1
|
Polati D, Neerati P. Synergistic effects of curcumin and piperine in cocrystal form: a breakthrough in bladder cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-28. [PMID: 40270345 DOI: 10.1080/09205063.2025.2491606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Curcumin (CUR) is a promising anticancer agent for urinary bladder cancer (UBC) but is hindered by poor oral bioavailability. This study investigates the role of cocrystal technology in overcoming these limitations through the formation of curcumin-piperine (CUR-PIP) cocrystals (CoCry). The CUR-PIP CoCry was evaluated for its ability to suppress IGF2 over expression in UBC. Molecular interactions were predicted via Auto Dock simulations, and the co crystals were characterized using FTIR, DSC, PXRD, SEM, and ssNMR. Saturation solubility, dissolution, permeability, and in vivo pharmacokinetic studies were conducted. The therapeutic efficacy of CUR-PIP CoCry was tested in a bladder cancer rat model induced by N-Methyl Nitrosourea; with IGF2 expression quantified using qRT-PCR and flow cytometry. The CUR-PIP CoCry demonstrated enhanced drug release and permeability compared to CUR alone. Pharmacokinetic analysis revealed a 5.7-fold increase in Cmax and a 7.9-fold increase in AUC0-12 hr compared to CUR alone. In vivo studies using an MNU-induced bladder cancer rat model demonstrated that CUR-PIP CoCry significantly suppressed IGF2 expression (p < 0.001) and enhanced anticancer efficacy. This study underscores the potential of cocrystallization as a novel approach to enhance bioavailability and therapeutic effectiveness in cancer treatment.
Collapse
Affiliation(s)
- Durga Polati
- DMPK Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Center for Drug Research, Kakatiya University, Warangal, India
| | - Prasad Neerati
- DMPK Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Center for Drug Research, Kakatiya University, Warangal, India
| |
Collapse
|
2
|
Acebedo-Martínez FJ, Domínguez-Martín A, Alarcón-Payer C, Verdugo-Escamilla C, Gómez-Morales J, Choquesillo-Lazarte D. Enhanced Drug Loading Capacity Using the Dual Metformine-Dexketoprofren Salt on Nanoapatite Materials. Mol Pharm 2025. [PMID: 40275552 DOI: 10.1021/acs.molpharmaceut.5c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Both apatite nanoparticles and multicomponent pharmaceutical materials have proved the ability to significantly improve the bioavailability of different drugs using different strategies. Herein, the use of nanoapatite is proposed as a promising vehicle for advanced drug delivery of multicomponent pharmaceutical materials. To this purpose, the full synthesis and comprehensive characterization of apatite nanoparticles and the molecular pharmaceutical salt metformin-dexketoprofen are reported, paying special attention to the improvements regarding solubility and stability of the novel materials compared to the parent active pharmaceutical ingredients, as well as the drug loading capacity enhancement achieved in nanoapatites. Our results evidence the potential of the presented novel strategy, enhancing the dexketoprofen-loading a remarkable 50-fold when compared to native drug, thanks to the improvement of solubility achieved via salt-formation (567 and 168 mg/mL at pH 6.8 and 1.2, respectively), thus expecting improved therapeutic outcomes.
Collapse
Affiliation(s)
| | - Alicia Domínguez-Martín
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | | | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC, Avda. de las Palmeras 4, 18100 Armilla, Spain
| | | |
Collapse
|
3
|
Metherall JP, Corner PA, McCabe JF, Probert MR, Hall MJ. High-throughput encapsulated nanodroplet screening for accelerated co-crystal discovery. Chem Sci 2025:d4sc07556k. [PMID: 40321178 PMCID: PMC12044422 DOI: 10.1039/d4sc07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Co-crystals are composed of two or more chemically inequivalent molecular species, excluding solvents, generally in a stoichiometric ratio. Co-crystals are particularly important in pharmaceutical development, where a suitable co-crystal can significantly improve the physiochemical and pharmacokinetic properties of an active pharmaceutical ingredient. However, co-crystal discovery remains both practically challenging and resource intensive, requiring the extensive searching of complex experimental space. Herein, we demonstrate a high-throughput (HTP) nanoscale co-crystallisation method for the rapid screening of large areas of co-crystallisation space with minimal sample requirements, based on Encapsulated Nanodroplet Crystallisation (ENaCt). HTP co-crystallisation screening by ENaCt allowed rapid access to all 18 possible binary co-crystal combinations of 3 small molecules and 6 co-formers (A/B), through the use of 3456 individual experiments exploring solvent, encapsulating oil and stoichiometry, including 10 novel binary co-crystal structures elucidated by single crystal X-ray diffraction (SCXRD). Higher-order co-crystal (HOC) discovery, accessing co-crystals containing three or more molecules, is one of the most challenging co-crystal research areas, due to the highly complex experimental landscape that must be navigated. Herein, we further exemplify the power of ENaCt co-crystallisation by application to HOC discovery. HTP ENaCt co-crystallisation screening of three component (A/B/C) and four component (A/B/C/D) combinations gave ready access to both ternary and quaternary HOCs, each containing three or four different molecular species respectively. In total, 13 056 individual ENaCt experiments are presented resulting in 54 co-crystal structures by SCXRD, including 17 novel binary co-crystals, 8 novel ternary co-crystals and 4 novel quaternary co-crystals. ENaCt co-crystallisation is thus demonstrated to be a highly impactful and efficient tool in the search for small molecule co-crystals, through the employment of parallelised HTP nanoscale experimental workflows.
Collapse
Affiliation(s)
- Jessica P Metherall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne UK
| | - Philip A Corner
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Macclesfield UK
| | - James F McCabe
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Macclesfield UK
| | - Michael R Probert
- Chemistry, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne UK
| | - Michael J Hall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
4
|
Shakeel F, Al-Shdefat R, Ali M, Ahmad U. Temperature-dependent solubilization and thermodynamic characteristics of ribociclib in varied {PEG 400 + water} combinations. BMC Chem 2025; 19:79. [PMID: 40140881 PMCID: PMC11948981 DOI: 10.1186/s13065-025-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The solubility and thermodynamic characteristics of ribociclib (RCB), a new anticancer medication, have been assessed in a range of {polyethylene glycol 400 (PEG 400) + water} combinations at 293.2-313.2 K and atmospheric pressure. RCB solubility was determined utilizing the saturation shake flask approach, and "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models" were utilized to validate the measured experimental data. The uncertainties for the computational predictions were less than 3.0% throughout the validation, indicating an outstanding relationship with the experimental RCB solubility data. PEG 400 mass fraction and temperature both improved the solubility of RCB in mole fraction in the compositions of {PEG 400 + water}. It was discovered that the RCB solubility in mole fraction was greatest in pure PEG 400 (1.04 × 10- 1) at 313.2 K and lowest in neat water (1.07 × 10- 6 at 293.2 K). All of the {PEG 400 + water} mixes under study showed "endothermic and entropy-driven" RCB dissolution, as indicated by the positive values of the estimated thermodynamic parameters. Compared to RCB-water, RCB-PEG 400 exhibited the strongest molecular interactions. PEG 400 offers a great potential for RCB solubilization in water, according to the evaluation's findings.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ramadan Al-Shdefat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, P.O. Box 733, Irbid, 21110, Jordan
| | - Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, BG Nagara, Mandya, 571448, India
| | - Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
5
|
Alinda P, Botana A, Li M. Insight into the Precipitation Inhibition of Polymers within Cocrystal Formulations in Solution Using Experimental and Molecular Modeling Techniques. CRYSTAL GROWTH & DESIGN 2025; 25:1799-1812. [PMID: 40124666 PMCID: PMC11926783 DOI: 10.1021/acs.cgd.4c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
This study investigated the role of various polymers as precipitation inhibitors in solutions of flufenamic acid (FFA) and its cocrystals with theophylline (FFA-TP) and nicotinamide (FFA-NIC). Through a combination of NMR spectroscopy, molecular dynamics simulations, and nucleation studies using Crystal16, we evaluated the effects of polyethylene glycol (PEG), polyvinylpyrrolidone-vinyl acetate (PVP-VA), and soluplus (SOL), both individually and in combinations, on the nucleation, diffusion, and self-association of FFA molecules in solution. 1H NMR and DOSY measurements revealed that while PEG was highly effective in reducing molecular mobility, thus significantly delaying nucleation, PVP-VA facilitated nucleation by enhancing FFA diffusion and aggregation. SOL provided a balance, enhancing molecular mobility but maintaining a delayed nucleation effect, likely due to micellar encapsulation, as evidenced by line broadening in 1H NMR. Combination systems such as PVP-VA-PEG and PVP-VA-SOL showed synergistic effects, with PVP-VA-SOL proving particularly effective in inhibiting FFA nucleation across all systems. Molecular dynamics simulations supported these findings by highlighting changes in intermolecular interactions and aggregation tendencies in the presence of each polymer. This comprehensive analysis suggested that selecting appropriate polymeric excipients, or combinations thereof, can finely tune the nucleation behaviors of drug solutions, offering a strategic approach to optimizing the stability of supersaturated drug solutions.
Collapse
Affiliation(s)
- Peace Alinda
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K.
| | | | - Mingzhong Li
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K.
| |
Collapse
|
6
|
Ge Y, Yuan Z, Zhang M, Ming Y, Huang X, Wang C, Sun CC. Direct compression tablet formulation of trimetazidine through systematic screening of oxalate salts. Int J Pharm 2025; 671:125255. [PMID: 39855279 DOI: 10.1016/j.ijpharm.2025.125255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Salt formation has been extensively used to modulate and improve the properties of active pharmaceutical ingredients (API), such as solubility, stability and mechanical properties. Tablets of the anti-angina drug, trimetazidine (TMZ) are currently manufactured using the wet granulation process, rather than the more cost-effective direct compression method. In an effort to address the two main challenges associated with the commercial dihydrochloride salt (TMZ-2HCl), i.e., poor flowability and high hygroscopicity, we have screened and prepared three new oxalate (Oxa) salts of TMZ, i.e., TMZ:Oxa 2:1 (hemi-salt), 1:1 (mono-salt), and 1:2 (di-salt). All of the three salts exhibited improved solid-state properties over TMZ-2HCl, including flow, tabletability, and stability against high humidity. Among the three salts, the TMZ-Oxa (1:2) di-salt demonstrates overall superior properties, establishing it as the most promising alternative crystal form. Consequently, using the di-salt, we developed a direct compression tablet formulation that shows potential for commercial manufacturing.
Collapse
Affiliation(s)
- Yuebin Ge
- School of Pharmaceutical Science, South-central Minzu University and Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan 430074 Hubei Province, China
| | - Zhangyaoyu Yuan
- School of Pharmaceutical Science, South-central Minzu University and Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan 430074 Hubei Province, China
| | - Mingzhen Zhang
- School of Pharmaceutical Science, South-central Minzu University and Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan 430074 Hubei Province, China
| | - Yuan Ming
- Pharmacy Department of the First People's Hospital of Guangshui City, 432700 Hubei Province, China
| | - Xianju Huang
- School of Pharmaceutical Science, South-central Minzu University and Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan 430074 Hubei Province, China
| | - Chenguang Wang
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St. S.E., Minneapolis, MN 55455, USA
| | - Changquan Calvin Sun
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St. S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Khan A, Agrawal N, Chaudhary R, Yadav A, Pandey J, Narayan A, Ali Abdalrazig Ali S, Tandon P, Vangala VR. Study of chemical reactivity and molecular interactions of the hydrochlorothiazide-4-aminobenzoic acid cocrystal using spectroscopic and quantum chemical approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124960. [PMID: 39180967 DOI: 10.1016/j.saa.2024.124960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
In this study, the molecular, electronic, and chemical properties of the drug hydrochlorothiazide (HCTZ) are determined after cocrystallization with 4-aminobenzoic acid (4-ABA). Analysis has been performed to understand how those variations lead to alteration of physical properties and chemical reactivity in the cocrystal HCTZ-4ABA. IR and Raman characterizations were performed along with quantum chemical calculations. A theoretical investigation of hydrogen bonding interactions in HCTZ-4ABA has been conducted using two functionals: B3LYP and wB97X-D. The results obtained by B3LYP and wB97X-D are compared which leads to the conclusion that B3LYP is the best applied function (density functional theory) to obtain suitable results for spectroscopy. The chemical reactivity descriptors are used to understand various aspects of pharmaceutical properties. Natural bond orbital (NBO) analysis and quantum theory of atoms (QTAIM) are used to analyze nature and strength of hydrogen bonding in HCTZ-4ABA. QTAIM analyzed moderate role of hydrogen bonding interactions in HCTZ-4ABA. The calculated HOMO-LUMO energy gap shows that HCTZ-4ABA is chemically more active than HCTZ drug. These chemical parameters suggest that HCTZ-4ABA is chemically more reactive and softer than HCTZ. The results of this study suggest that cocrystals can be a good alternative for enhancing physicochemical properties of a drug without altering its therapeutic properties.
Collapse
Affiliation(s)
- Areeba Khan
- Department of Physics, University of Lucknow, 226007, India
| | - Neelam Agrawal
- Department of Physics, University of Lucknow, 226007, India
| | | | - Arti Yadav
- Department of Physics, University of Lucknow, 226007, India
| | - Jaya Pandey
- Department of Physics, Navyug Kanya Mahavidyalaya, 226004, Lucknow, India
| | - Aditya Narayan
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; Department of Chemical Sciences, Indian Institute of Sciences Education and Research (IISER) Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Samar Ali Abdalrazig Ali
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Poonam Tandon
- Department of Physics, University of Lucknow, 226007, India; Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| | - Venu R Vangala
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| |
Collapse
|
8
|
Hassan A, Khan JA, Nasir F, Shabir H, Hannan PA, Ullah R, Jan A, Khalid A, Khan A, Al-Harrasi A. Synthesis, Characterization, and Stability Optimization of Ibuprofen Cocrystals Employing Various Hydrophilic Polymers. Curr Pharm Des 2025; 31:873-883. [PMID: 38867533 DOI: 10.2174/0113816128305926240530051853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Cocrystals are an efficient way for the delivery of low soluble drugs but when dissolved they rapidly disproportionate. To formulate the cocrystals in tablets, cocrystals must be stabilized. In this study ibuprofen-nicotinamide (IBU-NIC) cocrystals were synthesized initially by slow solvent evaporation and for bulk production by fast solvent evaporation techniques. METHODS The cocrystals were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectrophotometer (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and optical microscopy. The ibuprofen cocrystals showed greater solubility compared to the parent drug. RESULTS Intrinsic dissolution data was utilized for efficacious screening of tablet formulations. Using hydrophilic polymers at a ratio of 6:1 (polymer to IBU-NIC cocrystal ratio), hydroxypropyl methylcellulose (F1), polyvinylpyrrolidone (PVP) K-30 (F2) and PVP K-90 (F3), three tablet formulations were prepared that stabilized cocrystals during dissolution. The drug release profiles after 60 minutes from formulations F1 (92.30), F2 (98.54), F3 (99.88) were all higher compared to the marketed brand BRUFEN® F, (79.61%) in a simulated intestinal media (p<0.001). CONCLUSION Significant increase in the dissolution rate of cocrystal was observed with no phase change in all formulations.
Collapse
Affiliation(s)
- Ayesha Hassan
- Department of Pharmacy, University of Peshawar, Peshawar, KPK, Pakistan
| | - Jamshaid Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar, KPK, Pakistan
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar, KPK, Pakistan
| | - Hira Shabir
- Department of Pharmacy, University of Peshawar, Peshawar, KPK, Pakistan
| | - Peer Abdul Hannan
- Department of Pharmacy, Faculty of Life Sciences, Sarhad University of Science and Information Technology, Peshawar, KPK, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, Faculty of Life Sciences, Sarhad University of Science and Information Technology, Peshawar, KPK, Pakistan
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul- Mouz 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul- Mouz 616, Nizwa, Sultanate of Oman
| |
Collapse
|
9
|
Patyk-Kaźmierczak E, Szymańska K, Kaźmierczak M. Managing negative linear compressibility and thermal expansion through steric hindrance: a case study of 1,2-bis(4'-pyridyl)ethane cocrystals. IUCRJ 2025; 12:88-96. [PMID: 39704729 PMCID: PMC11707692 DOI: 10.1107/s2052252524011734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Multicomponent crystals have great scientific potential because of their amenability to crystal engineering in terms of composition and structure, and hence their properties can be easily modified. More and more research areas are employing the design of multicomponent materials to improve the known or induce novel physicochemical properties of crystals, and recently they have been explored as materials with abnormal pressure behaviour. The cocrystal of 1,2-bis(4'-pyridyl)ethane and fumaric acid (ETYFUM) exhibits a negative linear compressibility behaviour comparable to that of framework and metal-containing materials, but overcomes many of their deficiencies restricting their use. Herein ETYFUM was investigated at low temperature to reveal negative thermal expansion behaviour. Additionally, a cocrystal isostructural with ETYFUM, based on 1,2-bis(4'-pyridyl)ethane and succinic acid (ETYSUC), was exposed to high pressure and low temperature, showing that its behaviour is similar in nature to that of ETYFUM, but significantly differs in the magnitude of both effects. It was revealed that the minor structural difference between the acid molecules does not significantly affect the packing under ambient conditions, but has far-reaching consequences when it comes to the deformation of the structure when exposed to external stimuli.
Collapse
Affiliation(s)
- Ewa Patyk-Kaźmierczak
- Facuty of ChemistryAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 8Poznań61-614Poland
| | - Kornelia Szymańska
- Facuty of ChemistryAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 8Poznań61-614Poland
| | - Michał Kaźmierczak
- Facuty of ChemistryAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 8Poznań61-614Poland
| |
Collapse
|
10
|
Trzeciak K, Dudek MK, Potrzebowski MJ. Mechanochemical Transformations of Pharmaceutical Cocrystals: Polymorphs and Coformer Exchange. Chemistry 2024; 30:e202402683. [PMID: 39384536 DOI: 10.1002/chem.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising for economic and ecological reasons. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements, which include the innovative application of thermo-mechanochemistry, sono-mechanochemistry, photo-mechanochemistry, electro-mechanochemistry, as well as resonant acoustic mixing (RAM), and transformation under high-speed sample spinning ("SpeedMixing"). A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation (PXRD, FTIR, Raman and NMR spectroscopy) is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, solvent used as a liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component stable structure is presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
11
|
Samie A, Alavian H. A Perspective on the Permeability of Cocrystals/Organic Salts of Oral Drugs. Mol Pharm 2024; 21:4860-4911. [PMID: 39284012 DOI: 10.1021/acs.molpharmaceut.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
12
|
Xiao Y, Wu C, Liu Y, Zhou L, Wu S, Yin Q. Biocompatible Nano-Cocrystal Engineering for Targeted Herbicide Delivery: Enhancing Efficacy through Stimuli-Responsive Release and Reduced Environmental Losses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51283-51300. [PMID: 39255044 DOI: 10.1021/acsami.4c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In addressing the critical challenges posed by the misuse and inefficiency of traditional pesticides, we introduce a Nano-Cocrystal material composed of the herbicide clopyralid and coformer phenazine. Developed through synergistic supramolecular self-assembly and mechanochemical nanotechnology, this Nano-Cocrystal significantly enhances pesticide performance. It exhibits a marked improvement in stability, with reductions in hygroscopicity and volatility by approximately 38%. Moreover, it intelligently modulates release according to environmental factors, such as temperature, pH, and soil inorganic salts, demonstrating decreased solubility by up to four times and improved wettability and adhesion on leaf surfaces. Importantly, the herbicidal activity surpasses that of pure clopyralid, increasing suppression rates of Medicago sativa L. and Oxalis corniculata L. by up to 27% at the highest dosage. This Nano-Cocrystal also shows enhanced crop safety and reduced genotoxicity compared to conventional formulations. Offering a blend of simplicity, cost-effectiveness, and robust stability, our findings contribute a sustainable solution to agricultural practices, favoring the safety of nontarget organisms.
Collapse
Affiliation(s)
- Yuntian Xiao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuanhua Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongkang Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ling Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Shakeel F, Al-Shdefat R, Altamimi MA, Ahmad U. Solubility and thermodynamic analysis of aceclofenac in different {Carbitol + water} mixtures at various temperatures. BMC Chem 2024; 18:168. [PMID: 39267153 PMCID: PMC11397009 DOI: 10.1186/s13065-024-01287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The solubility and thermodynamic properties of the anti-inflammatory drug aceclofenace (ACF) have been assessed in a range of {2-(2-ethoxyethoxy)ethanol (Carbitol) + water} combinations at temperatures ranging from 298.2 K to 318.2 K and atmospheric pressure of 101.1 kPa. The shake flask method was employed to determine the solubility of ACF, and various models including "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models" were used to validate the results. The computational models demonstrated a strong correlation with the experimental ACF solubility data, as indicated by the error values of < 3.0%. In the compositions of {Carbitol + water}, the ACF mole fraction solubility was enhanced by temperature and Carbitol mass fraction. The solubility of ACF in mole fraction was found to be lowest in pure water (1.07 × 10- 6 at 298.2 K), and highest in pure Carbitol (1.04 × 10- 1 at 318.2 K). Based on the positive values of the calculated thermodynamic parameters, the dissolution of ACF was determined to be "endothermic and entropy-driven" in all of the {Carbitol + water} solutions that were studied. It was also observed that enthalpy controls the solvation of ACF in solutions containing {Carbitol + water}. ACF-Carbitol had the strongest molecular interactions in contrast to ACF-water. Based on the results of this study, Carbitol holds significant potential for enhancing the solubility of ACF in water.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ramadan Al-Shdefat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, P.O. Box 733, Irbid, 21110, Jordan
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
14
|
Ezekiel C, Jadhav S, Stevens LL, MacGillivray LR. Assessing Structures and Solution Behaviors of Molecular and Ionic Cocrystals with a Common Bioactive Molecule: 2,4-Pyridinedicarboxylic Acid with Tranexamic Acid and Nicotinamide. CRYSTAL GROWTH & DESIGN 2024; 24:6618-6624. [PMID: 39185356 PMCID: PMC11342296 DOI: 10.1021/acs.cgd.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
Cocrystals of 2,4-pyridinedicarboxylic acid (PDA) with either nicotinamide (NTD) or tranexamic acid (TXA) as (PDA)·(NTD) and 2(PDA)·(TXA), respectively, are reported, with the former being a molecular cocrystal and the latter being an ionic cocrystal. Single-crystal structure analyses showed that PDA and its coformers are sustained by neutral and ionic hydrogen bonds. Suspensions of (PDA)·(NTD) resulted in complete conversion to PDA monohydrate after 48 h, while 2(PDA)·(TXA) was thermodynamically stable at a lower pH and showed a 2-fold increase in the PDA concentration, relative to pure PDA monohydrate under similar conditions. Thermal characterization of 2(PDA)·(TXA) displayed a lower melting point and a lower heat of fusion, relative to the pure components. Powder dissolution studies were evaluated for PDA, (PDA)·(NTD), and 2(PDA)·(TXA) and the corresponding physical mixtures. The percent of PDA dissolved rapidly reached near 100% for most cases; however, for 2(PDA)·(TXA), complete dissolution was not achieved, and the amount of PDA dissolved decreased to 85% after 3 h. Instability of 2(PDA)·(TXA) was likely a result of a high solution pH during dissolution, and our results confirm that the solution pH plays a key role in determining the solution behavior and phase stability of the cocrystals.
Collapse
Affiliation(s)
| | - Sanika Jadhav
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Leonard R. MacGillivray
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
15
|
Meng J, Qiu C, Lu C, He X, Zhao X. A new crystalline daidzein-piperazine salt with enhanced solubility, permeability, and bioavailability. Front Pharmacol 2024; 15:1385637. [PMID: 39104399 PMCID: PMC11298695 DOI: 10.3389/fphar.2024.1385637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
To overcome the poor solubility, permeability, and bioavailability of the plant isoflavone daidzein (DAI), a novel salt of DAI with anhydrous piperazine (PIP) was obtained based on cocrystallization strategy. The new salt DAI-PIP was characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and optical microscopy. The results showed that the maximum apparent solubility (Smax) of DAI-PIP increased by 7.27-fold and 1000-fold compared to DAI in pH 6.8 buffer and water, respectively. The peak apparent permeability coefficient (P app ) of DAI-PIP in the Caco-2 cell model was 30.57 ± 1.08 × 10-6 cm/s, which was 34.08% higher than that of DAI. Additionally, compared to DAI, the maximum plasma concentration (Cmax) value of DAI-PIP in beagle dogs was approximately 4.3 times higher, and the area under the concentration-time curve (AUC0-24) was approximately 2.4 times higher. This study provides a new strategy to enhance the dissolution performance and bioavailability of flavonoid drugs, laying a foundation for expanding their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Diniz LF, Carvalho PS, Souza MAC, Diniz R, Fernandes C. Highly Soluble Dacarbazine Multicomponent Crystals Less Prone to Photodegradation. Mol Pharm 2024; 21:3661-3673. [PMID: 38858241 PMCID: PMC11220790 DOI: 10.1021/acs.molpharmaceut.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Dacarbazine (DTIC) is a widely prescribed oncolytic agent to treat advanced malignant melanomas. Nevertheless, the drug is known for exhibiting low and pH-dependent solubility, in addition to being photosensitive. These features imply the formation of the inactive photodegradation product 2-azahypoxanthine (2-AZA) during pharmaceutical manufacturing and even drug administration. We have focused on developing novel DTIC salt/cocrystal forms with enhanced solubility and dissolution behaviors to overcome or minimize this undesirable biopharmaceutical profile. By cocrystallization techniques, two salts, two cocrystals, and one salt-cocrystal have been successfully prepared through reactions with aliphatic carboxylic acids. A detailed structural study of these new multicomponent crystals was conducted using X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR and 1H NMR), and thermal (TG and DSC) analyses. Most DTIC crystal forms reported display substantial enhancements in solubility (up to 19-fold), with faster intrinsic dissolution rates (from 1.3 to 22-fold), contributing positively to reducing the photodegradation of DTIC in solution. These findings reinforce the potential of these new solid forms to enhance the limited DTIC biopharmaceutical profile.
Collapse
Affiliation(s)
- Luan F. Diniz
- Laboratório
de Controle de Qualidade de Medicamentos e Cosméticos, Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte, MG, Brazil
| | - Paulo S. Carvalho
- Instituto
de Física, Universidade Federal do
Mato Grosso do Sul, 79074-460 Campo Grande, MS, Brazil
| | - Mateus A. C. Souza
- Laboratório
de Controle de Qualidade de Medicamentos e Cosméticos, Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte, MG, Brazil
| | - Renata Diniz
- Departamento
de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte, MG, Brazil
| | - Christian Fernandes
- Laboratório
de Controle de Qualidade de Medicamentos e Cosméticos, Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte, MG, Brazil
| |
Collapse
|
17
|
Wang Y, Jiang Y, Zhou Y, He H, Tang J, Luo A, Liu Z, Ma C, Xiao Q, Guan T, Dai C. Cocrystal Prediction of Nifedipine Based on the Graph Neural Network and Molecular Electrostatic Potential Surface. AAPS PharmSciTech 2024; 25:133. [PMID: 38862767 DOI: 10.1208/s12249-024-02846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Nifedipine (NIF) is a dihydropyridine calcium channel blocker primarily used to treat conditions such as hypertension and angina. However, its low solubility and low bioavailability limit its effectiveness in clinical practice. Here, we developed a cocrystal prediction model based on Graph Neural Networks (CocrystalGNN) for the screening of cocrystals with NIF. And scoring 50 coformers using CocrystalGNN. To validate the reliability of the model, we used another prediction method, Molecular Electrostatic Potential Surface (MEPS), to verify the prediction results. Subsequently, we performed a second validation using experiments. The results indicate that our model achieved high performance. Ultimately, cocrystals of NIF were successfully obtained and all cocrystals exhibited better solubility and dissolution characteristics compared to the parent drug. This study lays a solid foundation for combining virtual prediction with experimental screening to discover novel water-insoluble drug cocrystals.
Collapse
Affiliation(s)
- Yuting Wang
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Yanling Jiang
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Yu Zhou
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Huai He
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Jincao Tang
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Anqing Luo
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Zeng Liu
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Chi Ma
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Qin Xiao
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Tianbing Guan
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Chuanyun Dai
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China.
| |
Collapse
|
18
|
Menon AM, Sidhartha NN, Shruti I, Suresh A, Meena R, Dikundwar AG, Chopra D. Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide. Mol Pharm 2024; 21:2894-2907. [PMID: 38688017 DOI: 10.1021/acs.molpharmaceut.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.
Collapse
Affiliation(s)
- Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Nagamalli Naga Sidhartha
- Department of Pharmaceutical Analysis, NIPER Hyderabad, Balanagar, Hyderabad, Telangana 500037, India
| | - Ipsha Shruti
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Ajay Suresh
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Ravindra Meena
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, NIPER Hyderabad, Balanagar, Hyderabad, Telangana 500037, India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
19
|
Gong W, Li P, Rohani S. Spherical Crystallization Based on Liquid-Liquid Phase Separation in a Reverse Antisolvent Crystallization Process. J Pharm Sci 2024; 113:1616-1623. [PMID: 38311170 DOI: 10.1016/j.xphs.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Vanillin crystals undergo needle-like morphology that results in poor flowability, crystal breakage, and low packing density. The spherical crystallization technology can produce particles with improved flowability and stability. A reverse antisolvent crystallization based on liquid-liquid phase separation is proposed in this work to produce vanillin spherical agglomerates. Hansen Solubility Parameters are applied to explain the liquid-liquid phase separation (LLPS) phenomenon. The Pixact Crystallization Monitoring system is applied to in-situ monitor the whole process. A six-step spherical crystallization mechanism is revealed based on the recorded photos, including the generation of oil droplets, nucleation inside oil droplets, the coalescence and split of oil droplets, crystal growth and agglomeration, breakage of oil droplets, and attrition of agglomerates. Different working conditions are tested to explore the best operation parameters and a frequency-conversion stirring strategy is proposed to improve the production of spherical crystals.
Collapse
Affiliation(s)
- Weizhong Gong
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada; Department of Process Development, Wanhua Chemical Group Co., Ltd, Yantai, Shandong, 264006, China
| | - Pan Li
- Department of Process Development, Wanhua Chemical Group Co., Ltd, Yantai, Shandong, 264006, China
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada.
| |
Collapse
|
20
|
Nicolau ST, Matzger AJ. Sensitizing Explosives Through Molecular Doping. Chempluschem 2024; 89:e202300724. [PMID: 38437508 DOI: 10.1002/cplu.202300724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Cocrystallization assembles multicomponent crystals in defined ratios that are held together by intermolecular interactions. While cocrystals have seen extensive use in the pharmaceutical industry for solving issues with stability and solubility, extension to the field of energetic materials for improved properties has proven difficult. Predicting successful coformers remains a challenge for systems lacking well-understood synthons that promote reliable intermolecular assembly. Herein, an alternative method is investigated for altering energetic properties that operates in the absence of well-defined interactions by molecular doping. An impact sensitive primary explosive, cyanuric triazide (CTA), was selected as the dopant to test if less impact sensitive secondary explosives could gain increased sensitization to impact when CTA is inserted into their crystal lattices. Molecular doping was successful in sensitizing three melt-castable energetics: 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), and 1,3,3-trinitroazetidine (TNAZ). CTA could also be incorporated as a stabilized inclusion to sensitize DNAN further. These results demonstrate how the judicious choice of dopant can lead to specific property improvements, providing a method for creating energetic materials with new properties to access metal-free primary explosives and physical hot spot models for explosive ignition.
Collapse
Affiliation(s)
- Shelby T Nicolau
- Department of Chemistry, University of Michigan, 930 North University Ave, 48109, Ann Arbor, MI, USA
| | - Adam J Matzger
- Department of Chemistry, University of Michigan, 930 North University Ave, 48109, Ann Arbor, MI, USA
- Macromolecular Science and Engineering Program, University of Michigan, 48109, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Murphy JN, Kobti JL, Dao M, Wear D, Okoko M, Pandey S, Vukotic VN. Therapeutic coordination polymers: tailoring drug release through metal-ligand interactions. Chem Sci 2024; 15:7041-7050. [PMID: 38756811 PMCID: PMC11095386 DOI: 10.1039/d4sc00732h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Developing tunable materials which exhibit sustained drug release is a considerable challenge. Herein, we report the concept of Therapeutic Coordination Polymers (TCPs); non-porous coordination polymers constructed from biocompatible components which demonstrate tunable zero-order drug release kinetics upon degradation of metal-ligand bonds. TCPs were constructed from three principal components: (i) a cationic metal center (M = Mg2+, Mn2+, Zn2+, or Cu2+); (ii) an anionic drug (Diclofenac); and (iii) an alkyl bis-imidazole organic ligand which behaves as a "linker" between metal centers. Most drug-release materials, such as amorphous polymer dispersions, or metal-organic frameworks rely on a diffusion-based mechanism for drug release, but the degradation-controlled release of drugs from non-porous one-periodic coordination polymers has been largely unexplored. TCPs described herein exhibit a high wt% of pharmaceutical (>62%), tailorable zero-order drug release rate kinetics which span over three orders of magnitude, and stimuli-responsive drug release behavior making them well suited for extended drug-release applications.
Collapse
Affiliation(s)
- Jennifer N Murphy
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
- Department of Chemistry, University of Guelph 50 Stone Rd E Guelph ON N1G 2W1 Canada
| | - Joy-Lynn Kobti
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Michelle Dao
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Darcy Wear
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
- Department of Pharmacology and Toxicology, University of Toronto Toronto ON M5R 0A3 Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada
| | - Michael Okoko
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - V Nicholas Vukotic
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| |
Collapse
|
22
|
Yang J, Ma YX, Zong Y, Sun M, Wang Y, Zhang RL, Feng J, Wang CZ, Zhuo SP, Zhou J, Shi YL, Chen SH, Wang XD, Lin HT. Precise Synthesis of Organic Cocrystal Alloys with Full-Spectrum Emission Characteristics for the Stepless Color Changing Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307129. [PMID: 38126615 DOI: 10.1002/smll.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Organic luminescent materials are indispensable in optoelectronic displays and solid-state luminescence applications. Compared with single-component, multi-component crystalline materials can improve optoelectronic characteristics. This work forms a series of full-spectrum tunable luminescent charge-transfer (CT) cocrystals ranging from 400 to 800 nm through intermolecular collaborative self-assembly. What is even more interesting is that o-TCP-Cor(x)-Pe(1-x), p-TCP-Cor(x)-Pe(1-x), and o-TCP-AN(x)-TP(1-x) alloys are prepared based on cocrystals by doping strategies, which correspondingly achieve the stepless color change from blue (CIE [0.22, 0.44]) to green (CIE [0.16, 0.14]), from green (CIE [0.27, 0.56]) to orange (CIE [0.58, 0.42]), from yellow (CIE [0.40, 0.57]) to red (CIE [0.65, 0.35]). The work provides an efficient method for precisely synthesizing new luminescent organic semiconductor materials and lays a solid foundation for developing advanced organic solid-state displays.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ying-Xin Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Yi Zong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mao Sun
- School of resources and environmental engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ren-Long Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Jin Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Chuan-Zeng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Shu-Ping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ying-Li Shi
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shu-Hai Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hong-Tao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
23
|
Li H, Wang L, Ye X, Yao C, Song S, Qu Y, Jiang J, Wang H, Han P, Liu Y, Tao X. Efficient Screening of Pharmaceutical Cocrystals by Microspacing In-Air Sublimation. J Am Chem Soc 2024; 146:11592-11598. [PMID: 38630123 DOI: 10.1021/jacs.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cocrystal screening and single-crystal growth remain the primary obstacles in the development of pharmaceutical cocrystals. Here, we present a new approach for cocrystal screening, microspacing in-air sublimation (MAS), to obtain new cocrystals and grow high-quality single crystals of cocrystals within tens of minutes. The method possesses the advantages of strong designable ability of devices, user-friendly control, and compatibility with materials, especially for the thermolabile molecules. A novel drug-drug cocrystal of favipiravir (FPV) with salicylamide (SAA) was first discovered by this method, which shows improved physiochemical properties. Furthermore, this method proved effective in cultivating single crystals of FPV-isonicotinamide (FPV-INIA), FPV-urea, FPV-nicotinamide (FPV-NIA), and FPV-tromethamine (FPV-Tro) cocrystals, and the structures of these cocrystals were determined for the first time. By adjusting the growth temperature and growth distance precisely, we also achieved single crystals of 10 different paracetamol (PCA) cocrystals and piracetam (PIR) cocrystals, which underscores the versatility and efficiency of this method in pharmaceutical cocrystal screening.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Lei Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Changlin Yao
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Shuhong Song
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yaqian Qu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Hongshuai Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Peizhuo Han
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
24
|
Žugec I, Geilhufe RM, Lončarić I. Global machine learning potentials for molecular crystals. J Chem Phys 2024; 160:154106. [PMID: 38624120 DOI: 10.1063/5.0196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Molecular crystals are difficult to model with accurate first-principles methods due to large unit cells. On the other hand, accurate modeling is required as polymorphs often differ by only 1 kJ/mol. Machine learning interatomic potentials promise to provide accuracy of the baseline first-principles methods with a cost lower by orders of magnitude. Using the existing databases of the density functional theory calculations for molecular crystals and molecules, we train global machine learning interatomic potentials, usable for any molecular crystal. We test the performance of the potentials on experimental benchmarks and show that they perform better than classical force fields and, in some cases, are comparable to the density functional theory calculations.
Collapse
Affiliation(s)
- Ivan Žugec
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastián, Spain
| | - R Matthias Geilhufe
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
25
|
Haneef J, Ali S. Multicomponent Amorphous Solid Forms of Telmisartan: Insights into Mechanochemical Activation and Physicochemical Attributes. AAPS PharmSciTech 2024; 25:84. [PMID: 38605282 DOI: 10.1208/s12249-024-02799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The present work aims to explore the new solid forms of telmisartan (TEL) with alpha-ketoglutaric acid (KGA) and glutamic acid (GA) as potential coformers using mechanochemical approach and their role in augmentation in physicochemical parameters over pure crystalline TEL. Mechanochemical synthesis was performed using 1:1 stoichiometric ratio of TEL and the selected coformers in the presence of catalytic amount of ethanol for 1 h. The ground product was characterized by PXRD, DSC, and FTIR. The new solid forms were evaluated for apparent solubility, intrinsic dissolution, and physical stability. Preliminary characterization revealed the amorphization of the mechanochemical product as an alternate outcome of cocrystallization screening. Mechanistic understanding of the amorphous phase highlights the formation of amorphous-mediated cocrystallization that involves three steps, viz., molecular recognition, intermediate amorphous phase, and product nucleation. The solubility curves of both multicomponent amorphous solid forms (TEL-KGA and TEL-GA) showed the spring-parachute effect and revealed significant augmentation in apparent solubility (8-10-folds), and intrinsic dissolution release (6-9-folds) as compared to the pure drug. Besides, surface anisotropy and differential elemental distributions in intrinsic dissolution compacts of both solid forms were confirmed by FESEM and EDX mapping. Therefore, amorphous phases prepared from mechanochemical synthesis can serve as a potential solid form for the investigation of a cocrystal through amorphous-mediated cocrystallization. This has greater implications in solubility kinetics wherein the rapid precipitation of the amorphous phase can be prevented by the metastable cocrystal phase and contribute to the significant augmentation in the physicochemical parameters.
Collapse
Affiliation(s)
- Jamshed Haneef
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Shakir Ali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
26
|
Wang Z, Li S, Li Q, Wang W, Liu M, Yang S, Zhang L, Yang D, Du G, Lu Y. A Novel Cocrystal of Daidzein with Piperazine to Optimize the Solubility, Permeability and Bioavailability of Daidzein. Molecules 2024; 29:1710. [PMID: 38675529 PMCID: PMC11052268 DOI: 10.3390/molecules29081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.
Collapse
Affiliation(s)
- Zhipeng Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Shuang Li
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Qi Li
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Wenwen Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Meiru Liu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| |
Collapse
|
27
|
Kumari N, Roy P, Roy S, Wang C, Das S, Pandey N, Mondal SK, Bose A, Sun CC, Ghosh A. Development of direct compression Acetazolamide tablet with improved bioavailability in healthy human volunteers enabled by cocrystallization with p-Aminobenzoic acid. Int J Pharm 2024; 652:123793. [PMID: 38195033 DOI: 10.1016/j.ijpharm.2024.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Pharmaceutical cocrystallization has been widely used to improve physicochemical properties of APIs. However, developing cocrystal formulation with proven clinical success remains scarce. Successful translation of a cocrystal to suitable dosage forms requires simultaneously improvement of several deficient physicochemical properties over the parent API, without deteriorating other properties critical for successful product development. In the present work, we report the successful development of a direct compression tablet product of acetazolamide (ACZ), using a 1:1 cocrystal of acetazolamide with p-aminobenzoic acid (ACZ-PABA). The ACZ-PABA tablet exhibits superior biopharmaceutical performance against the commercial tablet, DIAMOX® (250 mg), in healthy human volunteers, leading to more than 50 % reduction in the required dose.
Collapse
Affiliation(s)
- Nimmy Kumari
- Solid State Pharmaceutics Research Lab, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Parag Roy
- Solid State Pharmaceutics Research Lab, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sukanta Roy
- Bioequivalence Study Center, TAAB Biostudy Services, Ibrahimpore Road, Kolkata 700032, India; School of Pharmacy, The Neotia University, Sarisha, West Bengal 743368, India
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E, Minneapolis, MN 55455, United States
| | - Sourav Das
- Bioequivalence Study Center, TAAB Biostudy Services, Ibrahimpore Road, Kolkata 700032, India; School of Pharmacy, The Neotia University, Sarisha, West Bengal 743368, India
| | - Noopur Pandey
- Solid State Pharmaceutics Research Lab, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Susanta Kumar Mondal
- TCG Life Sciences Pvt. Ltd, Block-EP & GP, BIPL, Tower-B, Salt Lake, Sector-V, Kolkata 700091, India
| | - Anirbandeep Bose
- Bioequivalence Study Center, TAAB Biostudy Services, Ibrahimpore Road, Kolkata 700032, India
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E, Minneapolis, MN 55455, United States.
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Lab, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
28
|
Mei H, Wang N, Wu D, Rong Q, Bai X, Huang X, Zhou L, Wang T, Hao H. Novel Pharmaceutical Cocrystals of Tegafur: Synthesis, Performance, and Theoretical Studies. Pharm Res 2024; 41:577-593. [PMID: 38291166 DOI: 10.1007/s11095-024-03668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Tegafur (TF) is one of the most important clinical antitumor drugs with poor water solubility, severely reducing its bioavailability. This work develops new cocrystals to improve the solubility of TF and systematically investigates the intermolecular interactions to provide new insights into the formation of cocrystal and changes in physicochemical properties. METHOD In this paper, two new 1:1 cocrystals of TF with 2,4 dihydroxybenzoic acid (2,4HBA) and p-nitrophenol (PNP) were synthesized. The cocrystal products were identified and characterized by various solid state analysis techniques. And the high performance liquid chromatography (HPLC) was conducted to determine the solubility and dissolution rate of TF and cocrystals. Moreover, the quantum chemistry calculations of crystal structure provided theoretical support for the results. RESULT Compared with pure TF, the solubility and dissolution rate of TF-2,4HBA is significantly increased in a pH 6.8 buffer at 37°C. Under accelerated storage conditions (40°C, 75% RH), all cocrystal exhibits excellent stability over 8 weeks. Hirshfeld surface (HS) analysis, atoms in molecules (AIM) analysis, interaction region indicator (IRI) analysis, molecular electrostatic potential surface (MEPS) analysis and frontier molecular orbital (HOMO-LUMO) analysis were integrated to understand the hydrogen bonding interaction more comprehensively. The simulation results are in good agreement with the experimental data. The results show that the analysis of physical and chemical properties of TF-PNP cocrystal and TF crystal by quantum chemistry method is reliable at molecular level. CONCLUSION These results are helpful to provide guiding methods in the cocrystal development and theoretical study of tegafur.
Collapse
Affiliation(s)
- Haoran Mei
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China.
| | - Di Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Qi Rong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xue Bai
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
29
|
Stirk AJ, Holmes ST, Souza FES, Hung I, Gan Z, Britten JF, Rey AW, Schurko RW. An unusual ionic cocrystal of ponatinib hydrochloride: characterization by single-crystal X-ray diffraction and ultra-high field NMR spectroscopy. CrystEngComm 2024; 26:1219-1233. [PMID: 38419975 PMCID: PMC10897533 DOI: 10.1039/d3ce01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
This study describes the discovery of a unique ionic cocrystal of the active pharmaceutical ingredient (API) ponatinib hydrochloride (pon·HCl), and characterization using single-crystal X-ray diffraction (SCXRD) and solid-state NMR (SSNMR) spectroscopy. Pon·HCl is a multicomponent crystal that features an unusual stoichiometry, with an asymmetric unit containing both monocations and dications of the ponatinib molecule, three water molecules, and three chloride ions. Structural features include (i) a charged imidazopyridazine moiety that forms a hydrogen bond between the ponatinib monocations and dications and (ii) a chloride ion that does not feature hydrogen bonds involving any organic moiety, instead being situated in a "square" arrangement with three water molecules. Multinuclear SSNMR, featuring high and ultra-high fields up to 35.2 T, provides the groundwork for structural interpretation of complex multicomponent crystals in the absence of diffraction data. A 13C CP/MAS spectrum confirms the presence of two crystallographically distinct ponatinib molecules, whereas 1D 1H and 2D 1H-1H DQ-SQ spectra identify and assign the unusually deshielded imidazopyridazine proton. 1D 35Cl spectra obtained at multiple fields confirm the presence of three distinct chloride ions, with density functional theory calculations providing key relationships between the SSNMR spectra and H⋯Cl- hydrogen bonding arrangements. A 2D 35Cl → 1H D-RINEPT spectrum confirms the spatial proximities between the chloride ions, water molecules, and amine moieties. This all suggests future application of multinuclear SSNMR at high and ultra-high fields to the study of complex API solid forms for which SCXRD data are unavailable, with potential application to heterogeneous mixtures or amorphous solid dispersions.
Collapse
Affiliation(s)
| | - Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | | | - Ivan Hung
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - James F Britten
- MAX Diffraction Facility, McMaster University Hamilton ON L8S 4M1 Canada
| | - Allan W Rey
- Apotex Pharmachem Inc. Brantford ON N3T 6B8 Canada
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
30
|
Wang Z, Han W, Shi R, Han X, Zheng Y, Xu J, Bu XH. Mechanoresponsive Flexible Crystals. JACS AU 2024; 4:279-300. [PMID: 38425899 PMCID: PMC10900217 DOI: 10.1021/jacsau.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.
Collapse
Affiliation(s)
- Zhihua Wang
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wenqing Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Rongchao Shi
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Xiao Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongshen Zheng
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Jialiang Xu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| |
Collapse
|
31
|
Fiore C, Antoniciello F, Roncarati D, Scarlato V, Grepioni F, Braga D. Levofloxacin and Ciprofloxacin Co-Crystals with Flavonoids: Solid-State Investigation for a Multitarget Strategy against Helicobacter pylori. Pharmaceutics 2024; 16:203. [PMID: 38399257 PMCID: PMC10892363 DOI: 10.3390/pharmaceutics16020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
In this paper, we address the problem of antimicrobial resistance in the case of Helicobacter pylori with a crystal engineering approach. Two antibiotics of the fluoroquinolone class, namely, levofloxacin (LEV) and ciprofloxacin (CIP), have been co-crystallized with the flavonoids quercetin (QUE), myricetin (MYR), and hesperetin (HES), resulting in the formation of four co-crystals, namely, LEV∙QUE, LEV∙MYR, LEV2∙HES, and CIP∙QUE. The co-crystals were obtained from solution, slurry, or mechanochemical mixing of the reactants. LEV∙QUE and LEV∙MYR were initially obtained as the ethanol solvates LEV∙QUE∙xEtOH and LEV∙MYR∙xEtOH, respectively, which upon thermal treatment yielded the unsolvated forms. All co-crystals were characterized by powder X-ray diffraction and thermal gravimetric analysis. The antibacterial performance of the four co-crystals LEV∙QUE, LEV∙MYR, LEV2∙HES, and CIP∙QUE in comparison with that of the physical mixtures of the separate components was tested via evaluation of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The results obtained indicate that the association with the co-formers, whether co-crystallized or forming a physical mixture with the active pharmaceutical ingredients (API), enhances the antimicrobial activity of the fluoroquinolones, allowing them to significantly reduce the amount of API otherwise required to display the same activity against H. pylori.
Collapse
Affiliation(s)
- Cecilia Fiore
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.G.); (D.B.)
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Federico Antoniciello
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (D.R.); (V.S.)
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (D.R.); (V.S.)
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (D.R.); (V.S.)
| | - Fabrizia Grepioni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.G.); (D.B.)
| | - Dario Braga
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.G.); (D.B.)
| |
Collapse
|
32
|
Zhuo Y, Cheng HL, Zhao YG, Cui HR. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024; 16:151. [PMID: 38276519 PMCID: PMC10818567 DOI: 10.3390/pharmaceutics16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - He-Li Cheng
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Hai-Rong Cui
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| |
Collapse
|
33
|
Budiman A, Wardhana YW, Ainurofiq A, Nugraha YP, Qaivani R, Hakim SNAL, Aulifa DL. Drug-Coformer Loaded-Mesoporous Silica Nanoparticles: A Review of the Preparation, Characterization, and Mechanism of Drug Release. Int J Nanomedicine 2024; 19:281-305. [PMID: 38229702 PMCID: PMC10790662 DOI: 10.2147/ijn.s449159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Drug-coformer systems, such as coamorphous and cocrystal, are gaining recognition as highly effective strategies for enhancing the stability, solubility, and dissolution of drugs. These systems depend on the interactions between drug and coformer to prevent the conversion of amorphous drugs into the crystalline form and improve the solubility. Furthermore, mesoporous silica (MPS) is also a promising carrier commonly used for stabilization, leading to solubility improvement of poorly water-soluble drugs. The surface interaction of drug-MPS and the nanoconfinement effect prevent amorphous drugs from crystallizing. A novel method has been developed recently, which entails the loading of drug-coformer into MPS to improve the solubility, dissolution, and physical stability of the amorphous drug. This method uses the synergistic effects of drug-coformer interactions and the nanoconfinement effect within MPS. Several studies have reported successful incorporation of drug-coformer into MPS, indicating the potential for significant improvement in dissolution characteristics and physical stability of the drug. Therefore, this study aimed to discuss the preparation and characterization of drug-coformer within MPS, particularly the interaction in the nanoconfinement, as well as the impact on drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Central Java, 57126, Indonesia
| | - Yuda Prasetya Nugraha
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ridhatul Qaivani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Siti Nazila Awaliyyah Lukmanul Hakim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
34
|
Mswahili ME, Jo K, Lee S, Jeong YS. Graph Neural Networks with Multi-features for Predicting Cocrystals using APIs and Coformers Interactions. Curr Med Chem 2024; 31:5953-5968. [PMID: 38847382 DOI: 10.2174/0109298673290511240404053224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Active pharmaceutical ingredients (APIs) have gained direct pharmaceutical interest, along with their in vitro properties, and thus utilized as auxiliary solid dosage forms upon FDA guidance and approval on pharmaceutical cocrystals when reacting with coformers, as a potential and attractive route for drug substance development. METHODS However, screening and selecting suitable and appropriate coformers that may potentially react with APIs to successfully form cocrystals is a time-consuming, inefficient, economically expensive, and labour-intensive task. In this study, we implemented GNNs to predict the formation of cocrystals using our introduced API-coformers relational graph data. We further compared our work with previous studies that implemented descriptor-based models (e.g., random forest, support vector machine, extreme gradient boosting, and artificial neural networks). RESULTS All built graph-based models show compelling performance accuracies (i.e., 91.36, 94.60 and 95. 95% for GCN, GraphSAGE, and RGCN respectively). RGCN demonstrated effectiveness and prevailed among the built graph-based models due to its capability to capture intricate and learn nuanced relationships between entities such as non-ionic and non-covalent interactions or link information between APIs and coformers which are crucial for accurate predictions and representations. CONCLUSION These capabilities allows the model to adeptly learn the topological structure inherent in the graph data.
Collapse
Affiliation(s)
- Medard Edmund Mswahili
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, South Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, South Korea
| | - SeungDong Lee
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, South Korea
| | - Young-Seob Jeong
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, South Korea
| |
Collapse
|
35
|
Li J, Wang X, Yu D, Zhoujin Y, Wang K. Molecular complexes of drug combinations: A review of cocrystals, salts, coamorphous systems and amorphous solid dispersions. Int J Pharm 2023; 648:123555. [PMID: 37890646 DOI: 10.1016/j.ijpharm.2023.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
As the advancements in the medical technology and healthcare develop through the years, combinational therapy has evolved to be an important treatment modality in many disease settings, including cancer, cardiovascular disease and infectious diseases. In an effort to alleviate "pill burden" and improve patient compliance, fixed dose combinations (FDCs) have been developed to be used as effective therapeutics. Among all FDCs, the category of drug-drug molecular complexes has been proven an efficient methodology in designing and treating diseases, with many drugs being approved. Among all drug-drug molecular complexes, drug-drug cocrystals, salts, coamorphous systems and solid dispersions have been successfully developed and many have been approved by the FDA. In this review, we dwell deeply into the molecular mechanisms behind the different types of drug-drug molecular complexes, including the key functional groups involved in the intermolecular interactions, the applications of each category of molecular complexes, as well as the advantages and challenges thereof. This comprehensive review provides useful insights into the practical design and manufacture of drug-drug molecular complexes and points out the future direction for the development of new advantageous combinational therapies that benefit more patients.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Xiyan Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08540, United States
| | - Yunping Zhoujin
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kunlin Wang
- BeBetter Med Inc., Guangzhou, 510663, PR China; College of Pharmacy, Jinan University, Guangzhou, 510006, PR China.
| |
Collapse
|
36
|
Spoletti E, Verma V, Cappuccino C, Lusi M. Solid solution polymorphs afford two highly soluble co-drug forms of tolbutamide and chlorpropamide. Chem Commun (Camb) 2023; 59:14321-14324. [PMID: 37971413 DOI: 10.1039/d3cc04725c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The search for solid solutions of class-two insulin secretagogues, tolbutamide and chlorpropamide, reveals a rare case of monotropic polymorphism for the mixed crystals. At any stoichiometry, two crystal forms are isolated that are kinetically stable at room temperature from a few months to over a year. Dissolution tests certify the solubility advantage of the solid solutions over the pure drugs as well as their physical mixture, suggesting a potential application as a highly soluble co-drug formulation.
Collapse
Affiliation(s)
- Enrico Spoletti
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Vivek Verma
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Chiara Cappuccino
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Matteo Lusi
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
37
|
Shakeel F, Haq N, Alshehri S, Alsarra IA. Solubility and Thermodynamics Data of Cabozantinib Malate in Various Aqueous Solutions of Dimethyl Sulfoxide at Different Temperatures. Molecules 2023; 28:7805. [PMID: 38067534 PMCID: PMC10707982 DOI: 10.3390/molecules28237805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2025] Open
Abstract
Cabozantinib malate (CBZM), a new anticancer medication, has been studied for its solubility and thermodynamic properties in a variety of {dimethyl sulfoxide (DMSO) + water (H2O)} mixtures at 298.2-318.2 K and 101.1 kPa. Using the shake flask technique, the solubility of CBZM was assessed and the results were correlated to the van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models. There was a significant correlation between the experimental CBZM solubility data and all computational models, as evidenced by the error values for all computational models being less than 5.0%. Temperature and DMSO mass percentage improved the CBZM mole fraction solubility in the cosolvent solutions of {DMSO + H2O}. At 318.2 K, pure DMSO had the highest mole fraction solubility of CBZM (4.38 × 10-2), whereas pure H2O had the lowest mole fraction solubility (2.24 × 10-7 at 298.2 K). The positive values of computed thermodynamic parameters indicated that the dissolution of CBZM was endothermic and entropy-driven in all of the {DMSO + H2O} solutions investigated. It was found that the CBZM solvation in {DMSO + H2O} solutions is governed by enthalpy. When compared to CBZM-H2O, CBZM-DMSO showed the highest molecular interactions. The findings of this investigation demonstrated that DMSO has a great deal of potential for CBZM solubilization in H2O.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| | | | | | | |
Collapse
|
38
|
Ward MR, Bull CL, Funnell NP, Warren MR, Oswald IDH. Exploring the effects of high pressure on hydrogen bonding in pharmaceutical cocrystals: A systematic study of pyridine dicarboxylic acid systems using synchrotron and neutron diffraction. Int J Pharm 2023; 647:123514. [PMID: 37844673 DOI: 10.1016/j.ijpharm.2023.123514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Pharmaceutical cocrystals use common robust hydrogen bonding synthons to create novel materials with different physicochemical properties. In this systematic study of a series of cocrystals, we explore the effect of high pressure on one of these commonly used motifs, the acid-pyridine motif, to assess the commonality of behaviour under extreme conditions. We have surveyed five pyridine dicarboxylic acid systems using both synchrotron and neutron diffraction methods to elucidate the changes in structure. We observe that the hydrogen bonding in these systems compress at a similar rate despite the changes to the molecular make-up of the solids and that on compression the changes in structure are indicative that the layers move along the major slip planes in the structure. We have observed two phase transitions to new forms of the pyrazine:malonic acid system, one for each stoichiometric ratio. This study demonstrates that the combination of two complementary diffraction approaches is key to understanding polymorphic behaviour at high pressure.
Collapse
Affiliation(s)
- Martin R Ward
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Craig L Bull
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0QX, United Kingdom; Department of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Nicolas P Funnell
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon OX11 0QX, United Kingdom
| | - Mark R Warren
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Iain D H Oswald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
39
|
Mitchell TB, Zhang X, Jerozal RT, Chen YS, Wang S, Benedict JB. Development of a scalar-based geometric parameterization approach for the crystal structure landscape of dithienylethene-based crystalline solids. IUCRJ 2023; 10:694-699. [PMID: 37750828 PMCID: PMC10619447 DOI: 10.1107/s2052252523008060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Dithienylethenes (DTEs) are a promising class of organic photoswitches that can be used to create crystalline solids with properties controlled by light. However, the ability of DTEs to adopt multiple conformations, only one of which is photoactive, complicates the rational design of these materials. Herein, the synthesis and structural characterization of 19 crystalline solids containing a single DTE molecule are described. A novel D-D analysis of the molecular geometries obtained from rotational potential energy surface calculations and the ensemble of experimental structures were used to construct a crystal landscape for DTE. Of the 19 crystal structures, 17 contained photoinactive DTE rotamers and only 2 were photoactive. These results highlight the challenges associated with the design of these materials. Overall, the D-D analysis described herein provides rapid, effective and intuitive means of linking the molecular structure to photoactivity that could be applied more broadly to afford a general strategy for producing photoactive diarylethene-based crystalline solids.
Collapse
Affiliation(s)
- Travis B. Mitchell
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Xiaotong Zhang
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Ronald T. Jerozal
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Yu-Sheng Chen
- NSF’s ChemMatCARS, University of Chicago, Chicago, Lemont, IL 60439, USA
| | - SuYin Wang
- NSF’s ChemMatCARS, University of Chicago, Chicago, Lemont, IL 60439, USA
| | - Jason B. Benedict
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| |
Collapse
|
40
|
Shakeel F, Haq N, Alshehri S, Alenazi M, Alwhaibi A, Alsarra IA. Solubility and Thermodynamic Analysis of Isotretinoin in Different (DMSO + Water) Mixtures. Molecules 2023; 28:7110. [PMID: 37894589 PMCID: PMC10609013 DOI: 10.3390/molecules28207110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The solubility and solution thermodynamics of isotretinoin (ITN) (3) in numerous {dimethyl sulfoxide (DMSO) (1) + water (H2O) (2)} combinations were studied at 298.2-318.2 K under fixed atmospheric pressure of 101.1 kPa. A shake flask methodology was used to determine ITN solubility, and correlations were made using the "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". In mixtures of {(DMSO (1) + H2O (2)}, the solubility of ITN in mole fractions was enhanced with the temperature and DMSO mass fraction. The mole fraction solubility of ITN was highest in neat DMSO (1.02 × 10-1 at 318.2 K) and lowest in pure H2O (3.14 × 10-7 at 298.2 K). The output of computational models revealed good relationships between the solubility data from the experiments. The dissolution of ITN was "endothermic and entropy-driven" in all of the {(DMSO (1) + H2O (2)} mixtures examined, according to the positive values of measured thermodynamic parameters. Enthalpy was discovered to be the driving force behind ITN solvation in {(DMSO (1) + H2O (2)} combinations. ITN-DMSO displayed the highest molecular interactions when compared to ITN-H2O. The outcomes of this study suggest that DMSO has a great potential for solubilizing ITN in H2O.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| | - Miteb Alenazi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.)
| | - Abdulrahman Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.)
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| |
Collapse
|
41
|
McTague H, Rasmuson ÅC. Investigation into the Nucleation of the p-Hydroxybenzoic Acid:Glutaric Acid 1:1 Cocrystal from Stoichiometric and Non-Stoichiometric Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:7053-7065. [PMID: 37808903 PMCID: PMC10557069 DOI: 10.1021/acs.cgd.2c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/30/2023] [Indexed: 10/10/2023]
Abstract
The nucleation in the p-hydroxybenzoic acid:glutaric acid 1:1 cocrystal (PHBA:GLU) system has been investigated in stoichiometric and non-stoichiometric acetonitrile solutions by induction time experiments. Utilizing the ternary phase diagram, the supersaturated non-stoichiometric solutions were created with compositions along the invariant point boundary lines. In all cases, the PHBA:GLU cocrystal was the nucleating phase, even though the non-stoichiometric solutions were also supersaturated with respect to the pure solid phases. The nucleation of the cocrystal from the mixed solutions is found to be more difficult than the nucleation of the pure compounds from the respective pure solutions, as captured by lower pre-exponential factors (A). However, if the driving force is defined per reactant molecule instead of per heterodimer, the cocrystal nucleation difficulty is close to that of the more difficult-to-nucleate pure compound. The difference in nucleation difficulty of the cocrystal from stoichiometric and non-stoichiometric solutions was captured by differences in the interfacial energy, while the pre-exponential factor remained unchanged. Apart from the pure GLU system, the relation between the experimentally determined pre-exponential factors for the different systems correlates with calculated values using theoretical expressions for volume-diffusion and surface-integration control.
Collapse
Affiliation(s)
- Hannah McTague
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Department
of Chemical and Environmental Science, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Åke C. Rasmuson
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Department
of Chemical and Environmental Science, University
of Limerick, Limerick V94 T9PX, Ireland
- Department
of Chemical Engineering and Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
42
|
Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, Abnous K, Taghdisi SM. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol Pharm 2023; 20:5090-5107. [PMID: 37624646 DOI: 10.1021/acs.molpharmaceut.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Pharmaceutical cocrystals ( Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; Food and Drug Administration, 2018) are crystalline solids produced through supramolecular chemistry to modulate the physicochemical properties of active pharmaceutical ingredients (APIs). Despite their extensive development in interdisciplinary sciences, this is a pioneering study on the efficacy of pharmaceutical cocrystals in wound healing and scar reducing. Curcumin-pyrogallol cocrystal (CUR-PYR) was accordingly cherry-picked since its superior physicochemical properties adequately compensate for limitative drawbacks of curcumin (CUR). CUR-PYR has been synthesized by a liquid-assisted grinding (LAG) method and characterized via FT-IR, DSC, and PXRD analyses. In vitro antibacterial study indicated that CUR-PYR cocrystal, CUR+PYR physical mixture (PM), and PYR are more effective against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria in comparison with CUR. In vitro results also demonstrated that the viability of HDF and NIH-3T3 cells treated with CUR-PYR were improved more than those received CUR which is attributed to the effect of PYR in the form of cocrystal. The wound healing process has been monitored through a 15 day in vivo experiment on 75 male rats stratified into six groups: five groups treated by CUR-PYR+Vaseline (CUR-PYR.ung), CUR+PYR+Vaseline (CUR+PYR.ung), CUR+Vaseline (CUR.ung), PYR+Vaseline (PYR.ung), and Vaseline (VAS) ointments and a negative control group of 0.9% sodium chloride solution (NS). It was revealed that the wounds under CUR-PYR.ung treatment closed by day 12 postsurgery, while the wounds in other groups failed to reach the complete closure end point until the end of the experiment. Surprisingly, a diminutive scar (3.89 ± 0.97% of initial wound size) was observed in the CUR-PYR.ung treated wounds by day 15 after injury, followed by corresponding values for PYR.ung (12.08 ± 2.75%), CUR+PYR.ung (13.89 ± 5.02%), CUR.ung (16.24 ± 6.39%), VAS (18.97 ± 6.89%), and NS (20.33 ± 5.77%). Besides, investigating histopathological parameters including inflammation, granulation tissue, re-epithelialization, and collagen deposition signified outstandingly higher ability of CUR-PYR cocrystal in wound healing than either of its two constituents separately or their simple PM. It was concluded that desired solubility of the prepared cocrystal was essentially responsible for accelerating wound closure and promoting tissue regeneration which yielded minimal scarring. This prototype research suggests a promising application of pharmaceutical cocrystals for the purpose of wound healing.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Zeinab Vafaei-Pour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948954, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Noor Mohammad Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
43
|
Yu H, Zhang L, Liu M, Yang D, He G, Zhang B, Gong N, Lu Y, Du G. Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering. Pharmaceuticals (Basel) 2023; 16:1349. [PMID: 37895820 PMCID: PMC10610424 DOI: 10.3390/ph16101349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
To improve the solubility and dissolution rate of the BCS class II drug ketoconazole, five novel solid forms in 1:1 stoichiometry were obtained upon liquid-assisted grinding, slurry, and slow evaporation methods in the presence of coformers, namely, glutaric, vanillic, 2,6-dihydroxybenzoic, protocatechuic, and 3,5-dinitrobenzoic acids. Single-crystal X-ray diffraction analysis revealed that the hydroxyl/carboxylic acid. . .N-imidazole motif acts as the dominant supramolecular interaction in the obtained solid forms. The solubility of ketoconazole in distilled water significantly increased from 1.2 to 2165.6, 321.6, 139.1, 386.3, and 191.7 μg mL-1 in the synthesized multi-component forms with glutaric, vanillic, 2,6-dihydroxybenzoic, protocatechuic, and 3,5-dinitrobenzoic acid, respectively. In particular, the cocrystal form with glutaric acid showed an 1800-fold solubility increase in water concerning ketoconazole. Our study provides an alternative approach to improve the solubility and modify the release profile of poorly water-soluble drugs such as ketoconazole.
Collapse
Affiliation(s)
- Hongmei Yu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Li Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Meiju Liu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Dezhi Yang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Guorong He
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (G.H.); (G.D.)
| | - Baoxi Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (G.H.); (G.D.)
| |
Collapse
|
44
|
Saunders LK, Irving D, Chater PA, Diaz-Lopez M. Noncovalent bonding assessment by pair distribution function. Faraday Discuss 2023; 244:356-369. [PMID: 37158101 DOI: 10.1039/d2fd00159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Noncovalent interactions are essential in the formation and properties of a diverse range of materials. However, reliably identifying noncovalent interactions remains challenging using conventional methods such as X-ray diffraction, especially in nanocrystalline, poorly crystalline or amorphous materials which lack long-range lattice periodicity. Here, we demonstrate the accurate determination of deviations in the local structure and tilting of aromatic rings during the temperature-induced first order structural transition in the 1 : 1 adduct of 4,4'-bipyridinium squarate (BIPY:SQA) from the low temperature form HAZFAP01 to high temperature HAZFAP07 by X-ray pair distribution function. This work demonstrates how pair distribution function analyses can improve our understanding of local structural deviations resulting from noncovalent bonds and guide the development of novel functional materials.
Collapse
Affiliation(s)
- Lucy K Saunders
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Daniel Irving
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Maria Diaz-Lopez
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
45
|
Li L, Chen X, Zhang K, Tian G, Ding X, Bai S, Zeng Q. Effects of Thymol and Carvacrol Eutectic on Growth Performance, Serum Biochemical Parameters, and Intestinal Health in Broiler Chickens. Animals (Basel) 2023; 13:2242. [PMID: 37444040 DOI: 10.3390/ani13132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to evaluate the effect of diets supplementing with various levels of thymol and carvacrol eutectic (TCE) on growth performance, serum biochemical parameters, intestinal morphology, and the expression of intestinal nutrient absorption, barrier function- and inflammation-related genes in broiler chickens. A total of 640 one-day-old Arbor Acres male broilers with similar body weights were randomly divided into four groups (8 replicates/group, 20 broilers/replicate). Birds in the four experimental groups were fed a basal diet with TCE at 0, 30, 60, or 120 mg/kg. The results showed that the growth performance of birds during 22-42 d or 1-42 d, serum IgE and IgG content at 21 d of age, jejunal and ileal morphology, ileal MUC2, OCLN, and IL-10 mRNA expression were significantly increased compared with the control group (p < 0.05), and the ileal IL-6 mRNA expression quadratically decreased (p < 0.05) with increasing dietary TCE supplemented dosage, and its expression showed a linear downward trend (0.05 < p < 0.1). Meanwhile, compared with the other three groups, birds fed diets with 30 mg/kg TCE presented better (p < 0.05) growth performance, intestinal morphology, and function. These results indicated that the optimal supplementation amount of TCE in the broiler diets was 30 mg/kg.
Collapse
Affiliation(s)
- Lixuan Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaochun Chen
- Institute of Animal Science, Chengdu Agricultural College, Chengdu 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
46
|
Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 2023; 7:480-495. [PMID: 37414981 DOI: 10.1038/s41570-023-00487-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 07/08/2023]
Abstract
Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Elyse M Kleist
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
47
|
Nowak P, Sikorski A. Structural diversity of cocrystals formed from acridine and two isomers of hydroxybenzaldehyde: 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde. RSC Adv 2023; 13:20105-20112. [PMID: 37409037 PMCID: PMC10318855 DOI: 10.1039/d3ra02300a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Cocrystals formed from acridine and two isomers of hydroxybenzaldehyde: 3-hydroxybenzaldehyde (1) and 4-hydroxybenzaldehyde (2) were synthesized and structurally characterized. Single-crystal X-ray diffraction measurements show that compound 1 crystallizes in the triclinic P1̄ space group, whereas compound 2 crystallizes in the monoclinic P21/n space group. In the crystals of title compounds, the molecules interact via O-H⋯N and C-H⋯O hydrogen bonds, and C-H⋯π and π-π interactions. DCS/TG measurements indicate that compound 1 melts at a lower temperature than the separate cocrystal coformers, whereas compound 2 melts at a higher temperature than acridine but at a lower temperature than 4-hydroxybenzaldehyde. The FTIR measurements reveal that the band attributed to the stretching vibrations of the hydroxyl group of hydroxybenzaldehyde disappeared, but several bands appeared in the range of 3000-2000 cm-1.
Collapse
Affiliation(s)
- Patryk Nowak
- Faculty of Chemistry, University of Gdansk W. Stwosza 63 80-308 Gdansk Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdansk W. Stwosza 63 80-308 Gdansk Poland
| |
Collapse
|
48
|
Zhao Y, Fan Y, Zhang Y, Xu H, Li M, Zhu Y, Yang Z. A method for improving the properties of famotidine. Heliyon 2023; 9:e17494. [PMID: 37416673 PMCID: PMC10320128 DOI: 10.1016/j.heliyon.2023.e17494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
According to crystal engineering, the pharmaceutical intermediate m-nitrobenzoic acid (MNBA), which contains a carboxylic acid group, was selected as a coformer (CCF) for drug cocrystallization with famotidine (FMT), and a new stable FMT salt cocrystal was synthesized. The salt cocrystals were characterized by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, infrared spectroscopy, powder X-ray diffraction and X-ray single crystal diffraction. A single crystal structure of FMT-MNBA (1:1) was successfully obtained, and then the solubility and permeability of the newly synthesized salt cocrystal were studied. The results showed that, compared with free FMT, the FMT from the FMT-MNBA cocrystal showed improved permeability. This study provides a synthetic method to improve the permeability of BCS III drugs, which will contribute to the development of low-permeability drugs.
Collapse
Affiliation(s)
- Yongfeng Zhao
- College of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ying Fan
- Pharmacy Department, Qingdao Special Servicemen Recuperation Center of CPLA Navy, Qingdao, 266071, China
| | - Yan Zhang
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Hong Xu
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Min Li
- Anqiu People's Hospital, Weifang, 262199, China
| | - Yunjie Zhu
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Zhao Yang
- College of Pharmacy, Qingdao University, Qingdao, 266071, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| |
Collapse
|
49
|
Ahangar AA, Qadri H, Malik AA, Mir MA, Shah AH, Dar AA. Physicochemical and Anti-fungal Studies of the Pharmaceutical Co-crystal/Salt of Fluconazole. Mol Pharm 2023. [PMID: 37254498 DOI: 10.1021/acs.molpharmaceut.3c00087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Crystal engineering is one green alternative to organic synthesis that can be used to manipulate molecular behavior promptly and economically. We report the preparation and characterization of the pharmaceutical organic salt (FLC-C) of fluconazole (FLC) and organosulfonate (NDSA-2H), based on the sulfonate-pyridinium supramolecular synthon. Structural studies validate the crystallization of the two-component stoichiometric crystal with two molecules of water in the triclinic P1̅ space group. The anticipated proton transfer between the crystal forms leads to ionic interactions, augmenting the organic salt's thermal stability. Hirshfeld studies of FLC-C help to understand the role and significance of different types of intermolecular interactions responsible for crystal packing. The structural and theoretical studies indicate the absence of π-π interactions in FLC-C, which account for the incipience of solid-state emission in the product. The solubility studies establish augmented aqueous solubility of FLC-C over pristine FLC at physiological pH values of 2 and 7. Interestingly, in in vitro studies, FLC-C appears to serve as a potential alternative to FLC, displaying a wide spectrum of antifungal activity. FLC-C is active against several human pathogenic yeast strains, including the leading and emerging Candida strains (Candida albicans and Candida auris, respectively), at comparable and/or lower drug concentrations without showing any enhanced host cell toxicity. Interestingly, the pharmaceutical co-crystal also displays fluorescence properties inside the Candida cells.
Collapse
Affiliation(s)
- Aadil A Ahangar
- Crystal Engineering Laboratory, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006 Jammu and Kashmir, India
| | - Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006 Jammu and Kashmir, India
| | - Asif A Malik
- Crystal Engineering Laboratory, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006 Jammu and Kashmir, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006 Jammu and Kashmir, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006 Jammu and Kashmir, India
| | - Aijaz A Dar
- Crystal Engineering Laboratory, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006 Jammu and Kashmir, India
| |
Collapse
|
50
|
Liu F, Li JY, Han CB, Wang JH, Tong SY, Wang XK, Li YT, Sun WJ. First cocrystal of esculetin: simultaneously optimized in vitro/vivo properties and antioxidant effect. Eur J Pharm Sci 2023; 187:106469. [PMID: 37209999 DOI: 10.1016/j.ejps.2023.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Esculetin (ELT) is one of the best-known and simplest coumarins with powerful natural antioxidant effects but insoluble and difficult to absorb. In order to overcome the problems, cocrystal engineering was first applied to ELT in this paper. Nicotinamide (NAM) was selected as the coformer for its excellent water solubility and potential synergistic antioxidant effect with ELT. The structure of the ELT-NAM cocrystal was successfully prepared and characterized by IR, SCXRD, PXRD, and DSC-TG. Furthermore, the in vitro/vivo properties and antioxidant effects of the cocrystal were adequately studied. The results highlight that the ELT obtained tremendous improvements in water solubility and bioavailability after cocrystal formation. Meanwhile, the synergistic enhancement of ELT with NAM in antioxidant effect was demonstrated by the DPPH assay. Ultimately, the simultaneously optimized in vitro/vivo properties and antioxidant activity of the cocrystal created an improved practical effect of hepatoprotective in rat experiments. The investigation is significant for developing coumarin drugs represented by ELT.
Collapse
Affiliation(s)
- Fang Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China; Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma lucidum, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Jin-Yang Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Cai-Bei Han
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Jun-Hao Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Si-Yi Tong
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Xue-Kun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yan-Tuan Li
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China.
| | - Wen-Jun Sun
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| |
Collapse
|