1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Santos M, Michael PL, Mitchell TC, Lam YT, Robinson TM, Moore MJ, Tan RP, Rnjak-Kovacina J, Lim KS, Wise SG. On-Demand Bioactivation of Inert Materials With Plasma-Polymerized Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311313. [PMID: 38483292 DOI: 10.1002/adma.202311313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Indexed: 03/22/2024]
Abstract
Conventional gas plasma treatments are crucial for functionalizing materials in biomedical applications, but have limitations hindering their broader use. These methods require exposure to reactive media under vacuum conditions, rendering them unsuitable for substrates that demand aqueous environments, such as proteins and hydrogels. In addition, complex geometries are difficult to treat, necessitating extensive customization for each material and shape. To address these constraints, an innovative approach employing plasma polymer nanoparticles (PPN) as a versatile functionalization tool is proposed. PPN share similarities with traditional plasma polymer coatings (PPC) but offer unique advantages: compatibility with aqueous systems, the ability to modify complex geometries, and availability as off-the-shelf products. Robust immobilization of PPN on various substrates, including synthetic polymers, proteins, and complex hydrogel structures is demonstrated in this study. This results in substantial improvements in surface hydrophilicity. Materials functionalization with arginylglycylaspartic acid (RGD)-loaded PPN significantly enhances cell attachment, spreading, and substrate coverage on inert scaffolds compared to passive RGD coatings. Improved adhesion to complex geometries and subsequent differentiation following growth factor exposure is also demonstrated. This research introduces a novel substrate functionalization approach that mimics the outcomes of plasma coating technology but vastly expands its applicability, promising advancements in biomedical materials and devices.
Collapse
Affiliation(s)
- Miguel Santos
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Praveesuda L Michael
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Timothy C Mitchell
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Yuen Ting Lam
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Thomas M Robinson
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mathew J Moore
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Richard P Tan
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, 2006, Australia
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Steven G Wise
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
3
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
6
|
Landoulsi J. Surface (bio)-functionalization of metallic materials: How to cope with real interfaces? Adv Colloid Interface Sci 2024; 325:103054. [PMID: 38359674 DOI: 10.1016/j.cis.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/17/2024]
Abstract
Metallic materials are an important class of biomaterials used in various medical devices, owing to a suitable combination of their mechanical properties. The (bio)-functionalization of their surfaces is frequently performed for biocompatibility requirements, as it offers a powerful way to control their interaction with biological systems. This is particularly important when physicochemical processes and biological events, mainly involving proteins and cells, are initiated at the host-material interface. This review addresses the state of "real interfaces" in the context of (bio)-functionalization of metallic materials, and the necessity to cope with it to avoid frequent improper evaluation of the procedure used. This issue is, indeed, well-recognized but often neglected and emerges from three main issues: (i) ubiquity of surface contamination with organic compounds, (ii) reactivity of metallic surfaces in biological medium, and (iii) discrepancy in (bio)-functionalization procedures between expectations and reality. These disturb the assessment of the strategies adopted for surface modifications and limit the possibilities to provide guidelines for their improvements. For this purpose, X-ray photoelectrons spectroscopy (XPS) comes to the rescue. Based on significant progresses made in methodological developments, and through a large amount of data compiled to generate statistically meaningful information, and to insure selectivity, precision and accuracy, the state of "real interfaces" is explored in depth, while looking after the two main constituents: (i) the bio-organic adlayer, in which the discrimination between the compounds of interest (anchoring molecules, coupling agents, proteins, etc) and organic contaminants can be made, and (ii) the metallic surface, which undergoes dynamic processes due to their reactivity. Moreover, through one of the widespread (bio)-functionalization strategy, given as a case study, a particular attention is devoted to describe the state of the interface at different stages (composition, depth distribution of contaminants and (bio)compounds of interest) and the mode of protein retention. It is highlighted, in particular, that the occurrence or improvement of bioactivity does not demonstrate that the chemical schemes worked in reality. These aspects are particularly essential to make progress on the way to choose the suitable (bio)-functionalization strategy and to provide guidelines to improve its efficiency.
Collapse
Affiliation(s)
- Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 4 place Jussieu, F-75005 Paris, France; Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, 20529 F-60205 Compiègne Cedex, France.
| |
Collapse
|
7
|
Khoffi F, Khalsi Y, Chevrier J, Kerdjoudj H, Tazibt A, Heim F. Surface treatment of PET multifilament textile for biomedical applications: roughness modification and fibroblast viability assessment. BIOMED ENG-BIOMED TE 2024; 69:17-26. [PMID: 37650423 DOI: 10.1515/bmt-2023-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the potential of tuning the topography of textile surfaces for biomedical applications towards modified cell-substrate interactions. METHODS For that purpose, a supercritical Nitrogen N2 jet was used to spray glass particles on multi-filament polyethylene terephthalate (PET) yarns and on woven fabrics. The influence of the jet projection parameters such as the jet pressure (P) and the standoff distance (SoD) on the roughness was investigated. RESULTS The impact of the particles created local filament ruptures on the treated surfaces towards hairiness increase. The results show that the treatment increases the roughness by up to 17 % at P 300 bars and SoD 300 mm while the strength of the material is slightly decreased. The biological study brings out that proliferation can be slightly limited on a more hairy surface, and is increased when the surface is more flat. After 10 days of fibroblast culture, the cells covered the entire surface of the fabrics and had mainly grown unidirectionally, forming cell clusters oriented along the longitudinal axis of the textile yarns. Clusters were generated at yarn crossings. CONCLUSIONS This approach revealed that the particle projection technology can help tuning the cell proliferation on a textile surface.
Collapse
Affiliation(s)
- Foued Khoffi
- Laboratoire de Génie Textile (LGTex), Ksar-Hellal, Tunisia
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - Yosri Khalsi
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - Julie Chevrier
- Université de Reims Champagne Ardenne, BIOS EA 4691, Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, BIOS EA 4691, Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Abdel Tazibt
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - Fréderic Heim
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
- GEPROMED, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Zhou JY, Mei YK, Qian XN, Yao ZH, Zhu YW, Wei YW, Qiu J. Modulation of SEMA4D-modified titanium surface on M2 macrophage polarization via activation of Rho/ROCK-mediated lactate release of endothelial cells: In vitro and in vivo. Colloids Surf B Biointerfaces 2024; 234:113691. [PMID: 38070369 DOI: 10.1016/j.colsurfb.2023.113691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 02/09/2024]
Abstract
SEMA4D-modified titanium surfaces can indirectly regulate macrophages through endothelial cells to achieve an anti-inflammatory effect, which is beneficial for healing soft tissues around the gingival abutment. However, the mechanism of surface-induced cellular phenotypic changes in SEMA4D-modified titanium has not yet been elucidated. SEMA4D activates the RhoA signaling pathway in endothelial cells, which coordinates metabolism and cytoskeletal remodeling. This study hypothesized that endothelial cells inoculated on SEMA4D-modified titanium surfaces can direct M2 polarization of macrophages via metabolites. An indirect co-culture model of endothelial cells and macrophages was constructed in vitro, and specific inhibitors were employed. Subsequently, endothelial cell adhesion and migration, metabolic changes, Rho/ROCK1 expression, and inflammatory expression of macrophages were assessed via immunofluorescence microscopy, specific kits, qRT-PCR, and Western blotting. Moreover, an in vivo rat bilateral maxillary implant model was constructed to evaluate the soft tissue healing effect. The in vitro experiments showed that the SEMA4D group had stronger endothelial cell adhesion and migration, increased Rho/ROCK1 expression, and enhanced release of lactate. Additionally, decreased macrophage inflammatory expression was observed. In contrast, the inhibitor group partially suppressed lactate metabolism and motility, whereas increased inflammatory expression. The in vivo analyses indicated that the SEMA4D group had faster and better angiogenic and anti-inflammatory effects, especially in the early stage. In conclusion, via the Rho/ROCK1 signaling pathway, the SEMA4D-modified titanium surface promotes endothelial cell adhesion and migration and lactic acid release, then the paracrine lactic acid promotes the polarization of macrophages to M2, thus obtaining the dual effects of angiogenesis and anti-inflammation.
Collapse
Affiliation(s)
- Jie-Yi Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yu-Kun Mei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Xin-Na Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Zheng-Hua Yao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
9
|
Mahajan K, Bhattacharya S. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine. Curr Top Med Chem 2024; 24:686-721. [PMID: 38409730 DOI: 10.2174/0115680266287101240214071718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- Department of Quality Assurence, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, 425405, India
| |
Collapse
|
10
|
Huang B, Yin Z, Zhou F, Su J. Functional anti-bone tumor biomaterial scaffold: construction and application. J Mater Chem B 2023; 11:8565-8585. [PMID: 37415547 DOI: 10.1039/d3tb00925d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Bone tumors, including primary bone tumors and bone metastases, have been plagued by poor prognosis for decades. Although most tumor tissue is removed, clinicians are still confronted with the dilemma of eliminating residual cancer cells and regenerating defective bone tissue after surgery. Therefore, functional biomaterial scaffolds are considered to be the ideal candidates to bridge defective tissues and restrain cancer recurrence. Through functionalized structural modifications or coupled therapeutic agents, they provide sufficient mechanical strength and osteoinductive effects while eliminating cancer cells. Numerous novel approaches such as photodynamic, photothermal, drug-conjugated, and immune adjuvant-assisted therapies have exhibited remarkable efficacy against tumors while exhibiting low immunogenicity. This review summarizes the progress of research on biomaterial scaffolds based on different functionalization strategies in bone tumors. We also discuss the feasibility and advantages of the combined application of multiple functionalization strategies. Finally, potential obstacles to the clinical translation of anti-tumor bone bioscaffolds are highlighted. This review will provide valuable references for future advanced biomaterial scaffold design and clinical bone tumor therapy.
Collapse
Affiliation(s)
- Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
11
|
Mukherjee N, Ghosh S. Substance P-Derived Extracellular-Matrix-Mimicking Peptide Hydrogel as a Cytocompatible Biomaterial Platform. Chembiochem 2023; 24:e202300286. [PMID: 37461811 DOI: 10.1002/cbic.202300286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/15/2023] [Indexed: 08/19/2023]
Abstract
Self-assembled short peptide-based hydrogel platforms have become widely applicable biomedical therapeutic maneuvers for their soft, tunable architecture, which can influence cellular behavior and morphology to an inordinate extent. In this work, a short supramolecular hydrogelator peptide, substance P, has been designed and synthesized from the C terminus conserved "FFGLM" section of a biologically abundant neuropeptide by using a fusion approach. In addition, to incorporate a good hydrophobic-hydrophilic balance, the truncated pentapeptide segment was further C-terminally modified by the incorporation of an integrin-binding "RGD" motif. Thanks to its N-terminal Fmoc group, this octapeptide ensemble "FFGLMRGD" undergoes rapid self-assembly to give rise to an injectable, pH-responsive, hydrogel-based self-supporting platform that exhibited good cytocompatibility with the cultured mammalian cells under both 2D and 3D culture conditions without exerting any potent cytotoxic effect in a Live/Dead experiment. A rheological experiment demonstrated its hydrogel-like mechanical properties, including thixotropicity. The atomic force microscopy and field emission scanning electron microscopy images of the fabricated hydrogel show a tangled fibrous surface topography owing to the presence of the N-terminal Fmoc-FF residue. Furthermore, an in-vitro scratch assay performed on fibroblast cell lines confirmed the wound-ameliorating potency of this designed hydrogel; this substantiates its future therapeutic prospects.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| | - Surajit Ghosh
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| |
Collapse
|
12
|
Sanyal A, Ghosh A, Roy C, Mazumder I, Marrazzo P. Revolutionizing the Use of Honeybee Products in Healthcare: A Focused Review on Using Bee Pollen as a Potential Adjunct Material for Biomaterial Functionalization. J Funct Biomater 2023; 14:352. [PMID: 37504847 PMCID: PMC10381877 DOI: 10.3390/jfb14070352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
The field of biomedical engineering highly demands technological improvements to allow the successful engraftment of biomaterials requested for healing damaged host tissues, tissue regeneration, and drug delivery. Polymeric materials, particularly natural polymers, are one of the primary suitable materials employed and functionalized to enhance their biocompatibility and thus confer advantageous features after graft implantation. Incorporating bioactive substances from nature is a good technique for expanding or increasing the functionality of biomaterial scaffolds, which may additionally encourage tissue healing. Our ecosystem provides natural resources, like honeybee products, comprising a rich blend of phytochemicals with interesting bioactive properties, which, when functionally coupled with biomedical biomaterials, result in the biomaterial exhibiting anti-inflammatory, antimicrobial, and antioxidant effects. Bee pollen is a sustainable product recently discovered as a new functionalizing agent for biomaterials. This review aims to articulate the general idea of using honeybee products for biomaterial engineering, mainly focusing on describing recent literature on experimental studies on biomaterials functionalized with bee pollen. We have also described the underlying mechanism of the bioactive attributes of bee pollen and shared our perspective on how future biomedical research will benefit from the fabrication of such functionalized biomaterials.
Collapse
Affiliation(s)
- Arka Sanyal
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Anushikha Ghosh
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Chandrashish Roy
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
He X, Wu H, Wang Y, Xiang Y, Zhang K, Rao X, Kang E, Xu L. Bimodal Antimicrobial Surfaces of Phytic Acid-Prussian Blue Nanoparticles-Cationic Polymer Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300354. [PMID: 37026671 PMCID: PMC10238204 DOI: 10.1002/advs.202300354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Indexed: 06/04/2023]
Abstract
Surface modification plays a pivotal role in tailoring the functionalities of a solid material. Introduction of antimicrobial function on material surfaces can provide additional protection against life-threatening bacterial infections. Herein, a simple and universal surface modification method based on surface adhesion and electrostatic interaction of phytic acid (PA) is developed. PA is first functionalized with Prussian blue nanoparticles (PB NPs) via metal chelation and then conjugates with cationic polymers (CPs) through electrostatic interaction. With the aid of surface adherent PA and gravitation effect, the as-formed PA-PB-CP network aggregates are deposited on the solid materials in a substrate-independent manner. Synergistic bactericidal effects of "contact-killing" induced by the CPs and localized photothermal effect caused by the PB NPs endow the substrates with strong antibacterial performance. Membrane integrity, enzymatic activity, and metabolism function of the bacteria are disturbed in contact with the PA-PB-CP coating under near-infrared (NIR) irradiation. The PA-PB-CP modified biomedical implant surfaces exhibit good biocompatibility and synergistic antibacterial effect under NIR irradiation, and eliminate the adhered bacteria both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - HuaJun Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Yan Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Yunjie Xiang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - Xi Rao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
| | - En‐Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeKent Ridge117576Singapore
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergiesSchool of Materials and EnergySouthwest UniversityChongqing400715P. R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan ProvinceCollege of Chemistry and Chemical EngineeringHainan Normal UniversityHaikou571158P. R. China
| |
Collapse
|
14
|
Almeida Furquim de Camargo B, Fonseca-Santos B, Gonçalves Carvalho S, Corrêa Carvalho G, Delello Di Filippo L, Sousa Araújo VH, Lobato Duarte J, Polli Silvestre AL, Bauab TM, Chorilli M. Functionalized lipid-based drug delivery nanosystems for the treatment of human infectious diseases. Crit Rev Microbiol 2023; 49:214-230. [PMID: 35634703 DOI: 10.1080/1040841x.2022.2047007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.
Collapse
Affiliation(s)
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, Campinas State University (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
15
|
Wang Y, Tang S, Ding N, Zhang Z. Biological properties of hydroxyapatite coatings on titanium dioxide nanotube surfaces using negative pressure method. J Biomed Mater Res B Appl Biomater 2023; 111:1365-1373. [PMID: 36826780 DOI: 10.1002/jbm.b.35240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Titanium (Ti) exhibits superior biocompatibility and mechanical properties but is bioinert, while hydroxyapatite (HA) possesses excellent osteogenesis and is widely used for the modification of Ti surface coatings. However, the synthesis of homogeneous and stable HA on metallic materials is still a major challenge. In this study, porous titanium dioxide nanotube arrays were prepared on Ti surface by anodic oxidation, loaded with calcium and phosphorus precursors by negative pressure immersion, and HA coating was formed by in situ crystallization of calcium and phosphorus on the surface by hydrothermal heating. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and bonding strength were conducted to confirm the surface characteristics of each group. The cell proliferation, mineralization degree, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on samples were calculated and compared in vitro experiments. Cylindrical samples were implanted into rat femurs to evaluate biocompatibility and osteogenesis in vivo. The results showed that HA crystals successfully synthesized in TiO2 nanotubes, enhancing the bonding strength of HA coating and Ti substrate under negative pressure. Moreover, HA coating on Ti substrate remarkably enhanced cell proliferation and osteogenic differentiation activity in vitro, and improved new bone formation as well as osseointegration in vivo.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Shuang Tang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Ning Ding
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Vahedi S, Aghdam RM, Sohi MH, Rezayan AH. Characteristics of electrospun chitosan/carbon nanotube coatings deposited on AZ31 magnesium alloy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:8. [PMID: 36630012 PMCID: PMC9834111 DOI: 10.1007/s10856-022-06703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Mg-based biomaterials are commonly used as biodegradable orthopedic implants (e.g., bone regeneration applications). However, achieving high biocompatibility and corrosion resistance has remained a challenge to be tackled. In this work, to investigate various fabricated coatings (with and without pre- anodizing), five categories of samples are considered: (a) bare Mg alloy (Mg), (b) Anodized Mg alloy (Mg-A), (c) CS-coated Mg alloy (Mg-C), (d) CS-coated anodized Mg alloy (Mg-AC), and (e) CS-CNT-coated anodized Mg alloy (Mg-ACC). These samples were characterized by using Field Emission Scanning Electron Microscopes (FE-SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FT-IR), and Raman Spectroscopy. The adhesion within the coated samples was compared. Then, the effects of the coatings were evaluated by comparing wettability, corrosion behavior, and biocompatibility for bare and coated samples. The adhesion test showed that the coatings exhibited higher adhesion for Mg-AC and Mg-ACC compared to Mg-C. Desired wettability was achieved as the contact angles of coated samples were in the range of 55°- 65°. Electrochemical impedance and polarization as well as immersion tests showed higher corrosion resistance for coated samples. The composite coated sample showed improved cell adhesion since the osteoblast cells covered almost the entire surface of the sample. Moreover, osteoblast cell viability for the sample was around 40% higher than that of the bare sample.
Collapse
Affiliation(s)
- Shaghayegh Vahedi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Mahmoud Heydarzadeh Sohi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| |
Collapse
|
17
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
18
|
Chang YM, Xiao JQ, Christy J, Wu CY, Huang CW, Wu TY, Chiang YC, Lin TH, Chen HY. Ice-templated synthesis of multicomponent porous coatings via vapour sublimation and deposition polymerization. Mater Today Bio 2022; 16:100403. [PMID: 36090608 PMCID: PMC9449663 DOI: 10.1016/j.mtbio.2022.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
A multicomponent vapour-deposited porous (MVP) coating with combined physical and biochemical properties was fabricated based on a chemical vapour sublimation and deposition process. Multiple components are used based on their natural thermodynamic properties, being volatile and/or nonvolatile, resulting in the sublimation of water vapour (from an iced template), and a simultaneous deposition process of poly-p-xylylene occurs upon radical polymerization into a disordered structure, forming porous coatings of MVP on various substrates. In terms of physical properties, the coating technology exhibits adjustable hydrophobicity by tuning the surface morphology by timed control of the sublimation of the iced template layer from a substrate. However, by using a nonvolatile solution during fabrication, an impregnation process of the deposited poly-p-xylylene on such a solution with tuning contact angles produces an MVP coating with a customizable elastic modulus based on deformation-elasticity theory. Moreover, patterning physical structures with adjustable pore size and/or porosity of the coatings, as well as modulation and compartmentalization to introduce necessary boundaries of microstructures within one MVP coating layer, can be achieved during the proposed fabrication process. Finally, with a combination of defined solutions comprised of both volatile and nonvolatile multicomponents, including functional biomolecules, growth factor proteins, and living cells, the fabrication of the resultant MVP coating serves devised purposes exhibiting a variety of biological functions demonstrated with versatility for cell proliferation, osteogenesis, adipogenesis, odontogenesis, spheroid growth of stem cells, and a complex coculture system towards angiogenesis. Multicomponent porous coating technology is produced based on vapour sublimation and deposition upon radical polymerization that overturns conventional vapour-deposited coatings, resulting in only dense thin films, and in addition, the versatility of adjusting coating physical and chemical properties by exploiting the volatility mechanism of iced solution templates and accommodation of solute substances during the fabrication process. The MVP coating and the proposed fabrication technique represent a simple approach to provide a prospective interface coating layer for materials science and are attractive for unlimited applications.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jia-Qi Xiao
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jane Christy
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Yu Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chao-Wei Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Ting-Ying Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chih Chiang
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31057, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
19
|
Ming H, Tian C, He N, Zhao X, Luo F, Li Z, Li J, Tan H, Fu Q. Mussel-inspired polyurethane coating for bio-surface functionalization to enhance substrate adhesion and cell biocompatibility. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1811-1827. [PMID: 35648635 DOI: 10.1080/09205063.2022.2085342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Considerable implant materials are prone to cause a severe inflammatory reaction due to poor histocompatibility, which leads to various complications and implant failure. Surface coating modification of these implant materials is one of the most important techniques to settle this problem. However, fabricating a coating with both adequate adhesiveness and excellent biocompatibility remains a challenge. Inspired by the adhesion mechanism of mussels, a series of mussel-inspired polyurethanes (PU-LDAs) were synthysized through a step growth polymerization based on hexamethylene diisocyanate as a hard segment, polytetra-methylene-ether-glycol as a soft segment, lysine-dopamine (LDA) and butanediol as chain extenders with different mole ratios.The coatings of PU-LDAs were applied to various substrates, such as stainless steel, glass and PP using a facile one-step coating process. The introduction of 3,4-dihydroxyphenylalanine (DOPA) groups can greatly improve the adhesion ability of the coatings to the substrates demonstrated by a 180° peel test. The peel strength of the PU-LDA100 coating containing high LDA content was 76.3, 48.5 and 67.5 N/m, which was 106.2%, 246.4% and 192.2% higher than that of the PU-LDA00 coating without LDA on the surface of stainless steel, glass and PP, respectively. Meanwhile, this PU coating has a lower immune inflammatory response which provides a universal method for surface modification of implant materials. Moreover, the DOPA groups in PU-LDAs could combine with the amino and thiol groups on cell membrane surface, leading to the improvement of cell adhesion and growth. Therefore, it has great potential application in the field of biomedical implant materials for the clinic.
Collapse
Affiliation(s)
- Hao Ming
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - ChenXu Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Nan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xin Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioact Mater 2022; 15:469-481. [PMID: 35386342 PMCID: PMC8958386 DOI: 10.1016/j.bioactmat.2022.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Posterior capsular opacification (PCO), the most common complication after cataract surgery, is caused by the proliferation, migration and differentiation of residual lens epithelial cells (LECs) on the surface of the intraocular lens (IOL). Although drug-loaded IOLs have been successfully developed, the PCO prevention efficacy is still limited due to the lack of targeting and low bioavailability. In this investigation, an exosome-functionalized drug-loaded IOL was successfully developed for effective PCO prevention utilizing the homologous targeting and high biocompatibility of exosome. The exosomes derived from LECs were collected to load the anti-proliferative drug doxorubicin (Dox) through electroporation and then immobilized on the aminated IOLs surface through electrostatic interaction. In vitro experiments showed that significantly improved cellular uptake of Dox@Exos by LECs was achieved due to the targeting ability of exosome, compared with free Dox, thus resulting in superior anti-proliferation effect. In vivo animal investigations indicated that Dox@Exos-IOLs effectively inhibited the development of PCO and showed excellent intraocular biocompatibility. We believe that this work will provide a targeting strategy for PCO prevention through exosome-functionalized IOL.
Collapse
|
21
|
Chen S, Qin C, Fang Q, Duo L, Wang M, Deng Z, Chen H, Lin Q. Rapid and Economical Drug-Eluting IOL Preparation via Thermoresponsive Agarose Coating for Effective Posterior Capsular Opacification Prevention. Front Bioeng Biotechnol 2022; 10:930540. [PMID: 35992334 PMCID: PMC9388942 DOI: 10.3389/fbioe.2022.930540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posterior capsular opacification (PCO), the highest incidence complication after cataract surgery, is mainly due to the attachment, proliferation, and migration of the residual lens epithelial cells (LECs). Although the drug-eluting IOLs have been proved to be an effective way to prevent PCO incidence, its preparations are time consuming and require tedious preparation steps. Herein, the thermoreversible agarose is adopted to prepare drug-eluting IOL. Such functional coating can be obtained easily by simple immersion in the antiproliferative drug containing hot agarose and taken out for cooling, which not only does not affect the optical property but also can effectively decrease the PCO incidence after intraocular implantation. As a result, the proposed agarose coating provides a rapid and economical alternative of drug-eluting IOL fabrication for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Chen
- *Correspondence: Hao Chen, ; Quankui Lin,
| | | |
Collapse
|
22
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
23
|
Ma N, Liu J, Li L, Huang W, Qiu W, Zhang J, Kong J, Zhang X. Hemoglobin-catalyzed atom transfer radical polymerization for ultrasensitive electrochemical DNA detection. Biosens Bioelectron 2022; 213:114485. [PMID: 35760021 DOI: 10.1016/j.bios.2022.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 11/24/2022]
Abstract
The use of hemoglobin (Hb) to drive atom transfer radical polymerization (ATRP) process (Hb-ATRP) for detection of lung cancer related nucleic acid is firstly reported. Hb does not need to be treated prior to using indicating the potential for synthetic engineering in complex biological microenvironments without the need for in vitro techniques. Here, we report a new signal amplification strategy using Hb-mediated graft of nitronyl niroxide monoradical polymers as a signal-on electrochemical biosensor for ultralow level DNA highly selective detection. Building DNA biosensors includes: (i) the fixation of peptide nucleic acid (PNA) probe (no phosphate group) via the 5' terminus-SH; (ii) the modification of transition metal; (iii) Site-specific markers of Hb-ATRP promoter, and (iv) the grafting of polymers with electrochemical signal by Hb-ATRP process. Through the Hb-ATRP process of nitronyl nitroxide monoradical (TEMPO), the presence of a small amount of DNA can eventually result in calling a certain number of TEMPO redox tags. Obviously, the Hb-ATRP is a method of easy source of raw materials, simple operation and no need for complex equipment. The constructed biosensor, as expected, is highly selective and sensitive to target DNA. The detection limit can be calculated as 15.96 fM under optimal conditions. The excellent performance also shows that the constructed DNA biosensor is suitable for DNA screening and DNA concentration determination in complex sample matrix.
Collapse
Affiliation(s)
- Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing Jiangsu, 210094, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Weibo Huang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing Jiangsu, 210094, PR China
| | - Wenhao Qiu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing Jiangsu, 210094, PR China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen Guangdong, 518060, PR China
| |
Collapse
|
24
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
25
|
Vishnu J, Manivasagam G, Mantovani D, Udduttula A, Coathup MJ, Popat KC, Ren PG, Prashanth KG. Balloon expandable coronary stent materials: a systematic review focused on clinical success. IN VITRO MODELS 2022; 1:151-175. [PMID: 39872801 PMCID: PMC11756493 DOI: 10.1007/s44164-022-00009-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/30/2025]
Abstract
Balloon expandable coronary stenting has revolutionized the field of interventional cardiology as a potential, minimally invasive modality for treating coronary artery disease. Even though stenting is successful compared to angioplasty (that leaves no stent in place), still there are many associated clinical complications. Bare metal stents are associated with in-stent restenosis caused mostly by neointimal hyperplasia, whereas success of drug-eluting stents comes at the expense of late-stent thrombosis and neoatherosclerosis. Even though innovative and promising, clinical trials with bioabsorbable stents reported thrombosis and a rapid pace of degradation without performing scaffolding action in several instances. It should be noted that a vast majority of these stents are based on a metallic platform which still holds the potential to mitigate major cardiovascular events and reduced economic burden to patients, alongside continuous improvement in stent technology and antiplatelet regimes. Hence, a systematic review was conducted following PRISMA guidelines to assess the clinically relevant material properties for a metallic stent material. From a materials perspective, the major causes identified for clinical failure of stents are inferior mechanical properties and blood-material interaction-related complications at the stent surface. In addition to these, the stent material should possess increased radiopacity for improved visibility and lower magnetic susceptibility values for artefact reduction. Moreover, the review provides an overview of future scope of percutaneous coronary interventional strategy. Most importantly, this review highlights the need for an interdisciplinary approach by clinicians, biomaterial scientists, and interventional cardiologists to collaborate in mitigating the impediments associated with cardiovascular stents for alleviating sufferings of millions of people worldwide. Graphical abstract
Collapse
Affiliation(s)
- Jithin Vishnu
- Centre for Biomaterials, Cellular and Molecular Theranostics, CBCMT, Vellore Institute of Technology, Vellore, 632014 India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics, CBCMT, Vellore Institute of Technology, Vellore, 632014 India
| | - Diego Mantovani
- Lab. for Biomaterials and Bioengineering, Department of Mining, Metallurgical and Materials Engineering & CHU de Quebec Research Centre, Laval University, Quebec City, QC Canada
| | - Anjaneyulu Udduttula
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Melanie J. Coathup
- Biionix Cluster and College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 USA
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
| | - K. G. Prashanth
- Centre for Biomaterials, Cellular and Molecular Theranostics, CBCMT, Vellore Institute of Technology, Vellore, 632014 India
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| |
Collapse
|
26
|
Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105152. [PMID: 35138042 PMCID: PMC8981489 DOI: 10.1002/advs.202105152] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Indexed: 05/13/2023]
Abstract
Skin wound repair is a multistage process involving multiple cellular and molecular interactions, which modulate the cell behaviors and dynamic remodeling of extracellular matrices to maximize regeneration and repair. Consequently, abnormalities in cell functions or pathways inevitably give rise to side effects, such as dysregulated inflammation, hyperplasia of nonmigratory epithelial cells, and lack of response to growth factors, which impedes angiogenesis and fibrosis. These issues may cause delayed wound healing or even non-healing states. Current clinical therapeutic approaches are predominantly dedicated to preventing infections and alleviating topical symptoms rather than addressing the modulation of wound microenvironments to achieve targeted outcomes. Bioactive materials, relying on their chemical, physical, and biological properties or as carriers of bioactive substances, can affect wound microenvironments and promote wound healing at the molecular level. By addressing the mechanisms of wound healing from the perspective of cell behaviors, this review discusses how bioactive materials modulate the microenvironments and cell behaviors within the wounds during the stages of hemostasis, anti-inflammation, tissue regeneration and deposition, and matrix remodeling. A deeper understanding of cell behaviors during wound healing is bound to promote the development of more targeted and efficient bioactive materials for clinical applications.
Collapse
Affiliation(s)
- Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Xu Huang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
27
|
Bonini F, Mosser S, Mor FM, Boutabla A, Burch P, Béduer A, Roux A, Braschler T. The Role of Interstitial Fluid Pressure in Cerebral Porous Biomaterial Integration. Brain Sci 2022; 12:417. [PMID: 35447953 PMCID: PMC9040716 DOI: 10.3390/brainsci12040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Recent advances in biomaterials offer new possibilities for brain tissue reconstruction. Biocompatibility, provision of cell adhesion motives and mechanical properties are among the present main design criteria. We here propose a radically new and potentially major element determining biointegration of porous biomaterials: the favorable effect of interstitial fluid pressure (IFP). The force applied by the lymphatic system through the interstitial fluid pressure on biomaterial integration has mostly been neglected so far. We hypothesize it has the potential to force 3D biointegration of porous biomaterials. In this study, we develop a capillary hydrostatic device to apply controlled in vitro interstitial fluid pressure and study its effect during 3D tissue culture. We find that the IFP is a key player in porous biomaterial tissue integration, at physiological IFP levels, surpassing the known effect of cell adhesion motives. Spontaneous electrical activity indicates that the culture conditions are not harmful for the cells. Our work identifies interstitial fluid pressure at physiological negative values as a potential main driver for tissue integration into porous biomaterials. We anticipate that controlling the IFP level could narrow the gap between in vivo and in vitro and therefore decrease the need for animal screening in biomaterial design.
Collapse
Affiliation(s)
- Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
| | - Sébastien Mosser
- Neurix SA, Avenue de la Roseraie 64, CH-1022 Geneva, Switzerland;
| | - Flavio Maurizio Mor
- Haute École du Paysage, d’Ingénierie et d’Architecture de Genève, Haute École Spécialisée de Suisse Occidentale (HEPIA HES-SO), University of Applied Sciences and Arts Western Switzerland, CH-1202 Geneva, Switzerland; (F.M.M.); (A.R.)
| | - Anissa Boutabla
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
| | - Patrick Burch
- Volumina-Medical SA, Route de la Corniche 5, CH-1066 Epalinges, Switzerland;
| | - Amélie Béduer
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
- Volumina-Medical SA, Route de la Corniche 5, CH-1066 Epalinges, Switzerland;
| | - Adrien Roux
- Haute École du Paysage, d’Ingénierie et d’Architecture de Genève, Haute École Spécialisée de Suisse Occidentale (HEPIA HES-SO), University of Applied Sciences and Arts Western Switzerland, CH-1202 Geneva, Switzerland; (F.M.M.); (A.R.)
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
| |
Collapse
|
28
|
Tang SH, Venault A, Chou LH, Lan DH, Dizon GV, Hsieh C, Yeh CC, Liu CL, Chang Y. Surface PEGylation via Ultrasonic Spray Deposition for the Biofouling Mitigation of Biomedical Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:225-234. [PMID: 35014814 DOI: 10.1021/acsabm.1c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Air plasma and spray technology are common methods for surface modification. In this study, air plasma is used to generate hydroxyl groups on various material surfaces. Then random copolymers of styrene and ethylene glycol methacrylate (PS-r-PEGMA) are spray-coated to achieve coating densities ranging between 0.1 and 0.6 mg/cm2. PS50-r-PEGMA50 led to the best overall antifouling properties, while a coating density of 0.3 mg/cm2 was enough to significantly reduce biofouling. This surface modification technique enabled efficient modification of a wide range of materials and biofouling reduction by at least 75% on polymeric surfaces (polystyrene, polyvinylidene fluoride, poly(tetrafluoroethylene), polydimethylsiloxane), metallic surfaces (steel, titanium alloy), or ceramic surface (glass). Applied to the modification of well plate used for blood-typing, this antifouling modification permitted to greatly increase the signal sensitivity (×4).
Collapse
Affiliation(s)
- Shuo-Hsi Tang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Li-Hui Chou
- Department of Chemical and Materials Engineering, National Central University, Taipei 32001, Taiwan R.O.C
| | - Ding-Hung Lan
- Department of Chemical and Materials Engineering, National Central University, Taipei 32001, Taiwan R.O.C
| | - Gian Vincent Dizon
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Chun Hsieh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Chih-Chen Yeh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan R.O.C
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| |
Collapse
|
29
|
Guo J, Yang Z, Wang X, Xu Y, Lu Y, Qin Z, Zhang L, Xu J, Wang W, Zhang J, Tang J. Advances in Nanomaterials for Injured Heart Repair. Front Bioeng Biotechnol 2021; 9:686684. [PMID: 34513807 PMCID: PMC8424111 DOI: 10.3389/fbioe.2021.686684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of mortality worldwide. Because of the limited regenerative capacity of adult myocardium to compensate for the loss of heart tissue after ischemic infarction, scientists have been exploring the possible mechanisms involved in the pathological process of ASCVD and searching for alternative means to regenerate infarcted cardiac tissue. Although numerous studies have pursued innovative solutions for reversing the pathological process of ASCVD and improving the effectiveness of delivering therapeutics, the translation of those advances into downstream clinical applications remains unsatisfactory because of poor safety and low efficacy. Recently, nanomaterials (NMs) have emerged as a promising new strategy to strengthen both the efficacy and safety of ASCVD therapy. Thus, a comprehensive review of NMs used in ASCVD treatment will be useful. This paper presents an overview of the pathophysiological mechanisms of ASCVD and the multifunctional mechanisms of NM-based therapy, including antioxidative, anti-inflammation and antiapoptosis mechanisms. The technological improvements of NM delivery are summarized and the clinical transformations concerning the use of NMs to treat ASCVD are examined. Finally, this paper discusses the challenges and future perspectives of NMs in cardiac regeneration to provide insightful information for health professionals on the latest advancements in nanotechnologies for ASCVD treatment.
Collapse
Affiliation(s)
- Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Jing Xu
- Department of Cardiac Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan Medical Association, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
30
|
Mamou D, Nsubuga L, Lisboa Marcondes T, Høegh SO, Hvam J, Niekiel F, Lofink F, Rubahn HG, de Oliveira Hansen R. Surface Modification Enabling Reproducible Cantilever Functionalization for Industrial Gas Sensors. SENSORS 2021; 21:s21186041. [PMID: 34577249 PMCID: PMC8472552 DOI: 10.3390/s21186041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022]
Abstract
Micro-cantilever sensors are a known reliable tool for gas sensing in industrial applications. We have demonstrated the application of cantilever sensors on the detection of a meat freshness volatile biomarker (cadaverine), for determination of meat and fish precise expiration dates. For achieving correct target selectivity, the cantilevers need to be functionalized with a cadaverine-selective binder, based on a cyclam-derivative. Cantilever surface properties such as surface energy strongly influence the binder morphology and material clustering and, therefore, target binding. In this paper, we explore how chemical and physical surface treatments influence cantilever surface, binder morphology/clustering and binding capabilities. Sensor measurements with non-controlled surface properties are presented, followed by investigations on the binder morphology versus surface energy and cadaverine capture. We demonstrated a method for hindering binder crystallization on functionalized surfaces, leading to reproducible target capture. The results show that cantilever surface treatment is a promising method for achieving a high degree of functionalization reproducibility for industrial cantilever sensors, by controlling binder morphology and uniformity.
Collapse
Affiliation(s)
- Daniel Mamou
- NanoSYD Center, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark; (D.M.); (L.N.); (T.L.M.); (H.-G.R.)
| | - Lawrence Nsubuga
- NanoSYD Center, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark; (D.M.); (L.N.); (T.L.M.); (H.-G.R.)
| | - Tatiana Lisboa Marcondes
- NanoSYD Center, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark; (D.M.); (L.N.); (T.L.M.); (H.-G.R.)
- AmiNIC ApS, 5500 Middelfart, Denmark; (S.O.H.); (J.H.)
| | | | - Jeanette Hvam
- AmiNIC ApS, 5500 Middelfart, Denmark; (S.O.H.); (J.H.)
| | - Florian Niekiel
- Fraunhofer Institute for Silicon Technology, 25524 Itzehoe, Germany; (F.N.); (F.L.)
| | - Fabian Lofink
- Fraunhofer Institute for Silicon Technology, 25524 Itzehoe, Germany; (F.N.); (F.L.)
| | - Horst-Günter Rubahn
- NanoSYD Center, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark; (D.M.); (L.N.); (T.L.M.); (H.-G.R.)
| | - Roana de Oliveira Hansen
- NanoSYD Center, Mads Clausen Institute, University of Southern Denmark, 6400 Sønderborg, Denmark; (D.M.); (L.N.); (T.L.M.); (H.-G.R.)
- Correspondence:
| |
Collapse
|
31
|
Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci 2021; 28:e3335. [PMID: 34031952 DOI: 10.1002/psc.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
32
|
Lukaszewska-Kuska M, Wirstlein P, Majchrowski R, Dorocka-Bobkowska B. The effects of titanium topography and chemical composition on human osteoblast cell. Physiol Res 2021; 70:413-423. [PMID: 33982574 DOI: 10.33549/physiolres.934582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to evaluate and compare titanium surfaces: machined (MA); sintered ceramic-blasted (HAS); sintered ceramic-blasted and acid-etched (HAS DE) and to determine the effects of surface topography, roughness and chemical composition on human osteoblast cell reaction. Titanium surface samples were analyzed with respect to surface chemical composition, topography, and roughness. The effects of material surface characteristics on osteoblasts was examined by analyzing osteoblast morphology, viability and differentiation. Osteoblasts cultured on these materials had attached, spread and proliferated on every sample. The viability of osteoblasts cultured on HAS and HAS DE samples increased more intensively in time comparing to MA sample. The viability of osteoblast cultured on HAS samples increased more intensively in the early phases of culture while for cells cultured on HAS DE the cells viability increased later in time. Alkaline phosphate activity was the highest for the cells cultured on HAS sample and statistically higher than for the MA sample. The least activity occurred on the smooth MA sample along with the rougher HAS DE samples. All the examined samples were found to be biocompatible, as indicated by cell attachment, proliferation, and differentiation. Titanium surfaces modification improved the dynamics of osteoblast viability increase. Osteoblast differentiation was found to be affected by the etching procedure and presence of Ca and P on the surface.
Collapse
Affiliation(s)
- M Lukaszewska-Kuska
- Department of Gerodontology and Oral Pathology, University of Medical Sciences Poznan, Poznan, Poland.
| | | | | | | |
Collapse
|
33
|
Liu Z, Liu X, Ramakrishna S. Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol J 2021; 16:e2000116. [PMID: 33813785 DOI: 10.1002/biot.202000116] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The success of biomedical implants in orthopedic and dental applications is usually limited due to insufficient bone-implant integration, and implant-related infections. Biointerfaces are critical in regulating their interactions and the desirable performance of biomaterials in biological environment. Surface engineering has been widely studied to realize better control of the interface interaction to further enhance the desired behavior of biomaterials. PURPOSE AND SCOPE This review aims to investigate surface coating strategies in hard tissue applications to address insufficient osteointegration and implant-related infection problems. SUMMARY We first focused on surface coatings to enhance the osteointegration and biocompatibility of implants by emphasizing calcium phosphate-related, nanoscale TiO2 -related, bioactive tantalum-based and biomolecules incorporated coatings. Different coating strategies such as plasma spraying, biomimetic deposition, electrochemical anodization and LENS are discussed. We then discussed techniques to construct anti-adhesive and bactericidal surface while emphasizing multifunctional surface coating techniques that combine potential osteointegration and antibacterial activities. The effects of nanotopography via TiO2 coatings on antibacterial performance are interesting and included. A smart bacteria-responsive titanium dioxide nanotubes coating is also attractive and elaborated. CONCLUSION Developing multifunctional surface coatings combining osteogenesis and antimicrobial activity is the current trend. Surface engineering methods are usually combined to obtain hierarchical multiscale surface structures with better biofunctionalization outcomes.
Collapse
Affiliation(s)
- Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China.,Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Sidhu SS, Singh H, Gepreel MAH. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111661. [PMID: 33579432 DOI: 10.1016/j.msec.2020.111661] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
From the past few years, developments of β-Ti alloys have been the subject of active research in the medical domain. The current paper highlights significant findings in the area of β-Ti alloy design, biological responses, strengthening mechanisms, and developing low-cost implants with a high degree of biocompatibility. It is evident that an astonishing demand for developing the low modulus-high strength implants can be fulfilled by synchronizing β stabilizer content and incorporating tailored thermo-mechanical techniques. Furthermore, the biological response of the implants is as important as the physical properties that regulate healing response; hence, the optimum selection of alloying elements plays a curial role for clinical success. The paper also presents the evolution of patents in this field from the year 2010 to 2020 showing the relevant innovations that may benefit a wide range of researchers.
Collapse
|
35
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
36
|
Wang R, Xia J, Tang J, Liu D, Zhu S, Wen S, Lin Q. Surface Modification of Intraocular Lens with Hydrophilic Poly(Sulfobetaine Methacrylate) Brush for Posterior Capsular Opacification Prevention. J Ocul Pharmacol Ther 2021; 37:172-180. [PMID: 33497580 DOI: 10.1089/jop.2020.0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: The intraocular lens (IOL) is a common, yet important, implantable device used in treatment of cataract in clinics. However, the unexpected adhesion of postoperative residual lens epithelial cells (LECs) often causes serious complications, such as posterior capsular opacification (PCO), which lead to vision loss again. In this investigation, a poly(sulfobetaine methacrylate) (PSBMA) brush coating was fabricated on an IOL to generate a hydrophilic surface coating on the IOL for enhanced cell adhesion resistance so as to decrease PCO incidence. Methods: The PSBMA brush coating on the IOL surface was fabricated using surface-initiated reversible addition-fragmentation chain transfer polymerization. X-ray photoelectron spectroscopy (XPS) was used to demonstrate the surface coating preparation. The water contact angle (WCA) measurement was used to test surface hydrophilicity. In vitro LEC culture was use to evaluate the cell behavior on the IOL material surfaces, with or without PSBMA coating modification. Finally, animal cataract surgeries were carried out to evaluate in vivo biocompatibilities and anti-PCO effects. Results: The XPS and WCA measurements illustrate successful surface modification and good surface hydrophilicity. The in vitro cell culture results show that the hydrophilic PSBMA polymer brush coating evidently decreases adhesion and proliferation of LECs. Results of the in vivo cataract surgery with intraocular implantation show that PSBMA modification on the IOL surface does not induce side effects in nearby tissues, whereas posterior capsular hyperplasia can be evidently reduced. Conclusion: The PSBMA brush surface-modified IOL has good in vivo biocompatibility and it can effectively reduce the incidence of postoperative PCO.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Xia
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junmei Tang
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shimin Wen
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Huang H, Zhu S, Liu D, Wen S, Lin Q. Antiproliferative drug-loaded multi-functionalized intraocular lens for reducing posterior capsular opacification. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:735-748. [PMID: 33332253 DOI: 10.1080/09205063.2020.1865691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Posterior capsule opacification (PCO) is one of the most frequent complications in cataract surgery and likely to cause the second loss of vision. Proliferation and migration of postoperative remnants of lens epithelial cells (LECs) on the implanted intraocular lens (IOL) are the leading causes of PCO. Antiproliferative drugs can be an effective solution but also possess some problems including sudden release and accompanying adverse effects to surrounding normal tissues, which greatly limit the clinical trials. In this study, an antiproliferative drug Paclitaxel (Pac) -sustained released hyaluronic acid (HA) and chitosan (CHI) multilayer modified IOL with postoperatively long-term PCO prevention was fabricated via layer by layer (LbL) technique. Quartz crystal microbalance with dissipation monitoring (QCM-D) result shows that HA-Pac/CHI multilayer is modified onto IOL material via LbL technique successfully. The HA-Pac/CHI multilayer coating greatly improves the hydrophilicity of the IOL material surfaces without change the transmittance significantly, whereas the proliferation of LECs is distinctly reduced on the HA-Pac/CHI multilayer-modified surfaces. The drug release in vitro reveals that the multilayer modified IOL material is stable under physiological condition and has good sustained drug release property. All these results demonstrate that HA-Pac/CHI multilayer modified IOL material can effectively inhibit LECs proliferation which provides a novel approach for reducing of PCO incidence in clinical.
Collapse
Affiliation(s)
- Huiying Huang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqing Zhu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shimin Wen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Tan X, Gao P, Li Y, Qi P, Liu J, Shen R, Wang L, Huang N, Xiong K, Tian W, Tu Q. Poly-dopamine, poly-levodopa, and poly-norepinephrine coatings: Comparison of physico-chemical and biological properties with focus on the application for blood-contacting devices. Bioact Mater 2021; 6:285-296. [PMID: 32913935 PMCID: PMC7451900 DOI: 10.1016/j.bioactmat.2020.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022] Open
Abstract
Thanks to its simplicity, versatility, and secondary reactivity, dopamine self-polymerized coatings (pDA) have been widely used in surface modification of biomaterials, but the limitation in secondary molecular grafting and the high roughness restrain their application in some special scenarios. Therefore, some other catecholamine coatings analog to pDA have attracted more and more attention, including the smoother poly-norepinephrine coating (pNE), and the poly-levodopa coating (pLD) containing additional carboxyl groups. However, the lack of a systematic comparison of the properties, especially the biological properties of the above three catecholamine coatings, makes it difficult to give a guiding opinion on the application scenarios of different coatings. Herein, we systematically studied the physical, chemical, and biological properties of the three catecholamine coatings, and explored the feasibility of their application for the modification of biomaterials, especially cardiovascular materials. Among them, the pDA coating was the roughest, with the largest amount of amino and phenolic hydroxyl groups for molecule grafting, and induced the strongest platelet adhesion and activation. The pLD coating was the thinnest and most hydrophilic but triggered the strongest inflammatory response. The pNE coating was the smoothest, with the best hemocompatibility and histocompatibility, and with the strongest cell selectivity of promoting the proliferation of endothelial cells while inhibiting the proliferation of smooth muscle cells. To sum up, the pNE coating may be a better choice for the surface modification of cardiovascular materials, especially those for vascular stents and grafts, but it is still not widely recognized.
Collapse
Affiliation(s)
- Xing Tan
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Peng Gao
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yalong Li
- Department of Stem Cell Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Pengkai Qi
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingxia Liu
- Physical Education Department, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ru Shen
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lianghui Wang
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Huang
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kaiqin Xiong
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenjie Tian
- Cardiology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China. 32 West Second Section, First Ring Road, Chengdu 610072, China
| | - Qiufen Tu
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
39
|
Muthulakshmi L, Pavithra U, Sivaranjani V, Balasubramanian N, Sakthivel KM, Pruncu CI. A novel Ag/carrageenan-gelatin hybrid hydrogel nanocomposite and its biological applications: Preparation and characterization. J Mech Behav Biomed Mater 2020; 115:104257. [PMID: 33333481 DOI: 10.1016/j.jmbbm.2020.104257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/09/2020] [Accepted: 12/06/2020] [Indexed: 01/27/2023]
Abstract
A novel biohybrid hydrogel nanocomposite made of natural polymer carrageenan and gelatin protein were developed. The silver nanoparticles were prepared using the carrageenan polymer as reduction and capping agent. Here, the Ag/Carrageenan was combined with gelatin hydrogel using glutaraldehyde having a cross-link role in order to create the biohybrid hydrogel nanocomposite. The manufactured composite performances were anaylised by UV-visible spectroscopy, Fourier Transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), Energy dispersive X-ray (EDX) spectroscopy and Transmission Electron Microscopy (TEM) methods. The swelling behaviour of the Ag/Carrageenan-gelatin hybrid hydrogel nanocomposite was also analyzed. The antibacterial activity was tested against human pathogens viz. S.agalactiae 1661, S. pyogenes 1210 and E. coli. The bacterial cell wall damage of S.agalactiae 1661 was analyzed by scanning electron microscopy. The cytotoxic assay was performed against the A549 lung cancer cells.
Collapse
Affiliation(s)
- Lakshmanan Muthulakshmi
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India; Department of Biotechnology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, 626126, Tamil Nadu, India.
| | - U Pavithra
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, 626126, Tamil Nadu, India
| | - V Sivaranjani
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, 626126, Tamil Nadu, India
| | - N Balasubramanian
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biotechnology, Regional Cancer Centre, Thiruvananthapuram, 695011, Kerala, India; Department of Biochemistry, PSG College of Arts and Science, Coimbatore 641014, Tamilnadu, India
| | - Catalin Iulian Pruncu
- Department of Mechanical Engineering, Imperial College London, Exhibition Rd., London, SW7 2AZ, UK; Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow, G1 1XJ, Scotland, UK.
| |
Collapse
|
40
|
In-Vitro Degradation of Hollow Silica Reinforced Magnesium Syntactic Foams in Different Simulated Body Fluids for Biomedical Applications. METALS 2020. [DOI: 10.3390/met10121583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article reports the mechanical and biocorrosion behaviour of hollow silica nanosphere (SiO2) reinforced (0.5–2 vol.%) magnesium (Mg) syntactic foams. Room temperature tensile properties’ characterization suggests that the increased addition of hollow silica nanospheres resulted in a progressive increase in tensile yield strength (TYS) and ultimate tensile strength (UTS) with Mg-2 vol.% SiO2 exhibiting a maximum TYS of 167 MPa and a UTS of 217 MPa. The degradation behaviour of the developed Mg-SiO2 syntactic foams in four different simulated body fluids (SBFs): artificial blood plasma solution (ABPS), phosphate-buffered saline solution (PBS), artificial saliva solution (ASS) and Hanks’ balanced saline solution (HBSS) was investigated by using potentiodynamic polarization studies. Results indicate that corrosion resistance of the Mg-SiO2 syntactic foam decreases with increasing chloride ion concentration of the SBF. Mg-1.0 vol.% SiO2 displayed the best corrosion response and its corrosion susceptibility pertaining to corrosion rate and polarisation curves in different SBF solutions can be ranked in the following order: ABPS > PBS > HBSS > ASS. The surface microstructure demonstrated the presence of a better passivated layer on the syntactic foams compared to pure Mg. The observed increase in corrosion resistance is correlated with intrinsic changes in microstructure due to the presence of hollow silica nanospheres. Further, the effect of corrosive environment on the degradation behaviour of Mg has been elucidated.
Collapse
|
41
|
Corrosion and Tribocorrosion Behaviors for TA3 in Ringer’s Solution after Implantation of Nb Ions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ti alloys are prone to corrosion and wear due to the hostile environment in bodily fluids, but the Ti-45Nb alloy is considered to be a promising titanium alloy with excellent biocompatibility and resistance to physiological corrosion. In this study, Nb ions were implanted into a TA3 alloy and the effect on the biological corrosion as well as tribocorrosion behavior of TA3 in Ringer’s solution was systematically investigated. The surface microstructure and XRD results revealed that the implanted samples showed a smoother surface due to the sputtering and radiation damages, and the Nb ions mainly existed in the alloy as the solid solution element. The electrochemical polarization tests showed that the implantation of Nb ions can increase the corrosion potential of the samples, showing a better thermodynamic stability. The tribocorrosion tests showed that the implanted samples exhibited a better thermodynamic stability in a corrosive environment accompanied by wear behavior, and the worn surface showed fewer pitting pits, indicating a better corrosion resistance. However, the abrasive wear and oxidation wear degree of the sample increased because of partial softening of the surface and brittle passivation film.
Collapse
|
42
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Jaafar A, Hecker C, Árki P, Joseph Y. Sol-Gel Derived Hydroxyapatite Coatings for Titanium Implants: A Review. Bioengineering (Basel) 2020; 7:bioengineering7040127. [PMID: 33066421 PMCID: PMC7711523 DOI: 10.3390/bioengineering7040127] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 01/02/2023] Open
Abstract
With the growing demands for bone implant therapy, titanium (Ti) and its alloys are considered as appropriate choices for the load-bearing bone implant substitutes. However, the interaction of bare Ti-based implants with the tissues is critical to the success of the implants for long-term stability. Thus, surface modifications of Ti implants with biocompatible hydroxyapatite (HAp) coatings before implantation is important and gained interest. Sol-gel is a potential technique for deposition the biocompatible HAp and has many advantages over other methods. Therefore, this review strives to provide widespread overview on the recent development of sol-gel HAp deposition on Ti. This study shows that sol-gel technique was able to produce uniform and homogenous HAp coatings and identified the role of surface pretreatment of Ti substrate, optimizing the sol-gel parameters, substitution, and reinforcement of HAp on improving the coating properties. Critical factors that influence on the characteristics of the deposited sol-gel HAp films as corrosion resistance, adhesion to substrate, bioactivity, morphological, and structural properties are discussed. The review also highlights the critical issues, the most significant challenges, and the areas requiring further research.
Collapse
|
44
|
Rezvova MA, Yuzhalin AE, Glushkova TV, Makarevich MI, Nikishau PA, Kostjuk SV, Klyshnikov KY, Matveeva VG, Khanova MY, Ovcharenko EA. Biocompatible Nanocomposites Based on Poly(styrene- block-isobutylene- block-styrene) and Carbon Nanotubes for Biomedical Application. Polymers (Basel) 2020; 12:E2158. [PMID: 32971801 PMCID: PMC7569909 DOI: 10.3390/polym12092158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, we incorporated carbon nanotubes (CNTs) into poly(styrene-block-isobutylene-block-styrene) (SIBS) to investigate the physical characteristics of the resulting nanocomposite and its cytotoxicity to endothelial cells. CNTs were dispersed in chloroform using sonication following the addition of a SIBS solution at different ratios. The resultant nanocomposite films were analyzed by X-ray microtomography, optical and scanning electron microscopy; tensile strength was examined by uniaxial tension testing; hydrophobicity was evaluated using a sessile drop technique; for cytotoxicity analysis, human umbilical vein endothelial cells were cultured on SIBS-CNTs for 3 days. We observed an uneven distribution of CNTs in the polymer matrix with sporadic bundles of interwoven nanotubes. Increasing the CNT content from 0 wt% to 8 wt% led to an increase in the tensile strength of SIBS films from 4.69 to 16.48 MPa. The engineering normal strain significantly decreased in 1 wt% SIBS-CNT films in comparison with the unmodified samples, whereas a further increase in the CNT content did not significantly affect this parameter. The incorporation of CNT into the SIBS matrix resulted in increased hydrophilicity, whereas no cytotoxicity towards endothelial cells was noted. We suggest that SIBS-CNT may become a promising material for the manufacture of implantable devices, such as cardiovascular patches or cusps of the polymer heart valve.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Arseniy E. Yuzhalin
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Miraslau I. Makarevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
- Institute of Regenerative Medicine, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Kirill Yu. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Mariam Yu. Khanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| |
Collapse
|
45
|
Wang Y, Wu G, Sun J. Improved Corrosion Resistance of Magnesium Alloy in Simulated Concrete Pore Solution by Hydrothermal Treatment. SCANNING 2020; 2020:4860256. [PMID: 32983316 PMCID: PMC7492877 DOI: 10.1155/2020/4860256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Magnesium alloys are considered for building materials in this study due to their natural immunity to corrosion in alkaline concrete pore solution. But, chloride ions attack often hinders the application of most metals. Therefore, it is necessary to conduct a preliminary corrosion evaluation and attempt to find an effective way to resist the attack of chloride ions in concrete pore solution. In our study, hydrothermal treatment is carried out to modify Mg-9.3 wt. % Al alloy. After the treatment in NaOH solution for 10 h, scanning electron microscopy (SEM) reveals that a layer of dense coating with a thickness of about 5 μm is formed on Mg alloy. Energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray Diffraction (XRD) are combined to analyze the coating, and it is thereby confirmed that the coating is mainly composed of Mg(OH)2. As expected, both immersion test and electrochemical corrosion test show that the coated magnesium alloy has a better corrosion resistance than the uncoated one in simulated concrete pore solution with and without chloride ions. In summary, it indicates that hydrothermal treatment is a feasible method to improve the corrosion resistance of Mg alloys used for building engineering from the perspective of corrosion science.
Collapse
Affiliation(s)
- Ye Wang
- College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Guosong Wu
- College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Jiapeng Sun
- College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| |
Collapse
|
46
|
Pan K, Li X, Meng L, Hong L, Wei W, Liu X. Photo-Cross-Linked Polycarbonate Coating with Surface-Erosion Behavior for Corrosion Resistance and Cytocompatibility Enhancement of Magnesium Alloy. ACS APPLIED BIO MATERIALS 2020; 3:4427-4435. [PMID: 35025441 DOI: 10.1021/acsabm.0c00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Absorbable magnesium (Mg) materials are promising for medical implant applications. However, their corrosion rate and potential toxicity remain a challenge. Herein, a photo-cross-linked coating with suitable durability and unique surface-eroding behavior for enhancement of anticorrosion property and cytocompatibility of AZ31 Mg alloy was developed. The biodegradable allyl-functional polycarbonate, poly[(5-methyl-5-allyloxycarbonyl-1,3-propanediol carbonate)-co-(trimethylene carbonate)] [P(MAC-co-TMC), PMT], was first synthesized by ring-opening copolymerization. The PMT copolymer, pentaerythritol tetrakis(3-mercaptopropionate), and a photoinitiator were then applied on AZ31 Mg alloy by dip coating, and these films were cross-linked via the subsequent photoinitiated thiol-ene click reaction. The poly(l-lactide) (PLLA) and poly(1,3-trimethylene carbonate) (PTMC) coatings without cross-linking were prepared and used as control. Our results show that the cross-linked PMT coatings exhibited superior mechanical properties compared with PLLA and PTMC coatings. Meanwhile, the surface-erosion behavior of the cross-linked PMT coatings remained, as confirmed by scanning electron microscopy analysis. As a result, the cross-linked PMT-coated Mg alloy showed lower corrosion rates, better in vitro corrosion resistance, and much lower cytotoxicity, compared with bare Mg and ones coated with PLLA and PTMC coatings. Results indicate that the cross-linked PMT coatings with unique surface-erosion behavior and good cytocompatibility might be promising to improve the safety and success rate of Mg-based devices and implants.
Collapse
Affiliation(s)
- Kai Pan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaojie Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Long Meng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liu Hong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Municoy S, Álvarez Echazú MI, Antezana PE, Galdopórpora JM, Olivetti C, Mebert AM, Foglia ML, Tuttolomondo MV, Alvarez GS, Hardy JG, Desimone MF. Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery. Int J Mol Sci 2020; 21:E4724. [PMID: 32630690 PMCID: PMC7369929 DOI: 10.3390/ijms21134724] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material's properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María I. Álvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Pablo E. Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Juan M. Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Christian Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Andrea M. Mebert
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María L. Foglia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María V. Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Gisela S. Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
- Materials Science Institute, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
| | - Martin F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| |
Collapse
|
48
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
49
|
Singh R, Khan MJ, Rane J, Gajbhiye A, Vinayak V, Joshi KB. Biofabrication of Diatom Surface by Tyrosine‐Metal Complexes:Smart Microcontainers to Inhibit Bacterial Growth. ChemistrySelect 2020. [DOI: 10.1002/slct.201904248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ramesh Singh
- Department of ChemistrySchool of Chemical Science and TechnologyDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Lab (DNM)School of Applied SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Jagdish Rane
- Department of Pharmaceutical SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Ashmita Gajbhiye
- Department of Pharmaceutical SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Lab (DNM)School of Applied SciencesDr. Harisingh Gour Central University Sagar MP 470003 India
| | - Khashti Ballabh Joshi
- Department of ChemistrySchool of Chemical Science and TechnologyDr. Harisingh Gour Central University Sagar MP 470003 India
| |
Collapse
|
50
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|