uptake of nanoparticles (NPs). The NP-nucleus interaction is a crucial factor in biomedical applications such as drug delivery and cellular imaging. While experimental studies have provided evidence for the influence of size, shape, and surface modification on nuclear uptake, theoretical investigations on how these physical factors affect the entrance of NPs through the nuclear pore are lacking. Our results demonstrate that larger NPs require a higher amount of energy to enter the nucleus compared to smaller NPs. This highlights the importance of size as a critical factor in NP design for nuclear uptake. Additionally, surface modification of NPs can impact the nuclear uptake pathway, indicating the potential for tailored NP design for specific applications. Notably, our findings also reveal that the rigidity of NPs has a significant effect on the transport process. The interplay between physicochemical properties and nuclear pore is found to determine nuclear uptake efficiency. Taken together, our study provides new insights into the design of NPs for precise and controllable NP-nucleus interaction, with potential implications for the development of efficient and targeted drug delivery systems and imaging agents.
Collapse
Affiliation(s)
- Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Ning Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, P. R. China.
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Gupta S, Soni J, Kumar A, Mandal T. Origin of the nonlinear structural and mechanical properties in oppositely curved lipid mixtures. J Chem Phys 2023; 159:165102. [PMID: 37873964 DOI: 10.1063/5.0167144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023] Open
Abstract
Structural and mechanical properties of membranes such as thickness, tail order, bending modulus and curvature energetics play crucial role in controlling various cellular functions that depend on the local lipid organization and membrane reshaping. While behavior of these biophysical properties are well understood in single component membranes, very little is known about how do they change in the mixed lipid membranes. Often various properties of the mixed lipid bilayers are assumed to change linearly with the mole fractions of the constituent lipids which, however, is true for "ideal" mixing only. In this study, using molecular dynamics simulations, we show that structural and mechanical properties of binary lipid mixture change nonlinearly with the lipid mole fractions, and the strength of the nonlinearity depends on two factors - spontaneous curvature difference and locally inhomogeneous interactions between the lipid components.
Collapse
Affiliation(s)
- Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jatin Soni
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Awneesh Kumar
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Liu G, Sun P, Yan J, Shao P, Feng S. Regulation of Nanoliposome Rigidity and Bioavailability of Oligomeric Proanthocyanidin with Phytosterols Containing Different C3 Branches. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43414-43430. [PMID: 37669469 DOI: 10.1021/acsami.3c07854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The rigidity of nanoliposomes significantly influences their physical stability and in vitro and in vivo behaviors (e.g., cellular uptake, blood circulation, biodistribution, etc.). This study aimed to quantify the rigidity of the nanoliposomes composed of phytosterol with varying C3 branches and phospholipids (DPPC, DOPC) using atomic force microscopy. Young's modulus, determined by the Shell model, effectively differentiated between mechanical differences in nanoliposomes with varying components and component structure and phase states. FTIR results indicated that P-SG exhibited the highest Young's modulus (175.98 ± 10.53 MPa) due to the hydrogen bond between the glucose residue of steryl glycosides (SGs) and the phospholipid polar head. However, the rigidity of DOPC nanoliposomes was not significantly different due to the unsaturated bond. The addition of oligomeric proanthocyanidin (OPC) did not change the order of rigidity among the nanoliposomes, with P-SG-OPC having the highest Young's modulus (126.27 ± 2.06 MPa). In the simulated gastrointestinal tract experiment, P-SG-OPC exhibited the greatest stability, with minimal particle aggregation. Cellular uptake experiments revealed that DPPC nanoliposomes with high rigidity had optimal endocytosis, while DOPC nanoliposome uptake was independent of rigidity. In melanin production inhibition tests, the inhibitory effect correlated directly with Young's modulus and P-SG-OPC had the best inhibitory effect on melanin generation. Our findings in this study provide valuable insights into the design and optimization of nanoliposomes for the efficient delivery of active substances, offering potential solutions for improving the efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Gaodan Liu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Jiadan Yan
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Iaquinta S, Khazaie S, Ishow É, Blanquart C, Fréour S, Jacquemin F. Influence of the mechanical and geometrical parameters on the cellular uptake of nanoparticles: A stochastic approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3598. [PMID: 35343089 DOI: 10.1002/cnm.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are used for drug delivery with enhanced selectivity and reduced side-effect toxicity in cancer treatments. Based on the literature, the influence of the NPs mechanical and geometrical properties on their cellular uptake has been studied through experimental investigations. However, due to the difficulty to vary the parameters independently in such a complex system, it remains hard to efficiently conclude on the influence of each one of them on the cellular internalization of a NP. In this context, different mechanical / mathematical models for the cellular uptake of NPs have been developed. In this paper, we numerically investigate the influence of the NP's aspect ratio, the membrane tension and the cell-NP adhesion on the uptake of the NP using the model introduced in1 coupled with a numerical stochastic scheme to measure the weight of each one of the aforementioned parameters. The results reveal that the aspect ratio of the particle is the most influential parameter on the wrapping of the particle by the cell membrane. Then the adhesion contributes twice as much as the membrane tension. Our numerical results match the previous experimental observations.
Collapse
Affiliation(s)
- Sarah Iaquinta
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Shahram Khazaie
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Éléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, France
| | - Christophe Blanquart
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Sylvain Fréour
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Frédéric Jacquemin
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| |
Collapse
|
8
|
Desai P, Rimal R, Florea A, Gumerov RA, Santi M, Sorokina AS, Sahnoun SEM, Fischer T, Mottaghy FM, Morgenroth A, Mourran A, Potemkin II, Möller M, Singh S. Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells. Angew Chem Int Ed Engl 2022; 61:e202116653. [PMID: 35274425 PMCID: PMC9325431 DOI: 10.1002/anie.202116653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro‐ and hepato‐toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half‐life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano‐ or microgels.
Collapse
Affiliation(s)
- Prachi Desai
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
| | - Rahul Rimal
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexandru Florea
- Department of Nuclear Medicine University Hospital RWTH Aachen Pauwelstraße 30 52074 Aachen Germany
- Department of Radiology and Nuclear Medicine School for Cardiovascular Diseases (CARIM) and School for Oncology (GROW) Maastricht University 6229 HX Maastricht The Netherlands
| | - Rustam A. Gumerov
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
- Physics Department Lomonosov Moscow State University Leninskie Gory 1–2 119991 Moscow Russian Federation
| | - Marta Santi
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
| | - Anastasia S. Sorokina
- Physics Department Lomonosov Moscow State University Leninskie Gory 1–2 119991 Moscow Russian Federation
| | - Sabri E. M. Sahnoun
- Department of Nuclear Medicine University Hospital RWTH Aachen Pauwelstraße 30 52074 Aachen Germany
| | - Thorsten Fischer
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine University Hospital RWTH Aachen Pauwelstraße 30 52074 Aachen Germany
- Department of Radiology and Nuclear Medicine School for Cardiovascular Diseases (CARIM) and School for Oncology (GROW) Maastricht University 6229 HX Maastricht The Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine University Hospital RWTH Aachen Pauwelstraße 30 52074 Aachen Germany
| | - Ahmed Mourran
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
| | - Igor I. Potemkin
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
- Physics Department Lomonosov Moscow State University Leninskie Gory 1–2 119991 Moscow Russian Federation
- National Research South Ural State University Chelyabinsk 454080 Russian Federation
| | - Martin Möller
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
| | - Smriti Singh
- DWI Leibniz Institute for Interactive Materials e.V RWTH Aachen University Forckenbeckstrasse 50 52074 Aachen Germany
- Max Planck Institute for Medical Research (MPImF) Jahnstrasse 29 69120 Heidelberg Germany
| |
Collapse
|
9
|
Desai P, Rimal R, Florea A, Gumerov RA, Santi M, Sorokina AS, Sahnoun SEM, Fischer T, Mottaghy FM, Morgenroth A, Mourran A, Potemkin II, Möller M, Singh S. Tuning the Elasticity of Nanogels Improves their Circulation Time by Evading Immune Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prachi Desai
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Macromolecular Chemistry Aachen GERMANY
| | - Rahul Rimal
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Macromolecular chemistry Aachen GERMANY
| | - Alexandru Florea
- Uniklinik RWTH Aachen: Universitatsklinikum Aachen Nuclear Medicine GERMANY
| | - Rustam A. Gumerov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Physics RUSSIAN FEDERATION
| | - Marta Santi
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Macromolecular Chemistry GERMANY
| | - Anastasia S. Sorokina
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Physics RUSSIAN FEDERATION
| | | | - Thorsten Fischer
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Macromolecular Chemistry GERMANY
| | - Felix M. Mottaghy
- Uniklinik RWTH Aachen: Universitatsklinikum Aachen Nuclear Medicine GERMANY
| | | | - Ahmed Mourran
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Macromolecular chemistry GERMANY
| | - Igor I. Potemkin
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Physics RUSSIAN FEDERATION
| | - Martin Möller
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Macromolecular Chemistry GERMANY
| | - Smriti Singh
- Max-Planck-Institute for Medical Research: Max-Planck-Institut fur medizinische Forschung Cellular Biophysics Jahnstr. 29 Heidelberg GERMANY
| |
Collapse
|
10
|
Zhang Y, Li L, Wang J. Tuning cellular uptake of nanoparticles via ligand density: Contribution of configurational entropy. Phys Rev E 2021; 104:054405. [PMID: 34942735 DOI: 10.1103/physreve.104.054405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
The bioactivity of nanoparticles (NPs) crucially depends on their ability to cross biological membranes. A fundamental understanding of cell-NP interaction is hence essential to improve the performance of the NP-based biomedical applications. Although extensive studies of cellular uptake have converged upon the idea that the uptake process is mainly regulated by the elastic deformation of the cell membrane or NP, recent experimental observations indicate the ligand density as another critical factor in modulating NP uptake into cells. In this study, we propose a theoretical model of the wrapping of an elastic vesicle NP by a finite lipid membrane to depict the relevant energetic and morphological evolutions during the wrapping process driven by forming receptor-ligand bonds. In this model, the deformations of the membrane and the vesicle NP are assumed to follow the continuum Canham-Helfrich framework, whereas the change of configurational entropy of receptors is described from statistical thermodynamics. Results show that the ligand density strongly affects the binding energy and configurational entropy of free receptors, thereby altering the morphology of the vesicle-membrane system in the steady wrapping state. For the wrapping process by the finite lipid membrane, we also find that there exists optimal ligand density for the maximum wrapping degree. These predictions are consistent with relevant experimental observations reported in the literature. We have further observed that there are transitions of various wrapping phases (no wrapping, partial wrapping, and full wrapping) in terms of ligand density, membrane tension, and molecular binding energy. In particular, the ligand and receptor shortage regimes for the small and high ligand density are, respectively, identified. These results may provide guidelines for the rational design of nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Yudie Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Long Li
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China.,PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
11
|
Zhang Y, Li L, Wang J. Role of Ligand Distribution in the Cytoskeleton-Associated Endocytosis of Ellipsoidal Nanoparticles. MEMBRANES 2021; 11:membranes11120993. [PMID: 34940494 PMCID: PMC8705050 DOI: 10.3390/membranes11120993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
Nanoparticle (NP)–cell interaction mediated by receptor–ligand bonds is a crucial phenomenon in pathology, cellular immunity, and drug delivery systems, and relies strongly on the shape of NPs and the stiffness of the cell. Given this significance, a fundamental question is raised on how the ligand distribution may affect the membrane wrapping of non-spherical NPs under the influence of cytoskeleton deformation. To address this issue, in this work we use a coupled elasticity–diffusion model to systematically investigate the role of ligand distribution in the cytoskeleton-associated endocytosis of ellipsoidal NPs for different NP shapes, sizes, cytoskeleton stiffness, and the initial receptor densities. In this model, we have taken into account the effects of receptor diffusion, receptor–ligand binding, cytoskeleton and membrane deformations, and changes in the configuration entropy of receptors. By solving this model, we find that the uptake process can be significantly influenced by the ligand distribution. Additionally, there exists an optimal state of such a distribution, which corresponds to the fastest uptake efficiency and depends on the NP aspect ratio and cytoskeleton stiffness. We also find that the optimal distribution usually needs local ligand density to be sufficiently high at the large curvature region. Furthermore, the optimal state of NP entry into cells can tolerate slight changes to the corresponding optimal distribution of the ligands. The tolerance to such a change is enhanced as the average receptor density and NP size increase. These results may provide guidelines to control NP–cell interactions and improve the efficiency of target drug delivery systems.
Collapse
Affiliation(s)
| | - Long Li
- Correspondence: (L.L.); (J.W.)
| | | |
Collapse
|
12
|
Chen T, Zhang Y, Li X, Li C, Lu T, Xiao S, Liang H. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane. J Chem Theory Comput 2021; 17:7850-7861. [PMID: 34865469 DOI: 10.1021/acs.jctc.1c00897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The curvature-mediated interactions by cell membranes are crucial in many biological processes. We systematically studied the curvature-mediated wrapping of soft nanoparticles (NPs) by a tensionless membrane and the underlying pair interactions between NPs in determining it. We found that there are three types of wrapping pathways, namely, independence, cooperation, and tubulation. The particle size, adhesion strength, and softness are found to be strongly related with the wrapping mechanism. Reducing the adhesion strength transforms the wrapping pathway from cooperation to independence, while enhancing the NP softness requires a stronger adhesion to achieve the cooperative wrapping. This transformation of the wrapping pathway is controlled by the curvature-mediated interactions between NPs. For either soft or rigid NPs, the pair interactions are repulsive at short-ranged distances between NPs, while at long-ranged distances, a larger adhesion between NPs and a membrane is needed to generate attraction between NPs. Moreover, an enhancement of NP softness weakens the repulsion between NPs. These distinct behaviors of soft NPs are ascribed to the gentler deformation of the membrane at the face-to-face region between NPs due to the flattening and spreading of soft NPs along the membrane, requiring a reduced energy cost for soft NPs to approach each other. Our results provide a mechanistic understanding in detail about the membrane-mediated interactions between NPs and their interactions with cell membranes, which is helpful to understand the curvature-mediated assemblies of adhesive proteins or NPs on membranes, and offer novel possibilities for designing an effective NP-based vehicle for controlled drug delivery.
Collapse
Affiliation(s)
- Tongwei Chen
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yunhan Zhang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengxu Li
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teng Lu
- Computer Network Information Center of the Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Shiyan Xiao
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haojun Liang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Ribovski L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021; 13:2045. [PMID: 34959326 PMCID: PMC8705716 DOI: 10.3390/pharmaceutics13122045] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Safe and reliable entry to the brain is essential for successful diagnosis and treatment of diseases, but it still poses major challenges. As a result, many therapeutic approaches to treating disorders associated with the central nervous system (CNS) still only show limited success. Nano-sized systems are being explored as drug carriers and show great improvements in the delivery of many therapeutics. The systemic delivery of nanoparticles (NPs) or nanocarriers (NCs) to the brain involves reaching the neurovascular unit (NVU), being transported across the blood-brain barrier, (BBB) and accumulating in the brain. Each of these steps can benefit from specifically controlled properties of NPs. Here, we discuss how brain delivery by NPs can benefit from careful design of the NP properties. Properties such as size, charge, shape, and ligand functionalization are commonly addressed in the literature; however, properties such as ligand density, linker length, avidity, protein corona, and stiffness are insufficiently discussed. This is unfortunate since they present great value against multiple barriers encountered by the NPs before reaching the brain, particularly the BBB. We further highlight important examples utilizing targeting ligands and how functionalization parameters, e.g., ligand density and ligand properties, can affect the success of the nano-based delivery system.
Collapse
Affiliation(s)
| | | | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.R.); (N.M.H.)
| |
Collapse
|
14
|
Singhal A, Agur Sevink GJ. The role of size and nature in nanoparticle binding to a model lung membrane: an atomistic study. NANOSCALE ADVANCES 2021; 3:6635-6648. [PMID: 36132649 PMCID: PMC9417560 DOI: 10.1039/d1na00578b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/16/2021] [Indexed: 05/09/2023]
Abstract
Understanding the uptake of nanoparticles (NPs) by different types of cellular membranes plays a pivotal role in the design of NPs for medical applications and in avoiding adverse effects that result in nanotoxicity. Yet, the role of key design parameters, such as the bare NP material, NP size and surface reactivity, and the nature of NP coatings, in membrane remodelling and uptake mechanisms is still very poorly understood, particularly towards the lower range of NP dimensions that are beyond the experimental imaging resolution. The same can be said about the role of a particular membrane composition. Here, we systematically employ biased and unbiased molecular dynamics simulations to calculate the binding energy for three bare materials (Ag/SiO2/TiO2) and three NP sizes (1/3/5 nm diameter) with a representative lung surfactant membrane, and to study their binding kinetics. The calculated binding energies show that irrespective of size, Ag nanoparticles bind very strongly to the bilayer, while the NPs made of SiO2 or TiO2 experience very low to no binding. The unbiased simulations provide insight into how the NPs and membrane affect each other in terms of the solvent-accessible surface area (SASA) of the NPs and the defect types and fluidity of the membrane. Using these systematic fine-grained results in coarsening procedures will pave the way for simulations considering NP sizes that are well beyond the membrane thickness, i.e. closer to experimental dimensions, for which different binding characteristics and more significant membrane remodelling are expected.
Collapse
Affiliation(s)
- Ankush Singhal
- Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - G J Agur Sevink
- Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
15
|
Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc Natl Acad Sci U S A 2021; 118:2104826118. [PMID: 34649991 DOI: 10.1073/pnas.2104826118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/06/2023] Open
Abstract
Nanoparticle (NP) stiffness has been shown to significantly impact circulation time and biodistribution in anticancer drug delivery. In particular, the relationship between particle stiffness and tumor accumulation and penetration in vivo is an important phenomenon to consider in optimizing NP-mediated tumor delivery. Layer-by-layer (LbL) NPs represent a promising class of multifunctional nanoscale drug delivery carriers. However, there has been no demonstration of the versatility of LbL systems in coating systems with different stiffnesses, and little is known about the potential role of LbL NP stiffness in modulating in vivo particle trafficking, although NP modulus has been recently studied for its impact on pharmacokinetics. LbL nanotechnology enables NPs to be functionalized with uniform coatings possessing molecular tumor-targeting properties, independent of the NP core stiffness. Here, we report that the stiffness of LbL NPs is directly influenced by the mechanical properties of its underlying liposomal core, enabling the modulation and optimization of LbL NP stiffness while preserving LbL NP outer layer tumor-targeting and stealth properties. We demonstrate that the stiffness of LbL NPs has a direct impact on NP pharmacokinetics, organ and tumor accumulation, and tumor penetration-with compliant LbL NPs having longer elimination half-life, higher tumor accumulation, and higher tumor penetration. Our findings underscore the importance of NP stiffness as a design parameter in enhancing the delivery of LbL NP formulations.
Collapse
|
16
|
Song C, Zhang X, Wei W, Ma G. Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Ribovski L, de Jong E, Mergel O, Zu G, Keskin D, van Rijn P, Zuhorn IS. Low nanogel stiffness favors nanogel transcytosis across an in vitro blood-brain barrier. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102377. [PMID: 33621652 DOI: 10.1016/j.nano.2021.102377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Transport of therapeutics across the blood-brain barrier (BBB) is a fundamental requirement for effective treatment of numerous brain diseases. However, most therapeutics (>500 Da) are unable to permeate through the BBB and do not achieve therapeutic doses. Nanoparticles (NPs) are being investigated to facilitate drug delivery to the brain. Here, we investigate the effect of nanoparticle stiffness on NP transport across an in vitro BBB model. To this end, fluorescently labeled poly(N-isopropylmethacrylamide) (p(NIPMAM)) nanogels' stiffness was varied by the inclusion of 1.5 mol% (NG1.5), 5 mol% (NG5), and 14 mol% (NG14) N,N'-methylenebis(acrylamide) (BIS) cross-linker and nanogel uptake and transcytosis was quantified. The more densely cross-linked p(NIPMAM) nanogels showed the highest level of uptake by polarized brain endothelial cells, whereas the less densely cross-linked nanogels demonstrated the highest transcytotic potential. These findings suggest that nanogel stiffness has opposing effects on nanogel uptake and transcytosis at the BBB.
Collapse
Affiliation(s)
- Laís Ribovski
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands; University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, São Carlos, SP, Brazil
| | - Edwin de Jong
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Olga Mergel
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Guangyue Zu
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Damla Keskin
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Inge S Zuhorn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands.
| |
Collapse
|
18
|
Liu N, Becton M, Zhang L, Wang X. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling. J Phys Chem B 2020; 124:11145-11156. [DOI: 10.1021/acs.jpcb.0c08089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew Becton
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
20
|
Eshaghi B, Alsharif N, An X, Akiyama H, Brown KA, Gummuluru S, Reinhard BM. Stiffness of HIV-1 Mimicking Polymer Nanoparticles Modulates Ganglioside-Mediated Cellular Uptake and Trafficking. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000649. [PMID: 32999830 PMCID: PMC7509657 DOI: 10.1002/advs.202000649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Indexed: 05/12/2023]
Abstract
The monosialodihexosylganglioside, GM3, and its binding to CD169 (Siglec-1) have been indicated as key factors in the glycoprotein-independent sequestration of the human immunodeficiency virus-1 (HIV-1) in virus-containing compartments (VCCs) in myeloid cells. Here, lipid-wrapped polymer nanoparticles (NPs) are applied as a virus-mimicking model to characterize the effect of core stiffness on NP uptake and intracellular fate triggered by GM3-CD169 binding in macrophages. GM3-functionalized lipid-wrapped NPs are assembled with poly(lactic-co-glycolic) acid (PLGA) as well as with low and high molecular weight polylactic acid (PLAlMW and PLAhMW) cores. The NPs have an average diameter of 146 ± 17 nm and comparable surface properties defined by the self-assembled lipid layer. Due to differences in the glass transition temperature, the Young's modulus (E) differs substantially under physiological conditions between PLGA (E PLGA = 60 ± 32 MPa), PLAlMW (E PLA lMW = 86 ± 25 MPa), and PLAhMW (E PLA hMW = 1.41 ± 0.67 GPa) NPs. Only the stiff GM3-presenting PLAhMW NPs but not the softer PLGA or PLAlMW NPs avoid a lysosomal pathway and localize in tetraspanin (CD9)-positive compartments that resemble VCCs. These observations suggest that GM3-CD169-induced sequestration of NPs in nonlysosomal compartments is not entirely determined by ligand-receptor interactions but also depends on core stiffness.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Nourin Alsharif
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Xingda An
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Hisashi Akiyama
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Keith A. Brown
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|
21
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Karabasz A, Szuwarzyński M, Nowakowska M, Bzowska M, Lewandowska-Łańcucka J. Stabilization of liposomes with silicone layer improves their elastomechanical properties while not compromising biological features. Colloids Surf B Biointerfaces 2020; 195:111272. [PMID: 32791473 DOI: 10.1016/j.colsurfb.2020.111272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/28/2022]
Abstract
The liposomes are among the most promising types of drug delivery systems but low stability significantly limits their application. Some approaches proposed to overcome this drawback may affect the liposomes toxicity profile. It is assumed that developed by us and presented here stabilization method involving formation of silicone network within the liposomal bilayer will improve elastomechanical properties of vesicles while not deteriorating their biocompatibility. The silicone-stabilized liposomes were prepared by base-catalyzed polycondensation process of the 1,3,5,7-tetramethylcyclotetrasiloxane (D4H) within the liposomal bilayer. The systematic biological in vitro studies of vesicles obtained were carried out. Moreover, the elastomechanical features investigation employing atomic force microscopy (AFM) measurements was performed. These properties of the liposome membrane are of great importance since they define the nanocarriers' stability as well as play a significant role in their cellular uptake via endocytosis. Applying the Derjaguin-Muller-Toporov (DMT) model, the elastic modulus of the silicone-stabilized liposomes was determined and compared to that characteristic for the pristine liposomes. The in vitro biological evaluation of silicone-stabilized liposomes demonstrated that these vesicles are not toxic for blood cells isolated from healthy donors and they do not induce oxidative stress in HepG2 cells. AFM results confirmed the stabilizing effect of silicone and revealed that the silicone network improves the elastomechanical properties of the resulted liposomes. This is the first report demonstrating that the silicone-stabilized liposomes retain biocompatibility of pristine liposomes' while acquire significantly better elastomechanical features.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michał Szuwarzyński
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maria Nowakowska
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Joanna Lewandowska-Łańcucka
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
23
|
Liu J, Craciun I, Belluati A, Wu D, Sieber S, Einfalt T, Witzigmann D, Chami M, Huwyler J, Palivan CG. DNA-directed arrangement of soft synthetic compartments and their behavior in vitro and in vivo. NANOSCALE 2020; 12:9786-9799. [PMID: 32328600 DOI: 10.1039/d0nr00361a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA has been widely used as a key tether to promote self-organization of super-assemblies with emergent properties. However, control of this process is still challenging for compartment assemblies and to date the resulting assemblies have unstable membranes precluding in vitro and in vivo testing. Here we present our approach to overcome these limitations, by manipulating molecular factors such as compartment membrane composition and DNA surface density, thereby controlling the size and stability of the resulting DNA-linked compartment clusters. The soft, flexible character of the polymer membrane and low number of ssDNA remaining exposed after cluster formation determine the interaction of these clusters with the cell surface. These clusters exhibit in vivo stability and lack of toxicity in a zebrafish model. To display the breadth of therapeutic applications attainable with our system, we encapsulated the medically established enzyme laccase within the inner compartment and demonstrated its activity within the clustered compartments. Most importantly, these clusters can interact selectively with different cell lines, opening a new strategy to modify and expand cellular functions by attaching such pre-organized soft DNA-mediated compartment clusters on cell surfaces for cell engineering or therapeutic applications.
Collapse
Affiliation(s)
- Juan Liu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel-4058, Switzerland.
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel-4058, Switzerland.
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel-4058, Switzerland.
| | - Dalin Wu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel-4058, Switzerland.
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel-4056, Switzerland
| | - Tomaz Einfalt
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel-4056, Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel-4056, Switzerland
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel-4058, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel-4056, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel-4058, Switzerland.
| |
Collapse
|
24
|
Hui Y, Yi X, Wibowo D, Yang G, Middelberg APJ, Gao H, Zhao CX. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. SCIENCE ADVANCES 2020; 6:eaaz4316. [PMID: 32426455 PMCID: PMC7164958 DOI: 10.1126/sciadv.aaz4316] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 05/19/2023]
Abstract
The ability of cells to sense external mechanical cues is essential for their adaptation to the surrounding microenvironment. However, how nanoparticle mechanical properties affect cell-nanoparticle interactions remains largely unknown. Here, we synthesized a library of silica nanocapsules (SNCs) with a wide range of elasticity (Young's modulus ranging from 560 kPa to 1.18 GPa), demonstrating the impact of SNC elasticity on SNC interactions with cells. Transmission electron microscopy revealed that the stiff SNCs remained spherical during cellular uptake. The soft SNCs, however, were deformed by forces originating from the specific ligand-receptor interaction and membrane wrapping, which reduced their cellular binding and endocytosis rate. This work demonstrates the crucial role of the elasticity of nanoparticles in modulating their macrophage uptake and receptor-mediated cancer cell uptake, which may shed light on the design of drug delivery vectors with higher efficiency.
Collapse
Affiliation(s)
- Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Yi
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA
- College of Engineering; College of Science, Nanyang Technological University, Singapore 639798, Singapore
- Corresponding author. (H.G.); (C.-X.Z.)
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Corresponding author. (H.G.); (C.-X.Z.)
| |
Collapse
|
25
|
Jefferies D, Khalid S. To infect or not to infect: molecular determinants of bacterial outer membrane vesicle internalization by host membranes. J Mol Biol 2020; 432:1251-1264. [DOI: 10.1016/j.jmb.2020.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
|
26
|
Yan Z, Wu Z, Li S, Zhang X, Yi X, Yue T. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides. NANOSCALE 2019; 11:19751-19762. [PMID: 31384870 DOI: 10.1039/c9nr03554k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell membrane interactions with nanoparticles (NPs) are essential to cellular functioning and mostly accompanied by membrane curvature generation and sensing. Multiple NPs inducing curvature from one side of a membrane are believed to be wrapped cooperatively by the membrane through curvature-mediated interactions. However, little is known about another biologically ubiquitous and important case, i.e., NPs binding to opposite membrane sides induce a curved bend of different directions. Combining coarse-grained molecular dynamics and theoretical analysis, here we systematically investigate the cooperative effect in the wrapping of multiple adhesive NPs at the same and opposite membrane sides and demonstrate the importance of the magnitude and direction of the membrane bend in regulating curvature-mediated NP interactions. Effects of the NP size, size difference, initial distance, number, and strength of adhesion with the membrane on the wrapping cooperativity and wrapping states are analyzed. For NPs binding to the same membrane side, rich membrane wrapping and NP aggregation states are observed, and the curvature-mediated interactions could be either attractive or repulsive, depending on the initial NP distance and the competition between the membrane bending, NP binding and membrane protrusion. In sharp contrast, the interaction between two NPs binding to opposite membrane sides is always attractive and the cooperative wrapping of NPs is promoted, as the curved membrane regions induced by the NPs are shared in a manner that the NP-membrane contact is increased and the energy cost of membrane bending is reduced. Owing to the ubiquity and heterogeneity of membrane shaping proteins in biology, our results enrich the cutting-edge knowledge on the curvature-mediated interaction of NPs for better and profound understanding on high-order cooperative assemblies of NPs or proteins in numerous biological processes.
Collapse
Affiliation(s)
- Zengshuai Yan
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zeming Wu
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Yi
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
27
|
Zhang L, Chen H, Xie J, Becton M, Wang X. Interplay of Nanoparticle Rigidity and Its Translocation Ability through Cell Membrane. J Phys Chem B 2019; 123:8923-8930. [PMID: 31566375 DOI: 10.1021/acs.jpcb.9b07452] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the endocytic process of nanoparticles (NPs) with different mechanical rigidities is critical to develop effective drug delivery vectors. Here, we perform experiments, coarse-grained molecular dynamics simulations, and theoretical analyses to investigate the role of NPs' mechanical rigidity in the cellular endocytic process. Experiments based on two types of engineered Au NPs that have similar properties but different rigidities are performed in order to investigate their cellular uptake efficiencies, and it has been found that the more rigid NPs can achieve a higher cellular uptake efficiency. Simulation results confirm that rigid NPs can achieve full internalization by forming a complete double-layer endosome coating, while relatively soft NPs can only reach 40% surface coverage by membrane lipids. Simulation results capture an intriguing translocation of multiple NPs with different rigidities in a cooperative manner where the NPs' mechanical rigidities regulate their translocation efficiencies. We find that theoretically rigid NPs require less energy to overcome the energy barrier for membrane internalization than soft NPs do, which is in good agreement with experiment and simulation results. This synergetic study offers useful insight into the design principle of a general NP-based drug delivery vector as well as the promising biomedical application of NP-based medicine.
Collapse
Affiliation(s)
- Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | | | | | | |
Collapse
|
28
|
Shamsi M, Mohammadi A, Manshadi MK, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019; 307:150-165. [DOI: 10.1016/j.jconrel.2019.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
|
29
|
Hui Y, Yi X, Hou F, Wibowo D, Zhang F, Zhao D, Gao H, Zhao CX. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS NANO 2019; 13:7410-7424. [PMID: 31287659 DOI: 10.1021/acsnano.9b03924] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The physicochemical properties of nanoparticles play critical roles in regulating nano-bio interactions. Whereas the effects of the size, shape, and surface charge of nanoparticles on their biological performances have been extensively investigated, the roles of nanoparticle mechanical properties in drug delivery, which have only been recognized recently, remain the least explored. This review article provides an overview of the impacts of nanoparticle mechanical properties on cancer drug delivery, including (1) basic terminologies of the mechanical properties of nanoparticles and techniques for characterizing these properties; (2) current methods for fabricating nanoparticles with tunable mechanical properties; (3) in vitro and in vivo studies that highlight key biological performances of stiff and soft nanoparticles, including blood circulation, tumor or tissue targeting, tumor penetration, and cancer cell internalization, with a special emphasis on the underlying mechanisms that control those complicated nano-bio interactions at the cellular, tissue, and organ levels. The interesting research and findings discussed in this review article will offer the research community a better understanding of how this research field evolved during the past years and provide some general guidance on how to design and explore the effects of nanoparticle mechanical properties on nano-bio interactions. These fundamental understandings, will in turn, improve our ability to design better nanoparticles for enhanced drug delivery.
Collapse
Affiliation(s)
- Yue Hui
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - Xin Yi
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering , Peking University , Beijing 100871 , China
| | - Fei Hou
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Huajian Gao
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , QLD 4072 , Australia
| |
Collapse
|
30
|
Dai Z, Yu M, Yi X, Wu Z, Tian F, Miao Y, Song W, He S, Ahmad E, Guo S, Zhu C, Zhang X, Li Y, Shi X, Wang R, Gan Y. Chain-Length- and Saturation-Tuned Mechanics of Fluid Nanovesicles Direct Tumor Delivery. ACS NANO 2019; 13:7676-7689. [PMID: 31187973 DOI: 10.1021/acsnano.9b01181] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small unilamellar vesicles (SUVs), ubiquitous in organisms, play key and active roles in various biological processes. Although the physical properties of the constituent lipid molecules (i.e., the acyl chain length and saturation) are known to affect the mechanical properties of SUVs and consequently regulate their biological behaviors and functions, the underlying mechanism remains elusive. Here, we combined theoretical modeling and experimental investigation to probe the mechanical behaviors of SUVs with different lipid compositions. The membrane bending rigidity of SUVs increased with increasing chain length and saturation, resulting in differences in the vesicle rigidity and deformable capacity. Furthermore, we tested the tumor delivery capacity of liposomes with low, intermediate, and high rigidity as typical models for SUVs. Interestingly, liposomes with intermediate rigidity exhibited better tumor extracellular matrix diffusion and multicellular spheroid (MCS) penetration and retention than that of their stiffer or softer counterparts, contributing to improved tumor suppression. Stiff SUVs had superior cellular internalization capacity but intermediate tumor delivery efficacy. Stimulated emission depletion microscopy directly showed that the optimal formulation was able to transform to a rod-like shape in MCSs, which stimulated fast transport in tumor tissues. In contrast, stiff liposomes hardly deformed, whereas soft liposomes changed their shape irregularly, which slowed their MCS penetration. Our findings introduce special perspectives from which to map the detailed mechanical properties of SUVs with different compositions, provide clues for understanding the biological functions of SUVs, and suggest that liposome mechanics may be a design parameter for enhancing drug delivery.
Collapse
Affiliation(s)
- Zhuo Dai
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Miaorong Yu
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xin Yi
- Beijing Innovation Center for Engineering Science and Advanced Technology, and Department of Mechanics and Engineering Science, College of Engineering , Peking University , Beijing 100871 , China
| | - Zeming Wu
- Beijing Innovation Center for Engineering Science and Advanced Technology, and Department of Mechanics and Engineering Science, College of Engineering , Peking University , Beijing 100871 , China
| | - Falin Tian
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yunqiu Miao
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Wenyi Song
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Shufang He
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Ejaj Ahmad
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Shiyan Guo
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Chunliu Zhu
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yiming Li
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Xinghua Shi
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Chinese Academy of Sciences , Beijing 100190 , China
| | - Rui Wang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Yong Gan
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
31
|
Wang S, Guo H, Li Y, Li X. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity. NANOSCALE 2019; 11:4025-4034. [PMID: 30768108 DOI: 10.1039/c8nr09381d] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cellular uptake of nanoparticles (NPs) has drawn significant attention due to their great importance and potential in drug delivery, bioimaging, and specific targeting. Here, we conduct a computational study on the translocation process of soft nanoparticles with different elasticities and surface hydrophobicities through a lipid bilayer membrane. It is shown that the translocation abilities of hydrophilic NPs can be enhanced by increasing their stiffness, while the penetrability of hydrophobic NPs is weakened by increasing the particle stiffness. The free energy analysis indicates that rigid hydrophilic NPs and soft hydrophobic NPs encounter lower energy barriers during penetration. In direct translocation, different deformation modes are observed for NPs with different surface hydrophobicities during cellular internalization. Further, deformation analysis demonstrates that hydrophilic NPs are flattened in the membrane plane, while hydrophobic NPs are elongated along the membrane norm during penetration. We conclude that the elasticity of NPs has an obvious impact on their ability to penetrate across the lipid bilayer membrane through different morphological responses of hydrophilic and hydrophobic NPs. These results shed light on the coupled effects of particle elasticity and surface hydrophobicity on the cellular uptake of elastic NPs, which may provide useful guidelines for designing effective nanocarrier systems for drug delivery.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering, MOE Key Laboratory of Hydrodynamics), Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Hui Guo
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yinfeng Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering, MOE Key Laboratory of Hydrodynamics), Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuejin Li
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
32
|
Shen Z, Ye H, Yi X, Li Y. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter. ACS NANO 2019; 13:215-228. [PMID: 30557506 DOI: 10.1021/acsnano.8b05340] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Using coarse-grained molecular dynamics simulations, we systematically investigate the receptor-mediated endocytosis of elastic nanoparticles (NPs) with different sizes, ranging from 25 to 100 nm, and shapes, including sphere-like, oblate-like, and prolate-like. Simulation results provide clear evidence that the membrane wrapping efficiency of NPs during endocytosis is a result of competition between receptor diffusion kinetics and thermodynamic driving force. The receptor diffusion kinetics refer to the kinetics of receptor recruitment that are affected by the contact edge length between the NP and membrane. The thermodynamic driving force represents the amount of required free energy to drive NPs into a cell. Under the volume constraint of elastic NPs, the soft spherical NPs are found to have similar contact edge lengths to rigid ones and to less efficiently be fully wrapped due to their elastic deformation. Moreover, the difference in wrapping efficiency between soft and rigid spherical NPs increases with their sizes, due to the increment of their elastic energy change. Furthermore, because of its prominent large contact edge length, the oblate ellipsoid is found to be the least sensitive geometry to the variation in NP's elasticity among the spherical, prolate, and oblate shapes during the membrane wrapping. In addition, simulation results indicate that conflicting experimental observations on the efficiency of cellular uptake of elastic NPs could be caused by their different mechanical properties. Our simulations provide a detailed mechanistic understanding about the influence of NPs' size, shape, and elasticity on their membrane wrapping efficiency, which serves as a rational guidance for the design of NP-based drug carriers.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Huilin Ye
- Department of Mechanical Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, and Beijing Innovation Center for Engineering Science and Advanced Technology , Peking University , Beijing 100871 , China
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
33
|
Liu H, Wang J, Li W, Hu J, Wang M, Kang Y. Cellular Uptake Behaviors of Rigidity-Tunable Dendrimers. Pharmaceutics 2018; 10:E99. [PMID: 30029551 PMCID: PMC6161299 DOI: 10.3390/pharmaceutics10030099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Understanding of the interaction between cells and nanoparticles (NPs) is critical. Despite numerous attempts to understand the effect of several parameters of NPs on their cellular uptake behaviors, such as size, shape, surface chemistry, etc., limited information is available regarding NP rigidity. Herein, we investigate the effect of rigidity on cellular uptake behaviors of NPs, using generation 5 poly(amidoamine) dendrimer as a model. By harnessing the abundant inner cavity, their rigidity could be effectively regulated by forming size-tunable gold NPs. The NPs thus formed were well characterized and displayed similar hydrodynamic size, surface potential, fluorescence intensity, and distinct rigidity (owing to differences in the size of the Au core). Flow cytometry analysis revealed a positive correlation between NP rigidity and cellular uptake of NPs. Confocal microscopic evaluation revealed that the entrapped gold NPs may affect the intracellular localization of the internalized dendrimers. The present findings can potentially guide the preparation of suitable NPs for biomedical applications.
Collapse
Affiliation(s)
- Hui Liu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China.
| | - Jingjing Wang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Wenchao Li
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Jie Hu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Min Wang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China.
| |
Collapse
|
34
|
Chen L, Li X, Zhang Y, Chen T, Xiao S, Liang H. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles. NANOSCALE 2018; 10:11969-11979. [PMID: 29904774 DOI: 10.1039/c8nr01521j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Understanding the interactions of nanoparticles (NPs) with cell membranes and regulating their cellular uptake processes are of fundamental importance to the design of drug delivery systems with minimum toxicity, high efficiency and long circulation time. Employing the procedure of coarse-graining, we built an elastically deformable NP model with tunable morphological and mechanical properties. We found that the cellular uptake of deformable NPs depends on their shape: an increase in the particle elasticity significantly slows the uptake rate of spherical NPs, slightly retards that of prolate NPs, and promotes the uptake of oblate NPs. The intrinsic mechanisms have been carefully investigated through analysis of the endocytic mechanisms and free energy calculations. These findings provide unique insights into how deformable NPs penetrate across cell membranes and offer novel possibilities for designing effective NP-based carriers for drug delivery.
Collapse
Affiliation(s)
- Liping Chen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | |
Collapse
|
35
|
Shen Z, Ye H, Li Y. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation. Phys Chem Chem Phys 2018; 20:16372-16385. [PMID: 29445792 DOI: 10.1039/c7cp08644j] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For nanoparticle (NP)-based drug delivery platforms, the elasticity of the NPs has a significant influence on their blood circulation time and cellular uptake efficiency. However, due to the complexity of the endocytosis process and the inconsistency in the definition of elasticity for NPs in experiments, the understanding about the receptor-mediated endocytosis process of elastic NPs is still limited. In this work, we developed a coarse-grained molecular dynamics (CGMD) model for elastic NPs. The energy change of the elastic NPs can be precisely controlled by the bond, area, volume and bending potentials of this CGMD model. To represent liposomes with different elasticities, we systematically varied the bending rigidity of elastic NPs in CGMD simulations. Additionally, we changed the radius of the elastic NPs to explore the potential size effect. Through virtual nano-indentation tests, we found that the effective stiffness of elastic NPs was determined by their bending rigidity and size. Afterwards, we investigated the receptor-mediated endocytosis process of elastic NPs with different sizes and bending rigidities. We found that the membrane wrapping of soft NPs was faster than that of the stiff ones at the early stage, due to the NP deformation induced large contact area between the NPs and the membrane. However, because of the large energy penalties induced by the NP deformation, the membrane wrapping speed of soft NPs slows down during the late stage. Eventually, the soft NPs are wrapped less efficiently than the stiff ones during the membrane wrapping process. Through systematic CGMD simulations, we found a scaling law between the cellular uptake efficiency and the phenomenal bending rigidity of elastic NPs, which agrees reasonably well with experimental observations. Furthermore, we observed that the membrane wrapping efficiencies of soft and stiff NPs with large sizes were close to each other, due to the stronger ligand-receptor binding force and smaller difference in the stiffness of elastic NPs. Our computational model provides an effective tool to investigate the receptor-mediated endocytosis of elastic NPs with well controlled mechanical properties. This study can also be applied to guide the design of NP-based drug carriers with high efficacy, by utilizing their elastic properties.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
36
|
Hui Y, Wibowo D, Liu Y, Ran R, Wang HF, Seth A, Middelberg APJ, Zhao CX. Understanding the Effects of Nanocapsular Mechanical Property on Passive and Active Tumor Targeting. ACS NANO 2018; 12:2846-2857. [PMID: 29489325 DOI: 10.1021/acsnano.8b00242] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The physicochemical properties of nanoparticles (size, charge, and surface chemistry, etc.) influence their biological functions often in complex and poorly understood ways. This complexity is compounded when the nanostructures involved have variable mechanical properties. Here, we report the synthesis of liquid-filled silica nanocapsules (SNCs, ∼ 150 nm) having a wide range of stiffness (with Young's moduli ranging from 704 kPa to 9.7 GPa). We demonstrate a complex trade-off between nanoparticle stiffness and the efficiencies of both immune evasion and passive/active tumor targeting. Soft SNCs showed 3 times less uptake by macrophages than stiff SNCs, while the uptake of PEGylated SNCs by cancer cells was independent of stiffness. In addition, the functionalization of stiff SNCs with folic acid significantly enhanced their receptor-mediated cellular uptake, whereas little improvement for the soft SNCs was conferred. Further in vivo experiments confirmed these findings and demonstrated the critical role of nanoparticle mechanical properties in regulating their interactions with biological systems.
Collapse
Affiliation(s)
- Yue Hui
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Rui Ran
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Hao-Fei Wang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Arjun Seth
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Anton P J Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| |
Collapse
|
37
|
Vorselen D, Marchetti M, López-Iglesias C, Peters PJ, Roos WH, Wuite GJL. Multilamellar nanovesicles show distinct mechanical properties depending on their degree of lamellarity. NANOSCALE 2018; 10:5318-5324. [PMID: 29504612 DOI: 10.1039/c7nr09224e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Small multilamellar vesicles may have benefits over unilamellar vesicles for drug delivery, such as an increased volume for hydrophobic drugs. In addition, their altered mechanical properties might be beneficial for cellular uptake. Here, we show how atomic force microscopy (AFM) can be used to detect and characterize multilamellar vesicles. We quantify the size of each break event occurring during AFM nanoindentations, which shows good agreement with the thickness of supported lipid bilayers. Analyzing the size and number of these events for individual vesicles allows us to distinguish between vesicles consisting of 1 up to 5 bilayers. We validate these results by comparison with correlative cryo-electron microscopy (cryo-EM) data at the vesicle population level. Finally, we quantify the vesicle geometry and mechanical properties, and show that with additional bilayers adherent vesicles are more spherical and stiffer. Surprisingly, at ∼20% stiffening for each additional bilayer, the vesicle stiffness scales only weakly with lamellarity. Our results show the potential of AFM for studying liposomal nanoparticles and suggest that small multilamellar vesicles may have beneficial mechanical properties for cellular uptake.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Zhao J, Lu H, Yao Y, Ganda S, Stenzel MH. Length vs. stiffness: which plays a dominant role in the cellular uptake of fructose-based rod-like micelles by breast cancer cells in 2D and 3D cell culture models? J Mater Chem B 2018; 6:4223-4231. [DOI: 10.1039/c8tb00706c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Internalization of rod-like micelles by breast cancer cells is significantly affected by the stiffness of nano-rods.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Yin Yao
- Electron Microscope Unit
- The University of New South Wales
- Sydney
- Australia
| | - Sylvia Ganda
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| |
Collapse
|
39
|
Zhao J, Stenzel MH. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 2018. [DOI: 10.1039/c7py01603d] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Knowledge of the interactions between nanoparticles (NPs) and cell membranes is of great importance for the design of safe and efficient nanomedicines.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemical Engineering
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| |
Collapse
|
40
|
Fang C, Hui TH, Wei X, Shao X, Lin Y. A combined experimental and theoretical investigation on cellular blebbing. Sci Rep 2017; 7:16666. [PMID: 29192221 PMCID: PMC5709380 DOI: 10.1038/s41598-017-16825-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
Although accumulating evidence has demonstrated the important role of membrane blebbing in various cellular processes, the fundamental question of how the initiation/evolution of blebs are influenced by physical factors like membrane-cortex interactions and intracellular pressure remains unclear. Here, we report a combined modeling and experimental study to address this outstanding issue. Specifically, boundary integral method was used to track the motion of membrane (in 3D) during blebbing while possible rupture of the bilayer-cortex adhesion has also been taken into account. We showed that, for a given differential pressure across the cell membrane, the size of the weakened cortex must be over a critical value for blebbing to occur and the steady-state volume of a bleb is proportional to its initial growth rate, all in good agreement with recent experiments. The predicted shape evolution of blebs also matches well with our observations. Finally, a blebbing map, summarizing the essential physics involved, was obtained which exhibits three distinct regimes: no bleb formation corresponding to a low intracellular pressure or a small weakened cortex region; bleb formed with a fixed width when the disrupted cortex zone is very large; and a growing bleb resulted from progressive membrane-cortex detachment under intermediate weakened cortex size.
Collapse
Affiliation(s)
- Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - T H Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - X Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - X Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China. .,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China.
| |
Collapse
|
41
|
Wu L, Zhang Z, Gao H, Li Y, Hou L, Yao H, Wu S, Liu J, Wang L, Zhai Y, Ou H, Lin M, Wu X, Liu J, Lang G, Xin Q, Wu G, Luo L, Liu P, Shentu J, Wu N, Sheng J, Qiu Y, Chen W, Li L. Open-label phase I clinical trial of Ad5-EBOV in Africans in China. Hum Vaccin Immunother 2017; 13. [PMID: 28708962 DOI: 10.1002/smll.201701815] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND To determine the safety and immunogenicity of a novel recombinant adenovirus type 5 vector based Ebola virus disease vaccine (Ad5-EBOV) in Africans in China. METHODS A phase 1, dose-escalation, open-label trial was conducted. 61 healthy Africans were sequentially enrolled, with 31 participants receiving one shot intramuscular injection and 30 participants receiving a double-shot regimen. Primary and secondary end points related to safety and immunogenicity were assessed within 28 d after vaccination. This study was registered with ClinicalTrials.gov (NCT02401373). RESULTS Ad5-EBOV is well tolerated and no adverse reaction of grade 3 or above was observed. 53 (86.89%) participants reported at least one adverse reaction within 28 d of vaccination. The most common reaction was fever and the mild pain at injection site, and there were no significant difference between these 2 groups. Ebola glycoprotein-specific antibodies appeared in all 61 participants and antibodies titers peaked after 28 d of vaccination. The geometric mean titres (GMTs) were similar between these 2 groups (1919.01 vs 1684.70 P = 0.5562). The glycoprotein-specific T-cell responses rapidly peaked after 14 d of vaccination and then decreased, however, the percentage of subjects with responses were much higher in the high-dose group (60.00% vs 9.68%, P = 0.0014). Pre-existing Ad5 neutralizing antibodies could significantly dampen the specific humoral immune response and cellular response to the vaccine. CONCLUSION The application of Ad5-EBOV demonstrated safe in Africans in China and a specific GP antibody and T-cell response could occur 14 d after the first immunization. This acceptable safety profile provides a reliable basis to proceed with trials in Africa.
Collapse
MESH Headings
- Adult
- Africa/epidemiology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- China
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/adverse effects
- Ebola Vaccines/immunology
- Ebolavirus/immunology
- Female
- Fever/ethnology
- Healthy Volunteers
- Hemorrhagic Fever, Ebola/epidemiology
- Hemorrhagic Fever, Ebola/ethnology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Male
- Membrane Glycoproteins/immunology
- Middle Aged
- T-Lymphocytes/immunology
- Vaccination
- Young Adult
Collapse
Affiliation(s)
- Lihua Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Zhe Zhang
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Hainv Gao
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| | - Yuhua Li
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - Lihua Hou
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Hangping Yao
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Shipo Wu
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Jian Liu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Ling Wang
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - You Zhai
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Huilin Ou
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Meihua Lin
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Xiaoxin Wu
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| | - Jingjing Liu
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - Guanjing Lang
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Qian Xin
- f The General Hospital of People's Liberation Army , Beijing , China
| | - Guolan Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Li Luo
- g Department of Epidemiology and Biostatistics , School of Public Health, Southeast University , Nanjing , Jiangsu , China
| | - Pei Liu
- g Department of Epidemiology and Biostatistics , School of Public Health, Southeast University , Nanjing , Jiangsu , China
| | - Jianzhong Shentu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Nanping Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Jifang Sheng
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Yunqing Qiu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Wei Chen
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Lanjuan Li
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| |
Collapse
|
42
|
Li L, Zhang Y, Wang J. Effects of ligand distribution on receptor-diffusion-mediated cellular uptake of nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170063. [PMID: 28573012 PMCID: PMC5451813 DOI: 10.1098/rsos.170063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/03/2017] [Indexed: 05/18/2023]
Abstract
Biophysical-factor-dependent cellular uptake of nanoparticles (NPs) through receptor-diffusion-mediated endocytosis bears significance in pathology, cellular immunity and drug-delivery systems. Advanced nanotechnology of NP synthesis provides methods for modifying NP surface with different ligand distributions. However, no report discusses effects of ligand distribution on NP surface on receptor-diffusion-mediated cellular uptake. In this article, we used a statistical dynamics model of receptor-diffusion-mediated endocytosis to examine ligand-distribution-dependent cellular uptake dynamics by considering that ligand-receptor complexes drive engulfing to overcome resistance to membrane deformation and changes in configuration entropy of receptors. Results showed that cellular internalization of NPs strongly depended on ligand distribution and that cellular-uptake efficiency of NPs was high when ligand distribution was within a range around uniform distribution. This feature of endocytosis ensures robust infection ability of viruses to enter host cells. Interestingly, results also indicated that optimal ligand distribution associated with highest cellular-uptake efficiency slightly depends on distribution pattern of ligands and density of receptors, and the optimal distribution becomes uniform when receptor density is sufficiently large. Position of initial contact point is also a factor affecting dynamic wrapping. This study explains why most enveloped viruses present almost homogeneous ligand distribution and is useful in designing controlled-release drug-delivery systems.
Collapse
Affiliation(s)
| | | | - Jizeng Wang
- Author for correspondence: Jizeng Wang e-mail:
| |
Collapse
|
43
|
Vorselen D, MacKintosh FC, Roos WH, Wuite GJ. Competition between Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles. ACS NANO 2017; 11:2628-2636. [PMID: 28273422 PMCID: PMC5371924 DOI: 10.1021/acsnano.6b07302] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
Nanovesicles (∼100 nm) are ubiquitous in cell biology and an important vector for drug delivery. Mechanical properties of vesicles are known to influence cellular uptake, but the mechanism by which deformation dynamics affect internalization is poorly understood. This is partly due to the fact that experimental studies of the mechanics of such vesicles remain challenging, particularly at the nanometer scale where appropriate theoretical models have also been lacking. Here, we probe the mechanical properties of nanoscale liposomes using atomic force microscopy (AFM) indentation. The mechanical response of the nanovesicles shows initial linear behavior and subsequent flattening corresponding to inward tether formation. We derive a quantitative model, including the competing effects of internal pressure and membrane bending, that corresponds well to these experimental observations. Our results are consistent with a bending modulus of the lipid bilayer of ∼14kbT. Surprisingly, we find that vesicle stiffness is pressure dominated for adherent vesicles under physiological conditions. Our experimental method and quantitative theory represents a robust approach to study the mechanics of nanoscale vesicles, which are abundant in biology, as well as being of interest for the rational design of liposomal vectors for drug delivery.
Collapse
Affiliation(s)
- Daan Vorselen
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Department
of Oral Function and Restorative Dentistry, Academic Centre for Dentistry
Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Fred C. MacKintosh
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Departments
of Chemical & Biomolecular Engineering, Chemistry, and Physics
& Astronomy, Rice University, Houston, Texas 77005, United States
- Center
for Theoretical Biophysics, Rice University, Houston, Texas 77030, United States
| | - Wouter H. Roos
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Nijenborgh
4, Groningen, 9747 AG, The Netherlands
| | - Gijs J.L. Wuite
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
44
|
Garapaty A, Champion JA. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties. Bioeng Transl Med 2017; 2:92-101. [PMID: 29313025 PMCID: PMC5689517 DOI: 10.1002/btm2.10047] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The ability to tune phagocytosis of particle-based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non-phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer-by-layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod-shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc-functionalized particles with macrophages during phagocytosis.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332
| | - Julie A. Champion
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332
| |
Collapse
|
45
|
Affiliation(s)
- Xin Yi
- Beijing
Innovation Center for Engineering Science and Advanced Technology
(BIC-ESAT), and Department of Mechanics and Engineering Science, College
of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- School
of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, United States
| | - Huajian Gao
- School
of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
46
|
Yi X, Gao H. Kinetics of receptor-mediated endocytosis of elastic nanoparticles. NANOSCALE 2017; 9:454-463. [PMID: 27934990 DOI: 10.1039/c6nr07179a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is now widely recognized that mechanical properties play critical roles in the cell uptake of nanomaterials. Here we conduct a theoretical study on the kinetics of receptor-mediated endocytosis of elastic nanoparticles that is limited by receptor diffusion, specifically focusing on how the uptake rate depends on the nanoparticle stiffness and size, membrane tension and binding strength between membrane receptors and ligands grafted on the nanoparticle surface. It is shown that, while soft nanoparticles are energetically less prone to full wrapping than stiff ones, the wrapping of the former is kinetically faster than that of the latter. Spherical and cylindrical elastic nanoparticles show dramatic differences in the effect of stiffness on the uptake rate. Additional theoretical analysis is performed to investigate the role of the stochastic receptor-ligand binding in the endocytosis of elastic nanoparticles. The relation between the uptake efficiency and uptake proneness is discussed. This study provides new insight into the elasticity effects on cell uptake and may serve as a design guideline for the controlled endocytosis and diagnostics delivery.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
47
|
Olinger AD, Spangler EJ, Kumar PBS, Laradji M. Membrane-mediated aggregation of anisotropically curved nanoparticles. Faraday Discuss 2017; 186:265-75. [PMID: 26778353 DOI: 10.1039/c5fd00144g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using systematic numerical simulations, we study the self-assembly of elongated curved nanoparticles on lipid vesicles. Our simulations are based on molecular dynamics of a coarse-grained implicit-solvent model of self-assembled lipid membranes with a Langevin thermostat. Here we consider only the case wherein the nanoparticle-nanoparticle interaction is repulsive, only the concave surface of the nanoparticle interacts attractively with the lipid head groups and only the outer surface of the vesicle is exposed to the nanoparticles. Upon their adhesion on the vesicle, the curved nanoparticles generate local curvature on the membrane. The resulting nanoparticle-generated membrane curvature leads in turn to nanoparticle self-assembly into two main types of aggregates corresponding to chain aggregates at low adhesion strengths and aster aggregates at high adhesion strength. The chain-like aggregates are due to the fact that at low values of adhesion strength, the nanoparticles prefer to lie parallel to each other. As the adhesion strength is increased, a splay angle between the nanoparticles is induced with a magnitude that increases with increasing adhesion strength. The origin of the splay angles between the nanoparticles is shown to be saddle-like membrane deformations induced by a tilt of the lipids around the nanoparticles. This phenomenon of membrane mediated self-assembly of anisotropically curved nanoparticles is explored for systems with varying nanoparticle number densities, adhesion strength, and nanoparticle intrinsic curvature.
Collapse
Affiliation(s)
- Alexander D Olinger
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA and Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA
| | - Eric J Spangler
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA and Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai-600 036, India.
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
48
|
Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev 2017; 108:51-67. [PMID: 26806856 DOI: 10.1016/j.addr.2016.01.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Modification of nano/micro-particle physical parameters (e.g. size, shape, surface charge) has proven to be an effective method to enhance their delivery abilities. Recently, advances in particle synthesis have facilitated investigations into the role that particle elasticity plays in modulating drug delivery processes. This review will highlight: (i) methods to tune particle elasticity, (ii) the role particle elasticity plays in cellular internalization, (iii) the role of particle elasticity in modulating circulation times, (iv) the effect of particle elasticity on altering biodistribution and tissue targeting, and (v) the application of computational methods to explain the differences in cellular internalization of particles of different elasticities. Overall, literature reports suggest a complex relationship between particle elasticity and drug delivery processes. Despite this complex relationship, it is clear from numerous in vitro and in vivo studies that particle elasticity is an important parameter that can be leveraged to improve blood circulation, tissue targeting, and specific interactions with cells.
Collapse
|
49
|
Yi X, Gao H. Incorporation of Soft Particles into Lipid Vesicles: Effects of Particle Size and Elasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13252-13260. [PMID: 27951715 DOI: 10.1021/acs.langmuir.6b03184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The interaction between particles and lipid biomembranes plays an essential role in many fields such as endocytosis, drug delivery, and intracellular traffic. Here we conduct a theoretical study on the incorporation of elastic particles of different sizes and rigidities into a lipid vesicle through adhesive wrapping. It is shown that while the incorporation of relatively small particles involves smooth shape evolution, the vesicle wrapping of large particles exhibits a discontinuous shape transition, followed by a protrusion of the vesicle membrane at infinitesimal cost of elastic deformation energy. Moreover, softer particles require stronger adhesion energy to achieve successful internalization and delay the onset of discontinuous shape transition to a higher wrapping degree. Depending on the adhesion energy, particle-vesicle size, and rigidity ratios, and the spontaneous curvature of the vesicle, a rich variety of wrapping phase diagrams consisting of stable and metastable states of no-wrapping, partial-wrapping, and full-wrapping are established. The underlying mechanism of the discontinuous shape transformation of the vesicle and the relation between the uptake proneness and uptake efficiency are discussed. These results shed further light on the elasticity effects in cellular uptake of elastic particles and may provide rational design guidelines for controlled endocytosis and diagnostics delivery.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University , Providence, Rhode Island 02912, United States
| | - Huajian Gao
- School of Engineering, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
50
|
Dearnley M, Reynolds NP, Cass P, Wei X, Shi S, Mohammed AA, Le T, Gunatillake P, Tizard ML, Thang SH, Hinton TM. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes. Biomacromolecules 2016; 17:3532-3546. [DOI: 10.1021/acs.biomac.6b01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Megan Dearnley
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - Nicholas P. Reynolds
- ARC
Training Centre for Biodevices, Swinburne University of Technology, Hawthorn, Vic 3122, Australia
| | - Peter Cass
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
| | - Xiaohu Wei
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
- College
of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuning Shi
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - A. Aalam Mohammed
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - Tam Le
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
| | | | - Mark L. Tizard
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - San H. Thang
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
| | - Tracey M. Hinton
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| |
Collapse
|